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Abstract—Multiple-input multiple-output (MIMO) radar is
known for its superiority over conventional radar due to its an-
tenna and waveform diversity. Although higher angular resolution,
improved parameter identifiability, and better target detection are
achieved, the hardware costs (due to multiple transmitters and
multiple receivers) and high-energy consumption (multiple pulses)
limit the usage of MIMO radars in large scale networks. On one
hand, higher angle and velocity estimation accuracy is required,
but on the other hand, a lower number of antennas/pulses is desir-
able. To achieve such a compromise, in this paper, the Cramér–Rao
lower bound (CRLB) for the angle and velocity estimator is em-
ployed as a performance metric to design the antenna and the pulse
placement. It is shown that the CRLB derived for two targets is
a more appropriate criterion in comparison with the single-target
CRLB since the two-target CRLB takes into account both the main-
lobe width and the sidelobe level of the ambiguity function. In this
paper, several algorithms for antenna and pulse selection based
on convex and submodular optimization are proposed. Numerical
experiments are provided to illustrate the developed theory.

Index Terms—Angle and velocity estimation, antenna place-
ment, MIMO radar, submodularity, two-target CRLB, pulse
placement.

I. INTRODUCTION

MULTIPLE input multiple output (MIMO) radar has been
gaining a lot of interest during the last decade [2]. The

main reason behind this growth is the enormous capabilities that
this type of radar provides, e.g., higher angular resolution, im-
proved parameter identifiability, and radar cross section (RCS)
diversity [2], [3]. Based on the antenna configuration MIMO
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radars are categorized, into colocated and widely-separated
MIMO radars. Colocated MIMO radars have closely located
antennas, which see the targets from the same angle. High an-
gular resolution, improved target parameter identifiability, and
enhanced beampattern design exploiting waveform diversity are
some of the main advantages of colocated MIMO radars [4]–
[10]. The other category, widely-separated MIMO radars, have
transmitter/receiver antennas placed far from each other. This
results in different target angles of view for different transmitter-
receiver pairs. Improving radar performance by exploiting RCS
diversity, handling slow moving targets by exploiting Doppler
estimates from multiple directions, and supporting high reso-
lution target localization are among the advantages of widely-
separated MIMO radars (see [11]–[15]). In this paper, the focus
is on the colocated MIMO radar configuration to estimate the
angle and velocity of the targets (the developed design algo-
rithms can be easily adapted to widely-separated MIMO radars
as discussed later).

Angle of arrival and velocity estimation are two main tasks of
any radar system [16]. Due to the additional degrees of freedom,
MIMO radars perform these tasks much better than a single radar
[9], [11], [17]. In [18] and [19] the Cramér-Rao lower bound
(CRLB) for a MIMO radar has been derived to prove this ad-
vantage. Beside the numerous advantages of MIMO radar over
conventional radars, the main drawbacks of this radar is, how-
ever, the large hardware costs due to multiple transmitter and
receiver chains, the high energy consumption due to multiple
transmitted pulses, and the large computational complexity in-
volved in processing the transmitted pulses. To reduce these
costs, keeping in mind the low number of targets in the region
of interest, compressive sensing (CS) based approaches have
shown promising performance [16], [20]. Although CS-based
approaches reduce the number of measurements to be processed,
the hardware costs are not reduced. This is because of the dense
sampling matrices used in CS that limit the number of measure-
ments while requiring all the antennas and pulses. Alternatively,
antenna and pulse selection (i.e., employing only a subset of all
the antennas and pulses) via sparse sensing can be performed
to reduce the hardware sensing costs as well as the energy con-
sumption, while achieving the desired performance. We would
like to stress here that pulse placement for radar has been rarely
considered before. A closely related topic is waveform design
[2] which deals with the design and selection of transmit wave-
forms with proper characteristics. However, such designs are
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mainly concerned with statistical properties of the signal within
each pulse rather than position of the transmit pulses within the
pulse sequence.

Sensor selection is the problem of choosing a subset of sen-
sors out of a set of candidate sensors. Sensor selection is impor-
tant to reduce the hardware costs, computational complexity,
network energy consumption, and has been studied vastly as
detailed next. A knapsack problem formulation for sensor se-
lection is proposed in [21], where an algorithm based on a greedy
heuristic is presented. Sensor selection via convex optimization
is proposed in [22], where the problem is first relaxed to a
convex program, and then, sensors are selected through solv-
ing a convex optimization problem. Similarly, [23] proposed
a sparsity-enforcing sensor selection scheme for direction of
arrival estimation, where a single-target CRLB is used as objec-
tive function with additional constraints on the sidelobe level.
In [24] and [25], sensor selection for general non-linear models
through convex and submodular optimization, respectively, is
proposed.

Antenna and pulse selection can be posed as a sensor selection
problem where a subset of antennas and pulses is selected out of
a large number of antennas and pulses. We refer to this problem
as antenna and pulse placement. Antenna placement in widely
separated MIMO radar for joint target position and velocity
estimation is studied in [11], [26], [27], which are all based
on the single-target CRLB. For instance, [28] proposed a DOA
estimation framework for a MIMO radar in which transmit and
receive antenna positions are drawn at random from a uniform
distribution. In a similar way, by employing the single-target
CRLB in [29], joint array and waveform optimization techniques
for MIMO radar are investigated. The authors in [29] show that
both local and global errors incurred by the estimator must be
considered during the design phase. In fact, these effects occur
in low SNR scenarios when the estimator exhibits a threshold
effect due to local maxima in the ambiguity function. However,
interactions between two or more targets is not considered in
[29]. This is achieved in this work by considering the general
expression of the two-target CRLB.

Typically, radars transmit several pulses with a uniform time
separation, which is called the pulse repetition interval (PRI). By
exploiting the phase differences of the reflected pulses from the
targets, Doppler (or velocity) estimation is performed [30]. A ve-
locity estimation algorithm for wide-band frequency-modulated
continuous-wave radar systems using the phase differences of
consecutive uniformly separated pulses is proposed in [31]. To
reduce the network energy consumption and processing costs,
we aim to have an irregular pulse transmission pattern (i.e., by
transmitting only a subset of the uniformly separated pulses).
Fig. 1(a) shows an example of such an irregular pulse placement.
Similar to pulse placement, the idea behind antenna placement
is to perform the angle of arrival estimation task with a smaller
number of antennas. In colocated MIMO radars, transmitters and
receivers are usually placed uniformly along a line with a spac-
ing of half a wavelength. However, we want to systematically
design the transmitter-receiver positions to obtain a nonuniform
array with a reduced number of transmit/receive elements. In
particular, we start with a large set of candidate locations where

Fig. 1. (a) Uniform vs. irregular pulse transmission. Dashed lines indicate that
the pulses are not transmitted in that interval. (b) Uniform vs. irregular antenna
placement. Light colored antennas indicate that the antennas are not used during
transmission or reception.

we can place the antennas. Then, we select the best subset out of
those locations in order to achieve a desired estimation perfor-
mance. This antenna placement procedure helps to reduce the
hardware costs and computational complexity, while maintain-
ing a prescribed performance. Fig. 1(b) illustrates an irregular
transmitter and receiver placement in comparison with a uni-
form placement.

The aim of this paper is to find the optimal antenna and pulse
placement that guarantees a desired angle of arrival and velocity
estimation accuracy. It should be noted that the performance is
traded off with cost when the number of antennas and/or pulses
are reduced.

A. Contributions

In this paper, we study further the joint antenna and pulse
placement for a colocated MIMO radar for angle of arrival and
velocity estimation based on sparse sensing [32] by extending
our previous work [1] by a more detailed signal model, a deriva-
tion of the two-target CRLB, and a submodular optimization
framework as a fast and reliable alternative approach to convex
optimization.

