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ABSTRACT

In this work, we introduce subset selection strategies for sig-

nal reconstruction based on kernel methods, particularly for

the case of kernel-ridge regression. Typically, these meth-

ods are employed for exploiting known prior information

about the structure of the signal of interest. We use the mean

squared error and a scalar function of the covariance matrix

of the kernel regressors to establish metrics for the subset

selection problem. Despite the NP-hard nature of the prob-

lem, we introduce efficient algorithms for finding approxi-

mate solutions for the proposed metrics. Finally, numerical

experiments demonstrate the applicability of the proposed

strategies.

Index Terms— Kernel regression, kernel-based signal re-

construction, sensor selection, optimal subset selection, sub-

modularity

1. INTRODUCTION

Some of the most successful algorithms in modern machine

learning, such as the support vector machine [1], lever struc-

tural information through kernels [2]. The ability that kernels

have to propagate non-linear relations through linear ones of-

fers great flexibility to many regression (signal reconstruc-

tion) [3, 4] and classification (detection) [5, 6] tasks.
For example, when a process, e.g., a field evolution or

a diffusion, is measured using a sensor network, the follow-

ing question arises: how do we use the structural informa-

tion in the data to improve our estimation performance? This

question is often answered in practice through kernel meth-

ods [6]. By using the data structure, e.g., manifold discretiza-

tion, orography map, correlation map, etc., kernels capable

of capturing non-linear relations between measurements can

be defined and employed in the regression problem to im-

prove the estimation performance. To illustrate this, let us

consider spectrum cartography [7, 8]. Here, kernel methods

can be employed to use the information of the network topol-

ogy or orography map of the terrain to reconstruct spectral

maps. Similar applications are found within the field of graph
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signal processing [9, 11, 10], where kernels can be used to

capture the underlying graph structure.
Most of prior works related to kernel methods focus on

the reconstruction of the signal or on the estimation of an

appropriate kernel for describing the non-linear relations in

the data [11, 12, 13]. However, here we mainly focus on

the selection problem. That is, given a sensor network or a

set of possible acquisition points, a reconstruction algorithm

based on kernels, and a sensing budget, how can we select the

subset of measurements, with fixed cardinality, to provide the

best possible reconstruction performance? This problem can

be related to the one addressed by the kernelized Lasso [14],

which aims to obtain a parsimonious description with a re-

duced number of non-zero regressors. Differently from this

method, instead of using a formulation including the ℓ1-norm

to enforce sparsity in the solution, effectively changing the

cost to optimize, we opt for a direct approach through simul-

taneous measurement and regressor selection by levering the

representer theorem [15]. Even though other methods based

on landmark measurements (Nyström methods) are possible,

e.g., [16], they only consider the approximation of the ker-

nel matrix by a CUR-like decomposition. In addition, despite

the computational benefits of these methods, they do not deal

with missing measurements, i.e., subset selection, which is

the main focus of this work.
The rest of this paper is arranged as follows. Section 2

introduces the measurement model and Section 3 discusses

signal reconstruction using kernel methods. In Section 4,

the problem of sparse sampler design for kernel-based recon-

struction and algorithms for its solution are introduced. In

Section 5, numerical experiments are presented. Finally, the

paper concludes with Section 6.

2. MEASUREMENT MODEL

Let us assume that a continuous function f : M 7→ R, de-

fined over a manifold M, is sampled over a finite support

S = {xi : xi ∈ M, for 1 ≤ i ≤ K}. Furthermore, the set

of samples taken at the finite domain S, with |S| = K , i.e.,

{f(xi)}xi∈S , are stacked in a single vector fS ∈ R
K and

treated as the signal vector. Therefore, only the information

from a subset of points S ⊂ M is available. This situation

arises in many practical applications, as sampling over the

entire domain is not feasible or undesirable due to temporal,

spatial or economical constraints. For instance, we can con-
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sider a tessellation (mesh) performed over a surface and/or

terrain. This approach is commonly employed in field esti-

mation through finite-element methods [17]. In this scenario,

it is possible to define a stable mesh that covers the whole

surface. However, it might be impossible to deploy sensors at

all vertices of this tessellation for data acquisition. Therefore,

from all possible vertices in the mesh, we can only measure

the value of the function f at a certain subset of them.
Mathematically, we can express the acquisition of data,

under noise, through the following linear model

[yS ]i := y(xi) = f(xi) + n(xi) = [fS ]i + [nS ]i ∈ R, (1)

where y(xi) is the noise-corrupted measurement at position

xi ∈M. The vector nS ∈ R
K is a noise term that is assumed

to be zero-mean Gaussian distributed with known covariance

matrix ΣS , i.e., nS ∼ N (0,ΣS).

