Signal Processing and Deep Learning over Graphs

Sundeep Prabhakar Chepuri

Email: spchepuri@iisc.ac.in

Acknowledgements: Sai Kiran Kadambari, Siddartha Reddy, Amarlingam Madapu, Guillermo Ortiz-Jiménez, Mario Coutino, Geert Leus, Santiago Segarra, Antonio Marques.

Roadmap

Introduction and context Signal processing on graphs Active Learning, semi-supervised learning, or signal reconstruction Multi-domain (tensor) signal reconstruction over product graphs Sparse sampler design Graph learning or topology inference Geometric deep learning (CNNs, RNNs, GANs) Conclusions, Q&A

Frozen metal plate with cavity excited with two hotspots

1854 Cholera outbreak in the City of Soho, London

How to optimally deploy sensors?

Temperature on Earth's surface

3D point clouds (Kinect, LiDAR)

Epidemic network

- Ebola outbreak (rumor spread)

Recommender systems

Design sparse samplers taking into account the underlying topology

4

Graph learning or topology inference

Construct/estimate graphs from data and for a specific task

"Learn a sparse graph that sufficiently explains the data"₅

Geometric deep learning

- Lack of models, but many available examples
- Optimization underlying the inference task is complicated

PU learning (Yes/no response)

Dynamic 3D point cloud

In this tutorial

We will cover the following three aspects:

- 1. Sparse sampling or active learning over graphs
- 2. Graph learning or topology inference
- 3. Geometric deep learning

Graph Signal Processing

- D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, "The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains," IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83–98, 2013.
- A. Sandryhaila and J. M. Moura, "Big data analysis with signal processing on graphs: Representation and processing of massive data sets with irregular structure," IEEE Signal Process. Mag., vol. 31, no. 5, pp. 80–90, 2014.

Brain networks

- fMRI time series, EEG signals

Transport networks

- # vehicles crossing a junction

Signals and random processes on graphs

Graphs and graph signals

Datasets with irregular support can be represented using a graph

- \mathcal{V} is the set of nodes
- \mathcal{E} is the set of edges
- $oldsymbol{x} \in \mathbb{R}^N$ represents the graph signal

- $m{\succ}\;$ Graph is represented using the matrix $m{S}\in\mathbb{R}^{N imes N}$
 - $ightharpoonup [m{S}]_{i,j}$ is nonzero only if i=j and/or $(i,j)\in\mathcal{E}$
 - > S could be graph Laplacian, adjacency matrix, or ...
 - > S is referred to as the graph-shift operator

Graph Laplacian

$$m{L} = m{D} - m{A}$$
 = $egin{bmatrix} 2 & 0 & 0 & 0 & 0 \ 0 & 2 & 0 & 0 & 0 \ 0 & 0 & 2 & 0 & 0 \ 0 & 0 & 0 & 3 & 0 \ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$ - $egin{bmatrix} 0 & 1 & 0 & 1 & 0 \ 1 & 0 & 1 & 0 & 1 \ 0 & 1 & 0 & 1 & 0 \ 1 & 0 & 1 & 0 & 1 \ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$

diagonal degree matrix adjacency matrix

For an undirected graph, L is symmetric

$$egin{aligned} oldsymbol{L} &= oldsymbol{U} oldsymbol{\Lambda} oldsymbol{U}^H \ &= \left[oldsymbol{u}_1, \cdots, oldsymbol{u}_N
ight] \operatorname{diag}(\lambda_1, \cdots, \lambda_N) \left[oldsymbol{u}_1, \cdots, oldsymbol{u}_N
ight]^H \end{aligned}$$

ightharpoonup L1=0, so

$$0 = \lambda_1 \le \lambda_2 \le \dots \le \lambda_N$$

Graph Laplacian - eigenmodes

Frequency interpretation of the eigenvectors (viewed as signals on graphs)

eigenvalues

$$\lambda = \begin{bmatrix} 0 \\ 0.8299 \\ 2 \\ 2.6889 \\ 4.4812 \end{bmatrix}$$

eigenvectors

$$\boldsymbol{\lambda} = \begin{bmatrix} 0 \\ 0.8299 \\ 2 \\ 2.6889 \\ 4.4812 \end{bmatrix} \quad \boldsymbol{U} = \begin{bmatrix} -0.4472 & -0.2560 & 0.7071 & 0.2422 & -0.4193 \\ -0.4472 & -0.4375 & 0 & -0.7031 & 0.3380 \\ -0.4472 & -0.2560 & -0.7071 & 0.2422 & -0.4193 \\ -0.4472 & 0.1380 & 0 & 0.5362 & 0.7024 \\ -0.4472 & 0.8115 & 0 & -0.3175 & -0.2018 \end{bmatrix}$$

Time-domain as a graph

The DFT and the traditional frequency grid is obtained by the adjacency matrix of the cycle graph

$$m{S} = egin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Any circulant graph in principle leads to the DFT as the graph Fourier transform

$$m{S} = egin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \ 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \ 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \ 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \ 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

Fourier-like basis on meshes

(Laplace's) spherical harmonics

Fourier-like orthogonal basis

$$oldsymbol{S} = oldsymbol{U} oldsymbol{\Lambda} oldsymbol{U}^H \ = oldsymbol{[u_1, \cdots, u_N]} \mathrm{diag}(\lambda_1, \cdots, \lambda_N) oldsymbol{[u_1, \cdots, u_N]}^H$$

Fourier-like basis for the graph Spectrum of the graph

- Holds for graph Laplacians and adjacency matrices
 - Frequency interpretation based on zero crossings or total variation
- For undirected graphs
 - Eigenvalues are all real (graph-shift operator is symmetric)
- For directed graphs with normal S
 - > Eigenvalues occur in complex conjugate pairs

Graph Fourier transform

Decomposition of the (graph) signal $oldsymbol{x} \in \mathbb{R}^N$ w.r.t. the orthonormal basis $oldsymbol{U}$

$$oldsymbol{x}_f := oldsymbol{U}^H oldsymbol{x} \ \Leftrightarrow \ oldsymbol{x} =: oldsymbol{U} oldsymbol{x}_f$$

Graph filters

Graph filters (polynomial of the graph-shift operator) can be used to modify the frequency content of graph signals

$$m{H} = \sum_{l=0}^{L-1} h_l m{S}^l = m{U} \left(\sum_{l=0}^{L-1} h_l m{\Lambda}^l
ight) m{U}^H = m{U} \mathsf{diag}(m{h}_f) m{U}^H$$

Shift invariant: $m{HS} = m{SH}$ and distributable: $m{x}_l = m{Sx}_{l-1}$

Filter design using least squares, by solving the following linear system

$$\left[egin{array}{c} h_{f,1} \ h_{f,2} \ dots \ h_{f,N} \end{array}
ight] = \left[egin{array}{cccc} 1 & \lambda_1 & \cdots & \lambda_1^{L-1} \ 1 & \lambda_2 & \cdots & \lambda_1^{L-1} \ dots & dots & dots \ 1 & \lambda_N & \cdots & \lambda_N^{L-1} \end{array}
ight] \left[egin{array}{c} h_0 \ h_1 \ dots \ h_1 \ dots \ h_{L-1} \end{array}
ight]$$

Graph filters

Graph filters (polynomial of the graph-shift operator) can be used to modify the frequency content of graph signals

$$m{H} = \sum_{l=0}^{L-1} h_l m{S}^l = m{U} \left(\sum_{l=0}^{L-1} h_l m{\Lambda}^l
ight) m{U}^H = m{U} \mathsf{diag}(m{h}_f) m{U}^H$$

Shift invariant: $m{HS} = m{SH}$ and distributable: $m{x}_l = m{Sx}_{l-1}$

Vertex-domain vs. frequency-domain implementation

Vertex-domain implementation: y = Hx

Frequency-domain implementation: ${m y}_f = {\sf diag}({m h}_f) {m x}_f$

- No fast GFT implementations
- Parametrized filter implementation in the vertex-domain is possible

Graph filters

Graph filters (polynomial of the graph-shift operator) can be used to modify the frequency content of graph signals

$$m{H} = \sum_{l=0}^{L-1} h_l m{S}^l = m{U} \left(\sum_{l=0}^{L-1} h_l m{\Lambda}^l \right) m{U}^H = m{U} \mathsf{diag}(m{h}_f) m{U}^H$$

Denoising example:

Graph Signal Sampling

- S.P. Chepuri, Y. Eldar and G. Leus. Graph Sampling With and Without Input Priors. In Proc. of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2018), Calgary, Canada, April 2018.
- S. Chen, R. Varma, A. Sandryhaila, and J. Kovacevic, "Discrete signal processing on graphs: Sampling theory," IEEE TSP, vol. 63, no. 24, pp. 6510–6523, Dec. 2015.
- D. Romero, M. Ma, and G.B. Giannakis. Kernel-Based Reconstruction of Graph Signals, IEEE TSP, vol. 65, no. 3, pp. 764–778, Feb 2017.

Sparse sampling on irregular domains

Active learning or semi-supervised learning

Given y estimate x

What is sparse sampling?

Sampling matrix is determined by the sampling vector/set

$$\mathbf{w} = [w_1, w_2, \dots, w_N]^T \in \{0, 1\}^N$$
 or $\mathcal{S} = \{n | w_n = 1, n = 1, 2, \dots, N\}$

 $w_m = (0)1$ sample or vertex is (not) selected

- Sparse sampling structure
 - only one nonzero entry per row
 - many zero columns

S.P. Chepuri and G. Leus. Sparse Sensing for Statistical Inference. *Foundations and Trends in Signal Processing, Vol. 9: No. 3–4, pp 233-368, Dec. 2016.*

Why sparse sampling or active learning?

- Economical constraints (hardware cost)
- Limited physical space
- Limited data storage space
- Labelling is expensive
- Reduce communications bandwidth
- Reduce processing overhead

Sparse graph sampling

Given y estimate x

signal: 3D points, which are displacements of graph nodes

Bandlimited graph signals – subspace prior

Suppose the support of the sparse $oldsymbol{x}_f$ is known L imes 1

$$oldsymbol{x} = oldsymbol{U} oldsymbol{x}_f = egin{bmatrix} oldsymbol{U}_{\mathsf{BL}} \mid \star \end{bmatrix} egin{bmatrix} ilde{x}_f \ \hline oldsymbol{0} \end{bmatrix} \Leftrightarrow oldsymbol{x} = oldsymbol{U}_{\mathsf{BL}} ilde{x}_f \ \hline oldsymbol{0} \end{bmatrix}$$

 $oldsymbol{x} \in \mathsf{range}(oldsymbol{U}_\mathsf{BL})$ —a known L-dimensional subspace

Bandlimited graph signals – subspace prior

With sparse sampling, we get K equations in L unknowns

$$oldsymbol{y} = oldsymbol{\Phi} oldsymbol{x} = oldsymbol{\Phi} oldsymbol{U}_{\mathsf{BL}} ilde{oldsymbol{x}}_f$$

If the matrix ΦU_{BL} has full column rank, i.e, range $(U_{BL}) \cap \text{null}(\Phi) = \{0\}$:

Least squares solution:
$$\hat{ ilde{m{x}}}_f = (m{\Phi}m{U}_{\mathsf{BL}})^\daggerm{y}$$

Design of Φ crucial for the least-squares solution to be unique

Bandlimited graph signals – subspace prior

 \blacktriangleright With sparse sampling, we get K equations in L unknowns

$$oldsymbol{y} = oldsymbol{\Phi} oldsymbol{x} = oldsymbol{\Phi} oldsymbol{U}_{\mathsf{BL}} ilde{oldsymbol{x}}_f$$

ightharpoonup Oblique projection of x onto the range($U_{\rm BL}$) and along the null(Φ)

$$\hat{m{x}} = m{U}_{\mathsf{BL}} (m{U}_{\mathsf{BL}}^H m{\Phi}^T m{\Phi} m{U}_{\mathsf{BL}})^{-1} m{U}_{\mathsf{BL}}^H m{\Phi}^T m{\Phi} m{x} = m{E}_{m{U}_{\mathsf{BL}} m{\Phi}^\perp} m{x}$$

A more interesting case, perhaps is, when the support is not known!