The conventionally used performance measure, namely, the
single-target CRLB only considers the mainlobe width of the
ambiguity function but does not take into account the sidelobe
level. Therefore, we derive the CRLB for two targets, which
takes into account both the mainlobe width and sidelobe level
(particularly the sidelobe level around the mainlobe) of the am-
biguity function. Based on this two-target CRLB, we propose
several performance measures and develop a number of algo-
rithms for designing the optimal antenna and pulse placement
of colocated MIMO radar systems. Firstly, single antenna pulse
placement and single pulse MIMO radar antenna placement are
presented as two specific cases of the problem. Then, we present
the general case of joint antenna and pulse selection. Since the
antenna-pulse selection is a combinatorial optimization, and is
NP-hard [22], we propose several suboptimal algorithms for
solving the selection problem. One of the proposed approaches
is based on submodular optimization. We prove the submod-
ularity of the employed performance measure, which enables
us to use a greedy algorithm to perform the selection with
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near-optimality guarantees. The second proposed approach is
based on convex optimization, where by employing some re-
laxations, the optimization is turned into a convex program.
However, due to these relaxations, a suboptimal solution is ob-
tained in general. The advantages and disadvantages of these
two approaches are explained in more detail in Section IV.

B. Outline and Notations

The rest of the paper is organized as follows. In Section II,
the signal model is introduced. Section III provides the required
preliminaries for this paper. The problem formulation is dis-
cussed in Section IV. Two basic examples to illustrate the con-
cept are presented in Section V. The proposed algorithms for
the most general form of the antenna-pulse selection problem
are presented in Section VI. Simulation results are reported in
Section VII. Finally, Section VIII concludes the paper.

We adopt the notation of using boldface lower (upper) case for
vectors a (matrices A). The transpose, Hermitian, and complex
conjugate operators are denoted by the symbols (.)T , (.)H , and
(.)∗, respectively. RN×M is the set of N ×M real matrices.
diag (a) indicates the diagonal matrix formed by the compo-
nents of vector a along the main diagonal. det {.} is the matrix
determinant and tr {.} is the matrix trace operator. In addition,
||A||0 and ||a||0 are the number of non-zero entries of A and
a, respectively. If a and b are two vectors, then 〈a,b〉 is the
inner product between a and b (i.e., 〈a,b〉 = aHb). λmax{A}
and λmin{A} are the maximum and minimum eigenvalues of
the matrix A, respectively. Given a reference set U and a subset
A ⊆ U , the absolute complement of A is denoted as Ac, i.e.,
Ac = U \ A. Finally, |A| is the cardinality of the set A.

II. SIGNAL MODEL

Consider a colocated MIMO radar with R receivers placed
along a line at coordinates [d, 2d, . . . , Rd], where d is the inter-
element spacing, which is assumed to be λ/2 (λ is the wave-
length). In addition, I transmitters are placed along a line at
coordinates [−d,−2d, . . . ,−Id]. The ith transmitter can trans-
mit a waveform si(t) for P times with PRI TP . Note that si(t)
is non-zero only in the interval [0, TP ]. Assume Q targets exist
in the region of interest. Our aim is to estimate the position and
velocity of the targets based on the received signals. In partic-
ular, the direction cosine, uq = cos ψq with ψq being the qth
target’s angle of arrival and radial velocity, vq of the qth target,
are the desired unknown parameters.

The noiseless baseband representation of the signal received
at the rth receiver during the time interval [pTP , (p+ 1)TP ] due
to all the targets is

xr (t) =
Q∑

q=1

αqh(t; vq )sTr,q (t− pTP )φr (uq ), (1)

where αq is the effect of the qth target’s RCS and h(t; vq ) =
exp(j4πvq t/λ) with 2vq/λ being the Doppler frequency of
the qth target. Due to the colocated configuration assumption,
for each target, the Doppler frequency and RCS seen by all
transmitter-receiver pairs are equal. Here, the assumption is

that the RCS and propagation attenuation are constant dur-
ing the observation interval (i.e., Swerling I model). Further-
more, sr,q (t) = [s1(t− τ1,q ,r ), . . . , sI (t− τI ,q ,r )]T ∈ CI in-
cludes the received signal from all the transmitters, where

τi,q ,r = c−1 [(Rq − di cosψq ) + (Rq − dr cosψq )]

= c−1 [2Rq − (di + dr )uq ]

is the time delay of signal propagation between the ith trans-
mitter, qth target, and rth receiver, and c the speed of light. In
addition,

φr (uq )=[exp(−j2πfcτ1,q ,r ), . . . , exp(−j2πfcτI ,q ,r )]T ∈ CI

contains the related phase shifts with fc being the carrier fre-
quency. In the expressions for sr,q (t) and φr (uq ), Rq is the qth
target distance from the center of the coordinate system, and di
and dr are the positions of transmitter i and receiver r on the
x-axis, respectively.

Linear frequency modulation (LFM) is selected for signaling.
In fact, we adopt a set of LFM signals that have the same shape,
but are slightly shifted in time which yields an efficient orthog-
onal transmission scheme [33]. More specifically, we design the
ith transmitted waveform as si(t) = s(t− (i− 1)tsh), where
tsh is the time shift between

adjacent LFM signals to achieve orthogonality and s(t) is the
baseband LFM waveform

s(t) = exp
(
jπkt2

)
, (2)

where k is the rate of sweeping the whole bandwidth for the
pulse duration TC , i.e., k = B/TC with B being the signal
bandwidth. Note that to satisfy the orthogonality condition, tsh
should be selected larger than the time delay of the farthest
target of interest. In addition, since all pulses from all antennas
need to fit within a single PRI after reception, we need the
condition TC + Itsh < TP . It should be pointed out that any
set of orthogonal waveforms other than LFM signaling could
also be employed for our model.

Employing I matched filters (de-ramping plus filtering)
matched to the I transmit waveforms, the observed signal in
the time interval [pTP , (p+ 1)Tp ] from all the transmitters of
the rth receiver zr (t) = [zr,1(t), . . . , zr,I (t)]T , after some sim-
plifications is given by

zr (t) =
Q∑

q=1

αqh(t; vq )βq (t− pTP )φr (uq ) + er (t), (3)

where βq (t) = exp{j4πktRqc
−1}. Note that the entries of

er (t) = [er,1(t), . . . , er,I (t)]T are noise terms at the output of
the I matched filters at the rth receiver. Since the I transmit
waveforms are orthogonal, the entries of er (t) can be assumed
independent. Thus, er,i(t), i = 1, . . . , I, are modeled as i.i.d.
with distribution N (0, σ2

e ). It is worth mentioning that if we
consider correlated clutter in (3), based on the methods pre-
sented in [34], [35], we can design samplers to handle clutter.
To use the aforementioned methods, we have to assume that
the clutter covariance matrix as a function of the number of
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antennas/pulses is known. In other words, for the proposed off-
line design, we require knowledge of the model information.

Sampling the observed signal with sampling period Ts , N
samples per pulse are obtained, where the nth sample of the pth
pulse related to the transmitter-receiver pair (i, r), zr,i,p [n], is
given by

zr,i,p [n] = zr,i(pTp + nTs)

=
Q∑

q=1

αqh(pTP + nTs ; vq )βq (nTs)φr,i(uq )

+ er,i(pTP + nTs)

=
Q∑

q=1

y
(q)
r,i,p [n] + er,i,p [n] = yr,i,p [n] + er,i,p [n], (4)

where φr,i(uq ) is the ith entry of φr (uq ). Collecting all the
measurements, we have a non-linear model of the form

z = y(θ) + e ∈ CNRIP , (5)

where the unknown parameters of the qth target are represented
by the vector θq = [uq , vq ]T ∈ R2 . So, θ = [θT1 , . . . ,θ

T
Q ]T ∈

R2Q collects all the unknown parameters.

