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Abstract—The sensitivity of direction-of-arrival (DOA) esti-
mation to different array geometries motivates the design of
optimal sensor constellations. We propose a framework for array
geometry design for a linear array with fixed aperture and
fixed inter-element spacing, where the array geometry design is
formulated as a sensor selection problem. The sensor selection is
performed such that it achieves a desired Cramér-Rao bound
(CRB) for estimating the DOA of a single source. The non-
uniformity of the sensor selection typically results in sidelobes.
These sidelobes are suppressed in a specified angular sector again
via sensor selection. The aforementioned problems are jointly
casted as a semidefinite programming (SDP) problem which
can be efficiently solved in polynomial time. Simulations exhibit
the trade-offs among the number of selected sensors, sidelobe
minimization, and CRB of the DOA estimates.

I. INTRODUCTION

The optimal selection of sensors in an array paves the

way for creating a trade-off between the performance and

cost of array design for direction-of-arrival (DOA) estimation.

Practical applications can be off-line antenna selection in

the context of station planning for radio astronomy, as well

as weather monitoring applications in which resources like

the number of sensors, and maximum allowable aperture are

already known, and are generally limited.

A plethora of excellent techniques has already been pro-

posed since the early eighties. Several mathematical tools like

convex optimization and biologically-inspired algorithms have

been extensively used by both array signal processing and

antenna research communities, to solve the preceding problem.

In [1], for example, an optimal sensor placement for a fixed

aperture has been proposed which minimizes the Cramér-Rao

bound (CRB) using a genetic algorithm, and this results in

an optimal array with clustered sensors. Another well-known

closely related topic to DOA estimation in array processing is

beamforming. Sensor array optimization via convex optimiza-

tion in the context of beamforming has been proposed in [2],

[3]. In [4], the Weiss-Weinstein bound (WWB) has been used

to optimize the array geometry. In [5], the array geometry is

optimized by minimizing the Bayesian CRB (BCRB), where

a prior probability density function (PDF) of the source DOA

is available. A method for optimizing the array geometry by

minimizing a modified beampattern has been proposed in [7].

Recently, a technique for sensor subset selection in the context
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of localization has been proposed where the sensor placement

problem subject to performance constraints has been posed as

the design of a sparse selection vector [6].

Inspired by [6], we propose in this work a sensor selection

methodology for array design where we assume that the

aperture width is fixed and the available sensor locations are

known in advance. We propose a methodology to design a

sparse sensor selection vector such that the designed array

jointly achieves a desired performance (CRB) for a given

DOA and minimizes the sidelobes upto a prescribed level

in a specified angular sector. The difference of the proposed

method with most of the existing approaches is avoiding the

usage of the second-order statistics of the received signal at

different sensors. In contrast, we directly select the sensors by

formulating an ℓ1-norm optimization problem constrained by

the performance requirements, and this convex optimization

problem can be efficiently solved in polynomial time. Enforc-

ing sparsity in sensor selection improves the cost-efficiency

(hardware, processing, etc.) of the array design achieving some

desired performance.

The outline of the paper is as follows. In section II, we

discuss the data model for single source DOA estimation, the

CRB of the DOA estimate, and its relation with ambiguity

and beamwidth. In section III, we formulate the proposed

optimization problem. In section IV, the simulation results are

presented.

II. PRELIMINARIES

A. Data model

Let us consider a far-field narrowband source s(t) with

t denoting the discrete time index characterized by a DOA

denoted by θ. Let ai(θ) be the gain pattern of the i-th sensor

located at position pi (a one-dimensional linear array is used).

For a linear array with M sensors, the received signal can be

collected in an M × 1 vector r(t) which leads to the well-

known data model [1], [5], [8]

r(t) = a(θ)s(t) + n(t), t = 1, . . . , N, (1)

where N denotes the number of snapshots, and n(t) in-

dicates an M × 1 additive noise vector. Assuming the

centroid pc = 1
M

∑M

i=1 pi of the array as its phase ref-

erence, the array steering vector is given by a(θ) =
[ej

2π
λ

(p1−pc) sin θ, . . . , ej
2π
λ

(pM−pc) sin θ]T ∈ C
M×1 with λ

being the wavelength of the signal. It is assumed that the signal
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and the noise are mutually uncorrelated, and are respectively

modeled as s(t) ∼ CN (0, σ2
s) and n(t) ∼ CN (0, σ2

nIM ).

