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ABSTRACT

In this paper, we show the advantages of spatially under-sampled
acoustic vector sensor (AVS) arrays over conventional acoustic
pressure sensor (APS) arrays for performing direction-of-arrival
(DOA) estimation and interference cancellation. We provide in-
sights into the theoretical performance of an under-sampled AVS
array with respect to its DOA estimation performance using the
Cramér-Rao lower bound (CRLB). We also show that the minimum
variance distortionless response (MVDR) beamformer suppresses
the grating lobes considerably as compared to the classical (or
Bartlett) beamformer leading to unambiguous DOA estimates.
Finally, through zero-forcing (ZF) and minimization of maximum
side lobe beamformers, the advantages of an under-sampled AVS
array for interference cancellation are presented.

Index Terms— acoustic vector sensor (AVS), Cramér-Rao
lower bound (CRLB), direction-of-arrival (DOA), far-field narrow-
band acoustic sources, spatial under-sampling.

1. INTRODUCTION

With the advent of the MEMS technology, transducers that are ca-
pable of measuring vector quantities such as acoustic particle ve-
locity are becoming practically feasible [1–3]. An acoustic vector
sensor (AVS) consists of a microphone and several particle velocity
transducers aligned along each of the coordinate axes. As an AVS
array can measure both acoustic pressure as well as particle veloc-
ity at a given spatial location, AVS arrays have several advantages
compared to equivalent-aperture acoustic pressure sensor (APS)
arrays [4,5]. For this reason AVSs, either individually or arranged in
an array configuration, have found numerous applications in pas-
sive acoustic systems, including ground surveillance [6], battle-
field acoustics [3], sound source tracking [7], assessment of wind
turbine noise [8] and UAV’s situational awareness [9].

Typically, acoustic sensor arrays are battery-operated portable
systems which are constrained by hardware and power require-
ments. Therefore, it is always desirable to reduce the number of
sensors in the array to reduce the operational costs. By under sam-
pling, when the number of sensors is fixed, the effective aperture
of the array can be increased, thus leading to improvements in the
direction-of-arrival (DOA) estimation accuracy. Equivalently, for
an array with a fixed aperture, the number of elements, that pro-
vides a comparable estimation performance, can be reduced by
under sampling.
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Based on the narrow-band assumption, under-sampling
traditional APS arrays with inter-sensor spacing greater than ∏

2
(where ∏ is the wavelength of the source signal), leads to spatial
aliasing effects resulting in grating lobes in its beam pattern [10].
Hence, ambiguities arise in beamforming and DOA estimation,
which make them impractical. On the contrary, due to the na-
ture of vector sensors, under-sampled AVS arrays can attenuate
the grating lobes as discussed in previous works [11–13]. In [13],
sufficient conditions for the linear independence of the array
manifold matrix of an under- and over-sampled AVS uniform
linear array (ULA) are discussed. However, the behavior of grat-
ing lobes with increasing inter-sensor spacing for unambiguous
DOA estimation and the extent to which the inter-sensor spacing
can be increased for performing beamforming are not yet well
understood. We address this aspect in this work by analyzing
the accuracy of unambiguous DOA estimation. For doing so, the
multi-source Cramér-Rao lower bound (CRLB) is considered in
such a way that we infer information of both the main and grating
lobe locations. Furthermore, a performance analysis of the clas-
sical (or Bartlett) and minimum variance distortionless response
(MVDR, or Capon) beamformer based DOA estimation under a
single-source scenario is presented. In addition the behavior of
the beamformers using an under-sampled AVS ULA for the prob-
lem of interference cancellation is considered.

2. PRELIMINARIES

2.1. AVS array measurement model

Consider an array with M AVS elements located at positions {pm 2
R2}M

m=1, and D far-field narrow-band sources of wavelength ∏ im-

pinging from azimuth angles � = [¡1 ¡2 ... ¡D ]T 2 [°º,º). We
assume that D ∑ 3M °1. The acquired data can be modeled as [4]:

y(t ) = A(�)s(t )+n(t ) 2C3M£1, (1)

where s(t ) = [s1(t ), s2(t ), . . . , sD (t )]T 2CD is the source signal vec-
tor, n(t ) is the noise vector, and A(�) denotes the array manifold
matrix whose i th column is given by the corresponding AVS ar-
ray steering vector a(¡i ) = ap (¡i )≠h(¡i ), with ≠ the Kronecker
product. Here, ap (¡i ) denotes the equivalent APS array response
vector that is given by
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£

e j2º
°

rT
1 u(¡i )

¢

. . . e j2º
°

rT
Mu(¡i )

¢

§T 2CM£1,

where rm = pm
∏ is the position of the mth element in wave-

lengths and u(¡i ) = [cos(¡i ) sin(¡i )]T 2 R2 is the unitary vector
in the direction of the i th far-field source. The vector h(¡i ) =
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Fig. 1. Decomposition of the beam pattern of an AVS ULA with
M = 9 for¡= 90± in terms of an equivalent APS ULA beam pattern
and the VGM term.