3. KERNEL-BASED SIGNAL RECONSTRUCTION

The goal of kernel-based signal reconstruction [4] is to find

an estimate f̂ of the underlying signal from the available mea-

surements yS ∈ R
K [cf. (1)]. Here, prior knowledge about

the underlying structure of the signal of interest is provided in

the form of a kernel. For example, in wave field reconstruc-

tion the structural information of the data, e.g., shadowing ef-

fects, surface tessellation, etc., might be encoded in the kernel

to obtain better reconstruction results.
A common assumption, which provides regularity to the

space of feasible functions for reconstruction, is that the con-

tinuous function f belongs to a reproducing kernel Hilbert

space (RKHS), H, defined by a kernel. This assumption im-

plies [2]

H =

{

f : f(x) =
∑

xi∈M

αik(xi, x), αi ∈ R

}

, (2)

where k :M×M→ R is a symmetric kernel map satisfying

supx,yk(x, y) < ∞. To obtain an estimate of the continuous

function f , using the RKHS assumption, the following opti-

mization problem can be solved

f̂ = arg min
f∈H

1

K

∑

xi∈S

L(y(xi), f(xi)) + µΩ(‖f‖H), (3)

where L(·, ·) is a loss function that measures the fitness of

the estimate and Ω(·) can be used to promote smoothness in

H controlled by the regularization parameter µ. Here, ‖f‖2H
is the inner product in H induced by the kernel map. As in

this work we focus on kernel-ridge regression (KRR) [6], we

employ the square loss function, i.e., L(x, y) = (x−y)2, and

the smooth function Ω(·) = (·)2 as regularizer, i.e.,

f̂ = arg min
f∈H

1

K

∑

xi∈S

(y(xi)− f(xi))
2 + µ‖f‖2H. (4)

Notice that formulation (4) generalizes other types of algo-

rithms that do not explicitly make use of kernels. Therefore,

the metrics here presented can be extended to methods partic-

ularizing (4), e.g., gaussian process [6, Ch. 16].
At this point we can formally state the problem of in-

terest. Given problem (4), the model statistics, and a ker-

nel map k(·, ·), can we find the subset S ⊂ M, with car-

dinality |S| = K , that provides the best reconstruction of

{f(xi)}xi∈V , with S ⊆ V ⊆M?

4. SPARSE SAMPLER DESIGN

When the function f is estimated through the solution of (3)

it can be noticed that the solution f̂ consists of an expansion

over a (possibly infinite) number of basis functions [cf. (2)].

Fourtunately, using the representer theorem [15] it is possible

to describe the solution f̂ for (2) by the following series:

f̂(x) =
∑

xi∈S

αik(xi, x). (5)

Using vector notation and the above expansion, we can

rewrite the optimization problem in (4) as:

α̂S = arg min
α∈RK

1

K
‖e‖2 + µαTKSα

subject to e = yS −KSα

, (6)

where the loss function is equivalently expressed as an equal-

ity constraint and the fact that ‖f‖H = αTKSα has been

used. Here, α = [α1, . . . , αK ]T ∈ R
K is the vector with the

expansion coefficients, and [KS ]ij = k(xi, xj), xi, xj ∈ S,

is the (i, j)th entry of the kernel matrix.
The optimal solution α̂S for (6), can be written in terms

of the set S as

α̂S =
[

KS + γIK
]−1

yS , (7)

where γ = µK , and IK is the K ×K identity matrix. There-

fore, the residual for a given S with respect to a measurement

at xj ∈M would be given by

e(xj ,S) = y(xj)− kT
S,jα̂S , (8)

where [kS,j ]i = k(xi, xj), xi ∈ S. In the following, we lever

both (7) and (8) to define metrics for optimal subset selection.

