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O Introduction and context

O Signal processing on graphs

L Active Learning, semi-supervised learning, or signal reconstruction
O Multi-domain (tensor) signal reconstruction over product graphs

O Sparse sampler design

O Graph learning or topology inference

0 Geometric deep learning (CNNs, RNNs, GANSs)

L Conclusions, Q&A
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Frozen metal plate with cavity 1854 Cholera outbreak in the City
excited with two hotspots of Soho, London

How to optimally deploy sensors?
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Temperature on Earth’s surface
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Epidemic network
- Ebola outbreak (rumor spread)

Social network

Movies graph
Recommender systems

Design sparse samplers taking into account the underlying topology
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Graph learning or topoloqgy inference

Construct/estimate graphs from data and for a specific task

- 50
40

30

/ Wind speed data from 30 stations

[Source: KNMI, Netherlands]
“Learn a sparse graph that sufficiently explains the data’,



Geometric deep learning
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Y =0(Wix X+ by)
» Lack of models, but many available examples

» Optimization underlying the inference task is complicated
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In this tutorial

We will cover the following three aspects:

1. Sparse sampling or active learning over graphs
2. Graph learning or topology inference

3. Geometric deep learning



Graph Signal Processing

* D. |l. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The emerging field
of signal processing on graphs: Extending high-dimensional data analysis to networks and
other irregular domains,” IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83-98, 2013.

 A. Sandryhaila and J. M. Moura, “Big data analysis with signal processing on graphs:

Representation and processing of massive data sets with irregular structure,” IEEE Signal
Process. Mag., vol. 31, no. 5, pp. 80-90, 2014.
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- temp., pressure, air quality monitoring

- # vehicles crossing a junction

Signals and random processes on graphs
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Transport networks

- fMRI time series, EEG signals

Brain networks
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Graphs and graph signals

» Datasets with irregular support can be represented using a graph

W Graph signal

» A
. g * Vis the set of nodes
o
o /WWWMM - £ is the set of edges
¢ o ° - x € RY represents the graph signal

G=(V,E) N=10

> Graph is represented using the matrix § € RV*V
» [S]i ; is nonzero only if ¢« = j and/or (i,j) € £
» S could be graph Laplacian, adjacency matrix, or ...

» S is referred to as the graph-shift operator



Graph Laplacian
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» For an undirected graph, L is symmetric

L =

> L1 =0, so0

UAU"Y

[wy, -, un|diag( A, -+, AN) [ug, - -

O0=A1 < A2 <--- < Ay

0 1 0
1 0 1
0 1 0
1 0 1
0 0 O
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Graph Laplacian - eigenmodes

Frequency interpretation of the eigenvectors (viewed as signals on graphs)

eigenvalues eigenvectors
0] [ —0.4472 —0.2560 0.7071  0.2422  —0.4193 |
0.8299 —0.4472 —0.4375 0 —0.7031 0.3380
A= 2 U= | —04472 —-0.2560 —-0.7071 0.2422 —0.4193
2.6889 —0.4472  0.1380 0 0.5362 0.7024
| 4.4812 | | —0.4472  0.8115 0 —0.3175  —0.2018 |
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QC (no zero crossing) two zero crossings five zero crossingsj

Sign transitions of eigenvectors increase with eigenvalues



Time-domain as a graph

» The DFT and the traditional frequency grid is obtained by the adjacency
matrix of the cycle graph
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» Any circulant graph in principle leads to the DFT as the graph Fourier
transform
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Fourier-like basis on meshes

(Laplace’s) spherical harmonics

Fourier-like oscillating modes of the metal plate with cavity 14



Fourier-like orthogonal basis

S =UAU"

— [ula'” 7uN]diag()\17”. 7)\N) [uh“. y UN

e N

Fourier-like basis for the graph Spectrum of the graph

]H

» Holds for graph Laplacians and adjacency matrices
» Frequency interpretation based on zero crossings or total variation

» For undirected graphs
> Eigenvalues are all real (graph-shift operator is symmetric)

» For directed graphs with normal S
» Eigenvalues occur in complex conjugate pairs



Graph Fourier transform

Decomposition of the (graph) signal € R w.r.t. the orthonormal basis U

Field distribution

-10.5

-0.5

If = UHLB <~ I =: Uwf

x is the field values measured at mesh points

o
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0 0.2 04 0.6 0.8 1 12 1.4 1.6

Laplacian eigenvalues
(non-uniform discrete frequency grid)



Graph filters

» Graph filters (polynomial of the graph-shift operator) can be used to
modify the frequency content of graph signals

H =3[ hS' = U (S5 mA") U = Udiag(hy)U"
Shift invariant: HS = SH and distributable: x; = Sa;_;

> Filter design using least squares, by solving the following linear system

" hyo 1 A - AU ho
hto 1 Ay oo AP hi

hf,N 1 Ay - )\5_1_ hr_1



Graph filters

» Graph filters (polynomial of the graph-shift operator) can be used to
modify the frequency content of graph signals

H =3[ hS' = U (S5 mA") U = Udiag(hy)U"
Shift invariant: HS = SH and distributable: x; = Sa;_;

» \Vertex-domain vs. frequency-domain implementation

Vertex-domain implementation: y = Hx

Frequency-domain implementation: y , = diag(hy)x;

» No fast GFT implementations

» Parametrized filter implementation in the vertex-domain is possible



Graph filters

» Graph filters (polynomial of the graph-shift operator) can be used to
modify the frequency content of graph signals

H =3[ hS' = U (S5 mA") U = Udiag(hy)U"

Denoising example:
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Graph Signal Sampling

« S.P. Chepuri, Y. Eldar and G. Leus. Graph Sampling With and Without Input Priors. In Proc. of
the International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2018),
Calgary, Canada, April 2018.

« S. Chen, R. Varma, A. Sandryhaila, and J. Kovacevic, “Discrete signal processing on graphs:
Sampling theory,” IEEE TSP, vol. 63, no. 24, pp. 6510-6523, Dec. 2015.

* D. Romero, M. Ma, and G.B. Giannakis. Kernel-Based Reconstruction of Graph Signals, IEEE
TSP, vol. 65, no. 3, pp. 764—-778, Feb 2017.



Sparse sampling on irregular domains

Active learning or semi-supervised learning

<
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I1 uncompressed K <N compressed
signal " signal
sparse samplin
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40.5 @
N x 1 K x1
K x N
0

IO5 Given y estimate x




What is sparse sampling?

®(w) € {0, 1} XN

R, =E{yy"}

» Sampling matrix is determined by the sampling vector/set

w = [wy,wo,...,wx]T €{0,1}Y o S={nw,=1,n=1,2,...,N}
wm, = (0)1  sample or vertex is (not) selected

» Sparse sampling structure
» only one nonzero entry per row
» many zero columns

S.P. Chepuri and G. Leus. Sparse Sensing for Statistical Inference. Foundations and Trends in
Signal Processing, Vol. 9: No. 3—4, pp 233-368, Dec. 2016.



Why sparse sampling or active learning?

» Economical constraints (hardware cost)

» Limited physical space

» Limited data storage space

» Labelling is expensive

» Reduce communications bandwidth

» Reduce processing overhead



Sparse graph sampling

graph signal

K <N

signal: 3D points, which are displacements

Given y estimate x of graph nodes



Bandlimited graph signals — subspace prior

Suppose the support of the sparse z ¢ is known

Ty -

Xr — UBLCEf

-20

-40 -

-60 [~

-80

-100 -

-120 -

140 U

Total number of points



Bandlimited graph signals — subspace prior

With sparse sampling, we get K equations in L unknowns
Yy = b = (I)UBLfIVBf

If the matrix U has full column rank, i.e, range(Upg.) N null(®) = {0}:

Least squares solution: Z; = (®Ug)'y

Design of & crucial for the least-squares solution to be unique



Bandlimited graph signals — subspace prior

»> With sparse sampling, we get K equations in L unknowns

Yy = dxr = (I)UBLfﬁf

» Oblique projection of x onto the range(Upg ) and along the null(®)
& =Upg (UL ® " ®Ug ) 'UL® Pz =FE, 417

range(Upg)

(I)J_

» A more interesting case, perhaps is, when the support is not known!



