
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 15, AUGUST 1, 2018 4025

Submodular Sparse Sensing for Gaussian Detection
With Correlated Observations

Mario Coutino , Student Member, IEEE, Sundeep Prabhakar Chepuri , Member, IEEE,
and Geert Leus, Fellow, IEEE

Abstract—Detection of a signal under noise is a classical signal
processing problem. When monitoring spatial phenomena under
a fixed budget, i.e., either physical, economical, or computational
constraints, the selection of a subset of available sensors, referred
to as sparse sensing, that meets both the budget and performance
requirements is highly desirable. Unfortunately, the subset selec-
tion problem for detection under dependent observations is com-
binatorial in nature, and suboptimal subset selection algorithms
must be employed. In this work, different from the widely used
convex relaxation of the problem, we leverage submodularity, the
diminishing returns property, to provide practical algorithms suit-
able for large-scale subset selection. This is achieved by means of
low-complexity greedy algorithms, which incur a reduced compu-
tational complexity compared to their convex counterparts.

Index Terms—Greedy selection, sensor selection, sensor place-
ment, sparse sensing, submodular optimization.

I. INTRODUCTION

LARGE sensor networks are becoming pervasive in our
daily life. They are found in monitoring activities, e.g,

traffic flow and surveillance, as well as typical signal processing
applications such as radar and seismic imaging. The data gen-
erated by these networks requires to undergo several processing
steps before being used for inference tasks, such as estimation
or detection. Due to the increase in the size of the network, man-
aging the data throughput can become a challenging problem
in itself. Hence, if a known inference task with fixed perfor-
mance requirements is kept in mind during the design phase of
a sampler, large data reduction benefits can be obtained by opti-
mizing the number of deployed sensors. In realistic setups, the
available budget for a particular measurement campaign is also
constrained, e.g., limited processing power, reduced hardware
costs, and physical space restrictions. Therefore, it is of great
importance to only deploy the sensors that provide meaningful
information to solve the problem at hand. However, there is al-
ways a trade-off between the performance and the sparsity of

Manuscript received September 18, 2017; revised February 19, 2018, April
8, 2018, and May 18, 2018; accepted May 25, 2018. Date of publication June
11, 2018; date of current version June 22, 2018. The associate editor coordi-
nating the review of this manuscript and approving it for publication was Dr.
Dennis Wei. This work is part of the ASPIRE project (project 14926 within the
STW OTP program). This work was supported by the Netherlands Organisa-
tion for Scientific Research. The work of M. Coutino was supported in part by
CONACYT. (Corresponding author: Mario Coutino.)

The authors are with the Faculty of Electrical, Mathematics and Computer Sci-
ence, Delft University of Technology, Delft 2628CD, The Netherlands (e-mail:,
m.a.coutinominguez@tudelft.nl; s.p.chepuri@tudelft.nl; g.j.t.leus@tudelft.nl).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2018.2846220

the deployed network when such constraints are enforced. This
framework in which a reduced number of sensors is employed
for data acquisition is here referred to as sparse sensing.

In this work, we are interested in the task of designing struc-
tured sparse samplers for detecting signals under correlated
measurements. In particular, we focus on the detection problem
for the case of Gaussian measurements with non-diagonal co-
variance matrices. Such problems are commonly found in practi-
cal applications such as sonar and radar systems [1], imaging [2],
spectrum sensing for cognitive radio [3], and biometrics [4], to
list a few. For this purpose, we consider a detection task in which
a series of measurements, acquired in a distributed fashion, are
gathered at a fusion center, e.g., the main processing unit, to
perform a hypothesis test. We restrict ourselves to a binary deci-
sion problem, in which the fusion center has to decide between
two available states {H0 ,H1} given the observed data. Follow-
ing the conventional detection theoretical approach, we provide
sparse sampler design strategies for both the Neyman-Pearson
and Bayesian setting. Furthermore, as our main goal is to pro-
vide a general and scalable framework capable of dealing with
large-scale problems, we focus our attention on fast techniques
leveraging submodularity and greedy methods. This approach
differs from the current state-of-the-art that is fundamentally
based on convex relaxations. Despite the fact that the typical
convex relaxations provide approximate solutions to the sen-
sor selection problem, they boil down to semidefinite programs.
These problems, albeit being solvable efficiently, are computa-
tionally intensive and, for large datasets, do not scale very well.

A. Prior Art

The structured sparse sampler design problem consists of se-
lecting the subset of measurements with the smallest cardinality
possible such that some prescribed performance requirements
are met. This problem is commonly referred to in the literature
as sparse sensing or sensor selection [5]. Extensive research
has been carried out in the area of sparse sensing for estima-
tion [6]–[12] and detection [13]–[17] problems. However, much
of this work depends on the convex optimization machinery for
optimizing the performance metrics or their surrogates. Cur-
rent efforts, spanning from the field of operational research and
machine learning, have shown that greedy heuristics provide
near-optimal solutions, given that the cost to optimize satisfies
certain properties [18], [19]. For these setups, sparse sensing
has mostly been studied for estimation purposes, using informa-
tion theoretic measures such as entropy and mutual information
as well as experiment design metrics [20]–[23], which exhibit
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the property of submodularity [32]. Similar to convex/concave
functions, submodular set functions have the property that they
accept efficient algorithms for unconstrained exact minimiza-
tion and near-optimal maximization [31]. Due to this property,
some problems involving submodular set functions allow op-
timization algorithms that scale nicely, and in some instances
even linearly, with the size of the input set. This fact has been
fundamental for designing greedy sampling strategies in large
scale problems [37]–[42], [50].

For the particular case of the detection task, the state-of-the-
art structured sparse sampler design framework [13]–[17] aims
to optimize surrogate functions of the probability of error for
the case of binary hypothesis testing. For Gaussian processes
with uncorrelated errors, the sampling problem can be solved
optimally in linear time. These optimal solutions are possible as
it can be shown that maximizing the divergence measures be-
tween the probability distributions [25], e.g., Kullback-Leibler
(KL) divergence, J-divergence, or Bhattacharyya distance, is
tantamount to optimizing the probability of error [17]. How-
ever, when correlated errors are considered, optimizing the di-
vergence measures is not exactly equivalent to optimizing the
probability of error. Therefore, only suboptimal solutions can
be obtained by maximizing the divergences. Furthermore, even
though such divergences are simpler to optimize than the actual
error probabilities, the problem remains non-convex in the selec-
tion variables. As a result, convex approximations must be per-
formed in order to solve the sensor selection problem, often lead-
ing to a semidefinite program. However, despite of being solv-
able efficiently, these semidefinite programs are not suitable for
large-scale settings where our work takes the greatest interest.

B. Overview and Main Contributions

We concentrate on fast and near-optimal sparse sampler de-
sign for Gaussian detection problems with correlated errors. The
typical surrogates for the probability of miss detection Pm in the
Neyman-Pearson setting, and the probability of error, Pe , in
the Bayesian setting, which are based on divergence measures
between the two distributions, are in this work relaxed to provide
submodular alternatives capable to tackle the sparse sampler de-
sign for large-scale problems.

The main idea behind this work is to show, that in certain situ-
ations, it might be possible to avoid the convex machinery [17] to
solve the sensor selection problem for detection. This becomes
important when large scales are considered and fast algorithms
are highly desirable. Therefore, in this work, we mainly focus
on cardinality constrained problems. In the following, our main
contributions are highlighted.

– For Gaussian observations with common covariance and
distinct means we derive a bound for the approximate sub-
modularity of the signal-to-noise ratio (SNR) set func-
tion, which provides grounds for the direct application of
a greedy heuristic to maximize this cost set function under
certain conditions. For instances where the near-optimality
guarantees are weak, we derive a submodular set function
surrogate based on the Schur complement. While this sur-
rogate establishes a link with traditional convex relaxations
for sparse sensing, it accepts a near-optimal maximization
using a greedy algorithm that despite its general polyno-
mial complexity, scales linearly in the number of available

sensors through its recursive description when the number
of selected sensors is fixed. This method attains results
comparable with the ones of convex relaxation, but at a
significantly reduced computational complexity.

– For Gaussian observations with uncommon covariances
and common means we show that the divergences between
probability distributions are not submodular. Despite this,
we present them as a difference of submodular functions,
which can be approximately optimized. In cases where
these decompositions are not readily available, we intro-
duce surrogate decompositions based on the Schur comple-
ment. This approach provides local optimality guarantees
without involving computationally intensive semidefinite
programs as in the convex case.