III. PERFORMANCE METRIC

As seen in Section II, the measurements are a non-linear func-
tion of the unknown parameters. As a result, the mean squared
error (MSE) does not admit a closed form expression [36]. On
the other hand, the CRLB provides a lower bound on the variance
of any unbiased estimator and can be used to evaluate the per-
formance of unbiased estimators. Since the CRLB can always
be computed in closed form, it is employed as an estimation
performance criterion.

It is well known that under the regularity condition, the co-
variance of any unbiased estimator θ̂ of the unknown vector θ
is lower bounded by the CRLB as [24], [37]:

E{(θ − θ̂)(θ − θ̂)H } ≥ C(θ) = F−1(θ), (6)

where C is the CRLB matrix and F is the Fisher information
matrix (FIM), which can be calculated as [24]

F(θ) = −E

{
∂2 ln p(z;θ)
∂θ ∂θH

}

= E

{
∂ ln p(z;θ)

∂θ

∂ ln p(z;θ)
∂θH

}
∈ C2Q×2Q , (7)

where p(z;θ) is the probability density function (pdf) of z pa-
rameterized by the unknown vector θ. Due to uncorrelated er-
rors, the log-likelihood ln p(z;θ) is additive, and given by

ln p(z;θ) =
R∑

r=1

I∑

i=1

P∑

p=1

N∑

n=1

ln p(zr,i,p [n];θ). (8)

Due to (8) the FIM in (7) is also additive and can be written
as [24]

F(θ) =
R∑

r=1

I∑

i=1

P∑

p=1

Fr,i,p(θ), (9)

whereFr,i,p(θ) is the FIM of the pth pulse due to the transmitter-
receiver pair (i, r) for all the N samples, i.e.,

Fr,i,p(θ) =
N∑

n=1

Fr,i,p,n (θ)

=
4
σ2
e

N∑

n=1

∂yr,i,p [n]
∂θ

∂yr,i,p [n]
∂θH

. (10)

One of the contributions of this paper is to introduce the
CRLB for two targets as a better performance measure for an-
tenna/pulse selection in comparison with the CRLB for a single
target. The reasoning is based on the fact that, for two targets, the
correlation between the signals echoed from the targets is taken
into account and both the estimation accuracy (mainlobe width
of the ambiguity function) and the robustness against ambigu-
ities (the sidelobe level around the mainlobe of the ambiguity
function) are accounted for in the cost function that is used to
optimize the antenna/pulse placement. In contrast, in the single-
target CRLB, only the estimation accuracy of one target is con-
sidered, which essentially makes the mainlobe width as narrow
as possible, ignoring the occurrence of ambiguities due to the
sidelobes (i.e., a high sidelobe level around the mainlobe might
occur due to the nonuniform antenna/pulse placement). This is
the main advantage of considering a multi-target CRLB instead
of a single-target CRLB. Due to these reasons, we employ the
two-target CRLB as a performance measure in our optimization
problems. In the following, the FIMs for the two-target case for
all the 2Q unknown parameters are derived.

A. Two-target CRLB

In this scenario, two targets are considered in the region of
interest and the CRLB is derived for these two targets. For
Q = 2, (4) simplifies to

zr,i,p [n] = yr,i,p [n] + er,i,p [n]

= α1h(pTP + nTs ; v1)β1(nTs)φr,i(u1)

+ α2h(pTP + nTs ; v2)β2(nTs)φr,i(u2)

+ er,i,p [n]. (11)

The partial derivative of the signal w.r.t. the unknowns is given
by

∂yr,i,p [n]
∂θ

=
j2π
λ

⎛

⎜⎜⎜⎜⎜⎝

(di + dr )y
(1)
r,i,p [n]

2(nTs + pTP )y(1)
r,i,p [n]

(di + dr )y
(2)
r,i,p [n]

2(nTs + pTP )y(2)
r,i,p [n]

⎞

⎟⎟⎟⎟⎟⎠
, (12)

where y(1)
r,i,p [n] and y(2)

r,i,p [n] are the noiseless signal terms due
to the first and second target, respectively. This allows us to
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compute the Fisher information matrix as

Fr,i,p,n =

[
J(1)

1 J2

J∗2 J(2)
1

]
, (13)

where J(q)
1 is the single-target FIM for the qth target given by

J(q)
1 =

32π2α2
q

λ2σ2
e

⎡

⎣
1
2
(di + dr )2 (di + dr )(nTs + pTP )

(di + dr )(nTs + pTP ) 2(nTs + pTP )2

⎤

⎦,

(14)

where
α2
q

σ 2
e

is the signal to noise ratio (SNR). The expression (14)
implies that the single-target FIM is independent of θ and thus
Fr,i,p in (10) and F in (9) are also independent of θ for a single-
target scenario. In addition, J2 ∈ C2×2 is the cross correlation
between the signals of the two targets calculated as follows

J2 =
32π2α1α

∗
2

λ2σ2
e

⎡

⎣
1
2
(di + dr )2 (di + dr )(nTs + pTP )

(di + dr )(nTs + pTP ) 2(nTs + pTP )2

⎤

⎦

h(pTp + nTs ; v1 − v2)φr,i(u1 − u2). (15)

It is easy to see that the unknown parameters appear only in
the cross correlation terms between the two targets. Moreover,
the Fisher information matrix only depends on the difference
between direction cosines and on the difference between the
velocities. As will be seen later, we use this characteristic to
reduce the search space. The final expression of the FIM is
calculated from (9) and (10).

The calculated CRLB and Fisher information matrices are
useful when all the unknown parameters in θ have the same
units. However, in this paper we have parameters with different
units such as direction cosine and velocity (i.e., cosine of radi-
ans andm/s). Moreover, the desired estimation accuracy for the
two targets might be different as well. In fact, if the estimation
error of one of the parameters is much higher than that of the
others, then that parameter would play the dominant role in the
optimization problem and the selection would be based on that
parameter solely. As a result, the final design would not be sat-
isfactory in terms of the other parameters’ estimation accuracy.
Thus, to make a balance among the parameters, we introduce
compensation weights and modify the CRLB matrix as

C′(θ) = diag (γ)C(θ)diag (γ), (16)

where γ2
i is the known compensation weight for the ith un-

known parameter which depends on the application and γ =
[γ1 , . . . , γ2Q ]T . Similar to the modified CRLB matrix, we can
define the modified Fisher matrix as

F′(θ) = diag−1{γ}F(θ)diag−1{γ}. (17)

As seen in (13) and (15), the two-target CRLB (unlike the
single-target CRLB) is a function of the unknown parameters.
Therefore, while optimizing the CRLB, in order to keep the op-
timization problem tractable, we grid the region of interest into
a discrete set of points for which we can evaluate the CRLB.
Since the two-target CRLB only depends on the difference be-
tween the direction cosine and velocity [cf. (15)], we only grid
these differences in the region of interest resulting in the set
D = {δθ1 , ...δθD}, where δθd denotes the dth difference be-
tween the two targets’ parameters. Hence, a 1-D scan of the
difference of each parameter suffices to obtain all feasible two-
target CRLB matrices. Since the CRLB is a matrix, in the next
section, we introduce scalar measures of the CRLB as optimiza-
tion criteria to design the antenna/pulse placement that should
be optimized over these grid points.