Reconstruction with smoothness prior

Assume x is smooth with respect to the underlying graph or has small

$$\boldsymbol{x}^T \boldsymbol{L} \boldsymbol{x} = \sum_{(i,j) \in \mathcal{E}} (x_i - x_j)^2$$

$$\boldsymbol{x}^T \boldsymbol{L} \boldsymbol{x} = \sum_{(i,j) \in \mathcal{E}} (x_i - x_j)^2$$
$$= 1$$

Sum of squares of differences across edges

Reconstruction with smoothness prior

When the prior subspace is not known, we can be consistent (cf. interpolation)

$$\mathbf{\Phi} x = \mathbf{\Phi} \hat{x}$$

- Assume x is smooth with respect to the underlying graph or has small
- > Equality constrained quadratic program

minimize
$$\frac{1}{2} {m x}^H {m L} {m x}$$
 subject to ${m \Phi} {m x} = {m y}$

Solution:
$$\left[egin{array}{ccc} m{L} + m{\Phi}^T m{\Phi} & m{\Phi}^T \ m{\Phi} & m{0} \end{array}
ight] \left[m{x} m{\lambda} \right] = \left[m{\Phi}^T m{y} \ m{y} \right]$$

If
$$\operatorname{null}(\boldsymbol{L}) \cap \operatorname{null}(\boldsymbol{\Phi}) = \{0\}$$
, then $\hat{\boldsymbol{x}} = \tilde{\boldsymbol{L}}(\boldsymbol{\Phi}\tilde{\boldsymbol{L}})^{-1}\boldsymbol{y}$

$$\tilde{\boldsymbol{L}} = (\boldsymbol{L} + \boldsymbol{\Phi}^T \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^T$$

Sampling via graph filtering

Sparse sampling in spectral domain:

- Suppose sampling operator collects the first K contiguous frequencies
- > Sampling and interpolation operations can be implemented via graph filters

$$\hat{m{x}} = m{H}_{\mathsf{interp}} m{H}_{\mathsf{samp}} m{x}.$$

Subspace prior

$$m{\Phi} = m{E}_K m{U}^H \Rightarrow m{H}_{\mathsf{Samp}} = m{\Phi}^H m{\Phi} = m{U} m{E}_K^T m{E}_K m{U}^H \qquad m{E}_K = [m{e}_1, \cdots, m{e}_K]$$
 $m{H}_{\mathsf{interp}} = m{U}_{\mathsf{BL}} m{H}_{f,\mathsf{interp}} m{U}_{\mathsf{BL}}^H \qquad m{H}_{f,\mathsf{interp}}^{-1} = m{U}_{\mathsf{BL}}^H m{H}_{\mathsf{samp}} m{U}_{\mathsf{BL}} \; ext{ (diagonal)}$

diagonal matrix

Smoothness prior

$$m{H}_{f,\mathsf{samp}} = m{E}_K^T [m{E}_K (m{\Lambda} + m{E}_K^T m{E}_K)^{-1} m{E}_K^T]^{-1} m{E}_K \quad ext{(diagonal)}$$
 $m{H}_{\mathsf{interp}} = m{U} (m{\Lambda} + m{E}_K^T m{E}_K)^{-1} m{U}^H$

Numerical experiments

Graph (K-nearest neighbor)

Original signal (3D points)

N=1502, K=600, $K/N\approx 40\%$ compression

Numerical experiments

Sampling diffusion fields over graphs

- S. Reddy and S.P. Chepuri. Sampling and Reconstruction of Diffusive Fields on Graphs. *GlobalSIP 2019*, Ottawa, Canada.
- A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, "Sampling of graph signals with successive local aggregations," IEEE TSP, vol. 64, no. 7, pp. 1832–1834, Arp. 2016.

Sampling diffusion processes

> Let us consider the heat equation

$$\frac{\partial x(t,\mathbb{D})}{\partial t} = -\nabla^2 x(t,\mathbb{D})$$

Often, we approximate complicated manifolds with a mesh (e.g., Delaunay mesh)

$$\frac{\partial \boldsymbol{x}(t)}{\partial t} = -\mathbf{L}\boldsymbol{x}(t)$$

Solution:

$$\boldsymbol{x}(t) = e^{-t\boldsymbol{L}}\boldsymbol{x}(0) = \boldsymbol{U}e^{-t\boldsymbol{\Lambda}}\boldsymbol{U}^{H}\boldsymbol{x}(0)$$

ightharpoonup Initial condition can be computed by observing all the mesh points "once" for some $\,t>0\,$

Frozen metal plate with cavity initial condition: two spikes

Sampling diffusion processes

> Sample $x(t) = e^{-tL}x(0)$ at times $t_1 \le t_2 \le \cdots \le t_T$

$$\begin{split} \boldsymbol{x}(t_k) &= e^{-t_k \boldsymbol{L}} \boldsymbol{x}(0) \\ &= \boldsymbol{U} \begin{bmatrix} e^{-\lambda_1 t_k} & & & \\ & e^{-\lambda_2 t_k} & & \\ & & \ddots & \\ & & e^{-\lambda_N t_k} \end{bmatrix} \boldsymbol{\theta} = \boldsymbol{U} \mathrm{diag}(\boldsymbol{\theta}) \boldsymbol{a}(t_k) \\ &\text{with } \boldsymbol{\theta} = \boldsymbol{U}^H \boldsymbol{x}(0) \text{ and } \boldsymbol{a}(t_k) = [e^{-\lambda_1 t_k}, \dots, e^{-\lambda_N t_k}]^T \end{split}$$

Stacking all the space-time samples

$$oldsymbol{X} = oldsymbol{U} \mathsf{diag}(oldsymbol{ heta}) oldsymbol{A}^T \qquad oldsymbol{A} = [oldsymbol{a}(t_1), \cdots oldsymbol{a}(t_T)]^T$$

Sparse space-time sampling amounts to observing a few mesh points at a few time instances

Given L and $Y = \Phi_s X \Phi_t^T$ find the initial condition θ

Sampling diffusion processes

> On vectorizing
$$m{Y} = m{\Phi}_s m{X} m{\Phi}_t = m{\Phi}_s m{U} {\sf diag}(m{ heta}) m{A}^T m{\Phi}_t^T$$
 $m{y} = (m{\Phi}_t m{A} \circ m{\Phi}_s m{U}) m{ heta}$ $= (m{\Phi}_t \otimes m{\Phi}_s) (m{A} \circ m{U}) m{ heta}$

$$y: K_t K_s \times 1$$
, $\Phi_t: K_t \times T$, $\Phi_s: K_s \times N$ $\text{vec}(A \text{diag}(d)B) = (B^T \circ A)d$

⊗ : Kronecker product; ∘ : Khatri-Rao (columnwise Kronecker) product

If the matrix $\Phi_t A \circ \Phi_s U$ has full column rank, which requires $K_t K_s \geq N$:

Least squares solution:
$$\widehat{m{ heta}} = [m{\Phi}_t m{A} \circ m{\Phi}_s m{U}]^\dagger m{y}$$
 $\widehat{m{x}}(0) = m{U} \widehat{m{ heta}}$

Remark: θ is not sparse in general, as x(0) is sparse

Bandlimiting constraint is not required

Experiments

Linear dynamics over networks

Can we reconstruct a graph signal from observations at a single node?

Linear dynamics on networks

Information flow to a node from its neighbors

$$egin{array}{lll} oldsymbol{x}_k &=& oldsymbol{S} oldsymbol{x}_{k-1} + oldsymbol{x} u_{k-1} \ y_k &=& oldsymbol{e}_i^T oldsymbol{x}_k \ &=& oldsymbol{e}_i^T oldsymbol{x}_k \ &=& oldsymbol{sample} node i \end{array}$$

$$oldsymbol{x}_{-1} = 0$$
 and $oldsymbol{x}_0 = oldsymbol{x}$ $u_{k-1} = \delta[k]$ (Kronecker delta)

 e_i is the *i*th column of the identity matrix

ightharpoonup Given observations $oldsymbol{y}=\{y_0,\ldots,y_{K-1}\}$ estimate $oldsymbol{x}$ K is the number of shifts applied

Linear network dynamics

Linear dynamics on networks

> At the observed node

$$egin{aligned} oldsymbol{y} &= egin{bmatrix} oldsymbol{e}_i^T oldsymbol{Spectral response} \ oldsymbol{u} &= oldsymbol{e}_i^T oldsymbol{S} \ oldsymbol{e}_i^T oldsymbol{U} oldsymbol{\Lambda} oldsymbol{U}^H oldsymbol{u} = oldsymbol{V} oldsymbol{diag}[oldsymbol{u}] oldsymbol{U}^H oldsymbol{x} = oldsymbol{V} oldsymbol{diag}[oldsymbol{u}] oldsymbol{X}^H \ &= oldsymbol{V} oldsymbol{diag}[oldsymbol{u}] oldsymbol{X}^H \ &= oldsymbol{V} oldsymbol{diag}[oldsymbol{u}] oldsymbol{x}_f \ &= oldsymbol{e}_i^T oldsymbol{U} \ &= oldsymbol{e}_i^T oldsymbol{U} \ &= oldsymbol{V} oldsymbol{diag}[oldsymbol{u}] oldsymbol{x}_f \ &= oldsymbol{V} oldsymbol{diag}[oldsymbol{u}] oldsymbol{x}_f \ &= oldsymbol{V} oldsymbol{diag}[oldsymbol{v}] oldsymbol{v}_i,j = \lambda_i^{i-1} \ (\mbox{Vandermonde}) \ &= oldsymbol{V} oldsymbol{u}_i,j = \lambda_i^{i-1} \ (\mbox{Vandermonde}) \ &= oldsymbol{v}_i oldsymbol{v}_i,j = \lambda_i^{i-1} \ (\mbox{Vandermonde}) \ &= \lambda_i^{i-1} \ (\mbox{Vandermonde}) \ &=$$

Aggregation sampling is natural while observing time domain signals

Linear dynamics on networks

Recall bandlimitedness:

 \triangleright Suppose the support of the sparse x_f is known

$$oldsymbol{x} = oldsymbol{U} oldsymbol{x}_f = \left[egin{array}{c} oldsymbol{U}_\mathsf{BL} \mid m{\star} \end{array}
ight] \left[egin{array}{c} ilde{oldsymbol{x}}_f \ \hline oldsymbol{0} \end{array}
ight] \quad \Leftrightarrow \quad oldsymbol{x} = oldsymbol{U}_\mathsf{BL} ilde{oldsymbol{x}}_f \ \hline oldsymbol{0} \end{array}$$

> The observations at *node i* will then be

$$m{y} = m{V} \mathsf{diag}[m{u}] m{x}_f = m{V} \mathsf{diag}[m{u}] m{E}_L ilde{m{x}}_f = m{V}_\mathsf{BL} ilde{m{x}}_f$$

$$\boldsymbol{E}_L = [\boldsymbol{e}_1, \cdots, \boldsymbol{e}_L]$$

of shifts

▶ If the matrix V_{BL} has full column rank, which requires $K \ge L$:

Least squares solution:
$$\widehat{ ilde{m{x}}}_f = m{V}_{\sf BL}^\dagger m{y}$$

Numerical experiments

- Although reconstruction possible by observing a single node, system gets quickly ill conditioned (very sensitive to noise).
- Combining observations from a few more nodes might improve conditioning

Product Graph Sampling

- G. Ortiz-Jiménez, M. Coutino, S.P. Chepuri, and G. Leus. Sampling and Reconstruction of Signals on Product Graphs. *GlobalSIP 2018*, Anaheim, USA..
- G. Ortiz-Jiménez, M. Coutino, S.P. Chepuri, and G. Leus. Sparse Sampling for Inverse Problems with Tensors. *IEEE TSP*, Feb 2019.