– For the most general case of Gaussian observations with
uncommon means and uncommon covariances, we show
that the algorithms developed for the case of uncommon
covariances and common means can be reused.

C. Outline and Notation

The rest of this paper is organized as follows. In Section II, the
problem of sparse sampler design for detection is introduced,
and the sensor selection metrics for both the Neyman-Pearson
and Bayesian setting are discussed. The submodular optimiza-
tion theory is introduced in Section III. In Sections IV and V,
submodular set function surrogates for the selection criteria are
derived and a general framework to solve the sparse sampler
design for Gaussian measurements is provided. Finally, conclu-
sions are drawn in Section VI.

The notation used in this paper is the following. Upper (lower)
bold faces letters are used to define matrices (column vectors).
N(μ, σ2) is reserved to represent a Gaussian normal distribution
with mean μ and variance σ2 . The notation ∼ is read as “is
distributed according to”. (·)T and (·)−1 represent transposition
and matrix inversion, respectively. diag(·) refers to a diagonal
matrix with its argument on the main diagonal. I and 1 denote
the identity matrix and the all-one vector of appropriate size,
respectively. det(·) and log(·) are the matrix determinant and
natural logarithm, respectively. tr{·} denotes the matrix trace
operator. [x]i and [X]i,j denote the ith entry of the vector x
and the (i, j) entry of the matrix X, respectively. Calligraphic
letters denote sets, e.g., A, and the vector 1A, with A ⊆V,
denotes a vector with ones at the indices given byA, and zeros
in the complementary set, V \A. λmax{A} and λmin{A} are
the maximum eigenvalue and minimum eigenvalue of the matrix
A, respectively.

II. PROBLEM STATEMENT

Consider a set X = {x1 , . . . , xM } of M candidate measure-
ments. These measurements can be temporal samples of temper-
ature, spatial samples from wavefield measurements, etc. The
samples are known to be related to the models

H0 : xm ∼ pm (x|H0), m = 1, 2, . . . ,M, (1)

H1 : xm ∼ pm (x|H1), m = 1, 2, . . . ,M, (2)

where pm (x|Hi) for i = 0, 1 denotes the probability density
function (pdf) of the mth measurement, xm , conditioned on
the state Hi . By stacking the elements of X in a vector x =
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TABLE I
SUMMARY OF DIVERGENCE MEASURES FOR GAUSSIAN PROBABILITY DISTRIBUTIONS

[x1 , x2 , . . . , xm ]T ∈ RM , the pdf of the measurement set for
the hypothesisHi is denoted by p(x|Hi).

We pose the acquisition of a reduced set Y ⊆ X consisting
of K measurements as a linear sensing problem where the rows
of the sensing matrix are formed from a subset of rows of an
identity matrix. The selected rows, indexed byA, of the identity
matrix are defined by a vector w whose entries belong to a binary
alphabet set, i.e.,

w = [w1 , w2 , . . . , wM ]T ∈ {0, 1}M , (6)

where wm = 1 (0) indicates that the mth measurement is (not)
selected. The subset of rows is then defined as

A := {m | wm = 1, 1 ≤ m ≤ M}. (7)

The acquisition scheme can be formally expressed using the
following linear model

yA = ΦAx ∈ RK , (8)

where yA = [y1 , y2 , . . . , yK ]T is the reduced-size measurement
vector whose entries belong to the setY ⊆ X. The selection ma-
trix ΦA is a binary matrix composed of the rows of the identity
matrix defined by the setA (non-zero entries of w). Even though
K is (possibly) unknown to us, we are interested only in cases
where K � M , as it is desirable to perform inference on a re-
duced measurement set. As the notation based on either w orA
is interchangeable, from this point on, we make no distinction
between them.

The subset of measurements Y is finally used to solve the
detection problem (2) given that the detection performance re-
quirements, for a given application, are met. If the prior hy-
pothesis probabilities are known, i.e., in a Bayesian setting,
the optimal detector minimizes the probability of error, Pe =
P (H0 |H1)P (H1) + P (H1 |H0)P (H0), where P (Hi |Hj ) is
the conditional probability of decidingHi whenHj is true and
P (Hi) is the prior probability of the ith hypothesis. When the
prior hypothesis probabilities are unknown, i.e., in a Neyman-
Pearson setting, the optimal detector aims to minimize the prob-
ability of miss detection (type II error), Pm = P (H0 |H1), for a
fixed probability of false alarm (type I error), Pfa = P (H1 |H0).

In a more formal manner, the sensor selection problem for
detection, in both settings, is given by

Bayesian: arg minA Pe(A) s. to |A| = K, (9)

Neyman-Pearson: arg minA Pm(A)

s. to |A| = K, Pfa(A) ≤ α, (10)

where Pe(A), Pm(A) and Pfa(A) denote the error probabilities
due to the measurement selection defined by the set A, and α
the prescribed false alarm rate.

As for the most general case, the performance metrics in (9)
and (10) are not easy to optimize numerically, we present al-
ternative measures that can be used as direct surrogates to
solve the optimization problems (9) and (10). Here, we fo-
cus on metrics which provide a notion of distance between
the hypotheses under test. That is, we are interested in maxi-
mizing the distance between two distinct probability distribu-
tions p(yA|Hi) and p(yA|Hj ) using a divergence measure
D(p(yA|Hi)‖p(yA|Hj )) ∈ R+ . They lead to tractable opti-
mization methods and, in some particular cases such as for inde-
pendent observations under uncorrelated Gaussian noise, they
result in an optimal solution. A summary of the divergences,
for Gaussian probability distributions, N(θi ,Σi), between the
different hypotheses under test employed for different settings
in this work is shown in Table I. Here, θi and Σi denote the
mean vector and the covariance matrix of the ith distribution,
respectively. For a more detailed treatment of these divergence
measures and their suitability for sensor selection, the reader is
referred to [17], [24]–[27] and the references therein.

Using these divergence measures, the relaxed formulation of
the sparse sensing problems (9) and (10) can be stated, respec-
tively, as cardinality constraint (P-CC) and detection perfor-
mance constraint (P-DC) problems:

P-CC: arg maxA f(A) s. to |A| = K; (11)

P-DC: arg minA |A| s. to f(A) ≥ λ, (12)

where f(A) is one of the divergence measures, λ is the pre-
scribed accuracy and K is the cardinality of the selected subset
of measurements. For the sake of exposition, in this paper we
mainly focus on cardinality constraints (i.e., a uniform matroid
constraint). However, by allowing an increase in computational
complexity and degradation of the near-optimality guarantees,
the methods presented in this work can be extended to incor-
porate budget constraints representable by other kinds of ma-
troids [28].

III. PRELIMINARIES

In this section, some preliminaries about submodularity are
provided. The main definitions and theorems related to submod-
ular set functions used throughout the work are presented.

A. Submodularity

In many engineering applications we encounter the diminish-
ing returns principle. That is, the gain of adding new informa-
tion, e.g., a data measurement, to a large pool of measurements is
smaller than the gain of adding the same piece of information to
a smaller pool of measurements. This notion is mathematically
captured by the next definition.
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Definition 1: (Submodularity) Let V = {1, 2, . . . ,M} re-
fer to a ground set, then the set function f : 2|V| → R is said
to be submodular, if for every A ⊆ B ⊆V and v ∈V \B it
holds that

f(A ∪ {v}) − f(A) ≥ f(B ∪ {v}) − f(B). (13)

Similar to convex functions, submodular set functions have
certain properties that make them convenient to optimize. For
example, the unconstrained minimization of general submodular
functions can be done in polynomial time [31] with respect to
the size of the ground set |V|.

Even though the maximization of general submodular set
functions is an NP-hard problem, Nemhauser et al. [40] have
shown that for the cardinality-constrained maximization [of the
form (11)] of a non-decreasing submodular set function f , with
f(∅) = 0, the simple greedy procedure presented in Algorithm 1
finds a solution which provides at least a constant fraction (1 −
1/e) ≈ 63% of the optimal value, where e is the base of the
natural logarithm. In this context, a set function f : 2|V| → R
defined on the subsets of a ground set V is considered non-
decreasing if and only if f(B) ≥ f(A) holds for all sets A ⊆
B ⊆V.

Using similar arguments, Krause et al. [18] extended the near-
optimality of the greedy heuristic for approximately submodular
set functions or ε-submodular set functions:

Definition 2: (ε-Submodularity) [18] A set function f :
2|V| → R defined on the subsets of a ground set V, is ap-
proximately submodular with constant ε > 0 or ε-submodular,
if for all setsA ⊆ B ⊆ V , and v ∈V\B it holds that

f(A ∪ {v}) − f(A) ≥ f(B ∪ {v}) − f(B) − ε. (14)

For ε-submodular functions the greedy Algorithm 1 provides
the following weaker guarantee.

