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ABSTRACT

In this paper, we propose sensor selection strategies, based on convex

and greedy approaches, for designing sparse samplers for composite

detection. Particularly, we focus our attention on sparse samplers for

matched subspace detectors. Differently from previous works, that

mostly rely on random matrices to perform compression of the sub-

spaces, we show how deterministic samplers can be designed under

a Neyman-Pearson-like setting when the generalized likelihood ratio

test is used. For a less stringent case than the worst case design, we

introduce a submodular cost that obtains comparable results with its

convex counterpart, while having a linear time heuristic for its near

optimal maximization.

Index Terms— composite hypothesis testing, convex optimiza-

tion, matched subspace detector, sensor selection, submodular opti-

mization

1. INTRODUCTION

Composite hypothesis testing [1], [2] is one of the problems in signal

processing for which until this date no appropriate general solution

has been found. Similar to simple hypothesis testing, we desire to

select the distribution that best describes the observed data from a set

of possible candidates. However, there is a difference: the parame-

ters that describe these distributions are unknown or have uncertain-

ties, e.g., there is prior knowledge that the parameter is greater than

zero, or that it lies within a certain range.

A particular interesting instance of such a hypothesis test is the

matched subspace detector [4]. In this case, the only available infor-

mation about the signal of interest is the subspace in which it lives.

This detector can be seen as the generalization of the celebrated

matched filter [3] which can be expressed as a rank-1 subspace de-

tector. Matched subspace detectors arise naturally in a myriad of

applications such as radar [5], communications [6], and classifica-

tion [7], to name a few.

In recent years, major attention has been paid to performing de-

tection with compressed or subsampled observations [8]-[12]. How-

ever, most of the research is mainly concerned with simple binary

hypothesis testing (where simple means non-composite). In these

works, it has been shown that it is possible to perfom sensor selection

satisfactory by employing numerically amenable performance met-

rics such as the Kullback-Leibler divergence and the Bhattacharyya

distance instead of the probability of error, and probability of detec-

tion [12],[14]. In addition, even though robust sensor selection for

binary hypothesis testing under parameters with uncertainties has
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been considered [9], sensor selection for composite detection has

still no appropriate solution.

On the other hand, most of the works that focus their efforts

on composite hypothesis testing, particularly for subspace detec-

tion, rely on random matrices to provide performance guarantees

for reduced-size detectors [10]. Hence, they only provide statistical

guarantees for an ensemble of random matrices. In addition, due

to the probabilistic nature of the guarantees, the samplers need to

change constantly, which in most cases is not practical in real sys-

tems.

Differently to these works, we are interested in deterministic

sparse samplers that produce deterministic performance guarantees

by levering the data model. That is why, in this work, we lever the

probability distribution of the test statistic for the optimal subspace

detector, based on the generalized likelihood ratio test (GLRT), to

perform offline sensor selection (a.k.a. sparse sampler design).

2. PROBLEM STATEMENT

Consider the problem of detecting a signal subspace in noise and

with interference. Particularly, we focus on the case where the inter-

ference can be modeled with a low rank subspace. That is, given the

acquired signal

y = x+ v + n ∈ R
N , (1)

the received signal x and interference v can be decomposed using

the subspaces in which they exist as

x = Hθ, with H ∈ R
N×P , (2)

v = Sφ, with S ∈ R
N×Q, (3)

for some θ ∈ R
P and φ ∈ R

Q, respectively. Here, n is the zero-

mean Gaussian noise vector, i.e., n ∼ N (0, σ2I). This formula-

tion is still valid for instances in which the interference might not

be present, i.e., S = 0 or φ = 0. The matrices H and S are as-

sumed to be full column-rank matrices, and it is also assumed that

the matrix [H S] has full column-rank with P +Q ≤ N .