Sparse sampling on multigraph domains

Given y estimate x

Dynamic 3D point cloud

Product graphs

 \triangleright Let us represent \mathcal{G}_1 and \mathcal{G}_2 with the graph-shift operators

$$m{S}_1 = m{U}_1m{\Lambda}_1m{U}_1^H \in \mathbb{R}^{N_1 imes N_1} \qquad ext{and} \qquad m{S}_2 = m{U}_2m{\Lambda}_2m{U}_2^H \in \mathbb{R}^{N_2 imes N_2}$$

 \triangleright The product graph \mathcal{G}_{\diamond} has the graph-shift operator

$$oldsymbol{S}_{\diamond} = (oldsymbol{U}_1 \otimes oldsymbol{U}_2) oldsymbol{\Lambda}_{\diamond} (oldsymbol{U}_1 \otimes oldsymbol{U}_2)^H \in \mathbb{R}^{N imes N}$$

 Λ_{\diamond} is a diagonal matrix that depends on \mathcal{G}_1 and \mathcal{G}_2 , and the type of product

Product graph signals: The sampling problem

Given Y estimate X

Product graph signal

ightharpoonup Product graph signal $oldsymbol{X}$ may be decomposed w.r.t. $oldsymbol{U}_1$ and $oldsymbol{U}_2$ as

$$oldsymbol{X} = oldsymbol{U}_1 oldsymbol{X}_f oldsymbol{U}_1^T \quad \Leftrightarrow \quad oldsymbol{x} = (oldsymbol{U}_1 \otimes oldsymbol{U}_2) oldsymbol{x}_f$$

 \triangleright More generally, for Rth-order product graph, we have a graph (tensor) signal

$$\mathcal{X} = \mathcal{X}_f \bullet_1 \mathbf{U}_1 \bullet_2 \mathbf{U}_2 \cdots \bullet \mathbf{U}_R \quad \Leftrightarrow \quad \mathbf{x} = (\mathbf{U}_1 \otimes \mathbf{U}_2 \cdots \otimes \mathbf{U}_R) \mathbf{x}_f$$

$$\mathcal{X} \in \mathbb{R}^{N_1 \times N_2 \cdots \times N_R}$$

Bandlimited product graph signals

> Suppose the support of the sparse $m{x}_f$ is known $m{L}_2 imes N_2$ $m{X}_1 imes L_1$ $m{X}_1 imes L_1$ $m{U}_1 imes L_2 imes N_2$ or

$$oldsymbol{x} = (oldsymbol{U}_1 \otimes oldsymbol{U}_2) oldsymbol{x}_f = \left[egin{array}{c} (ilde{oldsymbol{U}}_1 \otimes ilde{oldsymbol{U}}_2) & \star \end{array}
ight] \left[egin{array}{c} ilde{oldsymbol{x}}_f \ \hline oldsymbol{0} \end{array}
ight]$$

Bandlimited product graph signals

 \triangleright Suppose the support of the sparse x_f is known

se the support of the sparse
$$m{x}_f$$
 is known $m{L}_2 imes N_2$ $m{X}_1 imes L_1$ $m{X}_1 imes L_1$ $m{X}_1 imes L_2 imes N_2$ $m{X}_2 imes L_3 imes L_4 imes N_2$ or

 $oldsymbol{x} = (oldsymbol{U}_1 \otimes oldsymbol{U}_2) oldsymbol{x}_f = \left[egin{array}{c} (ilde{oldsymbol{U}}_1 \otimes ilde{oldsymbol{U}}_2) & \star \end{array}
ight] \left| egin{array}{c} ilde{oldsymbol{x}}_f \ \hline oldsymbol{0} \end{array}
ight|$

We can reconstruct the product graph signal from subsampled observations since

$$N_1N_2\gg L_1L_2$$
 and $\mathrm{rank}(ilde{m{U}}_1\otimes ilde{m{U}}_2)=\mathrm{rank}(ilde{m{U}}_1)\mathrm{rank}(ilde{m{U}}_2)$

Reconstruction with subspace prior

With sparse sampling, we get K_1K_2 equations in L_1L_2 unknowns

For unique reconstruction, we require $K_1 \geq L_1$ and $K_2 \geq L_2$

Least squares solution: $\hat{ ilde{m{x}}}_f = [(m{\Phi}_1 m{U}_1)^\dagger \otimes (m{\Phi}_2 m{U}_2)^\dagger] m{y}$

Design of Φ_1 and Φ_2 is crucial for the least-squares solution to be unique

Numerical experiments – dynamic 3D point cloud

- ➤ 1502 markers, 573 frames. Product graph has 850000 vertices
- We sample 500 spatial points, and 70 time frames

51

Numerical experiments – recommender system

- Product graph has about 1.6 million nodes
- Features used to build both the graphs (available with the dataset)
- Standard problem: Complete rating matrix using graph prior.
- Active learning: Which users to probe for which movies?

Numerical experiments – recommender system

State-of-the-art matrix completion methods

Method	Number of samples	RMSE
GMC [26]	80,000	0.996
GRALS [27]	80,000	0.945
sRGCNN [29]	80,000	0.929
GC-MC [30]	80,000	0.905
Our method	1,875	0.9347

Graph Covariance Sampling

• S.P. Chepuri and G. Leus. Graph Sampling for Covariance Estimation. *IEEE Journ. on Sel. Topics in Sig. Proc. and IEEE Trans. on Sig. and Info. Proc. over Networks, joint special issue on Graph Signal Processing, July 2017.*

Time Recutercy change

Cognitive radio frequency spectrum

Radar
Doppler + angular spectra

Graph-based inference graph spectrum

Radio astronomy spatial spectrum

Design sparse samplers taking into account the data structure

Given R_y or several realizations of y estimate R_x

Compressive covariance sensing

$$egin{aligned} oldsymbol{r_y} & = \mathrm{vec}(oldsymbol{R_y}) = \mathrm{vec}(oldsymbol{\Phi} oldsymbol{R_x} oldsymbol{\Phi}^T) = (oldsymbol{\Phi} \otimes oldsymbol{\Phi}) \mathrm{vec}(oldsymbol{R_x}) \ K^2 imes 1 \end{aligned}$$

ightharpoonup Suppose the covariance matrix R_x has a linear structure

> If
$$K^2>Q$$
 : $m{r_y}=(m{\Phi}\otimesm{\Phi})m{\Psi}m{ heta}$ $m{\hspace{0.5cm}}m{\theta}=[(m{\Phi}\otimesm{\Phi})m{\Psi}]^\daggerm{r_y}$

least squares

Design of Φ crucial for the solution to be unique

Second-order stationarity in time

Filtering white noise:

Signal is the output of an LTI filter excited with white noise

The covariance matrix is diagonalized by the Fourier matrix

$$oldsymbol{R_x} = oldsymbol{F} ext{diag}(oldsymbol{p}) oldsymbol{F}^H$$

The process has power spectral density

$$\boldsymbol{p} = \operatorname{diag}(\boldsymbol{F}^H \boldsymbol{R}_{\boldsymbol{x}} \boldsymbol{F})$$

Stationary graph signals

Filtering white noise:

ightharpoonup A random graph signal $oldsymbol{x} \in \mathbb{R}^N$ is second-order stationary:

ightharpoonup The filter should be shift invariant $m{H}(m{S}m{x}) = m{S}(m{H}m{x}) \Leftrightarrow m{H} = m{U}$ diag $(m{h}_f)m{U}^H$

• N. Perraudin and P. Vandergheynst, "Stationary signal processing on graphs," IEEE TSP, Jul. 2017.

• A. Marques, S. Segarra, G. Leus, and A. Ribeiro, "Stationary graph processes and spectral estimation," IEEE TSP, Nov. 2017.

Stationary graph signals

Filtering white noise:

ightharpoonup A random graph signal $oldsymbol{x} \in \mathbb{R}^N$ is second-order stationary:

Simultaneous diagonalization:

$$oldsymbol{S} = oldsymbol{U} oldsymbol{\Lambda} oldsymbol{U}^H \qquad \qquad oldsymbol{R_x} = oldsymbol{U} ext{diag}(oldsymbol{p}) oldsymbol{U}^H$$

The process has power spectral density

$$\boldsymbol{p} = \operatorname{diag}(\boldsymbol{U}^H \boldsymbol{R_x} \boldsymbol{U})$$

Remark (second-order stationarity in time):

 R_x is a circulant matrix, which can be diagonalized by the DFT matrix

- N. Perraudin and P. Vandergheynst, "Stationary signal processing on graphs," IEEE TSP, Jul. 2017.
- A. Marques, S. Segarra, G. Leus, and A. Ribeiro, "Stationary graph processes and spectral estimation," IEEE TSP, Nov. 2017.

Stationary graph signals

 $m{ iny}$ Stationary process $m{x} \in \mathbb{R}^N$ on a graph shift $m{S}$

Power spectrum estimation is crucial for statistical inference smoothing, prediction, deconvolution

Power spectrum estimation

Estimate the power spectrum

- a. by observing a reduced subset of nodes/sensors (i.e., subsample)
- b. without using spectral priors (e.g., sparsity, bandlimited with known support)

Non-parametric method

➤ The covariance again admits a linear structure

$$m{R}_{m{x}} = m{U} ext{diag}(m{p}) m{U}^H \qquad m{R}_{m{x}} = \sum_{i=1}^N p_i m{u}_i m{u}_i^H = \sum_{i=1}^N p_i m{Q}_i$$

> After compression:

$$egin{align*} oldsymbol{R_x} = \sum_{i=1}^N p_i oldsymbol{Q}_i & \longrightarrow & oldsymbol{\Phi} & \longrightarrow & oldsymbol{R_y} = \sum_{k=i}^N p_i oldsymbol{\Phi} oldsymbol{Q}_i oldsymbol{\Phi}^T & \end{array}$$

ightharpoonup We have K^2 equations in N unknowns

$$egin{aligned} oldsymbol{r}_y &= \mathrm{vec}(oldsymbol{R}_y) = (oldsymbol{\Phi} \otimes oldsymbol{\Phi}) \mathrm{vec}(oldsymbol{R}_x) \ &= (oldsymbol{\Phi} \otimes oldsymbol{\Phi}) (oldsymbol{U} \circ oldsymbol{U}) oldsymbol{p} \ &= (oldsymbol{\Phi} \otimes oldsymbol{\Phi}) oldsymbol{\Psi}_{\mathrm{NP}} oldsymbol{p} \end{aligned}$$

ightharpoonup If the matrix $(\mathbf{\Phi}\otimes\mathbf{\Phi})\mathbf{\Psi}_{\mathrm{NP}}$ has full column rank, which requires $K^2\geq N$

$$\hat{m{p}} = [(m{\Phi} \otimes m{\Phi}) m{\Psi}_{ ext{NP}}]^{\dagger} m{r}_{m{y}}$$

 $\mathsf{vec}(A\mathsf{diag}(d)B) = (B^T \circ A)d$

Parametric method (moving average)

 $oldsymbol{\succ}$ Graph signal is a moving average graph process of order L-1

$$oldsymbol{x} = oldsymbol{H}(oldsymbol{h})oldsymbol{n} = \sum_{l=0}^{L-1} h_l oldsymbol{S}^l oldsymbol{n} = oldsymbol{U}\left(\sum_{l=0}^{L-1} h_l oldsymbol{\Lambda}^l\right) oldsymbol{U}^H oldsymbol{n}$$

with covariance matrix

$$oldsymbol{R_x} = oldsymbol{H}(oldsymbol{h}) oldsymbol{H}^H(oldsymbol{h}) = oldsymbol{U}\left(\sum_{l=0}^{L-1} h_l oldsymbol{\Lambda}^l
ight)^2 oldsymbol{U}^H$$

 \succ We can express $oldsymbol{R_x}$ as a matrix polynomial of the graph-shift operator

$$\boldsymbol{R}_{\boldsymbol{x}}(\boldsymbol{b}) = \sum_{k=0}^{Q-1} b_k \boldsymbol{S}^k$$