Theorem 1: (ε-Near-Optimality) [18] Let f : 2|V| → R be
a normalized, i.e., f(∅) = 0, non-decreasing, ε-submodular set
function defined on the subsets of a finite ground setV. Let G
be the set of K elements obtained from Algorithm 1. Then,

f(G) ≥
(

1 − 1
e

)
f(Aopt) − Kε, (15)

whereAopt := arg maxA⊆V,|A|=K f(A) is the optimal set.
The result in Theorem 1 implies that for small Kε,

Algorithm 1 provides a good approximate solution for the max-
imization under cardinality constraints. As in practice it is ob-
served that the lower bound from [40] is not tight, i.e., the
greedy method performs much better than the lower bound [50],
the expression provided for ε-submodular set functions in (15)
is expected to be also a loose bound for the performance of

Algorithm 1. In any case, Theorem 1 shows that the degradation
on the approximation factor increases as K becomes larger.

B. Difference of Submodular Functions

A notable result in combinatorial optimization arises from
the fact that any set function can be expressed as a difference of
two submodular set functions [41]. Therefore, the optimization
problem

max
A⊆V

f(A) ≡ max
A⊆V

[g(A) − h(A)], (16)

where the cost set function f : 2|V| → R is expressed as the
difference of two set functions g : 2|V| → R and h : 2|V| → R,
defined over a ground set V is, in general, NP-hard. Recent
results from Iyer et al. [42] show that the general case of this
problem is multiplicatively inapproximable. However, in this
work we motivate the usage of practical methods, employing
well-designed heuristics, to obtain good results when solving
large-scale real-world problems.

Firstly, let us consider a heuristic from convex optimization
for approximating the problem of minimizing the difference
of convex functions. A typical heuristic is to linearize one of
the convex functions with its Taylor series approximation. With
such a linearization, the original nonconvex minimization prob-
lem can be transformed into a sequential minimization of a con-
vex plus an affine function. In the literature this method is known
as the convex-concave procedure (CCP) [45]. Similarly, for
maximizing the difference of submodular set functions, it is pos-
sible to substitute one of the submodular set functions from (16)
by its modular upper bound at every iteration as suggested
in [42]. Algorithm 2 summarizes the supermodular-submodular
(SupSub) procedure as described in [42] when the cardinality
of the set is constrained for approximating the solution of (16).

In Algorithm 2, at every iteration, a submodular set function is
maximized. This is due to the fact that the modular upper bound
mh
At of h, locally to At [40], preserves the submodularity of

the cost. Using the characterization of submodular set functions
two tight modular upper bounds can be defined as follows

mhA,1(C) � h(A) −
∑

j∈A\C
h({j}|A \ {j})

+
∑

j∈C\A
h({j}|∅), (17)

mhA,2(C) � h(A) −
∑

j∈A\C
h({j}|V \ {j})

+
∑

j∈C\A
h({j}|C), (18)
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where h(A|C) � h(C ∪A) − h(C) denotes the gain of adding
AwhenC is already selected. In practice, either (17) or (18) can
be employed in Algorithm 2 or both can be run in parallel choos-
ing the one that is better. For a more in-depth treatment of these
bounds, the reader is referred to [57]. These bounds follow sim-
ilar arguments as the ones found in majorization-minimization
algorithms [43] for general non-convex optimization.

Although the maximization of submodular functions is NP-
hard, Algorithm 1 can be used to approximate at each step
the maximum of the submodular set function in Algorithm 2.
Furthermore, as the problem of submodular maximization with
cardinality, matroid and knapsack constraints admits a constant
factor approximation, the SupSub procedure can be extended
to constrained minimization of a difference of two submodular
functions. In addition, despite that the optimization of the differ-
ence of submodular set functions is inapproximable [42], similar
to CCP, the SupSub procedure is guaranteed to reach a local op-
timum of the set function when the procedure converges [42],
i.e.,At+1 = At .

The main reasons to prefer the SupSub procedure over, a
possibly, submodular-supmodular (SubSup) procedure, where a
modular lower bound of g(·) is used and the inner step consists
of the minimization of a submodular function, are its computa-
tionally complexity and versatility. Even though unconstrained
minimization of submodular set functions can be performed in
polynomial time, the addition of constraints to the minimiza-
tion of submodular set functions renders the problem NP-hard,
for which there are no clear approximation guarantees. As a
result, the SupSub is often preferred for optimizing differences
of submodular functions.

IV. OBSERVATIONS WITH UNCOMMON MEANS

In this section, we illustrate how to design sparse samplers us-
ing the criteria presented in Section II for Gaussian observations
with uncommon means. This kind of measurements arises often
in communications as in the well-studied problem of detecting
deterministic signals under Gaussian noise.

Consider the binary signal detection problem in (2). Further-
more, let us assume that the pdfs of the observations are multi-
variate Gaussians with uncommon means and equal covariance
matrices. Then, the related conditional distributions, under each
hypothesis, are given by

H0 : yA ∼ N(0,ΣA)

H1 : yA ∼ N(θA,ΣA), (19)

where A ⊆V is the subset of selected sensors from the set
of candidate sensors V = {1, 2, . . . ,M}, and where θA =
ΦAθ ∈ RK and ΣA = ΦAΣΦTA ∈ RK×K . The mean vector
θ and the covariance matrix Σ are assumed to be known a priori.

By observing the Bhattacharyya distance and the KL diver-
gence in (3) and (4), respectively, it can be seen that for the
probability distributions in (19) such metrics are reduced to the
so-called signal-to-noise ratio function

s(A) = θT
AΣ−1

A θA. (20)

Therefore, maximizing the signal-to-noise ratio, s(A), directly
maximizes the discussed divergence measures leading to an
improvement in the detection performance. As a result, we are

required to solve the following combinatorial problem

maximize
A⊆V,|A|=K

s(A) (21)

Due to the hardness of the problem in (21), finding its ex-
act solution requires an exhaustive search over

(
M
K

)
possible

combinations which for large M rapidly becomes intractable.
Simplifications for the problem (21) can be derived using con-
vex optimization [17]. Such approaches provide a sub-optimal
solution in polynomial time when cast as a semidefinite program
(SDP). Even though under the SDP framework, approximate so-
lutions for (21) can be found efficiently, for large-scale problems
near-optimal solutions obtained through Algorithm 1 are more
attractive as for a fixed K the number of function evaluations
required by the method scales linearly in the number of available
sensors. Therefore, the complexity only depends on the efficient
evaluation of the cost function.

A. ε-Submodularity of Signal-to-Noise Ratio

One may ask, can we apply the greedy heuristic in
Algorithm 1 directly on the signal-to-noise ratio and still guar-
antee near optimality? The answer is no, in general. This is
because, the signal-to-noise ratio is not a submodular function.
However, although the signal-to-noise ratio set function is not
submodular, we can try to quantify how far this set function
is away from being submodular. For this purpose, we derive a
bound for the ε-submodularity of the signal-to-noise ratio.

In the following, we present a key relationship between the
parameter ε and the conditioning of the covariance matrix Σ
to provide a bound on the approximate submodularity of the
signal-to-noise ratio set function. This relation is summarized
in the following theorem and corollary.

Theorem 2: Let Σ be a non-diagonal covariance matrix,
with minimum eigenvalue λmin{Σ} �= 0, maximum eigen-
value λmax{Σ}, condition number κ := λmax{Σ}/λmin{Σ},
that admits a decomposition Σ = aI + S where a is chosen as
a = βλmin with β ∈ (0, 1) to guarantee the positive definite-
ness of S. Then the signal-to-noise ratio set function s(A) is
ε-approximately submodular with

ε ≤ 4C1

(
a

(1 − β)2λ2min{Σ} +
νκ2

(1 − β)2

)
, (22)

where C1 = ‖θ‖2
2 , with θ being the mean vector, and ν =

λ−1
min{Σ}.