To detect the presence of a signal x ∈ span(H), we are required

to test the following composite hypotheses

H0 : y ∼ N (Sφ, σ2
I)

H1 : y ∼ N (Sφ+Hθ, σ2
I)

, (4)

where for the hypothesis H1 it is assumed that ‖θ‖22 > 0 and for

both H0 and H1, the noise power, σ2, is considered unknown. The

difficulty in (4) lies in the fact that both θ and φ are unknown vec-

tors, as only information about the subspaces H and S is known.

Furthermore, consider that only a subset of data can be acquired

(observed) by means of a linear sensing operation, i.e.,

yA = ΦAy ∈ R
K , K ≤ N, (5)



where A ⊆ V = {1, 2, . . . , N} is the considered subset of entries

for y, and ΦA ∈ {0, 1}K×N denotes the related selection matrix

whose rows are the rows of an identity matrix of size N×N indexed

by the set A.

Such a constrained acquisition scheme typically appears in dis-

tributed sensor networks where due to economical, space or physi-

cal constraints, only a limited set of sensors can be deployed/used

for inference [14]. Therefore, in this work, we are interested in the

following problem:

How can we optimally design the set A (of given cardinality) in

order to obtain the best detection performance for (4)?

For the problem of detecting a signal subspace in noise and inter-

ference it is well-known that the GLRT is uniformly most powerful

(UMP) invariant test [4]. Therefore, in this work, we propose to lever

the parameters of the probability distributions for the GLRT of the

hypotheses under test in (4) to design deterministic sparse samplers

for optimal detection in a Neyman-Pearson-like setting. In the fol-

lowing, the matched subspace detector, which is the GLRT for (4),

and its probability distributions are introduced.

3. MATCHED SUBSPACE DETECTOR

The GLRT for the composite hypothesis test in (4) is given by [4]

L(y) ∼
yTP⊥

S EHSP
⊥
S y

yTP⊥
S
(I −EHS)P⊥

S
y
. (6)

Here, the following orthogonal and oblique projections have been

defined

P
⊥
S = I − S(STS)−1ST , (7)

EHS = H(HTP⊥
S H)−1HTP⊥

S . (8)

It can be shown that the normalized generalized likelihood ratio

(GLR) [cf. (6)] is distributed as

Q̄− P̄

P̄
L(y) :

{

FP̄ ,Q̄−P̄ (0) under H0

FP̄ ,Q̄−P̄ (λ
2(θ)) under H1

, (9)

where Q̄ := dim{span(S⊥)} = N−Q and P̄ := dim{span(P⊥
S H)}

are the dimensions of the subspaces spanned by S and P⊥
S H , re-

spectively. Here, the noncentrality parameter λ2(θ) given by [4]

λ2(θ) =
1

σ2
θ
T
H

T
P

⊥
S Hθ, (10)

completely define the F-distribution given by F . By fixing a thresh-

old η for the GLRT, we obtain the uniform most powerful invariant

for testing the hypothesis in (4).

For (6), the false alarm and detection probabilities, with respect

to a detection threshold η, are given by

Pfa = 1− P [FP̄ ,Q̄−P̄ (0) ≤ η]; (11)

Pd = 1− P [FP̄ ,Q̄−P̄ (λ
2(θ)) ≤ η]. (12)

Based on them, we can design a sparse sampler which maximizes Pd

for a fixed Pfa, i.e., η is fixed. This is achieved by noticing that Pd is

a monotone function of λ2(θ). Therefore, by maximizing the non-

centrality parameter (10), the power of the test can be maximized.

In other words, by maximizing λ2(θ) we are effectively maximizing

the output power of a signal x ∈ span(H) after being processed by

an interference filter, P⊥
S . Intuitively, under this approach, the opti-

mal sparse sampler aims to maximize the orthogonality between the

subspaces defined by S and H .

Note that, although we focus on a case where the noise vari-

ance is unknown, if the noise level is known, the distribution of the

GLRT for the alternative hypothesis H1 has a noncentralility pa-

rameter given by a scaled version of (10) [4]. Hence, the proposed

approach extends also to particular instances of the problem in (4)

with known σ2.