Covariance matching (basis expansion): $Q = \min\{2L-1,N\}$

degree of minimal polynomial of the graph-shift

For,
$$L=2$$
, $\boldsymbol{R_x}=h_0^2\mathbf{I}+2h_0h_1\boldsymbol{S}+h_1^2\boldsymbol{S}^2$

Parametric method (moving average)

For a moving average graph process on an undirected graph we have

$$\mathbf{R}_{x} = \sum_{k=0}^{Q-1} b_{k} \mathbf{S}^{k}$$
 $Q = \min\{2L - 1, N\}$

> After compression:

$$R_{\boldsymbol{x}} = \sum_{k=0}^{Q-1} b_k S^k \longrightarrow \begin{array}{c} \mathsf{compression} \\ \Phi \end{array} \longrightarrow R_{\boldsymbol{y}} = \sum_{k=0}^{Q-1} b_k \Phi S^k \Phi^T$$

 \blacktriangleright We have K^2 equations in Q unknowns

$$egin{aligned} oldsymbol{r}_y &= \mathrm{vec}(oldsymbol{R}_y) = (oldsymbol{\Phi} \otimes oldsymbol{\Phi}) \mathrm{vec}(oldsymbol{R}_x) \ &= (oldsymbol{\Phi} \otimes oldsymbol{\Phi}) [\mathrm{vec}(oldsymbol{S}^0), \ldots, \mathrm{vec}(oldsymbol{S}^{Q-1})] oldsymbol{b} \ &= (oldsymbol{\Phi} \otimes oldsymbol{\Phi}) oldsymbol{\Psi}_{\mathrm{MA}} oldsymbol{b} \end{aligned}$$

ightharpoonup If the matrix $(oldsymbol{\Phi}\otimesoldsymbol{\Phi})oldsymbol{\Psi}_{
m MA}$ has full column rank, which requires $K^2\geq Q$

$$\hat{m{b}} = [(m{\Phi} \otimes m{\Phi}) m{\Psi}_{ ext{MA}}]^\dagger m{r}_{m{y}}$$

Illustration – Karate club network

Non-parametric approach

Parametric approach

Wind speed dataset

Non-parametric approach

Moving average approach Autoregressive approach

Sample 18 out of 36 stations

12 out of 36 stations

11 out of 36 stations

P = 1

Temperature dataset

Moving average approach Autoregressive approach

Sample 16 out of 32 nodes

12 out of 32 nodes

Q = 11

10 out of 32 nodes

Generate digits

- ➤ Nearest neighbor graph built using digit 3 (16 x 16 pixels) from the USPS dataset.
- Graph signal (pixel intensity) is of length 256

25 realizations

Sparse Sampler Design

S.P. Chepuri and G. Leus. Sparse Sensing for Statistical Inference. *Foundations and Trends in Signal Processing, Vol. 9: No. 3–4, pp 233-368, Dec. 2016.*

Sparse sensing models

Sparsely sensed signals

Least squares solution: $[\Phi U_{\mathsf{BL}}]^\dagger y$

Sparse sensing models

Sparsely sensed statistics

Least squares solution: $[(\mathbf{\Phi}\otimes\mathbf{\Phi})\mathbf{\Psi}]^{\dagger}m{r_y}$

Sparse sensing models

Sparsely sensed multidomain signals

Least squares solution: $[(\mathbf{\Phi}_1 \boldsymbol{U}_1)^\dagger \otimes (\mathbf{\Phi}_2 \boldsymbol{U}_2)^\dagger] \boldsymbol{y}$

What is sparse sampling?

$$\mathbf{R}_{oldsymbol{y}} = \mathbf{E}\left\{oldsymbol{y}oldsymbol{y}^H
ight\}$$

Sampling matrix is determined by the sampling vector/set

$$\mathbf{w} = [w_1, w_2, \dots, w_N]^T \in \{0, 1\}^N$$
 or $\mathcal{S} = \{n | w_n = 1, n = 1, 2, \dots, N\}$

 $w_m = (0)1$ sample or vertex is (not) selected

- Sparse sampling structure
 - only one nonzero entry per row
 - many zero columns

Design problem

Select the "best" subset of vertices out of the candidate vertices that guarantee a certain desired reconstruction accuracy.

optimize
$$f(\boldsymbol{w})$$
 s.to $\operatorname{card}(\boldsymbol{w}) = K$ $\boldsymbol{w} \in \{0,1\}^N$

or

 $f(oldsymbol{w})$ reconstruction performance metric

$$\mathbf{w} = [w_1, w_2, \dots, w_N]^T \in \{0, 1\}^N$$

 ${\cal K}$ sample size

$$S = \{n | w_n = 1, n = 1, 2, \dots, N\}$$

 $w_m = (0)1$ sample or vertex is (not) selected

Design problem

Select the "best" subset of vertices out of the candidate vertices that guarantee a certain desired reconstruction accuracy.

optimize
$$f(\boldsymbol{w})$$
 s.to $\operatorname{card}(\boldsymbol{w}) = K$ $\boldsymbol{w} \in \{0,1\}^N$

or

Nonconvex Boolean problem

Solutions to the combinatorial problem

Exact solutions:

- Exhaustive search over
 - $\square \binom{M}{K}$ possible candidates

Branch-and-bound methods

[Lawler-Wood-1966], [Nguyen-Miller-1992]

☐ long runtimes even for a modest sized problem

- E. L. Lawler and D. E. Wood, "Branch-and-bound methods: A survey," Oper. Res., vol. 14, pp. 699–719, 1966.
- N. Nguyen and A. Miller, "A review of some exchange algorithms for constructing discrete D-optimal designs," Comput. Statist.
 Data Anal., vol. 14, pp. 489–498, 1992

Solutions to the combinatorial problem

Suboptimal solutions:

Convex optimization (polynomial time)

[Joshi-Boyd-2009], [Chepuri-Leus-2015]

- $m \Box$ convex relaxation for $\{0,1\}, f(m w)$
- thresholding, randomization to get back a Boolean solution
- Semidefinite program (typically)

[•] S. Joshi and S. Boyd, "Sensor selection via convex optimization," *IEEE Trans. Signal Process.*, vol. 57, no. 2, pp. 451–462, Feb. 2009

[•] S.P. Chepuri and G. Leus. "Sparsity-Promoting Sensor Selection for Non-linear Measurement Models," *IEEE Trans. on Signal Processing*, vol. 63, no. 3, pp. 684-698, Feb. 2015.

Solutions to the combinatorial problem

Suboptimal solutions:

Submodular optimization (linear search time)

[Krause-Singh-Guestrin-2008], [Ranieri-Chebira-Vetteri-2014]

- \square Submodularity of f(S)
- greedy search
- solution is near optimal
- A. Krause, A. Singh, and C. Guestrin, "Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies," *J. Machine Learn. Res.*, vol. 9, pp. 235–284, Feb. 2008.
- J. Ranieri, A. Chebira, and M. Vetterli, "Near-optimal sensor placement for linear inverse problems," *IEEE Trans. Signal Process.*, vol. 62, no. 5, pp. 1135–1146, Mar. 2014

Submodular optimization

Requires $f(\cdot)$ to be submodular function of its arguments

Define the sampling set:

$$\mathcal{X}:=\mathcal{S}=\{n|w_n=1,n=1,2,\ldots,N\}$$
 or
$$\mathcal{X}:=\mathcal{N}\setminus\mathcal{S}=\{n|w_n=0,n=1,2,\ldots,N\}$$

 \blacktriangleright Set function $f(\mathcal{X})$ is submodular, if $\forall \mathcal{X} \subseteq \mathcal{Y} \subset N$, $s \in \mathcal{N} \setminus \mathcal{Y}$

$$f(\mathcal{X} \cup \{s\}) - f(\mathcal{X}) \ge f(\mathcal{Y} \cup \{s\}) - f(\mathcal{Y})$$

 \blacktriangleright Set function $f(\mathcal{X})$ is monotone non-decreasing, if

$$f(\mathcal{X} \cup \{s\}) \ge f(\mathcal{X})$$

Design problem

Select the "best" subset of vertices out of the candidate vertices that guarantee a certain desired reconstruction accuracy.

$$\label{eq:maximize} \begin{aligned} & \underset{\mathcal{X}}{\text{maximize}} \ f(\mathcal{X}) \\ & \text{s.to} \quad |\mathcal{X}| = L \end{aligned}$$

$$L = K \text{ or } L = N - K$$

Nonconvex Boolean problem

Submodular optimization

If $f(\cdot)$ is submodular and monotonic

Linear sweep time

Algorithm 1 Greedy algorithm

- 1. Require $\mathcal{X} = \emptyset, L$.
- 2. for k = 1 to L
- $s^* = \arg \max_{s \notin \mathcal{X}} f(\mathcal{X} \cup \{s\})$ $\mathcal{X} \leftarrow \mathcal{X} \cup \{s^*\}$
- 5. **end**
- 6. **Return** \mathcal{X}

$$L = K$$
 or $L = N - K$

Then, greedy algorithm is near-optimal

$$f(\mathcal{X}) \geq \underbrace{(1-1/e)}_{|\mathcal{Y}|=L} \max_{|\mathcal{Y}|=L} f(\mathcal{Y})$$
[Nemhauser-Wolsey-Fisher-1978]

• G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, "An analysis of approximations for maximizing submodular set functions— I," 85 Mathematical Programming, vol. 14, no. 1, pp. 265–294, 1978.

Design problem

Select the "best" subset of vertices out of the candidate vertices that guarantee a certain desired reconstruction accuracy.

$$\label{eq:maximize} \begin{aligned} & \underset{\mathcal{X}}{\text{maximize}} \ f(\mathcal{X}) \\ & \text{s.to} \quad |\mathcal{X}| = L \end{aligned}$$

$$L = K \text{ or } L = N - K$$

What is a suitable submodular function $f(\mathcal{X})$ for sparse sampling?

Sparse sensing models

Sparsely sensed signals

Least squares solution: $[\Phi U_{\mathsf{BL}}]^\dagger y$

Least squares solution: $[(\mathbf{\Phi}\otimes\mathbf{\Phi})\mathbf{\Psi}]^{\dagger}m{r_y}$

Quality of the least squares solution

$$[oldsymbol{\Phi}oldsymbol{U}_{\mathsf{BL}}]^\daggeroldsymbol{y}$$
 or $[(oldsymbol{\Phi}\otimesoldsymbol{\Phi})oldsymbol{\Psi}]^\daggeroldsymbol{r_b}$

depends on the spectrum (eigenvalues) of

$$m{T}(m{w}) = [m{\Phi}m{U}_{\mathsf{BL}}]^H [m{\Phi}m{U}_{\mathsf{BL}}] = m{U}_{\mathsf{BL}}^H \mathsf{diag}(m{w}) m{U}_{\mathsf{BL}}$$
 or

$$T(w) = [(\Phi \otimes \Phi)\Psi]^H [(\Phi \otimes \Phi)\Psi] = \Psi^H [\operatorname{diag}(w) \otimes \operatorname{diag}(w)]\Psi$$

We try to balance the spectrum:

$$\arg \max_{\boldsymbol{w} \in \{0,1\}^N} \quad \log \det \{\boldsymbol{T}(\boldsymbol{w})\} \quad \text{s.to} \quad \|\boldsymbol{w}\|_0 = K$$

$$\arg \max_{\boldsymbol{w} \in \{0,1\}^N} \quad \log \det \{\boldsymbol{T}(\boldsymbol{w})\} \quad \text{s.to} \quad \|\boldsymbol{w}\|_0 = K$$

Using set notation

$$\mathcal{X} = \{m | w_m = 1, m = 1, 2, \dots, M\}$$

> Set function

$$\begin{split} f(\mathcal{X}) &= \log \det \left\{ \sum\nolimits_{i \in \mathcal{X}} \boldsymbol{u}_{\mathrm{BL},i} \boldsymbol{u}_{\mathrm{BL},i}^{H} \right\} \quad \text{or} \quad f(\mathcal{X}) = \log \det \left\{ \sum\nolimits_{(i,j) \in \mathcal{X} \times \mathcal{X}} \boldsymbol{\psi}_{i,j} \boldsymbol{\psi}_{i,j}^{H} \right\} \\ \boldsymbol{U}_{\mathrm{BL}} &= [\boldsymbol{u}_{\mathrm{BL},1}, \cdots, \boldsymbol{u}_{\mathrm{BL},N}]^{T} \qquad \qquad \boldsymbol{\Psi} = [\boldsymbol{\psi}_{1,1}, \boldsymbol{\psi}_{1,2}, \cdots, \boldsymbol{\psi}_{N,N}]^{H} \end{split}$$

Set function is submodular and monotone non-decreasing

$$\arg \max_{\boldsymbol{w} \in \{0,1\}^N} \quad \log \det \{T(\boldsymbol{w})\} \quad \text{s.to} \quad \|\boldsymbol{w}\|_0 = K$$

This combinatorial optimization can be near optimally solved using a low-complexity greedy algorithm

$$f(\mathcal{X}) \geq (1 - 1/e) \max_{|\mathcal{Y}| = K} f(\mathcal{Y})$$
[Nemhauser-Wolsey-Fisher-1978]

- 1. Require $\mathcal{X} = \emptyset, K$.
- 2. for k=1 to K
- 3. $s^* = \arg\max_{s \notin \mathcal{X}} f(\mathcal{X} \cup \{s\})$ 4. $\mathcal{X} \leftarrow \mathcal{X} \cup \{s^*\}$
- 5. **end**
- 6. Return \mathcal{X}

- ✓ Leverages submodularity
- ✓ Linear sweep time

[•] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, "An analysis of approximations for maximizing submodular set functions— I," Mathematical Programming, vol. 14, no. 1, pp. 265–294, 1978.