IV. PROBLEM FORMULATION

In this work, on one hand, we want to reduce the sensing
cost, i.e., reduction in the number of transmitters, pulses, and
receivers, while guaranteeing a desired estimation error. The R
receivers next to the I transmitters and P pulses of each trans-
mitter are the parameters that affect both the estimation quality
and the sensing cost (hardware and computational complexity).
Therefore, the selection problem might be posed in the follow-
ing two ways. In the first problem, we minimize the sensing cost
with a constraint on the estimation error. In the second problem,
we minimize the estimation error with a constraint on the sens-
ing cost. Since we know how many antennas are available, we
focus on the second problem. The other case can be tackled in
a similar way when the desired estimation error is known.

We model the sensing framework by introducing the follow-
ing sets: (i) the set of selected transmitter-pulsesA ⊆ P , where
P = {a1,1 , a1,2 , . . . , aI ,P } is the set of all the IP transmitter-
pulses, and (ii) the set of selected receivers B ⊆ R, where
R = {b1 , . . . , bR} is the set of all the R receivers. In addi-
tion, we further introduce the transmitter-pulse selection matrix
and the receiver selection vector for easier notation. That is,
A ∈M{A} is a transmitter-pulse selection matrix defined by
the set of selected transmitter-pulses A, with M{A} defining
the singleton:

M{A} = {A|A ∈ {0, 1}I×P ; [A]i,p = 1 ⇐⇒ ai,p ∈ A}.
(18)

Here, the (i, p)th entry of A, denoted by [A]i,p , is equal to 1(0)
if the ith transmitter transmits the pth pulse (or not). In a similar
way, we introduce b ∈ V{B} as the receiver selection vector
defined by the set of selected receivers B, with V{B} defining
the singleton:

V{B} = {b|b ∈ {0, 1}R ; [b]r = 1 ⇐⇒ br ∈ B}, (19)

where the rth entry of b, denoted by [b]r , is equal to 1(0) if the
rth receiver is (not) selected.

Note that these definitions are in the most general form with
complete freedom to select any of the transmitters, pulses, or
receivers. For specific purposes, which are discussed later on,
one may consider only the receiver selection vector (i.e., by
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employing all the transmitters transmitting all the pulses), only
the transmitter-pulse selection matrix (i.e., by employing all the
receivers), or the selection vectors for receivers and transmitters
(where we assume that each active transmitter would transmit
all the pulses). As there is a one-to-one relation between the
matrix (vector) and the setA (B), from now on we employ them
interchangeably.

Using the selection variables A and b, the collected measure-
ments can be written as follows

zr,i,p [n] = [b]r [A]i,p(yr,i,p [n] + er,i,p [n]), (20)

where depending on whether a transmitter-receiver-pulse is se-
lected, the measurement will be collected. It is easy to show that
the Fisher information matrix [cf. (9)] will be modified based
on (20) as

F(A,b, δθ) =
R∑

r=1

[b]r
I∑

i=1

P∑

p=1

[A]i,pFr,i,p(δθ). (21)

Because the two-target FIM is used, the difference of the two
targets’ parameters is considered. The most general form of the
optimization problem can be mathematically formulated as

min
A⊆P,B⊆R

g(f(A,b, δθ),D)

subject to A ∈M{A}, |A| ≤ KP ,

b ∈ V{B}, |B| ≤ KR, (22)

where KP and KR are the maximum number of transmitter-
pulses and receivers, respectively. Here, f(A,b, δθ) is a func-
tion of the estimation error at the grid point δθ ∈ D, g(·) is a gen-
eral composition of the function f(·) evaluated over all the grid
points in D, e.g., maximization or average of f(A,b, δθ) for
all δθ ∈ D, the setsA and B represent the selected transmitters-
pulses and receivers, respectively. To guarantee an estimation
accuracy level over all the grid points, g(·) should be the max
function. To guarantee an average accuracy level, g(·) can be
defined as the average over D. Since, (22) is a combinatorial
optimization problem and NP-hard in nature [22], we use con-
vex relaxation techniques to employ convex optimization and
surrogate submodular functions to employ greedy optimization
as two general approaches to solve this problem.

As convex optimization requires a convex cost function and
convex constraints, we require a function f(A,b, δθ) that is
convex and that the non-convex sets A and B are relaxed to
obtain convex constraints. Both the maximum and expected
value for g(·) could be employed for convex optimization. By
reformulation in its epigraph form, we will use maximization
for convex optimization which in general leads to a semidefinite
program (SDP) that has a cubic computational complexity.

The other approach to solve this problem is to employ sub-
modular optimization which has been shown useful to solve
combinatorial optimization problems [35], [38], [39]. A set
function f : 2|N | → R is called submodular, if and only if, for
every S1 ⊆ S2 ⊆ N and u ∈ Sc

2 , it shows the property of di-
minishing returns, i.e.,

f(S1 ∪ {u})− f(S1) ≥ f(S2 ∪ {u})− f(S2). (23)

It is known that, if the function f is nondecreasing, normal-
ized and submodular, then by employing a conceptually simple
greedy algorithm, which starts with an empty (full) set, and in
iteration i, adds the best (removes the worst) element to (from)
the set, to maximize the function (not minimize), it is possi-
ble to obtain an 1− 1/e approximation of the optimum value
of maxS⊆N ,|S|≤K f(S) for some cardinality K [40], where e
represents Euler’s number. Thus, if g(f(A,b,θ),D) satisfies
this property, then we can use the greedy algorithm with near-
optimality guarantees.

In essence, we could say that the advantage of the convex op-
timization approach is its higher freedom in terms of objective
functions and constraints. On the other hand, submodular opti-
mization generally leads to low computational methods which
makes it appropriate for large-scale scenarios. In Section VI,
both algorithms will be explained in more detail.

A. Scalar Measures of the CRLB

Since the CRLB is a matrix, it is not possible to employ it as
an objective function for the optimization problem. Thus, in the
following, scalar measures of the CRLB (or the FIM) that are
employed in the proposed algorithms are introduced [24], [36],
[41].

� A-optimality: minimize the trace of the CRLB, i.e.,
f(A,b, δθ) = tr {C(A,b, δθ)}.

� D-optimality: maximize the determinant of the FIM, i.e.,
f(A,b, δθ) = log det (F(A,b, δθ)).

� E-optimality: minimize the maximum eigenvalue of the
CRLB, i.e., f(A,b, δθ) = λmax{C(A,b, δθ)}.

� Modified frame potential: The frame potential is a scalar
quantity that measures the orthogonality between vectors
of a frame [36], [42]. In this paper, the elements of these
vectors are related to the measurements due to different
pulses and receivers, and orthogonality translates to how
uncorrelated these measurements are. We are interested in
a set of measurements that provides the maximum per-
formance meaning that the measurements should be as
uncorrelated as possible. In other words, when the mea-
surements are statistically orthogonal or less correlated,
it implies that the corresponding pulses and receivers are
more informative. Therefore, the frame potential can be
considered as a good performance measure for designing
antenna/pulse placements. Due to the non-linearity of our
model, we employ the first derivative of the measurements
∂yr,i,p [n]/∂θ as defined in (12). For each i, r, and pwhich
is selected, we have N entries in the measurement matrix.
Thus, the FP for our system model would be

FP(S, δθ) =
∑

y ,y ′∈Y{S}

N∑

n=1

|〈∂y[n], ∂y′[n]〉|2 , (24)

where ∂y[n] is a simplified notation for ∂y[n]/∂θ for
y ∈ Y{S}, S = A ∪ B is the union set of transmitter
pulses in set A, and receivers in set B, and Y{S} =
{yr,i,p [n], n ∈ {1, . . . , N} | r ⇐⇒ br ∈ B, (i, p) ⇐⇒
ai,p ∈ A} is the set of measurements due to the
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Fig. 2. Single antenna pulse selection based on velocity estimation error for a total of P = 12 pulses: (a) selected pulses, (b) velocity ambiguity function,
(c) scalar measures performance.