Proof: See Appendix A. �
Corollary 1: For the limiting case, a → 0 or equivalently

β → 0, Theorem 2 reduces to

ε ≤ 4C1κ
2λ−1

min{Σ}. (23)

Proof: Follows from Theorem 2 (See Appendix A). �
From the results in (22) and (23), it can be seen that when the

condition number of the covariance matrix Σ is low, e.g., weakly
correlated matrices, the theoretical guarantee in Theorem 1 pro-
vides encouraging bounds for the greedy maximization of the
signal-to-noise ratio. In this regime, several works have focused
on sensor selection in the past. For example, in the limiting case
Σ = diag{σ2

1 , σ2
2 , . . . , σ2

M }, where s(A) becomes a modular
set function (the expression in (13) is met with equality), it has
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been shown that the optimization problem can be solved opti-
mally by sorting [17]. Note that the characterization provided in
Theorem 2, in terms of condition number of the matrix, excludes
diagonal matrices. This is due to the fact that even if a diago-
nal matrix is ill-conditioned, the resulting set function is still a
modular set function. Therefore, here we focus on matrices that
model well correlated errors. Unfortunately, for arbitrary co-
variance matrices (especially badly conditioned matrices), the
ε-submodular guarantee can be very loose. In that case, surro-
gate submodular set functions can be efficiently optimized using
Algorithm 1 as a fast alternative for performing sensor selection
in large-scale problems.

B. Signal-to-Noise Ratio Submodular Surrogate

Firstly, let us decompose the covariance matrix Σ as

Σ = aI + S, (24)

where a ∈ R and S ∈ RM ×M have been chosen as described in
Theorem 2. Combining (20) and (24), it can be shown that the
signal-to-noise ratio can be rewritten as [17]

s(A) = θT
AΣ−1

A θA (25)

= θT S−1θ − θT S−1[S−1 + a−1diag(1A)
]−1S−1θ,

(26)

where the non-zero entries of the vector 1A are given by the
setA. Then, considering that the signal-to-noise ratio is always
non-negative we can use the Schur complement to express this
condition as a linear matrix inequality (LMI) in w,

MA :=

[
S−1 + a−1diag(1A) S−1θ

θT S−1 θT S−1θ

]
� 0, (27)

which is similar to the LMI found in the convex program in [17].
Therefore, we can consider the following optimization problem
as an approximation of (21)

arg max
A⊆V;|A|=K

f(A) (28)

where the cost set function has been defined as

f(A) �
{

0, ifA = ∅
log det(MA), ifA �= ∅ . (29)

The normalization of the cost is done to avoid the infinity neg-
ative cost due to the logarithm of zero.

In the following, we motivate why (28) is a good alterna-
tive for (21). First, notice that the determinant of MA consists
of the product of two terms, where one of them is related to
the signal-to-noise ratio s(A). That is, using the generalization
of the determinant for block matrices, we can decompose the
determinant of the right-hand-side (RHS) of (27) as

det(MA) = det

[
A B
C D

]
= det(A)det(D − CA−1B) (30)

= γ(A)s(A) (31)

where γ(A) = det(S−1 + a−1diag(1A)) with γ(A) > 0. This
can always be achieved by appropriately choosing a.

From (31) we notice that the determinant of MA consists of
the product of the signal-to-noise ratio s(A), and γ(A). The set

function γ(A) is a monotone nondecreasing set function of the
selected set size. In addition, rewriting the SNR expression as

s(A) = θT S−1θ − 1
γ(A)

θT S−1

adj
(
S−1 + a−1diag(1A)

)
S−1θ, (32)

where adj(A) is the adjugate of A defined as the transpose of
the cofactor matrix of A, we observe that in order to keep the
nondecreasing property of the SNR with respect to the set A,
the growth rate of γ(A) should be larger than growth rate of the
quadratic form in (32). Hence, it is reasonable to consider (31)
as a surrogate function for s(A). Finally, we remark that max-
imizing (31) effectively maximizes a modified version of (26)
where the inverse of S−1 + a−1diag(1A) has been substituted
by its adjugate [cf. (32)].

In the following, we present a proposition that is required
to provide guarantees for near optimality when the proposed
submodular cost set function for the combinatorial problem (28)
is maximized.

Proposition 1: (Monotonicity and Submodularity) The
cost set function in (29) is a monotone, nondecreasing, nor-
malized submodular set function.

Proof: See Appendix B. �
By the fact that the cost set function (29) is a normalized,

nondecreasing submodular set function, (28) can be solved near-
optimally for any cardinality size K using Algorithm 1.

C. Recursive Description of Cost Set Function

It is important to remark that most of the claims of scala-
bility in submodular optimization works rely on the linear-time
complexity with respect to the cardinality of the selected set.
However, this claim might not translate in a fast optimization
solver for all problem instances as the evaluation of the set
function itself can be computationally expensive, and in certain
situations, it might be a prohibitive endeavor.

Under this perspective, we demonstrate the suitability of a
large-scale optimization of (28) by showing that it is possible to
compute this set function recursively, alleviating the complexity
of computing the determinant of an (M + 1) × (M + 1) matrix,
which in general, has complexity O((M + 1)3).

Let us consider the kth step of the greedy algorithm, with
Ak−1 denoting the subset of sensors selected upto this point.
First recall that the cost set function (29) can be expressed as
[cf. (31)]

f(Ak ) = ln(det(S−1 + a−1diag(1Ak
))s(Ak )). (33)

By applying the determinant lemma to (33) we obtain

f(Ak ) = ln(det(S−1) det(I + a−1SAk
)s(Ak )), (34)

where for Ak = {m1 , . . . ,mk}, we have defined [SAk
]i,j =

[S]mi ,mj
. Here, mi is the sensor index selected at the ith step.

As the kth step of the greedy algorithm evaluates the cost set
function for the set Ak = Ak−1 ∪ {i}, ∀ i ∈V \A, in order
to find the best sensor to add, the matrix in the second term
of (34) can be written using the following block structure

I + a−1SAk
=

[
I + a−1SAk −1 sAk

sTAk
1 + αAk

]
, (35)
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where forAk−1 = {m1 , . . . ,mk−1}, we have defined [sAk
]j =

[S]mj ,i , and αAk
= [S]i,i . Therefore, using the property of the

determinant for block matrices, we can construct the following
recursive evaluation for the cost set function

f(Ak ) = ln(det(S−1) det(I + a−1SAk −1 )

× (1 + αAk
− sTAk

(I + a−1SAk −1 )
−1sAk

)s(Ak )),
(36)

where the matrix I + a−1SAk −1 is fixed for every i ∈V \
Ak−1 , and it only has to be updated when the sensor for the
kth step has been chosen.

Remark 1: We stress that for some choices of the parameter
a, the matrix MA might be ill-conditioned. However, as the
computation of the cost function is not performed directly on the
matrix MA but through (36), we only require that the recursive
inversion of the matrix in expression (36) is numerically well-
conditioned. This can be achieved in practice by selecting the
value for a far from both 0 and λmin{Σ}, e.g., a = 0.5λmin{Σ}.
This approach avoids numerical problems that could arise due
to the selection of the value of a.

From (36), the computational advantages during function
evaluations are clearly seen. First, computation of the inverse of
the matrix S−1 is not needed as for any set the term det(S−1)
is constant. This contrasts with the convex method from [17]
which requires the inversion of S. Second, the rank-one update
of the inverse in (36) as well as the computation of s(Ak ) have
worst-case complexity O(K2), which implies that the overall
complexity of the proposed algorithm is about O(MK3). That
is, different from its convex counterpart which has cubic com-
plexity in the number of available sensors, the proposed method,
for a fixed K, scales linearly with respect to the number of avail-
able sensors.

Furthermore, as seen in (36) it is possible to generate two
solutions, without any extra computational expense, by the eval-
uation of the cost set function: (i) the solution for maximizing
greedily the submodular surrogate f(·), and (ii) the solution of
maximizing greedily the signal-to-noise ratio, s(·). Therefore,
the proposed cost set function is perfectly suitable for large-
scale problems, especially for instances with M � K, where
computational complexity is of great importance. In addition, as
two solutions can be built simultaneously, the one with the best
performance can always be chosen as final solution. In addition,
lazy evaluations [51], or stochastic greedy selection (SGS) [52]
can be employed to further reduce the number of function eval-
uations required by the introduction of book keeping, i.e., lazy
evaluations requires sorting, or by relaxing the guarantees to
stochastic guarantees in the case of SGS.

D. Numerical Examples

To illustrate the performance of the submodular optimization
machinery, we present two different examples for (19) under
the Bayesian setting with P (H0) = 0.3. In both examples, the
value for a has been fixed to a = 0.5λmin{Σ} to avoid heavily
ill-conditioned matrices in our computations.

First, let us consider a small-scale sensor selection problem
where the best K sensors have to be selected from a pool of
M = 15 available sensors. This small scale example allows
us to compare the developed algorithm with the optimal solu-
tion. In this example, 1000 Monte-Carlo runs are performed.