Sparse sensing models

Sparsely sensed multidomain signals

Least squares solution: $[(\mathbf{\Phi}_1 \boldsymbol{U}_1)^\dagger \otimes (\mathbf{\Phi}_2 \boldsymbol{U}_2)^\dagger] \boldsymbol{y}$

Design of Φ_1 and Φ_2 is crucial for the least-squares solution to be unique

Quality of the least squares solution

$$[(oldsymbol{\Phi}_1oldsymbol{U}_1)^\dagger\otimes (oldsymbol{\Phi}_2oldsymbol{U}_2)^\dagger]oldsymbol{y}$$

depends on the error covariance matrix

$$egin{aligned} oldsymbol{T}(\mathcal{X}) &= \left(oldsymbol{\Phi}_1 ilde{oldsymbol{U}}_1 \otimes oldsymbol{\Phi}_2 ilde{oldsymbol{U}}_2
ight)^H \left(oldsymbol{\Phi}_1 ilde{oldsymbol{U}}_1 \otimes oldsymbol{\Phi}_2 ilde{oldsymbol{U}}_2
ight)^H \left(oldsymbol{\Phi}_2 ilde{oldsymbol{U}}_2
ight)^H \left(oldsymbol{\Psi}_2 ilde{oldsymbol{U}}_2
ight)^H \left(oldsymbol{$$

$$\mathcal{X} = \mathcal{X}_1 \cup \mathcal{X}_2$$

ightharpoonup Since rank $(A \otimes B) = \text{rank}(A)\text{rank}(B)$, we require (additional constraints)

$$|\mathcal{X}_1| \geq L_1$$
 and $|\mathcal{X}_2| \geq L_2$

As before, we optimize a scalar function of the error covariance matrix

maximize
$$f(T(\mathcal{X}))$$
 s.to $|\mathcal{X}| = K, \ \mathcal{X} = \mathcal{X}_1 \cup \mathcal{X}_2$ $|\mathcal{X}| \geq L_1 \quad |\mathcal{X}_2| \geq L_2$

In particular, we minimize the so-called frame potential (related to the mean squared error)

$$F(\mathcal{X}) := \mathsf{trace}\{\boldsymbol{T}^H\boldsymbol{T}\} = \mathsf{trace}\{\boldsymbol{T}_1^H\boldsymbol{T}_1 \otimes \boldsymbol{T}_2^H\boldsymbol{T}_2\} := F_1(\mathcal{X}_1)F_2(\mathcal{X}_2)$$

ightharpoonup Or, maximize the set function with change of variable $\mathcal{S} = \mathcal{N} \setminus \mathcal{X}$

$$G(S) = F(N) - F(N \setminus S)$$
 $\mathcal{N} = \mathcal{N}_1 \cup \mathcal{N}_2$

Therefore, we have to solve

$$\underset{\mathcal{S}\subseteq\mathcal{N}}{\operatorname{maximize}}\ G(\mathcal{S})$$

s.to
$$S \in \mathcal{I}_u \cap \mathcal{I}_u$$
,

$$\mathcal{I}_u = \{ \mathcal{S} \subseteq \mathcal{N} : \mathcal{S} \le N - K \}$$

$$\mathcal{I}_p = \{ \mathcal{S} \subseteq \mathcal{N} : |\mathcal{S} \cap \mathcal{N}_i| \le N_i - L_i, i = 1, 2 \}$$

[Ortiz-Jiménez et al.-2018]

Truncated partition matroid

- 1. Require $\mathcal{X} = \emptyset, K, \mathcal{I}_u, \mathcal{I}_n$.
- 2. **for** k = 1 **to** N K
- $$\begin{split} s^* &= \arg\max_{s \notin \mathcal{X}} \left\{ f(\mathcal{X} \cup \{s\}) : \mathcal{X} \in \mathcal{I}_u \cap \mathcal{I}_p \right\} \\ \mathcal{X} &\leftarrow \mathcal{X} \cup \{s^*\} \end{split}$$
- 5. **end**
- 6. Return \mathcal{X}

Near optimality guarantees

$$G(\mathcal{S}_{\mathsf{greedy}}) \geq \frac{1}{2}G(\mathcal{S}^{\star})$$

[Nemhauser-Wolsey-Fisher-1978]

Linear sweep time

- G. Ortiz-Jiménez, M. Coutino, S.P. Chepuri, and G. Leus. Sparse Sampling for Inverse Problems with Tensors. IEEE TSP (under review), June 2018. (available as arXiv:1806.10976).
- G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, "An analysis of approximations for maximizing submodular set functions— I." Mathematical Programming, vol. 14, no. 1, pp. 265–294, 1978.

Graph Learning or Topology Inference

- S.P. Chepuri, S. Liu, G. Leus, and A. Hero. Learning Sparse Graphs Under Smoothness Prior. *ICASSP 2017*, New Orleans, USA.
- S.K. Kadambari and S.P. Chepuri. Learning Product Graphs from Multidomain Signals. ICASSP 2020, Barcelona, Spain.
- V. Kalofolias, "How to learn a graph from smooth signals," in Proc. of the 19th International Conference on Artificial Intelligence and Statistics, 2016.
- X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, "Learning laplacian matrix in smooth graph signal representations," *IEEE TSP, vol. 64, no. 23, Dec. 2016.*

"Learn a sparse graph that sufficiently explains the data"

Sparse graph learning problem

Learn a "sparse graph" (or estimate the graph Laplacian matrix) from smooth data

Learnt graph with K = 175 edges using 4 snapshots

Graph Laplacian – quadratic form

$$\mathbf{x}^T \mathbf{L} \mathbf{x} = \sum_{(i,j) \in \mathcal{E}} (x_i - x_j)^2$$
$$= 1$$

Sum of squares of differences across edges

- \succ Quantifies **smoothness** of x with respect to the underlying graph
- \blacktriangleright When multiple snapshots \boldsymbol{x}_i for $i=1,2,\ldots,T$ are available, then the quadratic form will be

$$\sum_{i=1}^T oldsymbol{x}_i^T oldsymbol{L} oldsymbol{x}_i = ext{tr}(oldsymbol{X}^T oldsymbol{L} oldsymbol{X})$$

ightharpoonup Small values of $\operatorname{tr}(\mathbf{X}^T\mathbf{L}_N\mathbf{X})$ implies that \mathbf{X} is smooth on the graph

Graph Learning from smooth data

- \blacktriangleright Given training graph data $X: N \times T$, or its noisy or incomplete version, Y, estimate the graph Laplacian matrix
- ➤ This is an ill-posed problem, but we know the set of all the valid Laplacian matrices

$$\mathcal{L}_N := \left\{ \mathbf{L} \in \mathbb{R}^{N \times N} | \mathbf{L} \mathbf{1} = \mathbf{0}, \operatorname{tr}(\mathbf{L}) = N, L_{ij} = L_{ji} \le 0, i \ne j \right\}$$

The graph learning problem reduces to

$$\underset{\mathbf{L}_N \in \mathcal{L}_N, \mathbf{X}}{\text{minimize}} \quad f(\mathbf{X}, \mathbf{Y}) + \alpha \operatorname{tr}(\mathbf{X}^T \mathbf{L}_N \mathbf{X}) + \beta \|\mathbf{L}_N\|_F^2$$

 $\|.\|_F^2$ controls the distribution the edge weights of the learned graph

 α and β are two positive regularization parameters

Graph Learning from smooth data

The graph learning problem is then solved using alternating minimization:

$$\underset{\mathbf{L} \in \mathcal{L}_{\mathcal{N}}}{\text{minimize}} \quad \alpha \operatorname{tr}\{\mathbf{X}^{T}\mathbf{L}\mathbf{X}\} + \beta \|\mathbf{L}\|_{F}^{2}$$

✓ Since the Laplacian matrix is symmetric for undirected graphs, we need to estimate only its upper or lower triangular elements.

minimize
$$f(\mathbf{X}, \mathbf{Y}) + \alpha \operatorname{tr}\{\mathbf{X}^T \mathbf{L} \mathbf{X}\}$$

✓ Depending the observation model, often the above problem can be relaxed to a convex optimization problem.

Graph Laplacian – quadratic form

$$\boldsymbol{x}^T \boldsymbol{L} \boldsymbol{x} = \sum_{(i,j) \in \mathcal{E}} (x_i - x_j)^2$$
$$= 1$$

Sum of squares of differences across edges

103

Laplacian matrix can be written as a outer product of "incidence" vectors

$$egin{aligned} m{L} = m{A} m{A}^T = \sum_{m=1}^M m{a}_m m{a}_m^T & \text{(quadratic form)} \\ [m{a}_m]_i = 1 \\ [m{a}_m]_j = -1 \\ \text{zeros elsewhere} & \end{bmatrix} \quad \text{For an edge "m" connecting node "i" and "j"}$$

Graph learning as a sampling problem

ightharpoonup Denote the subgraph of $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ or K-sparse graph

$$\mathcal{G}_s(\mathcal{V},\mathcal{E}_s)$$
 with the edge set $\mathcal{E}_s\subset\mathcal{E}$ such that $|\mathcal{E}_s|=K\ll M$

Introduce an "edge sampling" vector

$$\mathbf{w} = [w_1, w_2, \cdots, w_M]^T \in \{0, 1\}^M$$

 $w_m=1$ if an edge belongs to the edge subset $\,\mathcal{E}_s$

Graph Laplacian of the K-sparse graph

$$oldsymbol{L}_s(oldsymbol{w}) = \sum_{m=1}^M w_m oldsymbol{a}_m oldsymbol{a}_m^T$$

(Recall the outer product decomposition of the Laplacian)

- Complete graph
- Given graph

Sparse edge selection

- \succ Given L "noiseless" graph signals $oldsymbol{X} = [oldsymbol{x}_1, oldsymbol{x}_2, \dots, oldsymbol{x}_L]$
- K-sparse graph learning will be

$$\arg\min_{\boldsymbol{w}\in\mathcal{W}} \quad \frac{1}{L} \sum_{k=1}^{L} \boldsymbol{x}_k^T \boldsymbol{L}_s(\boldsymbol{w}) \boldsymbol{x}_k = \frac{1}{L} \operatorname{tr} \{ \boldsymbol{X}^T \boldsymbol{L}_s(\boldsymbol{w}) \boldsymbol{X} \}$$

$$\mathcal{W} = \{ \mathbf{w} \in \{0, 1\}^M \mid ||\mathbf{w}||_0 = K \}$$

Non-convex (Boolean optimization problem)