transmitter-pulses and receivers of S presented in (4).
Even though the dependency with respect to δθ is not
explicitly stated in (24), substituting (12) in (24), it is
straightforward to show that (24) is a function of the
parameters difference vector, δθ. It has been shown that
the FP performs the best under equal row norms and
that the minimization of the FP and the MSE is related.
However, in this problem, rows have different norms. On
one hand, rows with lower norms are prioritized by the FP,
but on the other hand, rows with higher norms contribute
more to the estimation accuracy. Thus, we propose to
normalize the rows and call the related FP the modified
FP (MFP), which is given by

F̃P(S, δθ) =

∑

y ,y ′∈Y{S}

N∑

n=1

∣∣∣∣
〈∂y[n], ∂y′[n]〉

〈∂y[n], ∂y[n]〉 〈∂y′[n], ∂y′[n]〉
∣∣∣∣
2

. (25)

The above mentioned measures are employed as cost
functions in different algorithms, which are presented in the
following. It would be shown later that some are appropriate
for convex optimization, while others are good for submodular
optimization. It should be noted that each of these measures
has some advantages and disadvantages. In other words, none
of them are the best in general and based on the application
and requirements, one may employ one or another. Finally,
as mentioned before, the developed design approach can be
adapted to widely-separated MIMO radars. Although there
would be some minor changes in the signal model and the
CRLB derivation, the overall idea would be the same and
similar algorithms would be applicable.

V. TWO BASIC EXAMPLES

In this section, by explaining two simple examples, the idea
behind this work is illustrated. In addition, some useful insights
can be obtained from these examples. It should be mentioned
that these are just small-scale examples for illustrating the gen-
eral idea. As a result, an exhaustive search is used for solving
the optimization problem (22). The proposed algorithms for
large-scale problems are explained in Section VI.

A. Single Transmitter-Receiver Pair and Multiple Pulses

In this example, we consider the problem of a single
transmitter-receiver pair which is able to transmit P identical
pulses. The aim is to compare the estimation accuracy between
employing all the pulses or just a few pulses after an appropri-
ate selection. Omitting the transmitter and receiver indices, the
measured signal for the pth pulse would be

zp [n] = [a]p(yp [n] + ep [n]), (26)

where the matrix A is now a column vector a, as a single trans-
mitted is selected. In addition, as a single receiver is selected the
vector b is now omitted. The optimization problem (22) then
simplifies to

min
a

max
δθ∈D

f(a, δθ)

subject to ||a||0 ≤ KP ,a ∈ {0, 1}P , (27)

where f(a, δθ) is one of the aforementioned measures, δθ =
v1 − v2 (since we are dealing with a single antenna pair there is
no angle estimation, and the direction cosine is not considered as
an unknown parameter), a is the pulse selection vector, andKP

is the constraint on the number of transmitted pulses. We solve
this problem by performing an exhaustive search over all the
possible combinations of pulses for both the single- and two-
target CRLB criterion. In Fig. 2, the result of pulse selection
on the velocity estimation error is represented where P = 12
pulses in total are considered. In one case 5 and in the other case
8 pulses are selected. The result of pulse selection for these two
cases for the single and two-target CRLB using A-optimality
as the performance measure is shown in Fig. 2(a). It is clear
that for the single-target CRLB case, the selection prioritizes
the edges. However, for the two-target CRLB case, edge pulses
are combined with intermediate pulses. This difference in pulse
pattern causes the difference in the velocity ambiguity function
which is depicted in Fig. 2(b). It can be seen that, employing
the two-target CRLB reduces the sidelobe level (especially for
the sidelobes close to the mainlobe) at the price of a wider
beamwidth. Finally, Fig. 2(c) shows the trace of the two-target
CRLB for different cost functions. Definitely, A-optimality is
performing better than the others, because both the optimization
cost function and the evaluation measure are the same. However,
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Fig. 3. MIMO radar antenna selection based on angle estimation error for a total of 8 transmitters and 4 receivers. (a) Selected antennas,
(b) beampatterns for 4 transmitters and 3 receivers, (c) beampatterns for 6 transmitters and 2 receivers.

based on the plot, it turns out that all measures are performing
similarly. In addition, the MSE of the maximum likelihood es-
timator (MLE) is also plotted for the optimal subset of pulses
based on A-optimality, which shows the introduced measure is
a good representative for the MSE. Note that although the op-
timization of the MSE of the estimator was the original aim,
the MSE does not admit a closed form which makes it difficult
to optimize. In contrast, calculating the surrogate measures we
mentioned before is straightforward and based on Fig. 2(c), we
observe that they are consistent with the MSE.

B. MIMO Radar and Single Pulse

In this scenario, we are investigating another phenomenon,
which is the effect of the antenna positions on the target angle
estimation error. Since the number of pulses does not play a role
in this example, a single pulse is considered for simplicity. The
aim is to find the optimal antenna placement for a maximum
angle estimation accuracy using different numbers of antennas.
The optimization problem is as follows

min
a,b

max
δθ∈D

f(a,b, δθ)

subject to ||a||0 ≤ KI ,a ∈ {0, 1}I ,
||b||0 ≤ KR,b ∈ {0, 1}R , (28)

where f(a,b, δθ) is one of the different measures, δθ =
u1 − u2 , a and b are the transmitter and receiver selection
vectors, respectively, and KI and KR are the total number of
selected transmitters and receivers, respectively. Similar to the
previous example, the optimization is solved by performing an
exhaustive search over all possible combinations of transmitters
and receivers.

As an example, we perform the optimization for a total of
8 transmitters and 4 receivers and only consider A-optimality.
Fig. 3 represents the result for two cases: 4 transmitters com-
bined with 3 receivers and 6 transmitters combined with 2 re-
ceivers for the single and two-target CRLB. The selected an-
tennas are depicted in Fig. 3(a) for these four cases. As for the
single antenna pulse selection example, the selected antennas
for the single-target CRLB have a tendency to appear at the
edges. However, for the two-target CRLB, antennas from both

the edges and the middle of the array are selected. In addition,
Figs. 3(b) and 3(c) compare the beampatterns for the single and
two-target CRLB. For both patterns, the sidelobe levels close to
the mainlobe are reduced when the two-target CRLB is used in
comparison with the examples obtained using the single-target
CRLB. However, in Fig. 3(c), higher sidelobes appear further
away from the mainlobe. This effect is due to the fact that
the sidelobes close to the mainlobe cause an ambiguity in dis-
tinguishing the two targets whereas the other sidelobes do not.
Thus, the antenna selection focuses more on this issue. Note that
it is possible to apply different weights to different u-coordinates
in order to emphasize some specific regions in the beampattern.

C. Discussion

Based on the above two simple examples, it seems reason-
able to seek the optimum sparse sensing scheme (both spatial
and temporal) for different numbers of antennas and pulses
and compare the estimation accuracy with full sensing. It may
be possible to significantly reduce the number of samples at
the price of only a small reduction in estimation accuracy. In
the following sections, the general problem is stated, algorithms
are proposed, and simulation results are presented.

VI. TRANSMITTER-RECEIVER SELECTION

Let us now study the most general case of transmitter-
receiver-pulse selection. In other words, we would try to solve
the original problem stated in (22). It should be noted that,
a transmitter is selected if and only if, it transmits at least
one pulse. In the following, we would propose two gen-
eral approaches to solve the problem: convex and submodular
optimization.