Reconstruction with smoothness prior

» Assume x is smooth with respect to the underlying graph or has small

CETLZE = Z (ZIZZ —ZIZ‘j)Q

(2,5)€€
1
(graph signal) 3 a:TLa: _ Z (557, o ZIZj)2
x: 0 0 1 % (i,5)€EE
0 1 2 _
0 1 0 =1
1 Sum of squares of differences

4 across edges



Reconstruction with smoothness prior

» When the prior subspace is not known, ®
we can be consistent (cf. interpolation)

br = Px 60 o/

» Assume x is smooth with respect to the underlying graph or has small
» Equality constrained quadratic program

o1 .
minimize §mHLa: subjectto ®x =1y

€T

T T T
Solution: L+(I)(I)(I)][;B\]:[(I)y]

P 0 Y

If null(L) N null(®) = {0}, then & = L(®L) 'y
L=(L+®"®) '@




Sampling via graph filtering

Sparse sampling in spectral domain:
> Suppose sampling operator collects the first K contiguous frequencies

» Sampling and interpolation operations can be implemented via graph filters

T = HinterpHsampr-

diagonal matrix
» Subspace prior /

®=ExU" = Heyymp = ®7® = UELE,U" Ex =[el, -, exk]

Hinterp — UBLHf,inteerg_ H_l

finterp — UJBL{HsampUBL (diagonal)

» Smoothness prior

Hinterp — U(A + EZ[;EK)_lUH



Numerical experiments

Graph (K-nearest neighbor) Original signal (3D points)

N = 1502, K =600, K/N ~ 40% compression



Numerical experiments

Wee

Subspace prior *




Sampling diffusion fields over graphs

« S. Reddy and S.P. Chepuri. Sampling and Reconstruction of Diffusive Fields on Graphs.
GlobalSIP 2019, Ottawa, Canada.

* A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Sampling of graph signals with
successive local aggregations,” IEEE TSP, vol. 64, no. 7, pp. 1832—1834, Arp. 2016.



Sampling diffusion processes

Diffusion t = 0.000000

100

» Let us consider the heat equation

90

0x(t,D)
ot

80

= —V?z(t,D)

770

» Often, we approximate complicated manifolds
with a mesh (e.g., Delaunay mesh)

Ox(t)
ot

-1 60

Celcius

150

440

= —Lx(t)

= 30

20

Solution:

x(t) = e Lx(0) = Ue AU 2(0)

10

0

Frozen metal plate with cavity

» Initial condition can be computed by nitial condition: two spikes

observing all the mesh points “once” for some ¢t > 0

Design structured (sparse) space-time samplers



Sampling diffusion processes

> Sample x(t) = e tLx(0) attimes t; <ty <--- <tp

x(ty) = e_tkLa:(O)
B G—Altk ]
€—>\2tk
= U . 0 = Udiag(0)a(ty)
. 6—>\Ntk
with 8 = U z(0) and a(ty) = [eMtr, ... e nte]T

» Stacking all the space-time samples

X =Udiag(0)A"  A=la(t),--a(tr)”

» Sparse space-time sampling amounts to observing a few mesh points at a
few time instances

Given Land Y = ®&,X ® find the initial condition 6



Sampling diffusion processes

» On vectorizing Y = &, X &, = ®,Udiag(9)A" ®;
y = (P;Aod,U)0O
= (¢, P,)(AoU)0O

y: KK, x1,®,: K, xT,®,: K, x N vec(Adiag(d)B) = (B* 0 A)d

® : Kronecker product; o : Khatri-Rao (columnwise Kronecker) product

If the matrix ®; A o ® U has full column rank, which requires K, K, > N:
Least squares solution: 6 = (@, A0 ®,U]"y
x(0)=U®6

Remark: 0 is not sparse in general, as x(0) is sparse

Bandlimiting constraint is not required



sampled at 10 non-uniform time instances
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Linear dynamics over networks
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Can we reconstruct a graph signal from
observations at a single node?



Linear dynamics on networks

» Information flow to a node from its neighbors
Linear network dynamics

Ty = STp_1+ TUL—1 ..
T [
yk; — €,L wk 0. °
\ } . o °
Y ¢ f = * ° *
sample node i D S L
r_1=0and xg == ’ O\
ur—1 = 0|k] (Kronecker delta) \

e; is the ith column of the identity matrix

» Given observations y = {yo,...,yx_1} estimate x

K is the number of shifts applied



Linear dynamics on networks

» At the observed node

i el 1 i el |
el S eTUAU"
y — . €PT — . €XT
K—1 _
I e,L-TS | i eZ-TUAK luH |

Vdiag[u)U" z = Vdiag[u]z,

™S

| Spectral response
u=e]U and [V];; = A" (Vandermonde)

» Aggregation sampling is natural while observing time domain signals



Linear dynamics on networks

Recall bandlimitedness:

» Suppose the support of the sparse x; is known

w:Uwf:[UBL‘*][%] = wZUBLCI?f

» The observations at node i will then be

Y = leag[g]a:f — leag[g]ELﬁzf — VBLif

EL:[el,--- ,BL] # of shifts

> |If the matrix Vg has full column rank, which requires K > L:

Least squares solution: T = VTBLy



Numerical experiments

1

E 0.8
-
b 0.6 -
Q04 Karate club network
Q— 0.2
U) 0.8
O-‘ Il Il Il Il Il Il \+
0 01 02 03 04 05 06 07 08 09 1 06
. .. 0.4
Laplacian eigenvalues y .
[ ]

T T T T T T
O True values L 02
0.5 —+ Reconstruction J

0.4
PE® PRgaIe @g

fiﬂf T . ;:

b

0 5 10 15 20 25 30 35

Node index Observed node for K shifts

» Although reconstruction possible by observing a single node, system gets
quickly ill conditioned (very sensitive to noise).

» Combining observations from a few more nodes might improve conditioning



Product Graph Sampling

* G. Ortiz-Jiménez, M. Coutino, S.P. Chepuri, and G. Leus. Sampling and Reconstruction of
Signals on Product Graphs. GlobalSIP 2018, Anaheim, USA..

* G. Ortiz-Jiménez, M. Coutino, S.P. Chepuri, and G. Leus. Sparse Sampling for Inverse
Problems with Tensors. [EEE TSP, Feb 2019.



Sparse sampling on multigraph domains
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Dynamic 3D point cloud



Product graphs

N5 nodes
Ga = (V2,&2) Cartesian product (colored edges)
O o000 Kronecker product (gray edges)
G = (Vi,&) Go = (V1 x Vo, &, = Strong product (all edges)
N; nodes N = N1Ns nodes

> Let us represent G; and G, with the graph-shift operators
S, =U, AU} € RN and Sy = Uy AU € RN2x Nz

» The product graph G, has the graph-shift operator
So = (Ui @U)A(U; @ Uy) € RNV

A, is a diagonal matrix that depends on G; and G,, and the type of product



Product graph signals: The sampling problem

N5 nodes
o o o0 0 O

52

N7 nodes

Factor vertex selection

product graph signal
X € RVixN2

Observed product graph nodes

T
ANTAN

&

91 Go = G1 0 Gs
uncompressed compressed
signal ) signal
X —» sparse sampling v _ & XCIJT
P, and P, B 1 2
N1 X N2 Kl X KZ

Given Y estimate X



Product graph signal

N5 nodes .
product graph signal
0o 0 0 0 0 =
X € RNVixNz

N7 nodes

> Product graph signal X may be decomposed w.r.t. U; and U, as
XZUleUg = $:(U1®U2)£Bf
> More generally, for Rth-order product graph, we have a graph (tensor) signal

