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Power networks, grid analytics Health informatics

Radio astronomy (e.g., SKA) Internet, social media

Design sparse sensing functions
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What is sparse sensing?

y ∈ R
d

=

Φ(w) =

{0,1}︷ ︸︸ ︷
diagr(w)

x ∈ R
D

What is sparse sensing?

Design w ∈ {0, 1}D to select the most “informative” d (≪ D)
samples for

- data acquisition (e.g., offline sensor selection)

- data selection (e.g., outlier rejection, censoring)

- Or, combination of above —hybrid
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State of the art

Compressive sensing: sparse signal recovery
[Donoho-2006], [Candès-Wakin-2008]

Sensor selection: model-driven
- convex optimization: design {0, 1}M selection vector

[Joshi-Boyd-2009], [Chepuri-Leus-2015]

- greedy methods and heuristics: submodularity
[Krause-Singh-Guestrin-08], [Ranieri-Chebira-Vetterli-14]

Censoring (or data selection) and outlier rejection: data-driven
[Rago-Willett-Shalom-96], [Msechu-Giannakis-12]

Model-driven, data-driven, or hybrid?
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Linear regression setup— model-driven

Observations follow

xm = aTmθ + nm, m = 1, 2, . . . ,D

- θ ∈ R
p unknown parameter

- nm i.i.d. zero-mean unit-variance Gaussian noise

Problem statement

Given {am} and noise pdf, i.e., only the data model, design w to
select the best subset of d (≪ D) sensors

Best subset of d (≪ D) sensors are obtained by optimizing a
scalar function (trace, max. eigenvalue, log det) of the CRB
matrix of θ:

f (w) = g





(
D∑

m=1

wmama
T
m

)−1



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Optimization problem

Sparse sensing function can be designed by solving

min
w∈W

f (w)

W = {w ∈ {0, 1}D | ‖w‖0 = d}.

The above problem is convex on w if the set W is relaxed to
Wc = {w ∈ [0, 1]D | ‖w‖1 = d}.

Monotone submodular cost functions can be optimized using
near-optimal greedy methods.

+ Sampler needs to be designed offline only once, and samplers
are obtained by optimizing ensemble performance.

- Design might suffer from any possible outliers or model
mismatch.
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Model-driven design for other inference tasks

Can be generalized to nonlinear models by optimizing scalar
functions of the Cramér-Rao bound matrix.

S.P. Chepuri and G. Leus. Sparsity-Promoting Sensor Selection for

Non-linear Measurement Models. IEEE Trans. on Signal Processing,

Volume 63, Issue 3, pp. 684-698, February 2015.

Samplers for nonlinear models with correlated errors can be
obtained by solving a convex program.

S.P. Chepuri and G. Leus. Sparse Sensing for Estimation with Correlated

Observations. In Proc. of Asilomar 2015, Pacific Grove, CA, Nov. 2015.

Samplers can be designed for detection problems by optimizing
Kullback-Leibler or Bhattacharyya distance measures.

S.P. Chepuri and G. Leus. Sparse Sensing for Distributed Detection.

Trans. on Signal Processing, October 2015.
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Linear regression setup— data-driven

The output data {xm}
D
m=1 is possibly contaminated with up

to o outliers.

We know the (uncontaminated) data model

x̄m = aTmθ + nm, m = 1, 2, . . . ,D

- θ ∈ R
p unknown parameter

- nm i.i.d. zero-mean unit-variance Gaussian noise

Problem statement

Given {xm}, {am}, and noise pdf:
(a) design w to censor less-informative samples and reject

outliers
(b) estimate θ that performs using the uncensored data
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Data-driven design

Data samples with smaller residuals are informative; more
generally the one’s with large likelihood

Sensing function is obtained by solving

min
w∈W ,θ

D∑

m=1

wm

(
xm − aTmθ

)2
⇔ min

w ∈ W
r(w)

r(w) = xTw

(

I− Aw

(

ATwAw

)

−1
ATw

)

xw .

Aw = diagr (w)A; xw = diagr (w)x.

Also known as least trimmed squares.

This problem is non-convex in general
- Can be convexified for linear Gaussian case
- Markov chain Monte Carlo methods (e.g.,
Metropolis-Hastings sampling)
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Generalization of data-driven design

For linear Gaussian models, the cost function amounts to
sparsity based outlier rejection methods

[Fuchs-1999], [Rousseeuw-Leroy-2005], [Giannakis et al.-2011]

Can be generalized to nonlinear models by optimizing
likelihood function parameterized with θ and w.

G. Kail, S.P. Chepuri, and G. Leus. Robust Censoring Using

Metropolis-Hastings Sampling. IEEE Journ. of Selec. Topics in Signal

Processing, Nov. 2015.

+ Designs are robust to outliers.

- Sampler needs to be designed for each data realization, and
samplers are obtained by optimizing instantaneous measure
(performance could be bad).
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Hybrid Model-data-driven design

Data-driven samplers are robust to outliers, but don’t take the
resulting inference performance (i.e., MSE) into account

Model-driven samplers are MSE optimal, but are not robust to
outliers.

Hybrid model-data-driven designs allow to combine (and
trade) the above two advantages.

+ Designs are robust to outliers, and take into account the
inference performance.

- Sampler needs to be designed for each data realization.
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Optimization problem

Hybrid model-data-driven sensing scheme jointly optimizes the
likelihood function (i.e., residual) and the MSE:

min
w ∈ W

r(w) + λf (w)

W = {w ∈ {0, 1}D | ‖w‖0 = d}.

λ → 0(∞) results in the related data (model)-driven scheme

This problem is non-convex in general
- Can be convexified for linear Gaussian case
- Markov chain Monte Carlo methods (e.g.,
Metropolis-Hastings sampling)
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Convex optimization based solver

Hybrid model-data-driven sensing design is equivalent to

min
w ∈ W ,t1,t2

t1 + λt2

s.t. r(w) ≤ t1,

f (w) ≤ t2.

Using Schur complement and ΦTΦ = diag(w)

min
w ∈ W ,t1,t2

t1 + λt2

s.t.

[
ATdiag(w)A ATdiag(w)x
xTdiag(w)A t1 − xTdiag(w)x

]
� 0,

f (w) ≤ t2.

The above problem is convex after relaxing W to Wc .
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Metropolis-Hastings sampler

Powerful concept for generating samples from complex
distributions:

1. Each iteration generates a proposal w̃ from some proposal
distribution q

(
w̃
∣∣w(j−1)

)
.

2. The new sample w(j) is obtained as

w(j) =

{
w̃ with probability αj

w(j−1) with probability 1−αj

αj = min

{
pt
(
w̃
)
q
(
w(j−1)

∣∣w̃
)

pt
(
w(j−1)

)
q
(
w̃
∣∣w(j−1)

) , 1
}

pt(w) ∝ exp
(
−

1

2 σ2

(
r(w) + λf (w)

))

Doesn’t involve convex relaxations (W to Wc).
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Numerical experiments
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Hybrid

Best performance of the hybrid scheme is not necessarily in
between the best performances of the data-driven and
model-driven schemes.
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Numerical experiments
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Error distribution achieved with the MH method almost
coincides with that of exhaustive search.
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Conclusions and future directions

Model-driven, data-driven, hybrid sparse sensing
- for basic inference problems

- respective strengths and weaknesses

Future directions
- Correlated observations, clustering, and
classification

- Greedy algorithms (submodular)

Thank You!!
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