[1 uT (¡i )]T 2 R3 is the weighting vector containing the direc-
tional information of the far-field source with respect to the vector
sensor axes.

Throughout this work, it is assumed that the source sig-
nals s(t ) and the noise n(t ) are uncorrelated, and that they
are realizations of i.i.d. complex Gaussian processes with zero
mean and unknown covariance matrices Rs , E

©

s(t )sH (t )
™

and
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©

n(t )nH (t )
™

=æ2
nI , respectively.

2.2. Matched filter beam pattern of an AVS array

Based on the measurement model presented above (1), the
matched filter beam pattern of an AVS array with M sensors for a
single source at DOA ¡ can be expressed as [14, 15]:
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where ¡̂ is the scanning angle, Bp (¡̂,¡) is the beam pattern ex-
pression for an equivalent APS array and the term VGM(¡̂,¡) is
the velocity gain modulation (VGM) term that is independent of
the inter-sensor spacing. This VGM term plays an important role
in attenuating the grating lobes when the inter-sensor spacing r
(expressed in wavelengths) for a ULA is greater than the spatial
Nyquist limit (i.e., r > 0.5). This property for the AVS ULA can
be seen in the beam pattern plotted in Fig. 1 for r = 0.5 and1.5.
The beam pattern of the AVS ULA is clearly decomposed in terms
of an equivalent APS ULA (red curve) and the VGM term (green
curve). Further, we observe that the beam pattern of an under-
sampled AVS ULA is able to distinguish between the main lobe and
the grating lobes. However, it does not reveal the extent to which
the grating lobes can be attenuated for performing unambiguous
DOA estimation. In the following section, we introduce the CRLB
to provide insights on ambiguities in DOA estimation when the
inter-sensor spacing is varied.

3. CRAMÉR-RAO LOWER BOUND FOR DOA ESTIMATION

The Cramér-Rao lower bound on the variance of an unbiased DOA
estimate � [cf. (1)], for a full rank array manifold matrix A(�), is

(a) APS ULA, SNR = 0 dB (b) AVS ULA, SNR = 0 dB

(c) APS ULA, SNR = 10 dB (d) AVS ULA, SNR = 10 dB

Fig. 2. Two-source CRLB of an APS ULA and AVS ULA for increas-
ing inter-sensor spacing with M = 9, N = 10. The first source is
located at ¡1 = 90± and the second source ¡2 is allowed to vary
over the entire azimuth range.

given by [4, 16]:

CRLB(�) =
æ2
n
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, (3)

whereØ is the Schur-Hadamard (element-wise) product, Re[·] rep-
resents the real part of the argument, N is the number of available
time snapshots, and the following definitions are used
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Although the CRLB provides local information around the source
DOAs, it can still be used to study the effect of the grating lobes in
an under-sampled array. To realize that, we assume that one of the
source acts as an interference at each possible scanning angle. The
suggested approach enables to analyze the DOA estimation accu-
racy as well as any potential effects induced by the interference
between multiple sources and their corresponding grating lobes.

By considering a simplistic scenario with two uncorrelated
sources (¡1,¡2) for both the APS and AVS ULA, in Fig. 2 we plot
the trace of the CRLB matrix with respect to an increasing inter-
sensor spacing such that ¡1 is fixed at 90± (broadside of the array)
and ¡2 varies over the entire azimuth range. For the APS ULA as
the inter-sensor spacing is increased, the number of grating lobes
increases and at those locations the Fisher information matrix be-
comes singular (or, in other words, the CRLB does not exist). This
yields an ambiguous DOA estimation. On the other hand, for the
AVS ULA, the effect of the grating lobes is attenuated considerably.
In order to gain more insights for this two-source case, we simplify
(3) by approximating U ºRs , by which the inner term in (3) can
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where,
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This approximation is valid under high SNR conditions and pro-
vided that ¡2 is not too close to ¡1. It is to be noted that Kq in (5)
is expressed in terms of its equivalent APS array beam pattern and
the VGM term. By restricting the discussion to a ULA, (5) can be
further simplified when ¡2 is at one of the grating lobe locations
of ¡1, given by the set [10]:
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as in that case we have Bp (¡1,¡2) = M . As at those grating lobe
locations the VGM term is not equal to 2, the denominator of J
is never zero which implies that Kq is finite, i.e., the CRLB ma-
trix is well-defined. As a result, it can be inferred that the under-
sampled AVS array can be employed for unambiguous DOA esti-
mation even if ¡2 is at the grating lobe location of ¡1.