X:XfolUlthg---OUR S {B:(U1®U2'-'®UR)$JC

X c RNl XNQ--'XNR



Bandlimited product graph signals

» Suppose the support of the sparse x; is known Lo x Ny
N 1 X L1
T = ¥ ‘ 0 s
X=U XU, =[ Uy |~*]
ol
or
~ ~ T f
w:(U1®U2)wf—[(U1®U2)‘*} 0
Frequency spectrum Graph spectrum
120 T T T 120 .
xsignal I x signal
wp Lo sl | Ly Y senel
2 80 | % s0 | 1
AN = |
§ 60 \\\ 1 E 60 \\ ]
i L \;\N i
10 ] 0| SN 1
] I \C""‘“—ﬂ-"\\‘]
200 I 70 lF;O 2;')0 2UO 500 1()(I)0 1500

Frequency index

Graph mode index



Bandlimited product graph signals

N1><L1

» We can reconstruct the product graph signal from subsampled observations
since

N1 Ny > Ly Ly and rank(U; ® U,) = rank(U;)rank(U>)



Reconstruction with subspace prior

With sparse sampling, we get K; K5 equations in L, L, unknowns

Y _<I>1(w1) P, (w,) _(71 [72_ T f

=| = < i

-K1><N1 KQXNQ-

= | = i

For unique reconstruction, we require K > L and K5 > L,

Least squares solution: ;= [(®.U1)! @ (®,U,) |y

Design of ®; and ®- is crucial for the least-squares solution to be unique



Numerical experiments — dynamic 3D point cloud

/

cycle graph

» 1502 markers, 573 frames. Product graph has 850000 vertices
» We sample 500 spatial points, and 70 time frames

51

Rééonstructed

Reconstructed



Numerical experiments — recommender system

MovielLens 100k dataset

Movie graph (1682 movies) User graph (942 users)

» Product graph has about 1.6 million nodes
> Features used to build both the graphs (available with the dataset)
» Standard problem: Complete rating matrix using graph prior.

» Active learning: Which users to probe for which movies?



Numerical experiments — recommender system

MovielLens 100k dataset
L{=Ly=20
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Movie graph User graph
75 movies sampled out of 1682 movies 25 users sampled out of 942 users

Method Number of samples RMSE
GMC [26] 80,000 0.996
State-of-the-art GRALS [27] 80,000 0.945
matrix completion methods ™  sRGCNN [29] 80,000 0.929
GC-MC [30] 80,000 0.905

—

S —

Our method 1,875 0.9347




Graph Covariance Sampling

« S.P. Chepuri and G. Leus. Graph Sampling for Covariance Estimation. [EEE Journ. on Sel.
Topics in Sig. Proc. and IEEE Trans. on Sig. and Info. Proc. over Networks, joint special issue
on Graph Signal Processing, July 2017.



Radar

Cognitive radio

frequency spectrum Radio astronomy

spatial spectrum

Graph-based inference
graph spectrum

Design sparse samplers taking into account the data structure
55



spatial spectrum frequency spectrum graph spectrum

- o ey
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structured (Toeplitz) no apparent structure
uncompressed compressed
stationary signal K <N signal

compression
T— > Y
_ H _ H

Rw—E{a}a) } K x N Ry—E{yy }

N x N K x K

Given R, or several realizations of y estimate R,



Compressive covariance sensing

r, = vec(R,) = vec(PRy®") = (& @ ®)vec(Ry)

K*x1 N? x 1
» Suppose the covariance matrix R, has a linear structure
H B
H B H B
H B H B
N
N R
Hn Hn
Banded Circulant

compression

P

—> Ry(0) = ZZQ:1 0;2Q,®"

least squares

K2 >Q: Ty=(PRP)TO | > 0=[(®x®)¥r,

Design of & crucial for the solution to be unique

o7



Second-order stationarity in time

Filtering white noise:

» Signal is the output of an LTI filter excited with white noise

white noise

n ~ N(0, I) ——>)

second-order stationary signal

LTI filter
> x with R, = HH" = Fdiag(p)F"

H

» The covariance matrix is diagonalized by the Fourier matrix

R, = Fdiag(p)F"

The process has power spectral density

p = diag(F”" R, F)



Stationary graph signals

Filtering white noise:

» A random graph signal = € R is second-order stationary:

White noise

n~N(0,I) ——>

LS| filter
H

Stationary graph signal
L > with R, = HH" = Udiag(p)U"

> The filter should be shift invariant H(Sx) = S(Hx) < H = Udiag(h;)U"

* N. Perraudin and P. Vandergheynst, “Stationary signal processing on graphs,” IEEE TSP, Jul. 2017.
* A. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Stationary graph processes and spectral estimation,” IEEE TSP, Nov. 2017.



Stationary graph signals

Filtering white noise:

» A random graph signal = € R is second-order stationary:

White noise S|t Stationary graph signal
LSl filter
n~ N(0,I) ——> ———>z with R, = HH" = Udiag(p)U"
H

Simultaneous diagonalization:

S =UAU" R, = Udiag(p)U"

» The process has power spectral density

p = diag(U" R,U)

Remark (second-order stationarity in time):

R, is a circulant matrix, which can be diagonalized by the DFT matrix

* N. Perraudin and P. Vandergheynst, “Stationary signal processing on graphs,” IEEE TSP, Jul. 2017.
* A. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Stationary graph processes and spectral estimation,” IEEE TSP, Nov. 2017.



Stationary graph signals

> Stationary process T € RN ona graph shift S

10.7
10.6

10.5

0.4

0.3

0.2

0.1

Adjacency matrix Covariance matrix Spectral domain

(Karate club network) U”R,U

Power spectrum estimation is crucial for statistical inference
smoothing, prediction, deconvolution

10.9

10.8

10.7

10.6

0.5
0.4
0.3
0.2

0.1
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Power spectrum estimation

-~

Estimate the power spectrum
a. by observing a reduced subset of nodes/sensors (i.e., subsample)
b. without using spectral priors (e.g., sparsity, bandlimited with known

support)
-

J,,,, v

structured (Toeplitz) no apparent structure



Non-parametric method

» The covariance again admits a linear structure

R, = Udiag(p)U" R, = Zf;l piusu; = Eivzl piQ;

> After compression:

compression

R, = Zfil piQi — P — > Ry = kazi piq)Qi(I)T

> We have K? equations in N unknowns vec(Adiag(d)B) = (B" o A)d

r, = vec(R,) = (P @ ®)vec(R;)
= (PRP)(UoU)p
= (P Q@ P)¥npp

> If the matrix (® ® @)W yp has full column rank, which requires K* > N

p=[®®®)Tnp|'r,



Parametric method (moving average)

» Graph signal is a moving average graph process of order I, — 1
z = H(hn = Y1 iS'n = U (S5, Al ) U''n

with covariance matrix

2
R, = H(h)H"(h)=U ( L1 hlAl> Ut

» We can express R, as a matrix polynomial of the graph-shift operator
—1 k
R, (b) = 3% bpS

Covariance matching (basis expansion): () = 1(11111{2[4 —1,N };

degree of minimal polynomial of the graph-shift

For, L =2, Ry = h3I1 + 2hgh, S + h?S?



Parametric method (moving average)

» For a moving average graph process on an undirected graph we have

~1
Ry = 1?:0

> After compression:

b, S”

Ry, =52 "08" —>

compression

P

——> R, =

> We have K? equations in Q unknowns
r, = vec(R,) = (® @ ®)vec(R,)

= (® @ ®)[vec(S°),...,vec(SYHb
= (P @ P)T\ab

> If the matrix (® ® ®)Wyrahas full column rank, which requires K# > Q

b= |(

d @ ®)Wy,]Tr,

() = min{2L — 1, N'}

Q-1 kxT
b0 bp®S" P



lllustration — Karate club network

Non-parametric approach

|5 PSD estimation from subset of nodes

Sample 20 out of 34 nodes ——True PSD
o Least squares (NS=100), K=20

o0 5 16 15 26 25 30 35
Parametric approach

Sample 4 out of 34 nodes
I¥I.5A parametric PSD estimation from subset of nodes

——True PSD
o Least squares (NS=100), K=4




Wind speed dataset

Non-parametric approach

4 I
@ 1 @ ®
Q = 80
Q 70
@ @ 3
o AN N
] { / O @ g
e 50
O]
O O @ 40
® 30

Sample 18 out of 36 stations

1

— True PSD
-------- non-parametric approach 18 nodes
0.8
0.6
0.4r
02r
0 " N TP Y - S} T