Sparse edge selection

- $ilde{m{ iny }}$ Given L "noiseless" graph signals $m{X} = [m{x}_1, m{x}_2, \dots, m{x}_L]$
- K-sparse graph learning will be

$$\arg\min_{\boldsymbol{w}\in\mathcal{W}} \quad \frac{1}{L} \sum_{k=1}^{L} \boldsymbol{x}_k^T \boldsymbol{L}_s(\boldsymbol{w}) \boldsymbol{x}_k = \frac{1}{L} \text{tr} \{ \boldsymbol{X}^T \boldsymbol{L}_s(\boldsymbol{w}) \boldsymbol{X} \}$$

$$\mathcal{W} = \{ \mathbf{w} \in \{0, 1\}^M \, | \, \|\mathbf{w}\|_0 = K \}$$

Cost function (modular):

$$\frac{1}{L}\operatorname{tr}\left\{\boldsymbol{X}^{T}\boldsymbol{L}_{s}(\boldsymbol{w})\boldsymbol{X}\right\} = \sum_{m=1}^{M} w_{m}\operatorname{tr}\left\{\boldsymbol{X}^{T}(\boldsymbol{a}_{m}\boldsymbol{a}_{m}^{T})\boldsymbol{X}\right\}$$

- Solution: rank ordering!
 - ✓ Computational complexity O(K log K), or O(K) with parallel implementation

Sparse edge selection

Given L "noiseless" graph signals, K-sparse graph learning

$$\arg\min_{\boldsymbol{w}\in\mathcal{W}} \quad \frac{1}{L} \sum_{k=1}^{L} \boldsymbol{x}_k^T \boldsymbol{L}_s(\boldsymbol{w}) \boldsymbol{x}_k = \frac{1}{L} \text{tr} \{ \boldsymbol{X}^T \boldsymbol{L}_s(\boldsymbol{w}) \boldsymbol{X} \}$$

$$\mathbf{W} = \{ \mathbf{w} \in \{0, 1\}^M \, | \, \|\mathbf{w}\|_0 = K \}$$

Example: Suppose covariance matrix of $oldsymbol{x}$ is $oldsymbol{R_x}$, then

$$L^{-1}\operatorname{tr}\{\boldsymbol{X}^{T}\boldsymbol{L}_{s}(\boldsymbol{w})\boldsymbol{X}\} = \sum_{m=1}^{M} w_{m}(\boldsymbol{a}_{m}^{T}\widehat{\boldsymbol{R}}_{\boldsymbol{x}}\boldsymbol{a}_{m})$$

Solution: select K edges between those nodes having highest cross-correlation as

$$\boldsymbol{a}_{m}^{T} \widehat{\boldsymbol{R}}_{\boldsymbol{x}} \boldsymbol{a}_{m} = [\widehat{\boldsymbol{R}}_{\boldsymbol{x}}]_{i,i} + [\widehat{\boldsymbol{R}}_{\boldsymbol{x}}]_{j,j} - 2[\widehat{\boldsymbol{R}}_{\boldsymbol{x}}]_{i,j}$$

(Special case: GMRF model with $oldsymbol{R_x} := oldsymbol{L}^\dagger + \sigma^2 \mathbf{I}$)

Numerical experiments – windspeed data

K=125

Wind speed data of year 2002 from 30 stations

[Source: KNMI, Netherlands]

Numerical experiments – French temp. data

K=110

Temperature data of Brittany, France from 32 stations

Thanks to N. Perraudin and P. Vandergheynst for the dataset.

Numerical experiments - performance

Kalofolias:
$$\min ext{imize}_{m{L} \in \mathcal{L}} \sum_{k=1}^L m{x}_k^T m{L} m{x}_k + \lambda ext{card}(m{L})$$
 $\mathcal{L} = \{m{L} \succeq 0, L_{i,j} = L_{j,i} \leq 0, m{L} m{1} = m{0}\}$

 V. Kalofolias, "How to learn a graph from smooth signals," in Proc. of the 19th International Conference on Artificial Intelligence and Statistics, 2016, pp. 920–929.

Sparse edge selection with "denoising"

 \succ Given "L" noisy signals: $oldsymbol{y}_k = oldsymbol{x}_k + oldsymbol{n}_k$,

$$\arg\min_{\{\boldsymbol{x}_k\}_{k=1}^L, \boldsymbol{w} \in \mathcal{W}} \frac{1}{L} \sum_{k=1}^L (\|\boldsymbol{y}_k - \boldsymbol{x}_k\|_2^2 + \gamma \, \boldsymbol{x}_k^T \boldsymbol{L}_s(\boldsymbol{w}) \boldsymbol{x}_k)$$

Alternating minimization

Fixed
$$\boldsymbol{w}: \boldsymbol{X}_{\min}(\boldsymbol{w}) = [\mathbf{I} + \gamma \boldsymbol{L}_s(\boldsymbol{w})]^{-1} \boldsymbol{Y}$$
 (denoising)

$$\mathsf{Fixed} oldsymbol{X} : oldsymbol{w}_{\min}(oldsymbol{X}) \; \mathsf{sorting}, \, \mathsf{as} \; \mathsf{before} \qquad \mathsf{(edge \, selection)}$$

- ✓ Converges to a stationary point
- ✓ Suffers from the choice of the initial estimate

Product graph learning

• S.K. Kadambari and S.P. Chepuri. Learning Product Graphs from Multidomain Signals. ICASSP 2020, Barcelona, Spain.

Product graph learning

Given L_N the graph factors L_P and L_Q can be obtained by solving

$$\underset{\mathbf{L}_{P} \in \mathcal{L}_{P}, \mathbf{L}_{Q} \in \mathcal{L}_{Q}}{\operatorname{minimize}} \|\mathbf{L}_{N} - \mathbf{L}_{P} \oplus \mathbf{L}_{Q}\|_{F}^{2}$$

- ➤ This is a twostep approach
 - ✓ computing a size -N Laplacian matrix
 - \checkmark factorizing the Laplacian matrix into \mathbf{L}_P and \mathbf{L}_Q

One-step approach

When Laplacian matrix has a Cartesian product structure

$$\mathbf{L}_N = \mathbf{L}_P \oplus \mathbf{L}_Q = \mathbf{I}_Q \otimes \mathbf{L}_P + \mathbf{L}_Q \otimes \mathbf{I}_P$$

Product graph learning problem reduces to

$$\underset{\mathbf{L}_P \in \mathcal{L}_P, \mathbf{L}_Q \in \mathcal{L}_Q}{\text{minimize}} \quad \alpha \operatorname{tr} \{ \mathbf{X}^T (\mathbf{L}_P \oplus \mathbf{L}_Q) \mathbf{X} \} + \beta_1 \| \mathbf{L}_P \|_F^2 + \beta_2 \| \mathbf{L}_Q \|_F^2$$

- ✓ The optimization problem is convex.
- ✓ we need to solve for only the upper or lower triangular elements
- ✓ The problem is equivalent to

$$\underset{\mathbf{z} \in \mathbb{R}^K}{\text{minimize}} \quad \frac{1}{2}\mathbf{z}^T\mathbf{P}\mathbf{z} + \mathbf{q}^T\mathbf{z}, \quad \text{ subject to } \quad \mathbf{C}\mathbf{z} = \mathbf{d}, \mathbf{z} \geq \mathbf{0}$$

✓ has an explicit water-filling solution

Air quality data

- PM 2.5 data collected over 40 air quality monitoring stations in different locations in India for each day of the year 2018
- ➤ The dataset has missing entries, which are imputed using a graph Laplacian regularized nuclear norm minimization

$$f(\mathbf{X}, \mathbf{Y}) := \sum_{i=1}^{T} \| \mathcal{A} (\mathbf{X}_i - \mathbf{Y}_i) \|_F^2 + \gamma \| \mathbf{X}_i \|_*$$

Topology inference from partial observations

• S.P. Chepuri, M. Coutino, A. Marques, and G. Leus. Disitributed Analytical Graph Identification, ICASSP 2018, Vancouver, Cannada.

Distributed computation of eigenmodes of a network

Can we infer the graph topology using observations at a single node?

Linear dynamics on networks

Linear network dynamics

Information flow to a node from its neighbors

Observation at node i

$$\boldsymbol{x}_{-1} = 0$$
 and $\boldsymbol{x}_0 = \boldsymbol{b}$

 e_i is the *i*th column of the identity matrix

ightharpoonup Given observations $oldsymbol{y}=\{y_0,\ldots,y_{K-1}\}$ and $oldsymbol{b}$ compute $oldsymbol{U}$ and $oldsymbol{\Lambda}$

Each node will have an overview of the network

Information flow to a node from its neighbors

$$egin{array}{lll} oldsymbol{x}_k &=& oldsymbol{A} oldsymbol{x}_{k-1} + oldsymbol{b} u_{k-1} \ y_k &=& oldsymbol{e}_i^T oldsymbol{x}_k \end{array} \qquad egin{array}{lll} oldsymbol{x}_{-1} = 0 ext{ and } oldsymbol{x}_0 = oldsymbol{b} \ oldsymbol{x}_{-1} = 0 ext{ and } oldsymbol{x}_0 = oldsymbol{b} \end{array}$$

> At node i, we aggregate measurements

[Marques et al.-2016]

$$egin{aligned} oldsymbol{y} &=& \left[egin{array}{c} oldsymbol{e}_i^T oldsymbol{A} \ oldsymbol{e}_i^T oldsymbol{A} \ oldsymbol{arphi} \ oldsymbol{e}_i^T oldsymbol{A}^{K-1} \end{array}
ight] oldsymbol{b} = \left[egin{array}{c} oldsymbol{e}_i^T oldsymbol{U} oldsymbol{\Lambda} oldsymbol{U}^T \ oldsymbol{arepsilon} \ oldsymbol{e}_i^T oldsymbol{U} oldsymbol{\Lambda}^{K-1} oldsymbol{U}^T \end{array}
ight] oldsymbol{b} \end{aligned}$$

A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, "Sampling of graph signals with successive local aggregations," TSP 2016.

> At the observed node

 $oldsymbol{u} = oldsymbol{e}_i^T oldsymbol{U}$

$$egin{array}{lll} oldsymbol{y} & = & \left[egin{array}{c} oldsymbol{e}_i^T oldsymbol{A} \ oldsymbol{e}_i^T oldsymbol{A}^{K-1} \ oldsymbol{e}_i^T oldsymbol{A}^{K-1} \end{array}
ight] oldsymbol{b} = \left[egin{array}{c} oldsymbol{e}_i^T oldsymbol{U} oldsymbol{\Lambda} oldsymbol{U}^T \ oldsymbol{e}_i^T oldsymbol{U} oldsymbol{\Lambda}^{K-1} oldsymbol{U}^T \end{array}
ight] oldsymbol{b} \end{array}$$

$$= oldsymbol{V} \mathsf{diag}[oldsymbol{\underline{u}}] oldsymbol{U}^T oldsymbol{b} = oldsymbol{V} oldsymbol{ heta}$$

Remark: U^Tb should not be sparse to excite all modes

$$m{V} = [m{v}_1, m{v}_2, \dots, m{v}_N] = egin{bmatrix} 1 & 1 & \cdots & 1 \ \lambda_1 & \lambda_2 & \cdots & \lambda_N \ \lambda_1^2 & \lambda_2^2 & \cdots & \lambda_N^2 \ dots & dots & dots \ \lambda_1^{K-1} & \lambda_2^{K-1} & \cdots & \lambda_N^{K-1} \ \end{bmatrix}$$