4. SPARSE SAMPLER DESIGN

Consider the model for the measurements yA when the hypothesis

H1 is true and a subset A ⊆ V has been chosen

yA = ΦA

[

Hθ + Sφ+ n
]

= HAθ + SAφ+ nA ∈ R
K .

(13)

An optimal sparse sampler aims to obtain the largest noncentrality

parameter λ2(θ) by an appropriate selection of the rows of H and

S. That is, it is desired that the subspaces spanned by HA and SA

become as orthogonal as possible, i.e., HT
ASA ≈ 0. However, the

maximization of (10) depends on the unknown parameter θ. There-

fore, its maximization in the general case is not possible when we

are dealing with composite hypothesis testing problems. Despite this

issue, in the following, we propose different metrics that can be con-

sidered to design sparse samplers that achieve the best performance

possible for a given situation.

4.1. Average Design

The most straightforward design can be obtained by considering the

average value that λ2 can obtain, i.e.,

maximize
A⊆V,|A|=K

∫

θ∈Ω

θ
T
H

T
AP

⊥
SA

HAθ dθ. (14)

This design is equivalent to the one obtained through a Bayesian ap-

proach where a non-informative prior, e.g., a uniform distribution, is

given to all the possible vectors θ ∈ Ω. As a result, solving (14)

requires to perform integration over the domain Ω in which θ is de-

fined. In practice, this can become a cumbersome task as it involves

the discretization or sampling of θ. Therefore, in this work we do not

put any further attention to this case and opt for two other designs.

4.2. Worst Case (Max-Min) Design

Consider that θ ∈ Ω := R
P \ {0}. The worst case design, in

terms of the Neyman-Pearson setting for a fixed η [cf. (12)], can be

obtained by maximizing λ2(θ) for the worst case parameter θ ∈ Ω.

Therefore, the max-min problem for the wost-case design can be

posed as

maximize
A⊆V,|A|=K

minimize
θ 6=0

θ
T
GAθ, (15)

where, by using the definition (7), the matrix GA is given by

GA := H
T
A

[

IK − SA(ST
ASA)−1

S
T
A

]

HA. (16)

Without loss of generality, for ‖θ‖22 = 1, the worst case

θTGAθ is obviously given by the minimum eigenvalue of GA.

As a result, the problem in (15) can be simplified to

maximize
A⊆V,|A|=K

λmin(GA), (17)



which can be approximated by a relaxed concave problem (see

Appendix A) in terms of a selection vector w ∈ {0, 1}N whose

nonzero entries are defined by the set A.

4.3. Log-det Design

It is well-known that the max-min criterion for a composite hypoth-

esis test has an inherently pessimistic nature [15]. Therefore, a less

stringent design, based on the maximization of the determinant of

the matrix GA, can be considered. That is, we could solve

maximize
A⊆V,|A|=K

ln det(GA). (18)

In (18), instead of only maximizing the minimum eigenvalue, the

product of the eigenvalues is maximized. This approach indeed tries

to increase the energy in the worst direction, but also tries to dis-

tribute the power in other directions as well.

Similar to the optimization problem in (17), the solution of this

problem can be approximated by means of a concave problem us-

ing the Schur complement. However, instead of only relying on

the convex machinery, which requires a series of relaxations (see

Appendix B), we propose a submodular relaxation [16] that is con-

structed in a similar fashion as the convex relaxation but that can be

optimized near-optimally through a greedy heuristic [17].

To construct a submodular surrogate for (18) we leverage the

fact that GA � 0, ∀ A ⊆ V . This condition can be expressed using

the Schur complement through the following linear matrix inequality

MA :=

[

ST IAS STIAH

HT IAS HTIAH

]

� 0. (19)

As the determinant of the matrices GA and MA are related, i.e.,

det(MA) = det(ST
IAS) det(GA), (20)

instead of directly solving problem (18) the following problem can

be considered

maximize
A⊂V,|A|=K

ln det(MA). (21)

This problem can be solved near-optimally using a greedy heuristic.