4.1. Mean Squared Error

Focusing on the expected performance of the sampler, with

respect to the statistics of {y(xj)}xj∈M (assumed to be

known), we can consider the following mean squared error

(MSE) cost as a metric for designing the sparse sampler:

MSEM(S) =

∫

x∈M

|e(x,S)|2dx. (9)
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In practice, evaluation and optimization of (9) might lead to

a numerically involved task. Therefore, we propose to dis-

cretize the manifold M, e.g., surface tessellation, to obtain

an approximation of (9).
Consider the set V = {xj : xj ∈ M, 1 ≤ j ≤ |V|},

S ⊆ V ⊆M. Then, we can approximate (9) by the following

expression

MSEV(S) :=
∑

xj∈V

|e(xj ,S)|
2, (10)

where the scaling 1/|V| has been omitted. Now, let us intro-

duce the following notation:

yS = Φwy, (11)

where Φw ∈ {0, 1}K×|V| is a binary selection matrix defined

by the selection vector w ∈ {0, 1}|V| that indicates the avail-

able points. In this setup, the nth point is (not) sampled if

[w]n is set to one (zero). Here, y ∈ R
|V| results from stack-

ing the elements of {y(xj)}xj∈V in a vector.
The error vector e(S), built from stacking the elements of

{e(xj,S)}xj∈V , can be shown to be given in terms of w as

e(w) =
[

K−1 + γ−1diag(w)
]−1

K−1y, (12)

where [K]ij = k(xi, xj), xi, xj ∈ V . Therefore, the expres-

sion (10) can be written in terms of w as

MSEV(S) = MSEV(w) = tr
{

P−1(w)M
}

. (13)

Here, we have defined M = K−1
E[yyT ]K−1 and

P (w) = K−2 + γ−1K−1diag(w) +

γ−1diag(w)K−1 + γ−2diag(w). (14)

As a result, we can formulate the optimization problem

minimize
w∈{0,1}N

tr
{

P−1(w)M
}

subject to ‖w‖0 = K
, (15)

to obtain the best subset of K measurements that minimises

MSEV(w). Despite the fact that the problem in (15) is not

convex, we can relax both the Boolean and ℓ0-norm con-

straints in order to obtain a convex relaxation of (15). Intro-

ducing a new variableZ = MT/2P−1(w)M1/2, and apply-

ing the relaxations mentioned above, we obtain the following

optimization problem

minimize
Z,w∈[0,1]N

tr
{

Z
}

subject to 1
Tw = K,

MT/2P−1(w)M1/2 � Z

. (16)

The above problem is indeed a convex program as the sec-

ond constraint can be expressed as a linear matrix inequality

(LMI) in w, i.e.,
[

Z M1/2

MT/2 P (w)

]

� 0, (17)

where the linearity of (17) with respect to w of (17) is clear

from the definition of P (w) in (14).

4.2. Stable Regressors Selection

Alternatively, instead of selecting the subset that minimizes

the MSEV(S) in (10), assume we aim to obtain an estima-

tor that minimizes a scalar function, q : RK×K → R, of the

covariance matrix of the regressor, α̂S , e.g., a stable repre-

sentation of f̂ in a feature space given by α̂ [6]. That is,

minimize
S⊂M,|S|=K

q(Cov{α̂S}) . (18)

Here, the closed form expression for the covariance matrix of

the estimate is given by

Cov{α̂S} = (KS + γIK)−1CS(KS + γIK)−1, (19)

where we have defined CS = E[ySy
T
S ].

Among possible options for the scalar function q(·), we

can consider the commonly used metrics in experimental de-

sign, e.g., trace, determinant, etc. In this work, we focus on

minimizing the determinant of (19) as we use the submodular

machinery for obtaining a near-optimal solution to (18). Fur-

thermore, similar to the convex method, we restrict ourself to

a discretised version V ofM to solve (18).
Considering the determinant of the covariance matrix

Cov{α̂S}, we propose to use the following objective func-

tion for solving the optimization problem in (18):

q(Cov{α̂S}) =
h(S)

g(S)
=

ln det{CS}

2 ln det{KS + µKIK}
, (20)

where the logarithm of both numerator and denominator in

det{Cov(α̂S)} has been taken. Notice that the function

in (20) is a ratio of submodular functions [19], i.e., both h(S)
and g(S) are log-determinants of principal submatrices of

positive definite matrices. Therefore, Algorithm 1 can be em-

ployed to find a near-optimal solution of (18). Even though

the results in [19] provide near optimality guarantees for the

unconstrained case, i.e., cardinality is not fixed, Algorithm 1

can still be used for minimizing (20) when a fixed number of

samples is considered. This is shown in the following section,

where results of numerical experiments are presented. A pos-

sible alternative is directly consider ln det{Cov(α̂S)}. As

this set function can be written as a difference of submodular

functions, strategies similar to the ones described in [20] can

be employed for its approximate solution. However, due to

the possibility of applying a rank-one update to the determi-

nant evaluations at every step of Algorithm 1, the cost in (20)

is considered as a better option in terms of scalability.