B. CRB for single source DOA estimation

One of the most important performance metrics for DOA

estimation is the CRB, which is a lower bound on the variance

of any unbiased estimator. The reason behind selecting the

CRB as a performance criterion can be justified by its mathe-

matically tractable structure and relation with the beamwidth

of the array. The analytical formulation of the CRB for DOA

estimation for any number of sources, and for any arbitrary

array geometry is derived in [8]. In [9], the CRB for a one-

dimensional linear array is explicitly illustrated. It is also

shown in [10], that the array geometry dependent terms in

the expression of the CRB are independent of the narrow-

band/wideband assumption on the signal. For a deterministic

DOA θ, the expression of the CRB denoted by C(θ) (or the

Fisher information denoted by F (θ)) for single source DOA

estimation is given by [9]

F (θ) = C−1(θ) = 2Nγ

(

2π

λ
cos θ

)2 M
∑

i=1

(pi − pc)
2, (2)

where the term γ is related to the signal-to-noise ratio (SNR).

It is clear from (2), that the dominant factors responsible for

the estimation performance for a fixed θ are λ, γ, N , M , and

the array topology [9]. Note that we can also rewrite (2) as

F (θ) = κ cos2 θ

M
∑

i=1

(

pi −
1

M

M
∑

i=1

pi

)2

=
κ

M
cos2θ

M−1
∑

i=1

M
∑

j=i+1

(pi − pj)
2
,

(3)

where we have introduced a constant κ := 2Nγ( 2π
λ
)2.

C. Relationship of CRB with ambiguity and beamwidth

The unambiguous estimation of the DOA of the source is

one of the main performance criteria of any array geometry.

For any small change in DOA denoted by ∆θ, the function

f(∆θ) = ‖a(θ)− a(θ +∆θ)‖22 should be very high. The

second-order term from the Taylor series expansion of f(∆θ)
around ∆θ = 0 is proportional to [11]

f(∆θ) ∝ (∆θ)2cos2θ

M
∑

i=1

(pi − pc)
2.

The right-hand side of the above expression directly relates to

the Fisher information for DOA estimation. So it can be said

that maximizing the Fisher information will lead to a more

unambiguous solution.

From the analysis of [10], it can be inferred that the half-

power beamwidth of the array is approximately proportional

to the CRB. This property directly relates to the estimation

performance. However, the CRB does not take care of the

sidelobes, which substantially degrades the estimation perfor-

mance in low-SNR scenarios. In the following section, we will

propose a countermeasure for that.

III. OPTIMIZATION PROBLEM

In this section, we will focus on optimizing the sensor

positions in the array. We could do this by minimizing the

CRB in (3) over the pi’s, given a fixed aperture A = pM −p1.

However, since this is a difficult optimization problem, we

prefer to use another approach. Starting from a uniform

linear array (ULA) with half-wavelength spacing and aperture

A = Mλ/2, i.e., pi = b+iλ/2 with b some arbitrary offset and

λ the wavelength of the signal, we try to select the best subset

of sensors from this ULA of M sensors using a selection

vector w = [w1, . . . , wM ]T ∈ {0, 1}M , where wi = 1(0)
indicates that the i-th sensor in the original array of M sensors

is (not) selected. This way, the aperture of the optimal array

with a subset of sensors will be the same as the original

array of M sensors. The sensor selection should minimize

the number of active sensors while guaranteeing some desired

CRB. For this purpose, introducing the selection-vector w and

using pi = b+ iλ/2 in (3), we get

F (w, θ) =
κ′

∑M

i=1 wi

cos2θ
M−1
∑

i=1

M
∑

j=i+1

wiwj (i− j)
2
, (4)

where κ′ = κλ2/4. Note that we replace M in the denominator

of (3) with the cardinality of the active sensor set
∑M

i=1 wi =
‖w‖0 (for w ∈ {0, 1}M ). Here, the ℓ0-norm refers to the

number of non-zero entries in w. We can further simplify (4)

to

F (w, θ) =
κ′

‖w‖0
cos2θ

M−1
∑

i=1

M
∑

j=i+1

vijdij , (5)

where vij = wiwj is related to the selection parameter and

dij = (i−j)2 is the squared mutual difference between the i-th
and the j-th sensor. In other words, we introduce a selection

parameter vij to activate some differences between sensors.

Here, vij = 1(0) with i < j, indicates that the corresponding

difference term dij is (not) selected. Let us define a vector

v = [v12, . . . , v(M−1)M ]T ∈ {0, 1}D with D = M(M−1)/2,

and a vector of all possible squared mutual differences d =
[d12, . . . , d(M−1)M ]T ∈ R

D. A suitable mapping between the

entries of the vectors v and w is given by v = w⊠w, where ⊠

is a Kronecker-like vector product defined as the element-wise

multiplication between all possible combinations of elements

in w or in other words vij = wiwj for i < j. This can also

be written as V = ww
T , where [V]ij = [V]ji = vij , ∀i =

1, . . . ,M − 1, ∀j = i + 1, . . . ,M (off-diagonal elements of

V).

