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Sparse sensing

@ Why sparse sensing?

Economical constraints (hardware cost)

Limited physical space
- Limited data storage space

Reduce communications bandwidth

Reduce processing overhead
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Sparse sensing

What is sparse sensing?

Select the “best” subset of sensors out of the candidate sensors
that guarantee a certain desired global detection probability.

Sensor selection — prior art:

@ Estimation
- convex optimization: design {0,1}" selection vector
[Joshi-Boyd-09], [Chepuri-Leus-13]
@ Detection
- likely to lead to a local optimum
[Cambanis-Masry-83], [Yu-Varshney-97], [Bajovic-Sinopoli-Xavier-11]
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Distributed detection

@ Observations are related to
Ho: Xm ~ pm(x|Ho), m=1,2,....M

Hi: Xm~ pm(x|H1), m=1,2,....M

. I - Sensor placement
| “ - Antenna selection
- Sample selection

- Data compression

diag, () - diagonal matrix with the argument on its diagonal but with the
zero rows removed.
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Sparse sensing for distributed detection

Classical setting Bayesian setting

arg  min_|lwl|, -
M arg min |lw

we{0,1} gwe{O,l}’V’ [[wllo

sto Pr(w) < a, Pp(w) < g sto Pe(w) <e

Pn=1-— P(ﬁ = Hi|Hz1) mo, ™1 prior probabilities

Pf:P(ﬁ:HI‘HO) Pe = moPr + 71 Pm

Error probabilities (in general) do not admit expressions
suitable for numerical optimization.
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Performance measures

7/17

@ Weaker measures can be used instead

@ Kullback-Liebler distance for the classical setting
— D(H1l|Ho) = Ejp, {log I(y)}
— upper & lower bounds Py, for fixed Py

@ Bhattacharyya distance (a special case of Chernoff inform.)
for the Bayesian setting

— B(Hi|Ho) = —log Eppyo {/1(y)}

— upper & lower bounds P,

@ These distances are suitable for offline designs



Independent observations

@ Assuming conditionally independent observations

KL distance:
D(Hi|Ho) = Ejp, {log I(y)}

M
= > winEjgy, {log m(x)}
1 —D,_z

Bhattacharyya distance:

B(H1|Ho) = —log Bz {/1(y)}
M
= > wm (— log By {v/Im(1)})

Bm

Im(x) = 226871} ocal likelihood ratio
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@ Linear program with explicit solution

argmin  [[wllo
w

M
s.to Z Windm > A,
m=1
wm € {0,1},m=1,2,... M,
Hint: sorting

Classical setting dp, := {Dm}M_,
Bayesian setting d, := {Bn}M_,

@ The best subset of sensors:
sensors with largest average log/root local likelihood ratio.
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Gaussian detection

Suppose

Ho: x~N(Bg,o?l) vs. Hi: x~N(01,0°)

@ Kullback-Leibler and Bhattacharyya distance measures are the
same up to a constant.

@ Distance measure
1 .
d(w) = ;(01 — 60) " diag(w)(01 — 09)

is simply the scaled signal-to-noise ratio
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Illustration — Gaussian detection

@ Sensor selection is optimal in terms of error probabilities
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Dependent (Gaussian) observations

Suppose

Ho: x~N(0g,X) vs. Hi: x~N(61,X)

@ Distance measure
d(w) = (®m)" £} (w)(®m)
is no more linear in w.
& = diag: (w)

m = 91 — 90
T l(w) = (oz0") "
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Dependent (Gaussian) detection

@ Express
Y=al+S forany a#0&€R suchthat S>0

@ Constraint

d(w) > A\
is equivalent to
S~! 4 a~ldiag(w) S !m
=0,
m’S~! m’S im— )\
an LMI —linear/convex in w.

Hint: use matrix inversion lemma and ®7 ® = diag(w)
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Solver — dependent case

@ SDP problem based on /1-norm heuristics:
argmin 17w
w

S + a~ldiag(w) S!m
s.to =0,
m’S~! m’S im— )\
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Is correlation good or bad?

@ Equicorrelated Gaussian observations
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Required # of sensors reduce significantly as they become
more coherent
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Conclusions

@ Design space/time sparse samplers
extend Nyquist-based classical sensing techniques

@ Fundamental statistical inference problems:
Estimation, filtering, and detection

@ Applications in networks:

environmental monitoring, location-aware
services, spectrum sensing,. . .
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Thank Youl!!

For more on sparse sensing for statistical inference, see:
http://cas.et.tudelft.nl/~sundeep
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