Arrange data in each node as

$$m{Y}_0 = egin{bmatrix} y_N & y_{N-1} & \cdots & y_1 \\ y_{N+1} & y_N & \cdots & y_2 \\ \vdots & \vdots & & \vdots \\ y_{K-2} & y_{K-3} & \cdots & y_{N-K-1} \end{bmatrix} \qquad m{Y}_1 = egin{bmatrix} y_{N-1} & y_{N-2} & \cdots & y_0 \\ y_N & y_{N-1} & \cdots & y_1 \\ \vdots & \vdots & & \vdots \\ y_{K-1} & y_{K-2} & \cdots & y_{N-K} \end{bmatrix}$$

$$m{Y}_1 = egin{bmatrix} y_{N-1} & y_{N-2} & \cdots & y_0 \\ y_N & y_{N-1} & \cdots & y_1 \\ \vdots & \vdots & & \vdots \\ y_{K-1} & y_{K-2} & \cdots & y_{N-K} \end{bmatrix}$$

- To form the data matrices, we require 2N aggregations
- Roots of the pencil of matrices $Y_0 \lambda Y_1$ produce the roots of V
- Eigenfrequencies are the generalized eigenvalues

$$oldsymbol{\Lambda} = \mathtt{geig}(oldsymbol{Y}_0, oldsymbol{Y}_1) = \mathtt{eig}(oldsymbol{Y}_1^{-1}oldsymbol{Y}_0)$$

Arrange data in each node as

$$\boldsymbol{Y}_{0} = \begin{bmatrix} y_{N} & y_{N-1} & \cdots & y_{1} \\ y_{N+1} & y_{N} & \cdots & y_{2} \\ \vdots & \vdots & & \vdots \\ y_{K-2} & y_{K-3} & \cdots & y_{N-K-1} \end{bmatrix} \qquad \boldsymbol{Y}_{1} = \begin{bmatrix} y_{N-1} & y_{N-2} & \cdots & y_{0} \\ y_{N} & y_{N-1} & \cdots & y_{1} \\ \vdots & \vdots & & \vdots \\ y_{K-1} & y_{K-2} & \cdots & y_{N-K} \end{bmatrix}$$

 \triangleright When some $\{\lambda_i\}$ are very close, Y_1 is ill-conditioned

Generalized Schur decomposition: $Y_0 = QSZ^H$ and $Y_1 = QTZ^H$

Q is a unitary matrix

S and T are upper triangular matrices

$$\lambda(Y_0, Y_1) = \{ [S]_{nn} / [T]_{nn} : [T]_{nn} > \epsilon \}$$

Computing the eigenmodes

- To compute the eigenvectors, we require multiple snapshots of the data.
- ightharpoonup Suppose $M \ge K$ snapshots of the input signal are available

$$egin{array}{lll} [m{y}_1 \cdots m{y}_M] &= egin{bmatrix} m{e}_i^T m{U} m{\Lambda} m{U}^T \ ddots \ m{e}_i^T m{U} m{\Lambda}^{K-1} m{U}^T \end{bmatrix} [m{b}_1 \cdots m{b}_M] \ m{Y} &= m{V} ext{diag}[m{m{u}}] m{U}^T m{B} \end{array}$$

Inverting V and B

$$m{H} = m{V}^\dagger m{Y} m{B}^\dagger = \mathsf{diag}[m{u}] m{U}^T \Rightarrow m{G} = m{H}^T m{H} = m{U} \mathsf{diag}^2 [m{u}] m{U}^T$$

Eigenmodes of the graph are the eigenvectors of *G*

Laplacian matrix

$$\boldsymbol{\lambda} = \begin{bmatrix} 0 \\ 0.8299 \\ 2 \\ 2.6889 \\ 4.4812 \end{bmatrix} \quad \boldsymbol{U} = \begin{bmatrix} -0.4472 & -0.2560 \\ -0.4472 & -0.4375 \\ -0.4472 & -0.2560 \\ -0.4472 & 0.1380 \\ -0.4472 & 0.8115 \end{bmatrix}$$

eigenvectors

$$\hat{\boldsymbol{U}} = \begin{bmatrix} -0.7071 & -0.4472 & 0.4193 & -0.2560 & -0.2422 \\ 0 & -0.4472 & -0.3380 & -0.4375 & 0.7031 \\ 0.7071 & -0.4472 & 0.4193 & -0.2560 & -0.2422 \\ 0 & -0.4472 & -0.7024 & 0.1380 & -0.5362 \\ 0 & -0.4472 & 0.2018 & 0.8115 & 0.3175 \end{bmatrix}$$

- ✓ Eigenvectors are recovered up to a sign flip and column permutation.
- Frequency interpretation of the eigenvectors are retained

-0.4193

-0.4193

0.7024

-0.2018

Spectrum of the Toeplitz data matrix Y_1

127

• A. Gavili and X.-P. Zhang, "On the shift operator, graph frequency and optimal filtering in graph signal processing," TSP 2017.

Geometric deep learning

- http://geometricdeeplearning.com/
- M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, P. Vandergheynst, Geometric deep learning: going beyond Euclidean data, IEEE Signal Processing Magazine 2017 (Review paper)
- S.K. Kadambari and S.P. Chepuri, Fast Graph Convolutional Recurrent Neural Networks.
 Asilomar 2019, Pacific Grove, USA
- A. Madapu, S. Segarra, S.P. Chepuri, and A. Marques, Generative Adversarial Networks for Graph Data Imputation from Signed Observations. ICASSP 2020, Barcelona, Spain

Graph neural nets (GCNs)

Chebyshev polynomial

$$\mathbf{W} \star_{\mathcal{G}} \mathbf{X} = \sum_{k=0}^{K} w_k \mathbf{T}_k(\mathbf{L})$$
 $\mathbf{T}_k(x) = x \mathbf{T}_{k-1}(x) - \mathbf{T}_{k-2}(x)$
 $\mathbf{T}_0 = 1$ $\mathbf{T}_1 = x$
[Defferrance et al. 2016]

First-order (fast) variant

$$\mathbf{W} \star_{\mathcal{G}} \mathbf{X} = \mathbf{WLX}$$

[Kipf et al. 2016]

Henceforth, we focus on this variant

- Michaël Defferrard et al. "Convolutional neural networks on graphs with fast localized spectral filtering." *Advances in neural information processing systems* 2016.
- Thomas N. Kipf and Max Welling. "Semi-supervised classification with graph convolutional networks." *International Conference on Learning Representations 2017.*

Recurrent neural nets (RNNs) and variants

Standard RNN

$$\mathbf{h}_t = \sigma(\mathbf{W}\mathbf{x}_t + \mathbf{U}\mathbf{h}_{t-1} + \mathbf{b})$$

 $\mathbf{y}_t = \sigma(\mathbf{V}\mathbf{h}_t + \mathbf{z})$

Long short term memory (LSTM)

$$\mathbf{f}_{t} = \sigma(\mathbf{W}_{f}\mathbf{x}_{t} + \mathbf{U}_{f}\mathbf{h}_{t-1} + \mathbf{b}_{f})$$

$$\mathbf{i}_{t} = \sigma(\mathbf{W}_{i}\mathbf{x}_{t} + \mathbf{U}_{i}\mathbf{h}_{t-1} + \mathbf{b}_{i})$$

$$\mathbf{o}_{t} = \sigma(\mathbf{W}_{o}\mathbf{x}_{t} + \mathbf{U}_{o}\mathbf{h}_{t-1} + \mathbf{b}_{o})$$

$$\tilde{\mathbf{c}}_{t} = \tanh(\mathbf{W}_{c}\mathbf{x}_{t} + \mathbf{U}_{c}\mathbf{h}_{t-1} + \mathbf{b}_{c})$$

$$\mathbf{c}_{t} = \mathbf{f}_{t} \odot \mathbf{c}_{t-1} + \mathbf{i}_{t} \odot \tilde{\mathbf{c}}_{t}$$

$$\mathbf{h}_{t} = \mathbf{o}_{t} \odot \sigma(\mathbf{c}_{t})$$

Graph recurrent neural nets (GCRN)

When the data is defined on a graph, the multiplications in standard RNN are replaced with graph convolutions.

Dynamic 3D point cloud

- \succ At each time step, the prediction loss function is given by $J_t(\mathbf{x}_t, \hat{\mathbf{x}}_{t+1}, \boldsymbol{\theta})$
 - $\triangleright \theta$ is the set of all trainable parameters
- \blacktriangleright Loss after T time steps is given by $J(\mathbf{X}, \boldsymbol{\theta}) = \sum_{t=1}^{T} J_t(\mathbf{x}_t, \hat{\mathbf{x}}_{t+1}, \boldsymbol{\theta})$

Gradient issues with standard GCRNN

 \blacktriangleright The gradient of the loss function J w.r.t. the tuning parameters

$$\frac{\partial J}{\partial w} = \sum_{t=1}^{T} \frac{\partial J_{t}}{\partial \mathbf{h}_{t}} \prod_{t=2}^{T} \frac{\partial \mathbf{h}_{t}}{\partial \mathbf{h}_{t-1}} \frac{\partial \mathbf{h}_{1}}{\partial w} \qquad \frac{\partial J}{\partial u} = \sum_{t=1}^{T} \frac{\partial J_{t}}{\partial \mathbf{h}_{t}} \prod_{t=2}^{T} \frac{\partial \mathbf{h}_{t}}{\partial \mathbf{h}_{t-1}} \frac{\partial \mathbf{h}_{1}}{\partial u} \qquad \frac{\partial J}{\partial \mathbf{b}} = \sum_{t=1}^{T} \frac{\partial J_{t}}{\partial \mathbf{h}_{t}} \prod_{t=2}^{T} \frac{\partial \mathbf{h}_{t}}{\partial \mathbf{h}_{t-1}} \frac{\partial \mathbf{h}_{1}}{\partial \mathbf{b}}$$

$$\prod_{t=2}^{T} \frac{\partial \mathbf{h}_{t}}{\partial \mathbf{h}_{t-1}} = \prod_{t=2}^{T} (u\mathbf{D}_{t}\mathbf{L})$$

$$\mathbf{D}_t = \operatorname{diag}(\sigma'(w\mathbf{L}\mathbf{x}_t + u\mathbf{L}\mathbf{h}_{t-1} + \mathbf{b}))$$

When we choose $\sigma(\cdot) = \mathtt{relu}$, then \mathbf{D}_t is an Identity matrix

$$\prod_{t=2}^{T} \frac{\partial \mathbf{h}_t}{\partial \mathbf{h}_{t-1}} = (u\mathbf{L})^{T-2}$$

- If the largest eigenvalue of $(u\mathbf{L})$ is sufficiently small (i.e., < 1) the gradient will shrink exponentially
- ➤ If it is large, the gradient will explode

Residual connection

➤ To stabilize the gradients, a simple weighted residual connection maybe introduced.

 \mathbf{X}_t

- $\triangleright \alpha$ and β are the two additional trainable parameters
- ightharpoonup lpha = 1 and eta = 0 corresponds to the standard GRNN

A. Kusupati et al., "Fastgrnn: A fast, accurate, stable and tiny kilobyte sized gated recurrent neural network," in Proc. of the Advances in Neural Information Processing Systems (NIPS), Alberta, Canada, Dec. 2018

Gradients with the residual connection

> The gradient of the loss function w.r.t. w is determined by

$$\prod_{t=2}^{T} \frac{\partial \mathbf{h}_{t}}{\partial \mathbf{h}_{t-1}} = \prod_{t=2}^{T} (\alpha u \mathbf{D}_{t} \mathbf{L} + \beta \mathbf{I}) =: \mathbf{M}$$

> The stability of the gradient depends on $\alpha \mathbf{D}_t u \mathbf{L} + \beta \mathbf{I}$, whose condition number is bounded by

$$\operatorname{cond}(\mathbf{M}) \leq \frac{\left(1 + \frac{\alpha}{\beta} \max_{t} \|u\mathbf{D}_{t}\mathbf{L}\|\right)^{T-2}}{\left(1 - \frac{\alpha}{\beta} \max_{t} \|u\mathbf{D}_{t}\mathbf{L}\|\right)^{T-2}}$$

ightharpoonup If $\alpha=0$ and $\beta=1$, this number is 1, which implies that the gradient is stable, but ignores data/training.