Fig. 1. Bayesian probability of error Pe for (19) with different subset sizes
K when choosing from M = 15 available sensors. The probability of error for
any random subset of K sensors will be in the shaded region of the plot.

The common covariance matrix Σ, in each Monte-Carlo run,
is generated using a superposition of M unit power Gaussian
sources according to the standard far-field and narrowband ar-
ray signal processing model [1], and the mean vectors θi are
considered i.i.d. Gaussian random unit vectors. We solve the
problem by performing an exhaustive search over all possible(
M
K

)
combinations. The subset that maximizes and minimizes

the Pe of the system is obtained and represents the worst and
best possible selection, respectively. In addition, a comparison
between the average performance of the greedy algorithm and
the convex relaxation of the problem is shown in Fig. 1. In the
plot, the Pe obtained by applying directly the greedy heuristic
to the signal-to-noise ratio set function is denoted as Greedy
SNR. From Fig. 1, it is seen that even though the submodu-
lar surrogate, given by expression (28), does not perform as
good as optimizing the original signal-to-noise ratio set func-
tion, its performance is comparable to the one obtained by the
convex relaxation approach. However, applying Algorithm 1 to
the submodular surrogate incurs a significantly lower computa-
tional complexity due to its recursive implementation. In Fig. 1,
the shaded area shows the region where all other sub-optimal
samplers would lie for this problem.

The previous example was intended to illustrate the perfor-
mance of the discussed methods in comparison with the exhaus-
tive search. However, for interesting problem sizes, exhaustive
search solutions are not feasible even for small subset cardinal-
ities. To illustrate the performance of the submodular surrogate
for larger problem sizes, in the following example, instead of
using the exhaustive search result as baseline, we compare the
greedy heuristic with the convex relaxation for a problem of
size M = 50. In Fig. 2(a), the average performance over 1000
Monte-Carlo runs is shown, when the common covariance ma-
trix Σ, is considered to be a random Toeplitz symmetric matrix,
and the mean vector i.i.d. Gaussian as before. Similar to the
results from the previous example, the greedy rule from Algo-
rithm 1 provides the lowest Pe when it is applied to the original
signal-to-noise ratio function. As before, the submodular surro-
gate provides subsets with comparable system performance as
the convex relaxation method with randomization, but with a
reduced computational cost.

In Fig. 2(b), we show the ratio between the SNR of the greedy
and the submodular surrogate with respect to the solution of the
relaxed convex problem for 100 Monte-Carlo realizations of
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Fig. 2. Results for the random Toeplitz and uniform covariance matrices. (a) Bayesian probability of error Pe between the convex relaxation and the greedy
heuristic for (19) with different subset sizes K when choosing from M = 50 available sensors and random Toeplitz covariance matrices. (b) Histogram of the
distribution of the gain in SNR of different sensor selection strategies when the relaxed convex problem is considered as baseline. The sensor selection problem
is solved for M = 50 available sensors over several realizations and different subset sizes. The height of the bar represents the relative frequency of the gain in
the x-axis. (c) Bayesian probability of error Pe between the convex relaxation and the greedy heuristic for (19) with different subset sizes K when choosing from
M = 50 available sensors and a uniform covariance matrix [c.f. (37)].

problem (19) when random Toeplitz covariance matrices are
considered for Σ. The percentage of occurrence is shown in the
vertical axis of the bar plot. In each Monte-Carlo run, the so-
lution using the three approaches was computed, for the subset
sizes K = {1, 6, 11, 16, 21, 26, 31, 36, 41, 46}. The histogram
is computed over all subset sizes for each of the methods. It is
evident from Fig. 2(b) that the greedy heuristic, when applied to
the original signal-to-noise ratio, provides the best performance
of all methods. As expected, the submodular surrogate set func-
tion provides similar results as the convex relaxation due to the
fact that both are constructed from the Schur complement.

Finally, in Fig. 2(c) the comparison of the different methods is
shown for the case when the covariance matrix Σ is considered
to be a uniform correlation covariance matrix, i.e.,

Σ =

⎡
⎢⎢⎢⎣

1 ρ ρ . . . ρ
ρ 1 ρ . . . ρ
...

...
. . .

...
...

ρ ρ ρ . . . 1

⎤
⎥⎥⎥⎦, (37)

with correlation factor ρ = 0.43. From Fig. 2(c) it is seen that
the submodular surrogate outperforms the convex relaxation for
all subset sizes. However, the best performance is achieved by
the greedy heuristic applied directly to the signal-to-noise ratio
set function.

E. When Does Greedy on the SNR Fail?

In the previous part, it has been numerically shown that the
greedy heuristic applied directly to the signal-to-noise ratio set
function might perform better than both the convex and submod-
ular relaxations of the problem. However, we should be aware
that the application of the greedy heuristic for a non-submodular
maximization does not provide any optimality guarantees in
general. Therefore, there might be problem instances in which
the direct maximization of such a set function could lead to
arbitrary bad results. In order to illustrate the importance of
submodularity for the greedy heuristic, we show an example of
the sensor selection problem in which the greedy method ap-
plied to the signal-to-noise performs worse than the submodular
surrogate. Consider an example with M = 3 available sensors,
from which we desire to obtain the best subset of K = 2 sensors
which provides the highest signal-to-noise ratio. In addition, we
consider the case where the difference of the mean vectors is

the all-one vector, i.e., θ = [1, 1, 1]T . The covariance matrix for
the noise is given by the block matrix

Σ =

⎡
⎢⎣

1/(1 − ρ2) −ρ/(1 − ρ2) 0

−ρ/(1 − ρ2) 1/(1 − ρ2) 0

0 0 1

⎤
⎥⎦,

where ρ ∈ [0, 1). The signal-to-noise ratio set function is defined
as s(A) = 1TAΣ−1

A 1A. Since s({1}) = s({2}) = (1 − ρ2) and
s({3}) = 1, Algorithm 1 will select {3} first as ρ ≤ 1, i.e.,
A1 = {3}. Then, either {1} or {2} are chosen next as both
have the same set function value, i.e.,

s({3, 1}) = s({3, 2}) = s(AG) = 2 − ρ2 ,

whereAG denotes the set obtained from the greedy SNR solu-
tion, i.e., obtained by greedily maximizing the SNR. However,
the maximum of the set function is attained with the set A∗ =
{1, 2} which provides the set function value s(wA∗) = 2 + 2ρ.
For the limiting case of ρ → 1, we obtain

lim
ρ→1

s(AG )
s(A∗)

= 0.25.

Even though the greedy heuristic can provide good results in
many cases, one should thus be aware that it could get stuck in
solutions far from the optimal.

We will now show for the above example that, on average,
applying the greedy heuristic to the submodular surrogate per-
forms better than applying it to the original SNR cost set func-
tion. First, let us consider the following decomposition of the
noise covariance matrix,

S = Σ − aI =

⎡
⎣

1
1−ρ2 − a − ρ

1−ρ2 0
− ρ

1−ρ2
1

1−ρ2 − a 0
0 0 1 − a

⎤
⎦, (38)

for any a chosen as described in Theorem 2.
Then, the inverse of (38) can be expressed as

S−1 =

⎡
⎢⎣

a ρ2 −a+1
a2 ρ2 −a2 +2 a−1 − ρ

a2 ρ2 −a2 +2 a−1 0

− ρ
a2 ρ2 −a2 +2 a−1 − a ρ2 −a+1

a2 ρ2 −a2 +2 a−1 0
0 0 − 1

a−1

⎤
⎥⎦.
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The submodular cost set function can be evaluated for each of
the sensors by considering its factors as in (31), i.e.,

γ({i}) = det
(
S−1 + a−1I{i}

)
= 1

a (a−1) (a2 ρ2 −a2 +2 a−1) ,

s({i}) = 1 − ρ2 , for i = 1, 2,

and

γ({3}) = det
(
S−1 + a−1I{3}

)
= 1−ρ2

a (a−1) (a2 ρ2 −a2 +2 a−1)
s({3}) = 1.