A. Convex Optimization - E-optimality

In this subsection, we try to solve the problem employing con-
vex optimization. In principle, all scalar measures could be used
since they are all convex, however we only consider E-optimality
here because it is the easiest to formulate. By restricting g(·)
to be the maximum value and f(·) to be the maximum eigen-
value of the CRLB, and by relaxing the Boolean constraints in
(22), the optimization problem can be written in the epigraph
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form as

max
A ,b,γ

γ

subject to F(A,b, δθ) � γI4×4 ,∀δθ ∈ D
I∑

i=1

P∑

p=1

[A]i,p ≤ KP ,

R∑

r=1

[b]r ≤ KR,

0 ≤ [A]i,p ≤ 1, 1 ≤ i ≤ I, 1 ≤ p ≤ P,
0 ≤ [b]r ≤ 1, 1 ≤ r ≤ R. (29)

where F(A,b, δθ) is the Fisher information matrix, A and b
are the selection matrix and selection vector defined in (21),
respectively, and KP and KR are the number of selected pulses
and receivers, respectively. Due to the presence of the products
of unknowns (i.e., see (21)), the optimization problem in (29)
is not convex. Therefore, a convexifying process is introduced
in several steps. First we define a pulse selection vector by
vectorizing the selection matrix (i.e., a = vec (A)). Then, we
introduce the total selection vector w by concatenating both the
pulse and receiver selection vectors as

w = [aT ,bT ]T . (30)

Finally, we introduce the total selection matrix as W = wwT .
Employing this new selection vector and matrix, the multiplica-
tion of the unknowns can be eliminated, and W = wwT is the
only remaining non-convex term. We relax the rank one con-
straint to the inequality form W � wwT which by employing
the Schur complement [43], leads to the following inequality

[
W w

wT 1

]
� 0. (31)

Therefore, the relaxed convex optimization problem can be
stated as

max
W ,w ,γ

γ

subject to F(W, δθ) � γI4×4 ,∀δθ ∈ D,
[

W w

wT 1

]
� 0,

[W]i,j = [W]j,i , 1 ≤ i, j ≤ IP +R,

[W]i,i = [w]i , 1 ≤ i ≤ IP +R,

IP∑

i=1

[w]i ≤ KP ,
IP +R∑

r=IP +1

[w]r ≤ KR,

0 ≤ [w]i ≤ 1, 1 ≤ i ≤ I × P +R, (32)

where now the Fisher information matrix, F(W, δθ), is ex-
pressed in terms of W and is given by

F(W, δθ) =
R∑

r=1

[W]IP +r,IP +r

I∑

i=1

P∑

p=1

[W]I (p−1)+i,I (p−1)+iFr,i,p(δθ). (33)

The optimization problem in (32) is a standard semidefinite
programming problem in the inequality form which can be effi-
ciently solved in polynomial time using interior-point methods.
We can solve (32) with any of the off-the-shelf solvers. The
solution of the relaxed optimization problem is used to compute
the suboptimal Boolean solution for the selection problem. A
straightforward technique that is often used is based on a simple
sorting technique, in which the KP pulses corresponding to the
largest values in A and the KR receivers corresponding to the
largest values in b are selected as the transmitted pulses and
receivers, respectively (A and b are obtained from the selection
vector w and considering (30)). However, randomized rounding
is employed here which selects the antennas and pulses with a
probability equal to the output of the convex problem. At the
output of the convex optimization problem, we have a selection
matrix and a selection vector whose entries are between 0 and
1 for transmitter pulses and receivers, respectively. To obtain a
suboptimal Boolean solution employing randomized rounding,
we repeat the following procedure L times: generate a Boolean
matrix and a Boolean vector where the entries are set to 1 with
probability given by the corresponding entries in the selection
matrix and vector, respectively. Due to the constraints on the
number of pulses and receivers, some of these rounding realiza-
tions may not be feasible. Therefore, among theseL realizations,
the one that is feasible and achieves the highest maximum ob-
jective value is selected. More details of randomized rounding
are explained in [24].

B. Submodular Optimization—MFP

Although convex optimization is an efficient method, in this
section, greedy submodular optimization is considered as a so-
lution approach. The reason is the computational complexity
which is much lower for greedy algorithms in comparison with
convex optimization algorithms. This issue is especially impor-
tant when dealing with large-scale scenarios.

Let us recall P , the set of all transmitters-pulses, and R, the
set of all receivers. Furthermore, let us consider A ⊆ P and
B ⊆ R as the set of selected pulses and receivers, respectively,
and S = A ∪ B as the union set of transmitter-pulses in A and
receivers in B. Finally, we define the ground set U = P ∪R as
the union set of all the transmitter-pulses and receivers.

Now, we introduce a set functionG : 2|U| → R+ , defined over
the subsets of the ground set U , as the performance measure
which is defined based on the modified frame potential as

G(X ) = F̃P(U)− F̃P(U \ X ) for X ⊆ U , (34)
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where F̃P(U) and F̃P(X ) are the MFPs due to the set of mea-
surements Y(U) and Y(X ), respectively. It is clear from the
definition (34) that aiming to maximize G(Sc), where Sc is
the complementary set of S, i.e., Sc = U \ S, is tantamount to
minimizing the MFP for the selected set of measurements S.
Therefore, it is possible to use (34) as a performance metric to
select the set of transmitter-pulses S by first identifying which
elements should be discarded. In the following, the next theorem
guarantees the submodularity of the performance measure and
thus gives near-optimal guarantees when the greedy algorithm
is employed.

Theorem VI.1. For transmitter-receiver selection,G : 2|U| →
R+ is a normalized, monotone, submodular set function.

Proof: The proof is derived in Appendix A. �
The transmit pulse-receiver selection problem, using the per-

formance metric defined in (34) and the union set S, can be now
formally introduced as

max
Sc ⊆ U

G(Sc)

subject to Sc ∈ Ip(IP −KP ,R−KR ), (35)

where Ip(IP −KP ,R−KR ) is a partition matroid [44]
whose independent sets are defined as

Ip(IP −KP ,R−KR ) = {X : |X ∩ P| ≤ IP −KP ,

|X ∩ R| ≤ R−KR |}, (36)

leveraging the fact that {P,R} is a proper partition of U . Due
to the monotonicity of G the maximum is achieved when the
inequalities in the definition of the partition matroid are met
with equality [cf. (36)]. Therefore, the complementary set of
the solution set of (35) will meet the following properties:

|S ∩ P| = KP , |S ∩ R| = KR, (37)

which are desired cardinality conditions for the set of selected
transmitter-pulses. The following greedy algorithm is proposed
for transmit pulse-receiver selection. At the starting point, all
pulses and receivers are selected, i.e., S = P ∪R. That is, we
initialize the algorithm with Sc = Ø. Then, in each step, the
greedy algorithm selects the element, either a receiver or trans-
mit pulse, providing the highest cost function value and adds it to
the setSc . This procedure continues until the constraints are met.
It should be noted that, if one of the constraints of the partition
matroid is met with equality while the other is not, the proposed
method continues adding elements (receivers or transmit pulses)
until the desired cardinality is achieved. Fortunately, due to the
structure of the ground set, and its partition, the independence
oracle is easily implemented, i.e., routine for checking if a given
set S is contained in a given matroid. Therefore, no overhead is
incurred due to this procedure. The pseudocode of the algorithm
is presented in Algorithm 1. The set returned by Algorithm 1
achieves 1/2 near-optimality guarantee [45]. In the case that the
matroid (36) is substituted by a cardinality constraint on the set
Sc , the greedy heuristic returns a 1− 1/e near-optimal set. This
situation can arise in instances when instead of having sepa-
rated budget for transmit pulses and receivers, a joint budget is
considered.