 A. Kusupati et al., "Fastgrnn: A fast, accurate, stable and tiny kilobyte sized gated recurrent neural network," in Proc. of the Advances in Neural Information Processing Systems (NIPS), Alberta, Canada, Dec. 2018

Fast graph recurrent nets

$$\tilde{\mathbf{h}}_t = \sigma(\mathbf{WLx}_t + \mathbf{ULh}_{t-1} + \mathbf{b})$$

$$\mathbf{h}_t = \alpha \tilde{\mathbf{h}}_t + \beta \mathbf{h}_{t-1}$$

$$\hat{\mathbf{x}}_{t+1} = \sigma(\mathbf{V}\mathbf{h}_t + \mathbf{z})$$

Gradient and condition number:

$$\prod_{t=2}^{T} \frac{\partial \mathbf{h}_{t}}{\partial \mathbf{h}_{t-1}} = \prod_{t=2}^{T} (\alpha \mathbf{U} \mathbf{D}_{t} \mathbf{L} + \beta \mathbf{I}) =: \mathbf{M}$$

$$\operatorname{cond}(\mathbf{M}) \leq \frac{(1 + \frac{\alpha}{\beta} \max_{t} \|\mathbf{D}_{t}\mathbf{UL}\|)^{T-2}}{(1 - \frac{\alpha}{\beta} \max_{t} \|\mathbf{D}_{t}\mathbf{UL}\|)^{T-2}}$$

Remark: For non-graph cases, one may also train for unitary weights (unitary RNN)

Numerical results - setup

- ➤ To evaluate the performance of the proposed method, we use a dynamic 3-D point cloud dataset (a human pose)
- \blacktriangleright Given a 3-D point cloud frame at a time step T , the task is to predict the next 3-D point cloud frame
- ➤ The data has 1502 3D points and 573 time frames
- ➤ We use 80% of data available to train the model and 20% to test the model
- Training data is used to construct a nearest neighbour graph
- \blacktriangleright The learning rate is initialized to 10^{-2} and we use ADAM optimizer for training

Numerical results

- Thomas N. Kipf, and Max Welling. "Semi-supervised classification with graph convolutional networks." *arXiv* preprint *arXiv*:1609.02907 (2016).
- Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. "Convolutional neural networks on graphs with fast localized spectral filtering." *Advances in neural information processing systems*. 2016.
- Youngjoo Seo et al. "Structured sequence modeling with graph convolutional recurrent networks." *International* 138 *Conference on Neural Information Processing*. Springer, Cham, 2018.

Numerical results

	# parameters	3D point cloud
LSTM with GCN	$4Fp + 4p^2 + 4n$	6080
Proposed	$2Fp + p^2 + 2n + 2$	3003

- Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." *arXiv* preprint arXiv:1609.02907 (2016).
- Defferrard, Michaël, Xavier Bresson, and Pierre Vandergheynst. "Convolutional neural networks on graphs with fast localized spectral filtering." *Advances in neural information processing systems*. 2016.
- Youngjoo Seo et al. "Structured sequence modeling with graph convolutional recurrent networks." *International* Conference on Neural Information Processing. Springer, 2018.

GANs

Generative adversarial nets

https://thispersondoesnotexist.com

Graph GANs

- Given one-bit quantized data we want to reconstruct the original signal
- This is also referred to PU learning, where we observe only positive labels (in this case, we use signed measurements)

Graph GANs

Generator: $\hat{\mathbf{x}} = G_{\theta}(\overline{\mathbf{s}}, (\mathbf{1} - \mathbf{m}) \odot \mathbf{z})$

Discriminator: $p_n = D_{\psi}(\operatorname{sign}(\hat{\mathbf{x}}), \mathbf{h})$

(estimates the mask matrix)

heta and ψ are network parameters

Discrimator loss: $\mathcal{L}_{\theta,\psi}^D(p_n,m_n) = -[m_n\log(p_n) + (1-m_n)\log(1-p_n)]$

Generator loss:
$$\mathcal{L}_{\theta,\psi}^{G_1}\left(p_n,m_n\right)=-\left(1-m_n\right)\log\left(p_n\right)$$

min. when D is deceived

$$\mathcal{L}_{\theta}^{G_2}(\bar{\mathbf{s}}, \hat{\mathbf{x}}) = \sum_{i=1}^{N} m_i \left(\bar{s}_i - \operatorname{sign}(\hat{x}_i)\right)^2$$

Consistency with observations

$$\mathcal{L}_{\theta}^{G_3}(\hat{\mathbf{x}}) = \mathrm{T}V_{\mathcal{G}}^{\ell_2}(\hat{\mathbf{x}})$$

Smooth over graph

Solve the min-max problem $\min_{\theta} \max_{\psi} - \mathcal{L}_{\theta,\psi}^{D}(p_n,m_n) + \mathcal{L}_{\theta,\psi}^{G_1}(p_n,m_n) + \alpha \mathcal{L}_{\theta}^{G_2}(\bar{\mathbf{s}},\hat{\mathbf{x}}) + \beta \mathcal{L}_{\theta}^{G_3}(\hat{\mathbf{x}}),$

142

Graph GANs

Method	Error
Proposed	0.36
GAIN	1.12
Iterative gradient descent	0.49

Handwritten MNIST data set

Image size: 28 x 28

Batch size: 384

No. of samples for training: 54192

No. of samples tested: 9984

Non-deep method: Laplacian regularization and gradient descent with sgn(.) approximated with tanh(.)

Summary

- Introduction to graph signal processing
- Active learning or sampling and recovery of graph signals
- Graph learning or topology inference
- ➤ Geometric deep learning (GNNs, RNNs and GANs)

Thank You!

https://ece.iisc.ac.in/~spchepuri/

Kernel-based reconstruction

- Popular within machine learning for nonlinear function estimation
- Kernel methods seek an estimation of a function in a reproducing kernel Hilbert space (RKHS)

$$\mathcal{H} = \left\{ x: x(v) = \sum_{n=1}^{N} \alpha_n k(v, v_n), \ \alpha_n \in \mathbb{R} \right\}$$
 basis functions

Kernel map $k: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$

 $k(v_n,v_m)$ measures similarity between signal values at v_n and v_m

Any graph signal can be assumed to be in RKHS

$$x = K\alpha$$

$$[\boldsymbol{K}]_{n,m} = k(v_n, v_m)$$

Kernel-based reconstruction

RKHS inner product of
$$x(v) = \sum_{n=1}^{N} \alpha_n k(v, v_n)$$
 and $x'(v) = \sum_{n=1}^{N} \alpha'_n k(v, v_n)$

$$\langle x, x' \rangle_{\mathcal{H}} = \sum_{n=1}^{N} \sum_{n=1}^{N} \alpha_n \alpha'_n k(v_n, v'_n) = \boldsymbol{\alpha}'^T \boldsymbol{K} \boldsymbol{\alpha}$$

RKHS-based function estimator can be used to reconstruct signals

$$\hat{x} = K\alpha$$

$$\hat{m{lpha}} = \mathop{\mathrm{arg\,min}}_{m{lpha} \in \mathbb{R}^N} \mathcal{L}(m{y}, m{\Phi} m{K} m{lpha}) + \mu m{lpha}^T m{K} m{lpha}$$

Or, equivalently

$$\hat{m{x}} = \mathop{\mathrm{arg\,min}}_{m{x} \in \mathcal{H}} \mathcal{L}(m{y}, m{\Phi} m{x}) + \mu m{x}^T m{K}^\dagger m{x}$$

$$\mathcal{L}(\cdot)$$
 is a loss function

$$\alpha^T K \alpha = \alpha^T K K^{\dagger} K \alpha$$

promotes smoothness

Kernel-based reconstruction – ridge regression

Parameterization via representer theorem

$$\hat{m{x}} = m{K}m{lpha} = m{K}m{\Phi}^Tar{m{lpha}} \qquad \qquad ar{m{lpha}} \in \mathbb{R}^K$$

Terms corresponding to unobserved vertices play no role in kernel expansion

$$\hat{ar{lpha}} = \mathop{\mathrm{arg\,min}}_{ar{m{lpha}} \in \mathbb{R}^K} \mathcal{L}(m{y}, ar{m{K}}ar{m{lpha}}) + \mu ar{m{lpha}}^T ar{m{K}}ar{m{lpha}} \qquad ar{m{K}} = m{\Phi} m{K}m{\Phi}^T$$

Kernel ridge regression

$$egin{array}{lll} \hat{oldsymbol{lpha}} &=& rg \min_{ar{oldsymbol{lpha}} \in \mathbb{R}^K} rac{1}{K} \|oldsymbol{y} - ar{oldsymbol{K}} ar{oldsymbol{lpha}} \|^2 + \mu ar{oldsymbol{lpha}}^T ar{oldsymbol{K}} ar{oldsymbol{lpha}} \ &=& (ar{oldsymbol{K}} + \mu K oldsymbol{oldsymbol{I}})^{-1} oldsymbol{y} \ & \hat{oldsymbol{x}} &=& oldsymbol{K} oldsymbol{\Phi}^T (ar{oldsymbol{K}} + \mu K oldsymbol{oldsymbol{I}})^{-1} oldsymbol{y} \end{array}$$

Kernel-based reconstruction

Choice of kernels

Graph bandlimited kernels

$$oldsymbol{x} = oldsymbol{U}_{\mathsf{BL}} ilde{oldsymbol{x}}_f$$

Other topology-based kernel (promotes smooth signal estimates)

$$oldsymbol{K} = r^\dagger(oldsymbol{L}) = oldsymbol{U} r^\dagger(oldsymbol{\Lambda}) oldsymbol{U}^T$$

$$r: \mathbb{R} \to \mathbb{R}_+$$

Diffusion kernel: $r(\lambda) = exp\{\sigma^2\lambda/2\}$

p-step random walk kernel: $r(\lambda) = (a - \lambda)^{-p}, a \ge 2$

Laplacian (regularization) kernel: $r(\lambda) = 1 + \sigma^2 \lambda$

Wave field

- > 2-D field estimation
- \triangleright Rectangular domain of 10×10 m
- > Source located at coordinates (x, y) = (5, -4.5)
- > Noise covariance $\Sigma = \text{Toeplitz}\{1, \rho, \dots, \rho^{N-1}\}.$
- > Gaussian radial basis kernel with $\sigma = 0.8$.

Ground truth

No subsampling (N=97)

Measured 67 out of 97 mesh points

Sampler design for kernel-based method

Measured 67 out of 97 mesh points

Design of sampling sets for kernel methods

- Submodular optimization
- Convex optimization

[Coutino-Chepuri-Leus-2018]

 M. Coutino, S.P. Chepuri and G. Leus. Subset Selection for Kernel-based Reconstruction. In Proc. of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2018), Calgary, Canada, April 2018.

Matroids

A finite matroid \mathcal{M} is a pair $(\mathcal{N}, \mathcal{I})$, where \mathcal{N} is a finite set (also called the ground set) and \mathcal{I} is a family of subsets of \mathcal{N} (called the independent sets) that satisfies the following properties:

- 1. The empty set is independent, i.e., $\emptyset \in \mathcal{I}$.
- 2. For every $\mathcal{X} \subseteq \mathcal{Y} \subseteq \mathcal{N}$, if $\mathcal{Y} \in \mathcal{I}$, then $\mathcal{X} \in \mathcal{I}$.
- 3. For every $\mathcal{X}, \mathcal{Y} \subseteq \mathcal{N}$ such that $|\mathcal{Y}| > |\mathcal{X}|$ and $\mathcal{X}, \mathcal{Y} \in \mathcal{I}$ there exists one $x \in \mathcal{Y} \setminus \mathcal{X}$ such that $\mathcal{X} \cup \{x\} \in \mathcal{I}$.

Example: partition matroid

S is independent, if $|S \cap Q_i| \le 1$ for each Q_i .

Fourier-like basis

Path graph with 12 nodes

fundamental modes of vibration of a string with free ends

PSD of face images

PSD estimation for spectral signatures of faces of different people

- Graph process corresponding to a single individual is stationary in the covariance matrix graph related to multiple individuals
- > Estimated PSD can be used for Wiener filtering