For the multi-source scenario in [13], it is shown that the
columns of A(�) are linearly independent of each other provided
that the number of sources present in a particular grating lobe
set for any given angle is less than or equal to three. To illustrate
the effects of an under-sampled AVS ULA under a multi-source
scenario, we consider the CRLB for four sources with an increas-
ing inter-sensor spacing in Fig. 3(a). The source DOAs for the first
three sources are chosen such that they belong to the same grating
lobe set for r = {2,4, . . .}. The fourth source is varied over the entire
range of angles. For values of r close to 2 and 4, the trace of the
CRLB matrix has large values for the scanning angles belonging
to the same grating lobe set indicating ambiguities in the DOA
estimation. In Fig. 3(b), the trace of the CRLB matrix with respect
to the SNR for a fixed inter-sensor spacing r = 2.5 is shown. It is
seen that at low SNRs the effect of the grating lobes is high and
as the SNR increases it gets attenuated resulting in unambiguous
DOA estimation.

4. CLASSICAL AND MVDR BEAMFORMER

Based on the observations of the CRLB for an under-sampled AVS
ULA we now evaluate the performance of the classical [10] and
MVDR [17] beamformers for the single source (¡) scenario. Firstly,
for a unit power source signal with zero mean, the covariance ma-
trix of the measurement data [cf. (1)] is given by:

Ry =a(¡)aH (¡)+æ2
nI . (7)

(a) SNR = 10 dB (b) r = 2.5

Fig. 3. CRLB variation with four sources (three fixed at
90±,60±,°90± and the fourth varying), M = 9, N = 10. In (a) the
trace of the CRLB for increasing inter sensor spacing is considered.
In (b), the trace of the CRLB for increasing SNR is considered.

Using Ry and defining SNR = 1
æ2
n

, the classical and MVDR beam-

formers angular spectrum can be written as:
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where CBFv (¡̂,¡) and MVDRv (¡̂,¡) are the CBF and MVDR
beamformer spectrum of an AVS ULA, respectively, and where
CBFp (¡̂,¡) is the CBF beamformer spectrum of an equivalent APS
ULA. It is shown that both the CBF and MVDR beamformer result
in a maximum when ¡̂=¡, tending towards unity as the SNR and
M increases. For a given M , the attenuation of the side lobes by
the classical beamformer is independent of SNR and is propor-
tional to the attenuation achieved by its squared beam pattern. In
contrast, for the MVDR beamformer the side lobes are attenuated
considerably as the G term in the denominator is amplified by the
factor (SNR)2. At the location of the grating lobes (¡̂ 2 G¡) of an
under-sampled AVS ULA, (8) and (9) reduce to:

CBFv (¡̂,¡) =
M2(SNR)

°
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¢2 +2M

SNR
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(11)

where we use the fact that aH
p (¡̂)ap (¡) = M . It should be noted

that as the SNR approaches 1, MVDRv (¡̂,¡) approaches 0.
As the maximum side lobe level (MSL) is achieved at the grat-

ing lobe location (with n = 1 in (6)), the MSL behavior based on
(10) and (11) for both the CBF and MVDR beamformer are shown
in Fig. 4, respectively. In Fig. 4 (a), it is seen that the MSL for the
CBF is comparable to the main lobe level. In contrast, for the
MVDR beamformer its MSL decreases considerably as the SNR
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Fig. 4. The normalized maximum side lobe level (NMSL), defined
as the ratio of the MSL and main lobe level, for the Classical and
MVDR beamformer using an under-sampled AVS ULA with ¡ =
90±, M = 9. In (a) the inter-sensor spacing is fixed at r = 2.5 and
the SNR is varied. In (b) the SNR is fixed at 10 dB and the inter
sensor spacing is varied.

increases. In Fig. 4 (b) the MSL for both beamformers is a non-
decreasing function of the inter-sensor spacing of the array. From
this result it is clear that the MVDR beamformer reduces the grat-
ing lobe effects significantly allowing for unambiguous DOA esti-
mation. Having focused on the DOA estimation using an under-
sampled AVS array, in the following section we consider the prob-
lem of beamformer design for interference cancellation.