It is clear that the submodular cost set function provides the
same value for any of the sensors, i.e.,

γ({1})s({1}) = γ({2})s({2}) = γ({3})s({3}).
Hence, if we break this tie arbitrarily, the possible values of the
cost set function are

γ({1, 2})s({1, 2}) = γ({2, 1})s({2, 1})
= 2+2ρ

a2 (a−1) (a2 ρ2 −a2 +2 a−1)

γ({3, 1})s({3, 1}) = γ({3, 2})s({3, 2})
= 2−ρ2

a2 (a−1) (a2 ρ2 −a2 +2 a−1) ,

where we consider the fact that the greedy heuristic does not
select the 3rd sensor after the 1st or the 2nd sensor has been
selected, i.e., the marginal gain is larger when the sensors {1, 2}
are selected. Therefore, the average value attained by the sub-
modular method is

E
[
s(AS)

]
=

1
3
(s({1, 2}) + s({2, 1}))

+
1
6
(s({3, 1}) + s({3, 2}))

=
2
3
s(A∗) +

2 − ρ2

3
,

where AS is the set returned by the maximization of the sub-
modular surrogate. In the limiting case ρ → 1, we have the
following limit

lim
ρ→1

E
[
s(AS)

]
s(A∗)

= 0.75,

which provides a higher approximation ratio compared with the
previously seen greedy heuristic. However, it is clear that the
proposed method also suffers from one of the drawbacks of
greedy methods: when more than one possible solution obtains
the same cost set function value, either ties should be broken
arbitrarily or multiple branches have to be initialized.

Now, we show a larger instance of the previous example,
where a set of M = 200 available sensors are considered. Fur-
thermore, a block precision matrix Σ−1 with the following struc-
ture is considered for performing sensor selection

Σ−1 =
[
T 0
0 I

]
∈ RM ×M (39)

where T = Toeplitz([1, ρ1 , ρ2 , . . . , ρM/2−1 ]) ∈ RM/2×M/2 is
an exponential decaying Toeplitz matrix, and I ∈ R�M/2�×�M/2�

is the identity matrix. This kind of precision matrices could arise
in systems where only a subset of sensors are calibrated, i.e.,
block of sensors whose precision matrix is the identity. The

Fig. 3. Signal-to-noise ratio between the Greedy SNR and the submodular
surrogate for different subset sizes K when choosing from M = 200 available
sensors for an instance of the problem with precision matrix given by (39).

mean difference vector, i.e., θ = θ1 − θ0 , is considered the all-
ones vector, and ties in the selection are broken arbitrarily. In this
example ρ = 0.18 has been fixed. From Fig. 3 it can be seen that
even though for a small number of selected sensors both meth-
ods achieve similar SNR, the submodular surrogate outperforms
the Greedy SNR method for most of the subset sizes. This result
is expected due to the fact that the worst case bound given in
Theorem 2 for ε-submodular set functions worsen as the size of
the solution increases. More importantly, the submodular surro-
gate reaches the maximum SNR when half the sensors, i.e., for
50% compression, have been selected, whereas the Greedy SNR
requires all the sensors to reach the maximum SNR. We want to
emphasize that even though throughout the manuscript we focus
on the cardinality constraint formulation (P-CC) [cf. (11)], the
proposed methods are also suitable for performance constraint
(P-DC) formulations [cf. (12)]. In many instances reducing the
number of sensors too much might not lead to systems meeting
minimum requirements, e.g., operational SNR. In this regard,
observing Fig. 3, for a nominal system with a requirement of
SNR ≥ 20 dB (i.e., the performance constraint in (12)) only
using Greedy SNR will lead to a solution containing a high
number of sensors, while using the proposed surrogate leads
to a solution that involves less sensors. Therefore, despite that
for low values of K, there is no notable difference between
both algorithms, in cases that a fixed SNR is required, using the
proposed surrogate provides a clear advantage with respect to
Greedy SNR.

V. OBSERVATIONS WITH UNCOMMON COVARIANCES

In this section, we discuss sensor selection for detection when
the data model for the hypotheses under test differ in their
second-order statistics. For the case of Gaussian distributed mea-
surements we can assume that the conditional distributions for
the binary hypothesis test are given by

H0 : x ∼ N(θ,Σ0)

H1 : x ∼ N(θ,Σ1), (40)

where the mean vector θ ∈ RM is shared by both hypotheses
and the second-order statistics of the data are characterized by
the M × M covariance matrices Σ0 and Σ1 for the hypothesis
H0 andH1 , respectively.
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Using the metrics discussed in Section II, it has been sug-
gested in [17] that the different distance measures between
probability distributions can be applied to construct selection
strategies using convex optimization. However, it turns out that
some of the metrics to optimize can only be expressed as the
difference of submodular functions, therefore the SupSub pro-
cedure described in Section III can be employed for its opti-
mization. In the next section, we show how it is possible to
decompose the divergence measures into the difference of sub-
modular functions.

A. Submodular Decomposition of Divergence Measures

Unlike the case with commons means, the three distances dis-
cussed are not scaled versions of each other. For the linear model
in (8) under Gaussian noise, the Bhattacharyya distance (3) is
given as the following difference of submodular set functions

f(A) = B(H1‖H0) := g(A) − h(A);

g(A) =
1
2

log det(ΣA);

h(A) =
1
4
(log det(Σ0,A) + log det(Σ1,A)). (41)

The submodularity of h(A) and g(A) is clear as both func-
tions are linear combinations of entropy functions. As a result,
the Bhattacharyya distance can be approximately maximized
using the SupSub procedure described in Algorithm 2.

Differently from the Bhattacharyya distance, the expressions
for the KL divergence and the J-divergence in (4) and (5) for
the distributions in (40) do not provide a direct decomposition
in submodular set functions because in both divergences there
are trace terms that cannot be expressed directly as a difference
of submodular functions. Even though such decompositions ex-
ist [41], in general, finding them incurs exponential complex-
ity [42]. However, similarly as in the case of the signal-to-noise
ratio cost set function, a readily available submodular surrogate
can be employed in order to optimize both distances using the
SupSub procedure.

In order to obtain a submodular approximation of the trace
term, let us consider the following set function

q(ΣA,ΨA) = tr{Σ−1
A ΨA}, (42)

where A is the index set of the selected sensors and ΣA and
ΨA are submatrices defined by the rows and columns of Σ
and Ψ, respectively, given by the elements of the setA. Let us
decompose one of the matrices as Σ = aI + S, where a nonzero
a ∈ R is chosen as described in Theorem 2 and therefore S � 0.
The set function in (42) is then equivalent to

q(ΣA,ΨA) = tr{S−1Ψ − S−1[S−1 + a−1diag(1A)
]−1S−1Ψ}

= tr{Ψ T
2 S− 1

2
(
I − S− T

2 [S−1

+ a−1diag(1A)]−1S− 1
2
)
S− T

2 Ψ
1
2 }

=
M∑
i=0

tr{zT
i

(
I − S− T

2 [S−1

+ a−1diag(1A)]−1S− 1
2
)
zi},

where zi has been defined as the i-th column of S− T
2 Ψ

1
2 . Anal-

ogously to the uncommon means case, where the signal-to-noise
ratio was replaced by its submodular surrogate, we can substi-
tute q(ΣA,ΨA) by the following submodular set function

qsub(ΣA,ΨA) :=
M∑
i=1

log det
[
S−1 + a−1diag(1A) S− 1

2 zi

zT
i S− T

2 zT
i zi

]

which is submodular on the set of selected entriesA. It is clear
that the set function qsub(ΣA,ΨA) is submodular as it is a
non-negative combination of submodular set functions in A.
Furthermore, as this set function shares a similar structure with
respect to the signal-to-noise ratio set function [cf. (20)], i.e.,

qsub(ΣA,ΨA) := M log det(S−1 + a−1diag(1A))

+
M∑
i=1

log(ψT
i ΦTAΣ−1

A ΦAψi), (43)

whereψi is the ith column of Ψ
1
2 , an efficient evaluation of (43)

can be performed through a recursive definition similar to the
one in (36). Unfortunately, as the summation is over M terms,
this formulation leads to a worst-case complexity ofO(M 2K3)
for finding the solution through a greedy heuristic. However,
for instances with K � M this algorithm improves, in terms
of speed, with respect to the cubic complexity of the convex
relaxation.

After the introduction of the submodular set function qsub ,
surrogates for the divergences K(·) and DJ(·) denoted as
Ksub(·) and DJ,sub(·), respectively, can be obtained. The fol-
lowing is observed from these surrogates:

� Ksub(·) can be expressed as a mixture of submodular and
supermodular set functions as

Ksub(H1‖H0) = g(A) − h(A);

g(A) =
1
2

log det(Σ0,A) +
1
2
qsub(Σ0,A,Σ1,A);

h(A) =
1
2

log det(Σ1,A).

� DJ,sub(·) is a submodular set function as it is a non-
negative combination of two submodular functions, i.e.,

DJ,sub(H1‖H0) =
1
2
(qsub(Σ0,A,Σ1,A)

+ qsub(Σ1,A,Σ0,A)).