0 1 2 3 4 5 6 7 8
Laplacian eigenvalues

Moving average approach

90
.
»
= 80
&

(C!
o r / 70 .
®° I H
O 3 © g
@ 1 OO". O = 50 x
7 &
OO 40
30

12 out of 36 stations

——True PSD
-------- parametric (moving average) 12 node
0.8
0.6
0.4
0.2
O T e

0 1 2 3 4 5 6 7 8
Laplacian eigenvalues

L=6 => Q=11

Autoregressive approach

@ '3
O. e . 2
O] ® OOM | =
O
OO O X IAo
11 out of 36 stations
1 i T T T .
——True PSD
-------- parametric (autoregressive) 11 nodesl
0.8
0.6
04+
0.2
0 e/ ]

0 1 2 3 4 5 6 7 8
Laplacian eigenvalues

P=1



Temperature dataset

Non-parametric approach Moving average approach Autoregressive approach

O O
O
(@] 3 820 10 ) o) 10 N

1

@® @® ® ¢  § g #) P N ¢ ® 9 # . a0 ¢ [ 4
(C: ® ® 1% 9 o ® ® 8 ¢ X . 8
¢ 8 ¢ O : . O L
% O] 7 ® ® 47 ® ® -7
o 2/e o6
@) . Q ‘ =
. ®] . 8\ . O
O] 5 5 O]
Sample 16 out of 32 nodes 12 out of 32 nodes 10 out of 32 nodes
Q=1 P=1
1 \ \ \ ‘ ‘
True PSD %
--------- non-parametric approach 16 nodes
—=-==- Estimated PSD moving average model 12 node
0.8 — — - Estimated PSD autoreggresive model 10 nodes | |

0.6 i

0.2 B

(6] 1 2 3 4 5 6 7 8
Laplacian eigenvalues



Generate digits

» Nearest neighbor graph built using digit 3 (16 x 16 pixels) from the USPS dataset.

» Graph signal (pixel intensity) is of length 256

LS| filter

~ I > L
n~NOI) ——

—— Empirical PSD
—— Estimated PSD moving average model 256 nodes
0.8H ==== Estimated PSD moving average model 15 nodes |

06h
!

0 10 20 30 40 50
Laplacian eigenvalues

25 realizations 69



Sparse Sampler Design

LU N- , antenna
7/
-15dB - .- —— beam pattern
~ - ~ o - . .
el 9 < G G Tre-1g-- ---- specifications

S.P. Chepuri and G. Leus. Sparse Sensing for Statistical Inference. Foundations and Trends in
Signal Processing, Vol. 9: No. 3—4, pp 233-368, Dec. 2016.



Sparse sensing models

Sparsely sensed signals

K x N £
H B

- Illii)ﬂ

K <N

Least squares solution: [®#Upg |Ty



Sparse sensing models

Sparsely sensed statistics

Least squares solution: [(® @ ®)¥|'r,



Sparse sensing models

Sparsely sensed multidomain signals

Yy

H

Py (w1)  Pa(wo)

=| = < N

-K1><N1 KQXNQ-

~ | = o iR

Least squares solution: [(®,U;)" ® (®,U,)'y




What is sparse sampling?

®(w) € {0, 1} >N

Yy
R, =E{yy"}

» Sampling matrix is determined by the sampling vector/set

w = [wy,ws,...,wNn]T €{0,1} o S={nw,=1,n=1,2,...,N}
wm,, = (0)1  sample or vertex is (not) selected

» Sparse sampling structure
» only one nonzero entry per row
» many zero columns



Design problem

Select the “best” subset of vertices out of the candidate vertices that
guarantee a certain desired reconstruction accuracy.

optimize f(w) optimize f(S)
w SCN
sto card(w) =K or sto |S|=K
w e {0,1}Y

f(’w) reconstruction performance metric /' sample size

w = [wy,ws, ..., wy]T €{0,1} S={nlw,=1,n=12,...,N}

wm, = (0)1  sample or vertex is (not) selected



Design problem

Select the “best” subset of vertices out of the candidate vertices that
guarantee a certain desired reconstruction accuracy.

optimize f(w) optimize f(S)
w SCN
sto card(w) =K or sto [S|=K
w e {0,117V

Nonconvex Boolean problem



Solutions to the combinatorial problem

Exact solutions:

> Exhaustive search over

M : :
U (K) possible candidates

» Branch-and-bound methods
[Lawler-Wood-1966], [Nguyen-Miller-1992]
O long runtimes even for a modest sized problem

 E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,” Oper. Res., vol. 14, pp. 699-719, 1966.
* N. Nguyen and A. Miller, “A review of some exchange algorithms for constructing discrete D-optimal designs,” Comput. Statist.
Data Anal., vol. 14, pp. 489—-498, 1992



Solutions to the combinatorial problem

Suboptimal solutions:

» Convex optimization (polynomial time)
[Joshi-Boyd-2009], [Chepuri-Leus-2015]

O convex relaxation for {0, 1}, f(w)
O thresholding, randomization to get back a Boolean solution
0 Semidefinite program (typically)

« S. Joshi and S. Boyd, “Sensor selection via convex optimization,” IEEE Trans. Signal Process., vol. 57, no. 2, pp. 451-462, Feb.
2009

* S.P. Chepuri and G. Leus. “Sparsity-Promoting Sensor Selection for Non-linear Measurement Models,” IEEE Trans. on Signal
Processing, vol. 63, no. 3, pp. 684-698, Feb. 2015.



Solutions to the combinatorial problem

Suboptimal solutions:

» Submodular optimization (linear search time)
[Krause-Singh-Guestrin-2008], [Ranieri-Chebira-Vetteri-2014]

3 Submodularity of f(S)
 greedy search
U solution is near optimal

* A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and
empirical studies,” J. Machine Learn. Res., vol. 9, pp. 235-284, Feb. 2008.

» J. Ranieri, A. Chebira, and M. Vetterli, “Near-optimal sensor placement for linear inverse problems,” IEEE Trans. Signal Process.,
vol. 62, no. 5, pp. 1135-1146, Mar. 2014



Submodular optimization

Requires f(-) to be submodular function of its arguments

» Define the sampling set:

X =S={nw,=1,n=1,2,...,N}
or
X:=N\S={nw,=0n=12,...,N}

> Set function f(X) is submodular, if YX CY C N,s e N\ Y
f(XU{s}) = f(X) > fYU{s}) — f(I)

» Set function f(X) is monotone non-decreasing, if

f(XULs)) 2 f(X)



Design problem

Select the “best” subset of vertices out of the candidate vertices that
guarantee a certain desired reconstruction accuracy.

maxl(mize f(X)

sto |X|=L

L=KorlL=N-K

Nonconvex Boolean problem



Submodular optimization

If f(-) is submodular and monotonic Line&tl_r sweep
iIme

Algorithm 1 Greedy algorithm

1. Require X =0, L.
2. fork=1to L

3 s* = arg Hgijé( f(XU{s})
4, X +— X U{s*}

5. end

6. Return X

L=KorlL=N-K

Then, greedy algorithm is near-optimal

f(x) = (1 —Yl/e),églg; f(Y)
63% [Nemhauser-Wolsey-Fisher-1978]

* G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of approximations for maximizing submodular set functions— |,”
Mathematical Programming, vol. 14, no. 1, pp. 265-294, 1978.



Design problem

Select the “best” subset of vertices out of the candidate vertices that
guarantee a certain desired reconstruction accuracy.

mﬁﬂmf@j

sto |X|=L

L=KorlL=N-K

What is a suitable submodular function f(X") for sparse sampling?



Sparse sensing models

/Sparsely sensed signals

Yy K x N T
] - H I B
N e,
P (w)
K< N

Least squares solution: [@Ug |1y

-

\

/

/ Sparsely sensed statistics\

Yy K x N X

Least squares solution: [(® @ ®)¥]r,,

. /




How do design the subsampler?