5. INTERFERENCE CANCELLATION

The fact that the matched filter beam pattern weights [cf. (2)] have
the same phase delay for all three channels in a single AVS, we can
decompose the array response as the product of the interference
between sensors and the directional information term. However,
this simplification limits the number of available degrees of free-
dom in the beamformer design. Hence, if the weights for each of
the channels in each AVS are not constrained in any way, signifi-
cant improvements can be obtained. Formally, we can express the
generic beam pattern synthesis problem for an AVS array as [5]:
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where w =
£

w1p w1x w1y . . . wM p wM x wM y
§T 2

C3M is the complex weight vector that needs to be designed such
that G(¡) has a desired shape. The design problem can be writ-
ten as a convex optimization program where constraints on the
sensitivity, main lobe, and side lobes of the beam pattern can be
enforced.

To illustrate this, we consider two beamformer design prob-
lems to suppress interferences (¡n , n = 1,2, . . .) while preserving
the angle of interest (¡0). Firstly a simple null steering/zero forc-
ing (ZF) beamformer [10] for both an under-sampled APS and AVS
ULA with r = 2 is considered in Fig. 5 (a) with ¡0 = 60± and ¡1 =
90±, ¡2 = 120±. These two angles are chosen such that they be-
long to the same grating lobe set (G (¡0)) for r = 2. As the steer-
ing vectors for the APS ULA are the same for all ¡ 2 G (¡0), the ZF
beamformer suppresses not only the interferers but also the signal
of interest. However, the AVS ULA is able to retain the source of
interest and to suppress both interferers. Although the ZF beam-
former only aims at keeping unity gain towards the signal of inter-

est while suppressing interferers, it does not optimize the side lobe
level at other directions. Therefore, we also consider an optimiza-
tion problem for minimizing the maximum array response |G(¡)|,
8¡ 2 S , where S denotes the side lobe region, subject to hav-
ing a distortion-less response for the target angle ¡0, a bounded
sensitivity and a certain main lobe decay for angles ¡ 2M , where
M represents the main lobe region. In addition, constraints can
be included to null the interference from certain angles ¡ 2 N ,
where N contains the DOAs to be nulled. This problem can be
succinctly expressed as [18]

min
w

max
¡2S

|wH a(¡)|,

subject to |wH a(¡)|∑Æ; 8¡ 2M

wH a(¡0) = 1, kwk2 ∑Ø

wH a(¡) = 0; 8¡ 2N .

(13)

For illustration purposes, we consider an AVS ULA with M = 9, r =
1.5 and an APS ULA with M = 27, r = 0.5 such that they have the
same channel count and almost a similar aperture. The same an-
gles are considered as in the previous example. The optimiza-
tion problem is solved with Æ,Ø = 1 and the results are shown in
Fig. 5 (b). It is seen that the beam pattern of an AVS ULA (with
M = 9) is comparable to that of an APS ULA (with M = 27) with
both interferences being suppressed.
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Fig. 5. Beam pattern synthesis of an AVS and APS ULA for¡0 = 60±

and interference locations ¡1 = 90±, ¡2 = 120±. In (a) the beam-
pattern synthesis using a ZF beamformer is considered. In (b) the
beam pattern synthesis as a solution of (13) is considered.

6. CONCLUSIONS

In this paper, it is shown that the AVS array can be under-sampled
as the VGM term is independent of the inter-sensor spacing with-
out compromising identifiability due to the existence of grating
lobes. To study the behavior of the under-sampled AVS ULA and
the effects of the grating lobes in DOA estimation, we performed
an analysis based on the Cramér-Rao lower bound of such config-
urations. It is shown that the under-sampled AVS ULA can be em-
ployed for unambiguous DOA estimation, provided that the rank
of the array manifold matrix is preserved. Furthermore, the abil-
ity of the MVDR beamformer to suppress completely the grating
lobes, at high SNR, has been shown. Finally, we showed the ad-
vantages of under-sampled AVS arrays for performing beamform-
ing through a case study of interference cancellation.
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