The greedy algorithm at the kth step adds to the current solution set

Ak the element i ∈ V \ Ak which maximizes the gain f(Ak ∪
{i})− f(Ak). The (1− 1/e) optimality [17] of the greedy method

when solving (21) is due to the submodularity (see Appendix D)

and non-decreasing (see Appendix C) nature of the cost set function

f(A) := ln det(MA).

5. NUMERICAL EXPERIMENTS

In this section, we illustrate the proposed methods through numerical

examples1. We consider an example from array signal processing in

which a uniform linear array (ULA) with N = 15 elements is used

to perform detection. It is assumed that the matrixH is composed by

the steering vectors for angle of arrivals (AoAs) {−30o, 0o, 50o}.

Furthermore, the interference matrix S is considered to be described

by the steering vectors corresponding to the AoAs {−70o, 30o}.

The noise is assumed to be white Gaussian noise with unknown

power σ2. As the noncentrality parameter is monotone in 1/σ2

and ‖θ‖22, without loss of generality, we consider both quantities

as unity.

1The code to reproduce the figures presented in this paper can be found
in https://gitlab.com/fruzti/SparseMatchedDetector

In Fig. 1a, we show a comparison between different methods

for approximating the solution (17). In this figure ‘Fwd’, ‘Bck’ and

‘Init Fwd’ stand for the forward, backward, and initialized forward

greedy solution, respectively. The distinction between forward and

backward lies in the fact that the former adds sensors, starting from

the empty set, and the later removes sensors, starting from the full

set. As when K < P + Q the matrix [HA SA] is rank deficient,

the Fwd Greedy method considers the minimum nonzero eigenvalue.

For the Init Fwd method, first the optimal solution for P + Q = 5
sensors is found through exhaustive search and it is then used as

initialization set for the greedy heuristic. For this reason, only the

performance for K ≥ 5 is reported. From Fig. 1a, it can be seen

that the convex relaxation (CVX minEig) and Bck Greedy perform

close to the optimal solution. Even though there is no guarantee for

the greedy heuristic to perform near optimally, as λmin(GA) is not a

submodular set function, it could be useful to compare the solutions

of the convex approach with the greedy alternative to select the best

among them. In the figure, the shaded region shows the performance

of any random sampler.

In Fig. 1b, the performance of the log determinant case is shown.

In this plot we show that the submodular surrogate proposed in this

work achieves a comparable performance with respect to its con-

vex counterpart, where both of them perform close to the exhaustive

search. However, while the convex relaxation is cast as a semidefi-

nite program (SDP) that has cubic complexity, the submodular sur-

rogate is linear in the number of sensors to select.

Finally, for illustration in Fig. 1c we show an example for K =
9, of the obtained beam patterns after the subspace matched filter

(SMF) is applied [cf. (6)]. It can be observed that the beam pattern

obtained by the Bck Greedy method has nulls exactly at the position

of the interferer angles and peaks at the desired AoAs. This result

shows that due to the nature of the GLRT, the sparse sampler design

done through these approaches is not only meaningful for detection

but also for estimation.

6. CONCLUSION

In this paper, we have explored sparse sampler design for compos-

ite testing with particular focus on matched subspace detectors. The

main idea behind the design strategies is to lever the optimality of

the GRLT for this kind of problems. We have shown that a max-min

sampler design can be obtained by means of a convex program by

applying appropriate convex relaxations. However, due to the inher-

ent pessimistic nature of the max-min criterion, i.e., maximizing the

minimum eigenvalue of GA, we proposed to maximize its determi-

nant by means of a submodular surrogate which can be maximized

through a greedy heuristic. Even though this work is limited to bi-

nary hypothesis tests, future directions aim towards sampler designs

for multiple hypotheses testing problems.

A. CONCAVE FORMULATION FOR

MAXIMIZING λmin(GA)

First, let us consider a selection vector w ∈ {0, 1}N whose nonzero

entries are defined by the set A ⊂ {1, 2, . . . , N}. That is, wm = 1
if m ∈ A and wm = 0 for m 6∈ A.