5. NUMERICAL EXPERIMENTS

In this section, we show results of the presented sensor se-

lection method for estimating a static 2-D field described by

a sinc function on a rectangular domain of 10 × 10 m. The

source is located at the coordinates (x, y) = (5,−4.5) m. A

mesh generator [18] is used to define equally spaced points

for discrete estimation inside the rectangular domain. From
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Fig. 1: Comparison of the reconstructed field. White circles denote possible sensor locations, and coloured vertices denote active sensors. (a) True field and tesselation. (b) All

N = 97 available sensors are used. (c) Sensors selected through the convex strategy (K = 67). (d) Sensors selected through the (greedy) submodular strategy (K = 67).

the stable mesh, a set of N = 97 vertices for sensor node

deployment are randomly selected. Here, the aim is to esti-

mate the field at all possible locations within the rectangular

domain. As it is desired to reconstruct the whole field, a con-

tinuous kernel map, k : R2×R
2 → R, given by the Gaussian

radial basis (RBF) kernel [6] is considered. For this kernel

map, a fixed value σ = 0.8 is assumed. In addition, we con-

sidered Σ = Toeplitz(1, ρ, · · · , ρN−1) (typical covariance

matrix structure in array processing and field measurements),

with ρ = 0.45 as noise covariance matrix. Hence, we as-

sume E[yyT ] = Σ + ffT . The original field, f , with the

computed mesh is shown in Fig. 1a. The result of the kernel-

ridge regression for the full blown sensor network, N = 97,

and the sampled network using (16) and (18), with K = 67,

are shown in Fig. 1b-Fig. 1d. In this plot, it can be seen that

the degradation of the estimated field, with to respect the full

blown solution (Fig. 1b), is not significant. Here, both con-

vex and submodular methods are able to reconstruct an ap-

proximation of the source hot spot. However, it is seen that

the field structure is better maintained by the convex solu-

tion. A comparison of the error ‖f − f̂‖22, and MSEV(w)
for the different strategies is shown in Fig. 2a and Fig. 2b. In

both plots the shaded grey area represents the performance of

random samplers. In these plots, it is seen that the convex

method outperfoms the greedy and random samplers in terms

of MSEV(w). However, for a given realization of the field

measurements, others samplers can outperform the convex-

Algorithm 1: GREEDYRATIO ALGORITHM

Result: An approximate solution S∗ ⊂ V : |S∗| = K
Data: monotone submodular functions h, g

1 initialization k = 0,S0 = ∅,R = V ;

2 while k ≤ K do

3 v = arg min
v∈R

h(Sk ∪ {v})− h(Sk)

g(Sk ∪ {v})− g(Sk)
;

4 Sk+1 = Sk ∪ {v};
5 R = {v ∈ R|g(Sk+1 ∪ {v})− g(Sk+1) > 0};
6 k ← k + 1;

7 end

8 return S∗ ← Sk;

‖
f
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Fig. 2: Comparison of the proposed methods. Shaded grey area shows performance of

random samplers. (a) Reconstruction error. (b) MSEV(w).

based sampler, as seen in Fig. 2a. Despite that the sampler

based on the convex program outperforms the greedy sam-

pler, we require to solve the costly semidefinite program (16)

which might not be tractable for large problem instances. In

these instances, the proposed greedy method might be em-

ployed as its performance follows closely the performance of

the convex method (see Fig. 2a). An extension for the meth-

ods presented here may rely on online censoring techniques,

as the ones presented in [21]. This is left for future research.

6. CONCLUSIONS

In this paper, the problem of optimal sampling for kernel-

based signal reconstruction was considered. Expressions

based on the mean square error and the covariance matrix

of the regressor were proposed as metrics for reducing the

sampling density when KRR is employed for signal recon-

struction. It was shown that sparse samplers, based on the

presented metrics, can be designed efficiently through the

convex and submodular machinery. Simulations of field mea-

surements were used to demonstrate the proposed methods.

Furthermore, despite that the metrics were designed for KRR,

we stressed the fact that they can be extended to methods par-

ticularizing the kernel-ridge regression problem.
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