From these results, it is clear that Ksub(·) can be optimized
using the SupSub procedure in Algorithm 2 as in the case of
the Bhattacharyya distance, whileDJ,sub(·) can be directly op-
timized using the greedy heuristic from Algorithm 1.

B. Uncommon Means and Uncommon Covariances

So far, only particular cases of the general hypothesis test-
ing problem between two Gaussian distributions have been dis-
cussed. However, in the following, we show that the general
case, i.e., distinct means and covariance matrices, can be solved
using the same heuristics as discussed for the particular cases
presented earlier in the previous sections.
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Fig. 4. (a) KL divergence of the different sensor selection methods for different subset sizes K for random covariance matrices. (b) KL divergence of the different
sensor selection methods for different subset sizes K for random Toeplitz matrices.

To show that we can reuse the same machinery as in the
uncommon covariances case, first let us consider the KL diver-
gence:

K(H1‖H0) =
1
2

(
tr
(
Σ−1

0,AΣ̃1,A
)− M + log det(Σ0,A)

− log det(Σ1,A)
)

. (44)

In the above expression we have rewritten the quadratic
form in terms of a trace [cf. Table I], and defined the ma-
trix Σ̃1,A := Σ1,A + (θ1,A − θ0,A)(θ1,A − θ0,A)T which re-
mains symmetric. From (43) it can be seen that the decomposi-
tion proposed before can directly be used by just replacing Σ1,A
by Σ̃1,A in the qsub(·, ·) set function. Therefore, for this measure
there is no distinction between these two cases. In addition, as
the J-divergence is a sum of KL divergences, the decomposition
of the J-divergence follows immediately.

For the Bhattacharyya distance, the quadratic form that ap-
pears in the expression for the general case, i.e., the term related
to the distances between the means, needs to be added to the de-
composition given in (40). As this new term is not submodular,
the surrogate function proposed for the uncommon means case
can be directly employed to provide a submodular set function
for the decomposition. As a result, the surrogate distance mea-
sure for the Bhattacharyya distance can be given through the
decomposition:

Bsub(H1‖H0) := g(A) − h(A);

g(A) =
1
2

log det(ΣA) +
1
8

log det(MA);

h(A) =
1
4
(log det(Σ0,A) + log det(Σ1,A)), (45)

which can be optimized using the approach discussed for the
uncommon covariance case.

In summary, the greedy heuristic for the most general case of
uncommon means and uncommon covariances can be developed
using straightforward adaptations of the methods presented in
Section V-A.

C. Numerical Examples

We demonstrate the applicability of the SupSub in
Algorithm 2 for solving the maximization of the different diver-
gences used for sensor selection, and its respective surrogates

by comparing the results with the widely used CCP heuristic. To
do so, first we perform an exhaustive search to solve the sensor
selection problem for the test in (40) under the Neyman-Pearson
setting. We find the subset of size K that maximizes the KL di-
vergence, for random covariance matrices of size M = 15 and
for random Toeplitz matrices of size M = 50. The results are
shown in Fig. 4(a) and (b), respectively. From these examples, it
is seen that the greedy heuristic of Algorithm 1 applied to the KL
divergence (KL Greedy), the SupSub procedure using both the
original KL expression (SupSub KL-Div)1 and the submodular
surrogate (SupSub Surrogate) perform either better or as good as
the CCP heuristic while incurring a much lower complexity. For
random Toeplitz matrices, as seen in Fig. 4(b), all the methods
perform close to each other, however the CCP method achieves
this performance with a higher computational load.

Binary Classification

Due to the non-monotonic behavior of the classification
curves with respect to the number of features, i.e., the error of
a classifier does not necessarily reduce when more features are
used, a fast and reliable way to select the most relevant features
for a given dataset is required. Therefore, in the following, we
present two examples for binary classification where the KL di-
vergence is used as a feature selection metric and it is optimized
using the methods described in this work. In these examples, the
PRTools Toolbox [54] is used for training classifiers. The built-
in feature selection method, based on cross-validation, is used
as baseline for comparison with the proposed methods based on
the submodular machinery.

In the first example, we start by considering a simple case:
two classes described by Gaussian distributions parametrized
by their covariance matrices, {Σ0 ,Σ1}. In this scenario, the
covariance matrices are a pair of Toeplitz matrices. The num-
ber of features considered for this example is 50. The trained
classifier is the quadratic discriminant classifier (QDC) [53].
Furthermore, the 20/80 rule for training and testing has been
used for the 500 objects contained in the dataset, i.e., 20% of
the data set has been used for training the classifier and 80% for
reporting its performance on unseen data. Additionally, random
sampling of the objects for training has been performed. The
selection of such a classifier is due to the nature of the dataset,

1This is done by computing the expressions of the modular upper bounds
[cf. (17) and (18)] for the set function q(ΣA, ΨA), despite that the function is
not submodular.
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Fig. 5. (a) Classification soft error, weighted with class priors, when using QDC for a Gaussian binary classification problem. (b) Classification error for SVMs
trained using different feature selection methods for the Heart-Cleveland data set.

i.e., as the assumption of Gaussianity of the features holds, QDC
is the Bayes detector for equiprobable classes. The comparison
of the classification soft error for the selected classifier is shown
in Fig. 5(a). The reported error in this figure is given by

e :=
E0

|C0 |P (C0) +
E1

|C1 |P (C1), (46)

where Ei denotes the number of erroneously classified objects
for the ith class, denoted by Ci , and P (Ci) represents the prior
probability for the ith class in the validation set.

As expected, the classification error decreases as the number
of selected features increases as in this example QDC provides
decision boundaries based on the log-likehood ratio test under
Gaussian assumptions. In this example, both methods based
on the SupSub procedure provide a similar classification error,
being mostly below the PRTools baseline result. In this scenario,
for roughly half the number of sensors, the greedy heuristic over
the KL divergence provides the lowest classification error.

Real Dataset Example

As a second example, we use the Cleveland Heart Disease
Data Set [55] in which a set of 76 attributes from 303 patients
are reported describing the presence of a heart disease. Due to
the nature of the data, only 14 of the reported attributes are used
as features, e.g., id number, social security number, and similar
attributes are omitted. In the original dataset, the presence of
heart disease is described by an integer number in the range
{0, 1, . . . , 4}, however in this scenario we consider a binary
hypothesis test in which the label l = 0 represents a healthy
heart and the labels l ≥ 1 represent a patient with any kind of
heart disease. For further information of the complete dataset the
reader is referred to the related online repository [56]. Similarly
to the previous case, only 20% of the data (randomly selected)
is used to train the classifier selected for this problem. In this
setup, the true covariance matrices for the features are consid-
ered for performing selection. That is, from the whole data set
the second-order statistics for each feature, within a given class,
are computed and the resulting covariance matrix is considered
as the true covariance matrix for the data. The same criterion
and baseline are used to perform the selection of the features
from the dataset, and the results are reported over hundred ran-
dom selections for the training subset. For this dataset, a support
vector machine (SVM) was trained to discriminate between the
healthy and unhealthy patients. In Fig. 5(b), the average classi-
fication error, in percentage, is reported for each method with

their respective 95% confidence interval. From this plot it can
be observed that the methods based on the SupSub procedure
produce subsets of features which attain a similar performance
as the baseline, i.e., the PRTool built-in function optimizing over
the QDC metric. However, the method that only uses the greedy
heuristic to maximize the KL divergence obtains subsets with
a worse performance for a small number of features. When the
number of features is close to the maximum, the three meth-
ods based on the greedy rule perform slightly better, in both
mean error and error deviation, than the baseline feature selec-
tion method. Notice the convex behavior of the classification
error for the SVM classifier in Fig. 5(b). Differently from the
previous example, here the dataset structure is more complex
and no Gaussian distribution properly describes it. Therefore,
increasing the number of features could possibly overtrain the
classifier hindering its generalization capabilities. However, it is
important to notice than even when Gaussianity is not granted,
the maximization of the KL divergence as a metric for feature
selection leads to subsets with a smaller average classification
error.