Recalling the expression for GA and interchanging the depen-

dency on the set A with the selection variable w, we can express (16)

equivalently as

Gw = H
T
IwH −H

T
IwS(ST

IwS)−1
S

T
IwH, (22)
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Fig. 1

where Iw = diag(w).
By introducing the linear matrix inequality (LMI)

H
T
IwH −H

T
IwS(ST

IwS)−1
S

T
IwH � λminI, (23)

we can lever the Schur complement to express such condition lin-

early in w and λmin as

[

ST IwS ST IwH

HT IwS HTIwH − λminI

]

� 0. (24)

As a result, we can maximize the minimum eigenvalue of Gw

through the following relaxed concave program

maximize
w,λmin

λmin

subject to
[

ST IwS STIwH

HT IwS HT IwH − λminI

]

� 0

w ∈ [0, 1]N , ‖w‖1 ≤ K

(25)

where the Boolean nature of the selection vector has been relaxed

and replaced by a box constraint, and the nonconvex ℓ0-norm that

represents the cardinality constraint has been relaxed and substituted

by its convex surrogate, the ℓ1-norm.

B. CONCAVE FORMULATION FOR MAXIMIZING

ln det(GA)

Recalling the definition in (22) and introducing a new variable Z ∈
R

P×P , we can rewrite (22) as

Gw = H
T
IwH −Z, (26)

where Z = HTIwS(STIwS)−1STIwH .

By relaxing the definition of Z from strict equality to an inequal-

ity in the cone of the positive semidefinite matrices (PSD), we can

use the Schur complement to write the following concave program

maximize
w, Z

ln det
(

HT IwH −Z
)

subject to

[

ST IwS ST IwH

HT IwS Z

]

� 0

w ∈ [0, 1]N , ‖w‖1 ≤ K

(27)

where the nonconvex Boolean nature of the selection vector w has

been relaxed to the box [0, 1]N , the nonconvex ℓ0-norm has been

substituted by the convex ℓ1-norm and a linear matrix inequality

(LMI) has been introduced to deal with the inverse in (22). The

problem (27) can then be used to approximate the solution of (18).

C. MONOTONICITY OF ln det(MA)

First, recall the definition of MA given by

MA =

[

STIAS ST IAH

HTIAS HT IAH

]

, for some A ⊂ V. (28)

In order to show that f(A) := ln det(MA) is a non-decreasing set

function, i.e., f(A) ≥ f(B), ∀A ⊂ B ⊂ V , we require to prove

that

ln
det(MA +M{i})

det(MA)
≥ 0, for some i ∈ V \ A. (29)

This condition implies that MA + M{i} � MA, which is always

true as M{i} � 0 ∀{i} ⊂ V . Therefore, the claim is proven.

D. SUBMODULARITY OF ln det(MA)

To show that the cost set function f(A) := ln det(MA) is a sub-

modular set function, the following inequality has to be proven

∆(A,B) := f(A∪ {i})− f(A)− f(B ∪ {i})− f(B) ≥ 0, (30)

where, without loss of generality, we consider B = A ∪ {j}. Ex-

pression (30) can be rewritten as

∆(A,B) = ln
det(MA +M{i}) det(MB)

det(MA) det(MB∪{i})
, (31)

which by using the determinant lemma can be expressed as

ln
det(MA) det(I +LT

{i}M
−1

A L{i}) det(MB)

det(MA) det(MB) det(I +LT
{i}M

−1

B L{i})
, (32)

where L{i} is defined as any appropriate square-root of M{i}. The

previous expression is reduced to

∆(A,B) = ln
det(I +LT

{i}M
−1

A L{i})

det(I +LT
{i}M

−1

B L{i})
. (33)

As MB � MA, ∀A ⊂ B, we have that

∆(A,B) ≥ 0, ∀A ⊂ B. (34)
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