A. Selection based on the CRB constraint

The sensor subset selection can now be formulated as the

design of a sparse selection vector with a constraint on the

performance. More specifically, as a performance metric we

lower bound the Fisher information, such that the CRB is

upper bounded. The corresponding optimization problem can
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be written as

(V̂, ŵ) = argmin
V∈RM×M ,w∈{0,1}M

‖w‖0 (6a)

s.t.
κ′

‖w‖0
cos2(θ) vT

d ≥ α, (6b)

V = ww
T , (6c)

[V]ij = [V]ji = vij , i = 1, . . . ,M − 1,

j = i+ 1, . . . ,M.

(6d)

Here, α is the threshold on the Fisher information allowing

us to reduce the number of sensors. It can for instance be

calculated by scaling F (θ) in (3), i.e., the Fisher information

of the full array. A tighter performance bound can be imposed

by increasing the value of α.

The optimization problem in (6) is non-convex due to

the following reasons: ℓ0-norm cost function, ℓ0-norm in the

denominator of (6b), and the rank-1 constraint in (6c).

We next use some standard convex relaxations, to simplify

the problem, and the relaxed convex problem can then be

written as the following SDP problem

(V̂1, ŵ1) = argmin
V∈RM×M ,w∈RM

‖w‖1 (7a)

s.t.
κ′

µ
cos2(θ) vT

d ≥ α, (7b)

[

V w

w
T 1

]

� 0, (7c)

[V]ij = [V]ji = vij , i = 1, . . . ,M − 1,

j = i+ 1, . . . ,M,

[V]ii = wi, i = 1, . . . ,M, (7d)

where the ℓ1-norm defined as ‖w‖1 =
∑M

i=1 wi is a convex

relaxation for ‖w‖0 in (6a), and we use µ as a guess for ‖w‖0
in (6b). Taking µ = M we provide a weaker, yet, sufficient

constraint for the Fisher information (we provide more details

on refining µ in the next section). (7c) is the relaxation for

the rank-1 constraint in (6c), and (7c) and (7d) jointly yield

the Lagrangian relaxation for {0, 1}M and are equivalent to

0 ≤ wi ≤ 1 for i = 1, . . . ,M .

Note that we solve (7) only for a single θ. However, the

problem can be generalized for any set of DOAs Θ, if the

considered optimization problem is solved for the θ ∈ Θ with

the maximum cos2 θ, because for that particular θ, the perfor-

mance constraint is the tightest. The same generalizations can

be applied for N and the SNR.

B. Selection based on the CRB and the sidelobe level

Solving (7), we find a sparse sensor selection pattern that

achieves some desired CRB. From the simulation results,

it is seen that with an increasing threshold on the Fisher

information (tighter lower bound on the variance), it starts

selecting sensors from the boundary of the array. However,

the beampattern of this type of arrays typically results in high

sidelobes. To alleviate this problem we put another constraint

to control the spatial response in any direction θsl 6= θ. The

additional constraint that should be added to the optimization

problem in (7) is given by

| wT
ã(θ, θsl) | ≤

√

β, (8)

where ã(θ, θsl) = [ã1(θ, θsl), . . . , ãM (θ, θsl)]
T ∈ C

M×1 with

entries ãi(θ, θsl) = ej
2π
λ

(pi−pc)(sin θsl−sin θ), and β is the

desired level of sidelobe power in the specified angular region.

The sidelobe constraint is related to the spatial response (in the

direction of the sidelobes) of a matched filter beamformer for

DOA θ based only on the active sensors. The constraint can

be applied for a specific set of angles θsl ∈ Θsl, outside the

mainlobe area, where we would like to minimize the sidelobes.

The solution of (7) together with the constraint (8) for

θsl ∈ Θsl gives the sparse sensor selection pattern which

minimizes the sidelobe level in some specific angular region

around the mainlobe along with achieving some desired CRB.

The inevitable fact is that, when we increase α, or decrease

β, the designed array becomes less sparse.

C. Sparsity-enhancing iterative algorithm

For a further improvement of the sparsity of ŵ1, the iterative

re-weighted ℓ1-norm algorithm proposed in [12], [6] is adapted

to suit our problem. In addition, during every iteration we

refine µ such that the relaxation of (7b) is almost equal to

(6b).

The iterative algorithm goes as follows:

1) Initialize k = 0, ‖ŵ(−1)‖0 = M(= µ), and u
(0) = 1M .