» Quality of the least squares solution

®Ug 'y or [(®® ®)P]ir,

depends on the spectrum (eigenvalues) of

T(w) = [®Upg |7 [®Upg.] = Ug diag(w)Usg_
or

T(w) =[(® @ ®)P)7[(® 2 ®)¥] = T [diag(w) @ diag(w)]P

» We try to balance the spectrum:

arg max logdet{T'(w)} s.to |wl|o=K
we{0,1} Y

Scalar measure of the error covariance matrix



How to design the subsampler?

log det{T 6 =K
oy mmewc g et{T(w)} s.to |wllo

» Using set notation

X ={mlw,=1,m=1,2,... M}

» Set function

f(X) = logdet {Z

1€

’U/BL,iugL,z‘} or f(X)=logdet {Z( vy zpf{?}

i,jlexxx b

H
UgL = [upL 1, - ,UBL,N]T v = [7»01,17 ¢1,27 T 7¢N,N]

Set function is submodular and monotone non-decreasing



How to design the subsampler?

log det{T 4 =K
g mmewc g et{T'(w)} s.to [wllo

» This combinatorial optimization can be near optimally solved using a
low-complexity greedy algorithm

f(&) = (1 =1/e) max f()

\ J | VI=K
6 g % [Nemhauser-Wolsey-Fisher-1978]
1. Require X = (), K.
g. for k = 1t_o K FU sh v' Leverages submodularity
s° = argmax 5 v’ Linear sweep time
4. X+ XU{s*}
5. end
6. Return X

* G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of approximations for maximizing submodular set functions— |,”
Mathematical Programming, vol. 14, no. 1, pp. 265-294, 1978.



Sparse sensing models

Sparsely sensed multidomain signals

(7] _<I>1(w1) (I)Q(’UJQ) _ f]l U2 53](‘

=| = < N

-K1><N1 KQXNQ-

~ | = o iR

Least squares solution: [(®2.U1)" @ (®.U3)"|y

Design of ®; and ®, is crucial for the least-squares solution to be unique



How to design the subsampler?

» Quality of the least squares solution

(@.U1)" @ (®2U2)Ty

depends on the error covariance matrix

~ ~ H - -
T(X) = (<I>1U1 ® <I>2U2) (@1U1 ® <I>2U2>

= ((I)lfjl)H(‘I)lﬁl) 29 (@2(}2)1_[(@2&2)
=T (X1) ® Ty(X>)

X =X UX,
> Since rank(A ® B) = rank(A)rank(B), we require (additional constraints)

‘Aﬁ’ > 14 and ’X2‘ > Lo



How to design the subsampler?

> As before, we optimize a scalar function of the error covariance matrix

maxl(mize f(T'(Xx))

sto |X|=K, X=xU&,
X| > Ly |X| > Lo

> In particular, we minimize the so-called frame potential (related to the mean
squared error)

F(X) :=trace{T" T} = trace{T T, @ TIT,} = F\(X))F5(X>)
» Or, maximize the set function with change of variable S = N\ X

G(S)=FWN)—-FWN\S) N =N UN;

Set function is submodular and monotone non-decreasing



How to design the subsampler?

» Therefore, we have to solve Truncated partition matroid

maximize G/(S) /
sto SeZ,nZ,,

T, ={SCN:S<N-K)

T, ={SCN:[SAN;| <N, —Li,i=1,2)

[Ortiz-Jiménez et al.-2018]

» Near optimality guarantees

1. Require X =0, K,Z,,Z,.
2. fork=1to N — K G(S >1G8*
dy) =
3 s* = arg mga)g({f(X U{s}): X eZ, NI} (Sgreeay) = 2G(S7)
4 X — X US{ s*} [Nemhauser-Wolsey-Fisher-1978]
5. end
6. Return X » Linear sweep time

* G. Ortiz-diménez, M. Coutino, S.P. Chepuri, and G. Leus. Sparse Sampling for Inverse Problems with Tensors. I[EEE TSP (under

review), June 2018. (available as arXiv:1806.10976).
* G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of approximations for maximizing submodular set functions— |,”

Mathematical Programming, vol. 14, no. 1, pp. 265-294, 1978.



Graph Learning or Topology Inference

S.P. Chepuri, S. Liu, G. Leus, and A. Hero. Learning Sparse Graphs Under Smoothness Prior.
ICASSP 2017, New Orleans, USA.

S.K. Kadambari and S.P. Chepuri. Learning Product Graphs from Multidomain Signals.
ICASSP 2020, Barcelona, Spain.

V. Kalofolias, “How to learn a graph from smooth signals,” in Proc. of the 19th International
Conference on Atrtificial Intelligence and Statistics, 2016.

X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, “Learning laplacian matrix in smooth
graph signal representations,” IEEE TSP, vol. 64, no. 23, Dec. 2016.



Leeuyarden  Croningen Leer

° . o o °,
) 90
A\krpaar ® ~ 80

Amsterdam ® °
® 470
°®
The Hague - Netherlands

(o] . e o

° L Arr{;em MUC 160
Rotterdam

50

gt _ Dortmt

Eindhoven
® s Esseno
Bruges Antwerp Diisseldorf 40
5 o o
Ghent
o)
Cologne
Brussels . o 30
Ronn

WWWWW Wind speed data from 30 stations
[Source: KNMI, Netherlands]

“Learn a sparse graph that sufficiently explains the data”

98



Sparse graph learning problem

Learn a “sparse graph” (or estimate the graph Laplacian matrix) from
smooth data

1st smooth signal
'c
o
‘ 0.8
°f o) 0.6
0’... o © 0.4
®e 02
LIPS °® 0
0® 0g 0
[ hd ‘. (TS ° -0.2
*e o *% & 0.4
3rd smooth signal
04 o %o 1
0% 04 Q‘
S ° .
L e 05
.kOQ Y _J
0
S
[
°
° g\ -0.5

2nd smooth signal

°
N°
S s % o
() Se o :
“'000" :.‘ 0
® o
e :.’"g,' 0

°
L W 08
P TR
o 0.6
°0 g e
o, ° 0.4
s e,
° 0.2
“0 0;‘

1st smooth signal

e .. 1
s ®
PN}, )
o ee
o
'.J » 05
»
»
[ .‘. o
. % o e 0
® ®

3rd smooth signal

' .o 1
e . »
‘ '
T le g 0.5
¢ [
e .
op 0
°
L
= g 0.5

2nd smooth signal

«? - .M‘
e\ » ®
PO
I X

% ¢

® L =

4th smooth signal

.
o.. ot \
gt
R
e ° .~

0.5

-0.5

0.8

0.6

0.4

0.2

Learnt graph with K = 175 edges using 4 snapshots




Graph Laplacian — quadratic form

1

: 3

(graph signal) !l [y — E (337, _ xj)Q
x: 0 0 1 0 =
(2,5)€€
0 1 2 o
0 1 0 =

1 Sum of squares of differences
4 across edges

» Quantifies smoothness of & with respect to the underlying graph

» When multiple snapshots x; for : = 1,2,...,T are available, then the quadratic
form will be

T
S &l La; = tr(XTLX)
=1

> Small values of tr(X* LyX) implies that X is smooth on the graph



Graph Learning from smooth data

» Given training graph data X : N x T, or its noisy or incomplete
version, Y, estimate the graph Laplacian matrix

» This is an ill-posed problem, but we know the set of all the valid
Laplacian matrices

Ly :={LeRVN*NL1=0,tr(L) = N,L;; = L;; <0,i # j}

» The graph learning problem reduces to

minimize f(X,Y) + atr(X'LyX) + 3||Ly||%
Lyveln,X

|-l controls the distribution the edge weights of the learned graph

a and [ are two positive regularization parameters



Graph Learning from smooth data

» The graph learning problem is then solved using alternating
minimization:

Step 1 (convex optimization): Fix X

minimize atr{XTLX} + g ||L||%
LeLl

v" Since the Laplacian matrix is symmetric for undirected graphs, we
need to estimate only its upper or lower triangular elements.

Step 2: Fix L

min%{nize f(X,Y) + atr{XTLX}

v Depending the observation model, often the above problem can
be relaxed to a convex optimization problem.