VI. CONCLUSIONS

In this paper, we have considered submodular optimization
for model-based sparse sampler design for Gaussian signal
detection with correlated data. Differently from traditional ap-
proaches based on convex optimization, in this work we have fo-
cused on efficient methods to solve the sensor selection problem
using submodular set functions. We have shown how the dis-
crete optimization of widely used performance metrics, for both
Bayesian and Neyman-Pearson settings, can be approximated
and solved using the submodular optimization machinery. For
Gaussian observations with common covariance and uncom-
mon means we bounded the ε-submodularity constant of the
SNR set function, and derived a submodular surrogate based
on the Schur complement for instances in which such a con-
stant is large. We have shown that for series of practical classes
of covariance matrices this surrogate leads to a performance
comparable with the convex relaxation of the problem, but at
a reduced computational complexity. For the case of common
means and uncommon covariance, we propose to employ the
SupSub procedure for maximizing the difference of submod-
ular set functions. When the decomposition of the divergence
measure into submodular functions is not straightforward, we
introduce surrogate decompositions based on the Schur com-
plement that can be evaluated efficiently. This approach can be
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easily adapted for the case of uncommon means uncommon
covariances. Furthermore, a series of numerical examples with
both synthetic and real data demonstrate the effectiveness of the
proposed methods to perform both sensor and feature selection
even when the data is not Gaussian distributed.

APPENDIX A
PROOF OF THEOREM 2

Proof: First, consider the SNR set function that is defined as
[cf. (20)]

s(A) = θT
AΣ−1

A θA. (47)

Combining the above expression and the decomposition Σ =
aI + S, the signal-to-noise ratio can be rewritten as [17]

s(A) = θT
AΣ−1

A θA (48)

= θT S−1θ − θT S−1[S−1 + a−1diag(1A)
]−1S−1θ,

(49)

= θT S−1θ + h(A), (50)

where the non-zero entries of the vector 1A are given by the set
A and h(A) := −θT S−1 [S−1 + a−1diag(1A)]−1S−1θ.

For the sake of simplicity, we will rewrite the SNR as follows

s(A) := C1 s̃(A), (51)

where we have defined C1 = ‖θ‖2
2 , and s̃(A) is the SNR set

function with θ being substituted by θ̃ = θ/‖θ‖2 , i.e., the SNR
set function is computed only considering the direction of the
vector θ.

Now, let us assume that there exists a ε′ ∈ R+ such that

−ε′ ≤ s̃(A) − ŝ(A) ≤ ε′, (52)

for anyA ⊆V and some modular set function ŝ(A). Using (52)
and considering A ⊆ B ⊆V and i �∈ B, we can obtain the
following expression

δ(A ∪ {i}) − δ(A) − δ(B ∪ {i}) + δ(B) ≥ −4ε′, (53)

where we have defined δ(A) = s̃(A) − ŝ(A). Due to the mod-
ularity of ŝ(A), i.e.,

ŝ(A ∪ {i}) − ŝ(A) − ŝ(B ∪ {i}) + ŝ(B) = 0, (54)

and using expressions (53) and (54), we can show that

s̃(A ∪ {i}) − s̃(A) − s̃(B ∪ {i}) + s̃(B) ≥ −4ε′. (55)

From this it is clear that the set function s̃(A) is ε-submodular
with an ε ≤ 4ε′ (or equivalently, s(A) is ε-submodular with an
ε ≤ 4ε′C1). Therefore, for completing the proof we require to
establish the bound in (52) for the specific ε′ given in (22). In
the following, we devote ourselves to this task.

For this proof, we select the following auxiliary set function:

ŝ(A) = θ̃
T
S−1 θ̃ + ĥ(A), (56)

where ĥ(A) is chosen to be a modular [cf. (54)] set function
and it is given by

ĥ(A) = −θ̃T
S−1

(
a−1I + a−1diag(1A)

)−1

S−1 θ̃. (57)

In (57), a scaled identity matrix has been introduced instead of
the inverse of S [cf. (50)] to construct a modular set function.
Here, it should be noticed that other set functions besides (57)
could have been used for finding an upper bound on the
ε constant. Depending on this choice, different bounds might
be obtained.

To prove (52), we equivalently will establish the following
inequalities

−ε′ ≤ h̃(A) − ĥ(A) ≤ ε′, (58)

where we have defined h̃(A) = C−1
1 h(A). To obtain these in-

equalities, we can bound the difference of the positive definite
(PD) matrices that are part of the quadratic forms in the set
functions in (58). That is, we need to show that

−ε′I � S−1
[
a−1I + a−1diag(1A)

]−1

S−1

− S−1
[
S−1 + a−1diag(1A)

]−1

S−1 � ε′I. (59)

Considering diag(1A) = ΦTAΦA, we can apply the matrix
inversion lemma to expand the difference of the matrices in
between brackets above as

Δ := a

(
I − 1

2
ΦTAΦA

)
− S + SΦTA

(
aI + ΦASΦTA

)−1

ΦAS.

(60)
Hence (59) becomes,

−ε′I � S−1ΔS−1 � ε′I. (61)

As all terms in (60) are PD matrices, we upper bound the matrix
in (60) by removing the negative terms in (60), and lower bound
it by removing all the positive terms. That is,

−
(

a

2
I + S

)
� Δ � aI + SΦTA

(
aI + ΦASΦTA

)−1

ΦAS.

(62)
From the definition of S and a, we can notice that a possible

lower bound for the expression above is given by

−λmax{Σ}I � Δ. (63)

For the upper bound, we notice that by the maximum singular
value of the second matrix, the following inequality holds

Δ � aI + σmax

{
SΦTA

(
aI + ΦASΦTA

)−1

ΦAS
}
I

� aI + λ−1
min

{
aI + ΦASΦTA

}
σ2

max

{
ΦAS

}
I

� aI + λ−1
min{aI + S}λ2max{S}I,

� (a + νλ2max{S})I,
where the submultiplicativity and subadditivity of singular val-
ues, and the interlacing theorem for submatrices of PD matrices
are used in the second and third inequality, respectively, and we
have defined ν = λ−1

min{Σ}.
Considering that

λmax{Σ} ≤ a + νλ2max{S}, (64)
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we can bound the matrix in (60) by both sides as follows

−(aI + νλ2max{S}I) � Δ � aI + νλ2max{S}I. (65)

Hence, we solely continue deriving the upper bound for the
expression above as the obtained ε′ will hold for both lower and
upper bound.

Now, considering that the eigenvalues of Σ are larger than
those of S by definition, S−1 � λ−1

min{S}I, and recalling that
a = βλmin{Σ} we obtain

S−1ΔS−1 � a

(1 − β)2λ2min{Σ}I +
νκ2

(1 − β)2 I = ε′I, (66)

where κ is the condition number of the matrix Σ, proving the
result of the theorem.

For the limiting case, a → 0 or equivalently β → 0, we ob-
tain:

ε′ =
κ2

λmin{Σ} , (67)

which shows a relation with the typical experiment design met-
rics, i.e., maximization of the minimum eigenvalue and log
determinant (which promotes a good matrix condition).

APPENDIX B
PROOF OF PROPOSITION 1

Monotonicity:
Proof: Let us define the following:

T =
[

S−1 S−1θ

θT S−1 θT S−1θ

]
, LA =

[
a−1diag(1A) 0

0 0

]
.

We can express the cost set function from (28) as f(A) =
log det(T + LA), where we have defined MA := T + LA. To
prove the monotonicity of the set function we need to show

f(A ∪ {i}) − f(A) = log
det(MA + Li)

det(MA)
.

Therefore, we should prove that det(MA + Li) ≥ det(MA).
This condition is implied by MA + Li � MA, as a ≥ 0.

Submodularity:
Proof: Let us consider the previous definitions for T and

LA. We need to prove that the following expression is always
positive

f(A ∪ i) − f(A) − f(A ∪ {i, j}) + f(A ∪ j) =

log
det(MA + Li)det(MA + Lj )
det(MA)det(MA + Li + Lj )

≥ 0

The above inequality is equivalent to

det(MA + Li)det(MA + Lj )
det(MA)det(MA + Li + Lj )

≥ 1

Noticing that Li = a−1eieT
i is a dyadic product, and that MA

and MA + Lj are invertible by definition, we can apply the
matrix determinant lemma and rewrite the previous expression
as

det(MA)det(MA + Lj )(1 + a−1eT
i M−1

A ei)
det(MA)det(MA + Lj )(1 + a−1ei(MA + Lj )−1ei)

≥ 1,

leading to

1 + a−1eT
i M−1

A ei

1 + a−1ei(MA + Lj )−1ei
≥ 1.

Finally, the inequality for the last ratio can be proven using the
following property of positive definite matrices. If M � N, then
M−1 � N−1 . Hence,

a−1eT
i (M−1

A − (MA + Li)−1)ei ≥ 0,

which is always true for a ≥ 0 and due to MA + Li � MA.�
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