Algorithm 1: Transmitter-Pulse-Receiver Greedy Selection
Based on MFP.

Initialization:
Sc = Ø
V ← U
Greedy algorithm:
while V �= Ø do
u∗ = argmax

u ∈ V
G(Sc ∪ {u})

if Sc ∪ {u∗} ∈ Ip then
Sc ← Sc ∪ {u∗}

end if
V ← V \ {u∗}

end while
S ← U \ Sc

S ∩ P and S ∩R are the selected transmitters-pulses
and receivers, respectively.

C. Fixed Receivers - Selection of Pulses and Transmitters

The most general form of the optimization problem was stud-
ied in the previous section. In this scenario, we want to introduce
the special case of fixed receivers. Proposing this special case is
worthwhile for two reasons. First, in some applications we may
have the freedom to only select pulses while the transmitters-
receivers are fixed. The second reason is that this is a simpler
version of the general case that helps to clarify part of the gen-
eral case, i.e., in the procedure to solve the general problem, if
the constraint is met for one of the parameters (i.e., pulses or re-
ceivers), the algorithm continues for the other parameter which
is similar to this special case. In this case, while the receivers are
considered to be fixed, we are trying to optimize the selection of
pulses and transmitters to minimize the target’s angle-velocity
estimation error (the other case of fixed transmitter-pulses and
the selection of receivers is similar). Since convex optimization
based on E-optimality and submodular optimization based on
the MFP for the general case have been already covered, we
will not repeat these discussions here for this special case since
they are similar and even simpler. However, we show here that
in this case the log determinant is also a submodular function
and it is possible to employ the greedy heuristic as an alternative
optimization algorithm to solve the transmitter-pulse selection
problem near optimally. It should be pointed out that the log
determinant is not a submodular function for the general opti-
mization problem and thus we only employ it as an objective
function for this special case.

Submodular optimization – D-optimality: In this case, we
consider the log determinant set function be defined as

h(S) =

{
0 S = Ø

log det (F S) otherwise
, (38)

where F S is the Fisher information matrix [cf. (9)] obtained
by employing all the pulses in S ⊆ P . The set function (38) is
employed as a performance measure (D-optimality). The greedy
algorithm goes as follows. We start with all pulses and all trans-
mitters (i.e., S = P). In each step, we remove the pulse that re-
duces the goal function the least. This procedure is repeated until
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TABLE I
COMPUTATIONAL COMPLEXITY OF THE PROPOSED ALGORITHMS

Fig. 4. MSE versus number of transmitted pulses for (a) 16 pulses in total, (b) 48 pulses in total. (c) MSE versus number of transmit pulses for different
approaches.

Algorithm 2: Transmit Pulse Greedy Selection Based on
Log Determinant.

Initialization:
S = P;
Greedy algorithm:
while |S| > KP do
p = argmax

p∈S
h(S \ {p}) [cf. (38)]

S = S \ {p};
end while
S is the set of selected transmit pulses.

we achieve the required number of pulses. The pseudocode of
the greedy algorithm is presented in Algorithm 2. Submodularity
of this cost function is proven in the following theorem, which
ensures the 1− 1/e performance bound of the greedy algorithm.

Theorem VI.2: For pulse and transmitter selection, the set
function h : 2|P| → R+ [cf. (38)] is a normalized, monotone,
submodular function.

Proof: The proof is derived in Appendix B. �

D. Computational Complexity of the Proposed Algorithms

In the following, we present a brief analysis of the com-
putational complexity of the proposed algorithms. First, the
greedy algorithm in Algorithm 1 requires |U| iterations at
most. For each iteration, we find the element which maxi-
mizes the objective function. Simply performing the calculation
implies a O(|U|2 |Y{U}|N) complexity which leads to a total
computational complexity of O(|U|3 |Y{U}|N). However, per-
forming the procedure using a proper data structure such that
each operation is calculated only once, the total computational
complexity of the greedy algorithm in Algorithm 1 becomes
O(|U|2 + |Y{U}|2N). In the case that parallel processing is
employed, the total computational complexity can be reduced
to O(|U||Y{U}|N).

Fig. 5. MFP-submodular optimization result for 24 pulses: (a) angle-velocity
ambigutiy function, (b) selected transmitters-pulses.

For Algorithm 2, we require to perform |P| iterations at most.
Each iteration takes O(|P|) computations. This iteration com-
plexity comes from the fact that evaluating the cost function for
each new element requires a constant time, e.g., independent of
the size of the input. Hence, the total computational complexity
of Algorithm 2 isO(|P|2). Similar to Algorithm 1, incorporating
parallel processing in each iteration of Algorithm 2 for finding
the maximum, we can achieve a computational complexity of
O(|P|) for Algorithm 2.

Finally, we discuss the complexity of the convex method.
Since the convex optimization problem in (32) is in SDP form,
each iteration requires O(|U|3) computations, where |U| is the
number of rows (or equivalently columns) in W [43]. In prac-
tice, most of the conventional SDP problems, require just a few
iterations for achieving convergence. Therefore, we can consider
the iteration complexity as the total complexity of the method.
It should be noted that this complexity order is calculated for
the simplest form of SDP and considering that the number of
iterations is not dependent on the parameters values.

In summary, as mentioned earlier, using proper structure in
calculations, employing a greedy algorithm has a computa-
tional advantage, especially for Algorithm 2. The computational
complexity of all the proposed algorithms is summarized in
Table I.
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Fig. 6. MFP-submodular optimization for 12 pulses and 3 receivers: (a) angle-velocity ambiguity function, (b) selected transmitters-pulses-receivers. (c) MSE
versus number of transmit pulses for a large scenario.

VII. SIMULATION RESULTS

In this section, we study the performance of the proposed
algorithms through numerical simulations. The simulations are
performed for a radar using a 77-GHz frequency band with a
100 MHz bandwidth which is typically used for automotive
radar systems [31]. For the following simulations, we employed
CVX to solve the convex optimization problems, and we use
SNR = 10 dB, γv = 0.1, and γu = 1.

A. Fixed Receivers

In this part, we test the performance of the proposed algo-
rithms for the fixed receivers case. For the first scenario, three
receivers, four transmitters, and four pulses are considered in
total. All the receivers are assumed to be fixed. In Fig. 4(a),
the results of the different algorithms are represented. The MSE
for both angle and velocity estimation of all these three opti-
mization algorithms in addition to the optimum MSE versus the
number of pulses are presented in Fig. 4(a). This plot shows the
performance of each algorithm and that their results are close to
the optimum value.

In another scenario, we consider two fixed receivers, six trans-
mitters, and eight pulses in total. Fig. 4(b) depicts the MSE for
both angle and velocity estimation of the three proposed algo-
rithms versus the number of transmitted pulses. All of them
have a very close performance in terms of the MSE. In addition,
Fig. 5(a) shows the ambiguity function for the result obtained
by the submodular algorithm for the MFP when 24 pulses are
selected. Here, a low sidelobe level and narrow beamwidth for
both the direction cosine and velocity is achieved. The set of se-
lected pulses is presented in Fig. 5(b). As it is shown in Fig. 5(b),
pulses are selected from all the transmitters. Although, there is
a tendency of selecting pulses towards the edges, the selected
set includes different pulse numbers.