Requires parameter tuning



Graph Laplacian — quadratic form

1

: 3

(graph signal) !l [y — E (337, _ xj)Q
x: 0 0 1 0 =
(2,5)€€
0 1 2 o
0 1 0 =

1 Sum of squares of differences
4 across edges

» Laplacian matrix can be written as a outer product of “incidence” vectors

M
L=AA" = Z ama% (quadratic form)
@i =1 7] m=1
[am]j = —1 = Foran edge “m” connecting node “i and % ”
zeros elsewhere

—



Graph learning as a sampling problem

> Denote the subgraph of G = (V, &) or K-sparse graph

QS(V,gs) with the edge set £, C & such that ‘58] K<< M
\

» Introduce an “edge sampling” vector

w = [wy, wy,- - ,wy]" €{0,1}"

|

No. of edges of:
- Complete graph
- Given graph

w,, = 1 if an edge belongs to the edge subset Es

» Graph Laplacian of the K-sparse graph

M
L,(w) = Z wmama,,Tn
m=1

(Recall the outer product decomposition of the Laplacian)



Sparse edge selection

> Given L “noiseless” graph signals X — [;1;1, To,. .. ,CBL]

» K-sparse graph learning will be

1
arg 5}]%1{1\} Zw w)xy = —tr{XTL (w) X'}

W= {w e {0, 1}" [ |wllo = K}

Non-convex (Boolean optimization problem)



Sparse edge selection

» Given L “noiseless” graph signals X — [$17 Lo, ..., CI?L]
» K-sparse graph learning will be

1
T T
arg Hél]I/lv T g x; Ls(w)xy = —tr{X" Lg(w)X}

W = {w e {0,1}" | |lw]lo = K}
» Cost function (modular):
1 M
Ztr {XTLS(’UJ)X} — Z Wy tr {XT(amamT)X}

m=1

» Solution: rank ordering!

v Computational complexity O(K log K), or O(K) with parallel
implementation



Sparse edge selection

» Given L “noiseless” graph signals, K-sparse graph learning

1
arg ;Iél)r/lv Za: w)xy = —tr{XTL (w) X'}

W= {w € {0, 1}" [ [|wllo = K}

Example: Suppose covariance matrix of & is I, then

M
—1 T T 1
tr{X Ly (w)X} =) wmn(an' Rean)
m=1
Solution: select K edges between those nodes having highest cross-correlation as

AN AN

an’ Ry, = [Rylii + [Rsl; — 2[Rali s

(Special case: GMRF model with R, := L' + ¢°1)



Numerical experiments — windspeed data

K=125

- 60

O
L
Knots per hour

o
o

40

o 30

Wind speed data of year 2002 from 30 stations
[Source: KNMI, Netherlands]



Numerical experiments — French temp. data

K=110

11

Temperature data of Brittany, France from 32 stations

Thanks to N. Perraudin and P. Vandergheynst for the dataset.



Numerical experiments - performance

0.9 w

— proposed (sorting)

primal-dual: Kalofolias et. al

0.2 1 1 1 1
100 120 140 160 180 200

No. of edges

L
Kalofolias: minimizerc, Z xi Lz, + Acard(L)
k=1

L={L*=0,L;;=L;; <0,L1=0}

» V. Kalofolias, “How to learn a graph from smooth signals,” in Proc. of the 19th International Conference on Artificial Intelligence
and Statistics, 2016, pp. 920-929.



Sparse edge selection with “denoising”

» Given “L" noisy signals: Yy, = T + 1,

1 L

Arg Mgy, L wew T > (lyy, — zill3 + vy 2 Lo(w)ay)
k=1

» Alternating minimization
Fixed w : X pnin(w) = I+ vLs(w)]"'Y (denoising)
Fixed X : wp;,(X) sorting, as before (edge selection)

v Converges to a stationary point
v' Suffers from the choice of the initial estimate



Product graph learning

« S.K. Kadambari and S.P. Chepuri. Learning Product Graphs from Multidomain Signals.
ICASSP 2020, Barcelona, Spain.



Product graph learning

N5 nodes
Ga = (V2,&2) Cartesian product (colored edges)
O o000 Kronecker product (gray edges)
G = (Vi,&) Go = (V1 x Vo, &, = Strong product (all edges)
N; nodes N = N1Ns nodes

Given Ly the graph factors Lp and Ly can be obtained by solving

inimize Ly — L L 2
Lprélérlil,rflclgze,ﬁ(g H N P N QHF

» This is a twostep approach
v' computing a size — N Laplacian matrix

v factorizing the Laplacian matrix into Lp and Lg



One-step approach

» When Laplacian matrix has a Cartesian product structure

Ly=LpdLop=Iog®Lp+Lo®Ip
» Product graph learning problem reduces to

. Minimize atr{X" (Lp®Lqg)X}+p61 |[Lp||z+82 | LollF

v" The optimization problem is convex
v" we need to solve for only the upper or lower triangular elements
v' The problem is equivalent to

mizréi]%{ize %ZTPZ +q’z, subjectto Cz=d,z>0

v has an explicit water-filling solution

« S.K. Kadambari and S.P. Chepuri,” Learning product graphs from multidomain signals,” ICASSP 2020, Barcelona,
Spain.



Numerical experiments

F-measure:
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Air quality data

» PM 2.5 data collected over 40 air quality monitoring stations in different

locations in India for each day of the year 2018

» The dataset has missing entries, which are imputed using a graph
Laplacian regularized nuclear norm minimization

FXY) =0 AKX = Y |a + 71Xl
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Topology inference from partial

observations

* S.P. Chepuri, M. Coutino, A. Marques, and G. Leus. Disitributed Analytical Graph Identification,
ICASSP 2018, Vancouver, Cannada.



Distributed computation of eigenmodes of a network

Can we infer the graph topology using
observations at a single node?



Linear dynamics on networks

Linear network dynamics

» Information flow to a node from its neighbors anp® i
xrr = Axir_1-+bur_q . . ’ b

Yr = 6?2131« \ . ) .
| / N
|

Known excitation signal
Observation at node i

w_1:Oand:c0:b

e; is the ith column of the identity matrix

> Given observations y = {yo,...,yx—_1} and b compute U and A

Each node will have an overview of the network



Computing eigenfrequencies

> Information flow to a node from its neighbors

x, = Axp_1+bug_
T x_1=0andxog=0>
Ye = €; Lk

» At node i, we aggregate measurements
[Marques et al.-2016]

i eiT | i e;; |
el A eTUAU"
I eiTAK_l | i e;-FUAk_lUT |

* A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Sampling of graph signals with successive local aggregations,” TSP 2016.



Computing eigenfrequencies

» At the observed node

i el 1 i el |
el A eTUAU"
eTAK—l eTUAk -yt

= Vdiaglu]U'b=V6

u=-elU

Remark: U''b should not be sparse to excite all modes

D X p
2 2
V:[’l)l,vg,...7’l)N]: A A2 )‘N

AT T

Roots of this Vandermonde matrix are the eigenfre_quencies



Computing eigenfrequencies

» Arrange data in each node as

YN YN—1 - Y1 YN—1 YnN-2 - Yo
YN+1 YN tee Y2 YN YnNn—-1 - Y1
Y, = . . Y, =
| Yk-2 YK-3 - YN-K-1 _ | Yk-1 Yk-2 " YN-K |

» To form the data matrices, we require 2N aggregations

> Roots of the pencil of matrices Y ,—\Y; produce the roots of V'
» Eigenfrequencies are the generalized eigenvalues

A =geig(Yo, Y1) = eig(Y]'Y)



Computing eigenfrequencies

» Arrange data in each node as

[ YN Yn—1 1 Cyn_1 Yn—2 - Yo |
YN+1 YN tee Y2 YN YnNn—-1 - Y1
Y, = . . Y, =
| Yk-2 YK-3 - YN-K-1 _ | Yk-1 Yk-2 " YN-K |

» When some {\;} are very close, Y is ill-conditioned
Generalized Schur decomposition: Y, =QSZ” andY; = QTZ"

Q is a unitary matrix

S and T are upper triangular matrices

AY 0, Y1) ={[Slun/Tlnn : [Tlun > €}



Computing the eigenmodes

» To compute the eigenvectors, we require multiple snapshots of the data.