2) The following optimization problem is solved in the k-th
iteration with the weighted objective function u

(k)T
w

(k)

(V̂(k)
, ŵ

(k)) = argmin
V(k)∈RM×M ,w(k)∈RM

u
(k)T

w
(k)

(9a)

s.t.
κ′

‖ŵ(k−1)‖0
cos2(θ) vT

d ≥ α, (9b)

[

V
(k)

w
(k)

w
T (k) 1

]

� 0, (9c)

[V(k)]ij = [V(k)]ji = v
(k)
ij ,

i = 1, . . . ,M − 1, j = i+ 1, . . . ,M,

[V(k)]
ii
= w

(k)
i , i = 1, . . . ,M, (9d)

| w(k)T
ã(θ, θsl) | ≤

√

β, ∀θsl ∈ Θsl.
(9e)

3) The elements of the weight vector u
(k)
i are updated as

u
(k)
i = 1

ǫ+|ŵ
(k)
i

|
, for i = 1, . . . ,M .

4) The iterations are stopped at k = kmax, or on conver-

gence, else increment k and go to step 2.

After the iterative algorithm, the selection vector w ∈ {0, 1}M

is generated by setting the nonzero values of ŵ
(k) to 1. It is

seen that, this operation does not affect the CRB constraint.

The updating of the weights enhances the sparsity by forcing

small entries of ŵ
(k) to zero. The parameter ǫ > 0 which

is used in the updating procedure is chosen to be very small

to sparsify ŵ
(k). We use the MATLAB implementation of

CVX [13], for solving the SDP problem (9).

2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)

346



−80 −60 −40 −20 0 20 40 60 80
−40

−35

−30

−25

−20

−15

−10

−5

0

5

DOA (deg)

B
e

a
m

p
a

tt
e

rn
 (

d
B

)

 

 

design (a)

design (b)

−80 −60 −40 −20 0 20 40 60 80
−40

−35

−30

−25

−20

−15

−10

−5

0

5

DOA (deg)
B

e
a

m
p

a
tt

e
rn

 (
d

B
)

 

 

design (a)

design (c)−3 dB

−80 −60 −40 −20 0 20 40 60 80
−40

−35

−30

−25

−20

−15

−10

−5

0

5

DOA (deg)

B
e

a
m

p
a

tt
e

rn
 (

d
B

)

 

 

design (a)

design (d)−3 dB

−80 −60 −40 −20 0 20 40 60 80
−40

−35

−30

−25

−20

−15

−10

−5

0

5

DOA (deg)

B
e

a
m

p
a

tt
e

rn
 (

d
B

)

 

 

design (a)

design (e)
−7 dB

Fig. 1: Comparison of the beampatterns of the designed arrays with the ULA.

Fig. 2: ULA and non-uniform array designs.

IV. SIMULATION RESULTS

We consider a ULA of M = 21 sensors placed with half-

wavelength spacing. The aperture of the array A = pM −
p1 = Mλ/2 is fixed. The parameters for the simulations

are: SNR=10 dB, N = 1000. We normalize the inter-element

spacing to λ/2 = 0.5 and then set the coordinates of the

sensors as pi = i0.5 m along a line. The aperture of the array

of 21 sensors is then A = 10. The source signal is assumed

to be impinging on the array from boreside, i.e., θ = 0◦. The

parameters for the iterative algorithm are ǫ = 10−8 and the

number of iterations is kmax = 20.

The generated arrays with the selected set of sensors are

shown in Fig. 2. The array (a) is a ULA showing the available

sensors. The design (b) is obtained by solving the iterative al-

gorithm without any sidelobe constraints, with α = 0.14F (θ),
where the constant F (θ) is the Fisher information of the full

array in (3) calculated with the parameters mentioned above.

Designs (c) and (d) are obtained by solving (9) with the

same β = −3 dB with α = 0.14F (θ) and α = 0.21F (θ),
respectively. The resulting array from solving the optimization

problem (9) with α = 0.14F (θ) with β = −7 dB is (e). The

sidelobe region is kept fixed to θsl ∈ [−90◦ − 10◦] ∪ [10◦ 90◦]
in designs (c), (d), and (e).

Finally, a comparison of the beampatterns of the resulting

arrays with the full array are presented in Fig. 1. It is seen

that design (a) has the best achievable CRB with minimal

sidelobes. The design (b) is only CRB-optimal which reduces

the number of sensors, but does not minimize the sidelobes.

The beampatterns of designs (c), (d), and (e) show that with

decreasing β or increasing α (keeping any one of them fixed

and varying the other), more sensors are required to achieve

the desired performance.
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