B. Transmitter-Receiver-Pulse Selection

Simulation results for the most general case of selecting
transmitters-receivers-pulses is studied in this section. In total,
we consider four receivers, four transmitters, and four pulses.
Fig. 4(c) presents the MSE for both angle and velocity esti-
mation of the two optimization algorithms in addition to the
optimum MSE. This plot shows again that the results are very

close to the optimum value. Note that the results are plotted
for two different cases. In the first case, one out of four re-
ceivers is selected and in the second case, three out of four
receivers are selected. It is clear that the MSE is lower for the
last case. Moreover, Fig. 6 presents the result of the submodu-
lar algorithm for the MFP when 12 pulses and 3 receivers are
selected. The resulting ambiguity function and selected trans-
mitters, receivers, and pulses are depicted in Figs. 6(a) and 6(b),
respectively.

Finally, we consider a large-scale scenario with 20 receivers,
20 transmitters, and 10 pulses in total (i.e., the total number of
transmit pulses is 200). It should be noted that due to the large
number of parameters, the greedy algorithm is the only tractable
optimization method. This is one of the advantages of submodu-
lar optimization over convex optimization. Fig. 6(c) presents the
MSE of the submodular algorithm for the MFP versus the num-
bers of selected transmit pulses for different number of selected
receivers. As expected, the MSE decreases by increasing the
number of transmit-pulses and receivers. However, it is shown
that this improvement is saturated after a certain point. We could
find some operating points in this figure such that by decreas-
ing the performance slightly, a huge reduction in the number
of transmit-pulses and receivers is achieved. For instance, the
MSE for 80 transmit-pulses and 8 receivers is less than twice
that of the full case, but with a much lower cost.

VIII. CONCLUSIONS

In this paper, we presented algorithms to perform antenna
placement and pulse selection that guarantees a desired esti-
mation error. In particular, the placement obtained from the
proposed greedy algorithm with the submodular approach is
guaranteed to be 1/2-optimal. It turned out that a significant
reduction in the number of pulses and antennas with a small
reduction in estimation accuracy is possible. Beside reducing
hardware complexity (the number of antennas) and energy con-
sumption (the number of pulses), the computational complexity
is also reduced hugely due to the lower number of total samples.
The one- and two-target CRLB for multiple antennas and mul-
tiple pulses were derived and it was shown that the two-target
CRLB is a better measure for antennas and pulses selection op-
timization problem. Even though, several performance metrics
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were proposed, it should be stated that, there is no best solution
for all problem instances and the appropriate performance met-
ric should be selected based on the specific application. Convex
and submodular optimization as the two different optimization
approaches to antenna and pulse selection were introduced. It
was shown that convex optimization provides more degrees of
freedom in the optimization problem, i.e., it enables min-max
optimization. On the other hand, the greedy submodular op-
timization obtains a near optimal solution with a low compu-
tational complexity which is desired especially in large-scale
scenarios.

APPENDIX

A. Proof of Theorem VI.1

Proof: First, we show that the function is normalized. That
is, G(Ø) = 0. This can be proved by noting

G(Ø) = F̃P(U)− F̃P(U \Ø) = F̃P(U)− F̃P(U) = 0. (39)

Now, we show the monotonicity ofG. Without loss of generality,
we focus on the case that a new transmit pulse, x ∈ P , is added
as the proof for the other case (new receiver) can be constructed
in a similar way. To show this, we require to show the following

G(Sc ∪ {x})−G(Sc) ≥ 0. (40)

First, we recall the definition (34), and expand the left-hand-side
of the above inequality as

G(Sc ∪ {x})−G(Sc) = F̃P(U \ Sc)− F̃P(U \ {Sc , x}).
(41)

Using the fact that U \ Sc = S (by definition) we can
rewrite (41) as

G(Sc ∪ {x})−G(Sc) = F̃P(Ŝ ∪ {x})− F̃P(Ŝ), (42)

where Ŝ = S \ {x}. Substituting in (41) the identity

F̃P(Ŝ ∪ {x}) = F̃P(Ŝ) + F̃P({x} ∪ B) + F̃P(Ŝ, {x} ∪ B),
(43)

where B = Ŝ ∩ R, and we have defined the MFP for two sets
(last term in the above expression) as

F̃P(S1 ,S2) =

∑

y∈Y(S1 ),y ′∈Y(S2 )

N∑

n=1

∣∣∣∣
〈∂y[n], ∂y′[n]〉

〈∂y[n], ∂y[n]〉 〈∂y′[n], ∂y′[n]〉
∣∣∣∣
2

, (44)

we can show that

G(Sc ∪ {x})−G(Sc) = F̃P(B ∪ {x})
+ F̃P(Ŝ,B ∪ {x}) ≥ 0, (45)

which proves the monotonicity of G.
Finally, we show the submodularity of the set function. To do

so, we restrict the proof to the general case, i.e., the elements
involved in the proof are a transmit pulse, x ∈ P , and a receiver,
y ∈ R. As for the case of monotonicity, this general proof can
be particularized for the case in which both elements are of the
same kind, i.e., two receivers, or two transmit pulses.

To show submodularity we need to prove that

G(Sc ∪ {x})−G(Sc) ≥ G(Sc ∪ {x, y})−G(Sc ∪ {y}).
(46)

Expanding both sides of the inequality, we obtain

F̃P(U \ Sc)− F̃P(U \ {Sc , x}) ≥ F̃P(U \ {Sc , y})
− F̃P(U \ {Sc , x, y}). (47)

Using the identity S̃ = U \ {Sc , x, y} we can express the in-
equality as

F̃P(S̃ ∪ {x, y})− F̃P(S̃ ∪ {y}) ≥ F̃P(S̃ ∪ {x})
− F̃P(S̃). (48)

Finally, using the identity (43) and the monotonicity of the MFP,
we can show that

F̃P(B̃ ∪ {x, y}) + F̃P(S̃ ∪ {y}, B̃ ∪ {x, y}) ≥ (49)

F̃P(B̃ ∪ {x}) + F̃P(S̃, B̃ ∪ {x})
F̃P(B̃ ∪ {x, y})− F̃P(B̃ ∪ {x})

+ F̃P(S̃ ∪ {y}, B̃ ∪ {x, y})− F̃P(S̃, B̃ ∪ {x}) ≥ 0, (50)

which proves the submodularity of the set function. In (50) we
have defined B̃ = S̃ ∩ R for readability. �

B. Proof of Theorem VI.2

Proof: First, let us recall P as the set of pulses of all the
transmitters and S ⊂ P and FS as the Fisher information matrix
obtained by employing all the pulses in S. Now, let p1 , p2 ∈
P \ S, then to prove submodularity we need to show

log det (FS∪{p1 })− log det (FS) ≥
log det (FS∪{p1 ,p2 })− log det (FS∪{p2 }). (51)

Noting that

FS∪{p1 } = FS + F{p1 }

FS∪{p2 } = FS + F{p2 }

FS∪{p1 ,p2 } = FS + F{p1 } + F{p2 }, (52)

inequality (51) can be rewritten as

log det (FS + F{p1 })− log det (FS) ≥
log det (FS + F{p1 } + F{p2 })− log det (FS + F{p2 }). (53)

Thus, (53) implies

det (FS + F{p1 })det (FS + F{p2 })
det (FS)det (FS + F{p1 } + F{p2 })

≥ 1. (54)

Considering F{p1 } = UVT and employing the matrix determi-
nant lemma in

det (FS)det (I + VT F−1
S U)det (FS + F{p2 })

det (FS)det (FS + F{p2 })det (I + VT (FS+F{p2 })−1U)
≥1,

(55)
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leads to

det (I + VT F−1
S U)

det (I + VT (FS + F{p2 })−1U)
≥ 1, (56)

which is clear to be true since F{p2 } is a positive semi-
definite matrix, i.e., F−1

S � (FS + F{p2 })
−1 as FS � FS +

F{p2 }. Therefore, this function is submodular. In addi-
tion, monotonicity and normalization are clear from the
definition. �
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