> Suppose M > K snapshots of the input signal are available

] T ]
elUAU"
Y1 yml = : b1 - b
eTUAK YT
Y = VdaguU'B

> Inverting V and B

H = V'Y B' =diagu)U” = G = H' H = Udiag®[u|U”

Eigenmodes of the graph are the eigenvectors of G



Numerical experiments

N

4 Laplacian matrix
elgenvalues 2 eigenvectors
0 [ —0.4472 —0.2560 0.7071 0.2422 —0.4193 |
0.8299 —0.4472 —0.4375 0 —0.7031 0.3380
A= 2 U= | —0.4472 -0.2560 —-0.7071 = 0.2422 —0.4193
2.6889 —0.4472  0.1380 0 0.5362 0.7024
| 4.4812 | —0.4472  0.8115 0 —0.3175 —0.2018 |
[ —0.7071 —0.4472 0.4193 —0.2560 —0.2422 |
) 0 —0.4472 —0.3380 —0.4375 = 0.7031
U = 0.7071 —0.4472 0.4193 —0.2560 —0.2422
0 —0.4472 —0.7024 0.1380 —0.5362
| 0 —0.4472  0.2018 0.8115 0.3175 |

v’ Eigenvectors are recovered up to a sign flip and column permutation

v Frequency interpretation of the eigenvectors are retained



Numerical experiments

Spectrum of the Toeplitz data matrix Y,

10° ‘

O™ *x
IR
10 Kk owx

singular values

********** ]
*

™S

0 5 10

® 3\

AY 0, Y1) ={[S]un/[Tlnn : [T]nn > €}

« A. Gaviliand X.-P. Zhang, “On the shift operator, graph frequency and optimal filtering in graph signal processing,” TSP 2017.
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Numerical experiments

*
***********
* Ky
*

10 -

15 ¢

20

P 4 ©  eeescecccecece
****** 25 + . eeeceecccccoce

* e === eeeeccccece

e === eeecccsccece

30 s ..........

35 : : : ‘ : :
0 5 10 15 20 25 30 35

Well represented modes are recovered up to a column permutation



Geometric deep learning

http://geometricdeeplearning.com/

« M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, P. Vandergheynst, Geometric deep learning:
going beyond Euclidean data, IEEE Signal Processing Magazine 2017 (Review paper)

S.K. Kadambari and S.P. Chepuri, Fast Graph Convolutional Recurrent Neural Networks.
Asilomar 2019, Pacific Grove, USA

A. Madapu, S. Segarra, S.P. Chepuri, and A. Marques, Generative Adversarial Networks for
Graph Data Imputation from Signed Observations. ICASSP 2020, Barcelona, Spain


http://geometricdeeplearning.com/

Graph neural nets (GCNSs)

Y = O'(Wn *G Yn—l -+ bn)

X {Wy,by} s{Wa,bo}f-==-s{W, b, }—s
Y1 = O'(Wl *G X—f—bl)
4 Chebyshev polynomial ) 4 First-order (fast) variant )

Wog X =Y wp Ti (L)
Tk(x) = ka_l(SU) — Tk_Q(SL’)
TO =1 Tl =T

K [Defferrard et al. 2016] / K [Kipf et al. 2016] /

Henceforth, we focus on this variant

W xg X = WLX

» Michaél Defferrard et al. "Convolutional neural networks on graphs with fast localized spectral filtering." Advances in

neural information processing systems 2016.
 Thomas N. Kipf and Max Welling. "Semi-supervised classification with graph convolutional networks." International

Conference on Learning Representations 2017.



Recurrent neural nets (RNNs) and variants

» Standard RNN

ht = O'(WXt + Uht_l + b)
y; = o0(Vh; + z)

» Long short term memory (LSTM)

Ct—1 pant ‘
— % >
tanh
o o tanh o
ht— 1 ht

fi =0(Wsxy + Ushy_1 +by)

i, = o(W;x; + U;h,_1 + b;)

o =0(Wyxs +U,h;_1 +b,)

¢; = tanh(Wex¢ + Uchy_1 + be)
c, =f Oci—1 +i O ¢y

h; = 0; ® o(cy)



Graph recurrent neural nets (GCRN

» When the data is defined on a graph, the multiplications in standard RNN
are replaced with graph convolutions.

}A(t +1
h,
I )A(t_|_1 = O'(VLht —+ Z)
i: Xt

R i,
Dynamic 3D point cloud

> At each time step, the prediction loss function is given by J;(x;,%;11,0)

> 0 is the set of all trainable parameters

> Loss after T' time steps is given by J(X,0) = 3/, Jy(x¢, X441, 6)



Gradient issues with standard GCRNN

Yt

1

|' |ht h; = o(wLx; + uLh;_; + b)

Xy

» The gradient of the loss function J w.r.t. the tuning parameters

aJ __ ZT O.J, T Oh; Oh; aJ _ZT aJ, 11T Oh; Oh; aJ _ZT %HT Oh; Oh;
ow — Zut=1 dh, 11t=2 Bh,_; w du — Z<t=1 8h, 11t=2 Bh,_; u ob — Zut=1 dh, 11t=2 5h,_; b

. T
Ht 2 8?1]: ] = [ [;—»(uD:L)

D, = diag(o’(wLx; + uLh;_1 + b))

When we choose o(-) = relu, then D, is an ldentity matrix
Ht 2 aﬁ?tl (uL)'—2

> If the largest eigenvalue of (uL) is sufficiently small (i.e., < 1) the
gradient will shrink exponentially

> Ifitis large, the gradient will explode



Residual connection

» To stabilize the gradients, a simple weighted residual connection
maybe introduced.

%141
» A Dbit similar to leaky LMS ]
h; = o(wLx; + uLh; + b Q
e = olwlx AL S -P—— h,
h; = ah; + Bh;_4 3
A ﬂ‘
xt11 = 0(VLh; + 2) 0<a,B<1
Xt

» « and 3 are the two additional trainable parameters

» «a =1 and g = 0 corresponds to the standard GRNN

* A. Kusupati et al., “Fastgrnn: A fast, accurate, stable and tiny kilobyte sized gated recurrent neural network,” in Proc. of
the Advances in Neural Information Processing Systems (NIPS), Alberta, Canada, Dec. 2018



Gradients with the residual connection

» The gradient of the loss function w.r.t. w is determined by

t T —_
Ht 2 8?1? ) = |[;=p(cuD:L + fI) == M

» The stability of the gradient depends on aD;uL + SBI, whose condition
number is bounded by

(14 F maxy |uD L||)T 2
COHd(M) = (1—% max¢ |[uD¢L||)T—?2

» If «a =0 and g8 =1, this number is 1, which implies that the gradient is
stable, but ignores data/training.

* A. Kusupati et al., “Fastgrnn: A fast, accurate, stable and tiny kilobyte sized gated recurrent neural network,” in Proc. of
the Advances in Neural Information Processing Systems (NIPS), Alberta, Canada, Dec. 2018



Fast graph recurrent nets

h; = 0(WLx; + ULh;_; + b) .
- ht—l - :C} - ht
h; = ah; + Shy 4 “5

)A(t_|_1 = O'(Vht + Z)

Gradient and condition number:

[Ti—s ai?ﬁl = [I;_5(cUDL + 8I) =: M

(1+% max; |D,UL||)" ~*

(1— & max; |[D;UL|)7 -2

cond(M) <

Remark: For non-graph cases, one may also train for unitary weights (unitary RNN)



Numerical results - setup

» To evaluate the performance of the proposed method, we use a dynamic 3-D
point cloud dataset (a human pose)

» Given a 3-D point cloud frame at a time step T', the task is to predict the next 3-D
point cloud frame

» The data has 1502 3D points and 573 time frames
> We use 80% of data available to train the model and 20% to test the model

» Training data is used to construct a nearest neighbour graph

» The learning rate is initialized to 10—2 and we use ADAM optimizer for training



Numerical results

LSTM with graph regularizer Proposed Method [filter based on Defferrard et al.]
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« Thomas N. Kipf, and Max Welling. "Semi-supervised classification with graph convolutional networks." arXiv preprint
arXiv:1609.02907 (2016).

» Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. "Convolutional neural networks on graphs with fast
localized spectral filtering." Advances in neural information processing systems. 2016.

» Youngjoo Seo et al. "Structured sequence modeling with graph convolutional recurrent networks." International138
Conference on Neural Information Processing. Springer, Cham, 2018.



Numerical results

25

-------- LSTM with graph regularizer
LSTM with GCN [Seo et al.]

—— Proposed method (fitler based on Defferrard et al.)
20k —— Proposed method (filter based on Kipf et al.)

RMSE

s a + e v s e w0 o 200 400 600 800 1000
Epochs Time (T)
# parameters 3D point cloud
LSTM with GCN AFp + 4p® + 4n 6080
Proposed 2Fp + p? +2n + 2 3003

* Kipf, Thomas N., and Max Welling.
preprint arXiv:1609.02907 (2016).

"Semi-supervised classification with graph convolutional networks." arXiv

» Defferrard, Michaél, Xavier Bresson, and Pierre Vandergheynst. "Convolutional neural networks on graphs with fast
localized spectral filtering." Advances in neural information processing systems. 2016.
* Youngjoo Seo et al. "Structured sequence modeling with graph convolutional recurrent networks." International

Conference on Neural Information Processing. Springer, 2018.
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Generative adversarial nets

Random

B
-

Generator

2018

https://thispersondoesnotexist.com 140



https://thispersondoesnotexist.com/

Graph GANs

» Given one-bit quantized data we want to reconstruct the original signal

» This is also referred to PU learning, where we observe only positive labels
(in this case, we use signed measurements)

l I'f-'f”l'"'5&*"""_111111- sign 1'1"53":1 ........ l‘ . m l.lgl‘ -
e o one-bit 171" mask *.1 ot

lvz

lll&l ............. . < [ s ]

e ' . Go

p
P < Discriminator ]

Dy

J. Yoon, J. Jordon, and M. Schaar, “Gain: Missing data imputation using generative adversarial nets,” in International
Conference on Machine Learning, 2018, pp. 5675-5684.



Graph GANs

U oe BELLTS oy ML e TS 0t Generator: X = G5, (1 —m) ©2)
vt ¢ o Discriminator: Pn = Dy (sign(%), h)
| 1 (estimates the mask matrix)
;1&1' | Generator
I Gy 0 and % are network parameters

= |
p Discriminator ]
[ Dy

Discrimator 10Ss: L6y (Pn,mn) = —[mnlog(pr) + (1 — mn) log(1 — py)]

Generator loss: Lg%, (pn, my) = — (1 — my) log (pn) min. when D is deceived
L4 (8,%) Zmz —sign (2;))°  Consistency with observations
L5* (%) = TVéQ( ) Smooth over graph

Solve the min-max problem Minmax — Lo (Pry mn) + Ly, - (Pry M)

0 P
+ alS?(5, %) + BLS? (%),



Graph GANs

Proposed GAIN Non-deep

Handwritten MNIST data set
Image size: 28 x 28

Batch size: 384

No. of samples for training: 54192
No. of samples tested: 9984

Non-deep method: Laplacian regularization

Method Error and gradient descent with sgn(.)
Proposed 0.36 approximated with tanh(.)
GAIN 1.12
Iterative gradient descent 0.49
Without graph structure With graph structure Training/test loss
14 h — - Discriminator loss " - Paltmngl loss
13 R S it Generator loss_| 1 I C= g s |
g 1.2 L ? 1? O:ii
é . I — Discriminator loss | | é (L 5 o035 1}
% ! Generator loss th g 1
2 o5 § 0.9 M oartly, VAR A, oo s o
O 08 O 48 0.25 \'\“‘PLW o ATt s bR b
0 60 260 400 600 800 1000 0.60 200 400 600 800 1000 0-150 200 400Epocﬁ(;S(J 860 1020

Epochs Epochs



» Introduction to graph signal processing
» Active learning or sampling and recovery of graph signals
» Graph learning or topology inference

» Geometric deep learning (GNNs, RNNs and GANS)
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https://ece.iisc.ac.in/~spchepuri/

Kernel-based reconstruction

» Popular within machine learning for nonlinear function estimation

» Kernel methods seek an estimation of a function in a reproducing kernel
Hilbert space (RKHS)

M = {az  2(v) = i ank(v,0n), i € ]R}

n=1

basis functions
Kernelmap k: V xV — R

k(v,, v ) measures similarity between signal values at v,, and v,,

» Any graph signal can be assumed to be in RKHS
r =Ko
[K]n,m — k(vnavm)



Kernel-based reconstruction

RKHS inner product of z(v) = S0_ ak(v,v,) and 2/ (v) = S0 ol k(v, v,)

(2 ) = S0 SO anal k(v )) = T Ka

n=1

RKHS-based function estimator can be used to reconstruct signals

promotes smoothness

T =K« /v
& = argmingcpy L(y, PKa) + pa’ Ka

Or, equivalently
& = argmingey L(y, ®x) + px’ Kz

N

T — AT T
L(-) is a loss function o Ka=o'KK'Ka



Kernel-based reconstruction — ridge regression

» Parameterization via representer theorem
t=Ka=K®a a ¢ RE

Terms corresponding to unobserved vertices play no role in kernel expansion

& = argmingcpr L(y, Ka) + pa’ Ka K=®K®"'
» Kernel ridge regression
2 . : 1 I~ |12 =T 77 ~
o = argarglanK?Hy—KaH + pna’Ka
= (K +pK)™ly

K®" (K +uKl) 'y

&
|



Kernel-based reconstruction

Choice of kernels
» Graph bandlimited kernels
Xr — UBL{INJf

» Other topology-based kernel (promotes smooth signal estimates)

K =r1(L)=Urf(AU"
r:R— R+
Diffusion kernel: r(\) = exp{c?)\/2}

p-step random walk kernel: »(A) = (a — A\)™P,a > 2

Laplacian (regularization) kernel: 7(\) = 1 + o2\



LN

> Gaussian radial basis kernel with

(x,y) = (5,—4.5)
3 = Toeplitz{1, p, ..

> Noise covariance

» Rectangular domain of 10 x 10m
o = 0.8.

» Source located at coordinates
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Wave field
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Measured 67 out of 97 mesh points
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Ground truth

Design of sampling sets for kernel methods

» Submodular optimization

» Convex optimization

[Coutino-Chepuri-Leus-2018]

152

* M. Coutino, S.P. Chepuri and G. Leus. Subset Selection for Kernel-based Reconstruction. In Proc. of the International

Conference on Acoustics, Speech, and Signal Processing (ICASSP 2018), Calgary, Canada, April 2018.



A finite matroid M is a pair (N, Z), where N is a finite set (also called the
ground set) and 7 is a family of subsets of N/ (called the independent sets) that
satisfies the following properties:

1. The empty set is independent, i.e., o € 7.
2. Forevery X CY CN,ifY eZ, then X € 1.

3. Forevery X,V C N such that |Y| > |X| and X,) € T there exists one
re )Y\ Xsuchthat ¥ U {z} € 7.

Q1 QQ Q3 Q4 QS

o | ® | o | ® | o | Example: partition matroid
° °
[ ® | 1 ©
o k{)? S is independent, if
«® s | ® ° 1SN Q| < 1foreach Q.
o | ® o % o
° °




Fourier-like basis

Path graph with 12 nodes 1 2 3 4 -------
05 ‘ ‘ ‘ ‘ ‘ 05 I I w w w 05
)
U2 = Uy ! U9 10
15 ‘ ‘ ‘ ‘ ‘ 05 l l l l l 05
0 2 4 6 8 10 12 0 9 4 6 8 0 1 0 2 4 6 8 10 12

fundamental modes of vibration of a string with free ends
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PSD of face images

PSD estimation for spectral signatures of faces of different people

20 30 40 .
Frequency index (c) Low-pass filter (d) Wiener filter

» Graph process corresponding to a single individual is stationary in the
covariance matrix graph related to multiple individuals

» Estimated PSD can be used for Wiener filtering 155



