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Power networks, grid analytics Health informatics

Radio astronomy (e.g., SKA) Internet, social media
Design sparse sensing functions
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What is sparse sensing?

{0,1}
y €RY /_—dlag‘ x € RP

1

What is sparse sensing?

Design w € {0,1}P to select the most “informative” d (< D)
samples for

- data acquisition (e.g., offline sensor selection)
- data selection (e.g., outlier rejection, censoring)
- Or, combination of above —hybrid
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State of the art

@ Compressive sensing: sparse signal recovery
[Donoho-2006], [Candés-Wakin-2008]

@ Sensor selection: model-driven
- convex optimization: design {0,1}M selection vector
[Joshi-Boyd-2009], [Chepuri-Leus-2015]

- greedy methods and heuristics: submodularity
[Krause-Singh-Guestrin-08], [Ranieri-Chebira-Vetterli-14]

@ Censoring (or data selection) and outlier rejection: data-driven
[Rago-Willett-Shalom-96], [Msechu-Giannakis-12]

Model-driven, data-driven, or hybrid?
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Linear regression setup— model-driven

@ Observations follow
Xm=al0+nm m=1,2,... D

- 0 € R” unknown parameter

- nm i.i.d. zero-mean unit-variance Gaussian noise

Problem statement

Given {a,,} and noise pdf, i.e., only the data model, design w to
select the best subset of d (< D) sensors

@ Best subset of d (< D) sensors are obtained by optimizing a
scalar function (trace, max. eigenvalue, log det) of the CRB
matrix of @:

D -1
flw)=g <Z WmamaL)
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Optimization problem

@ Sparse sensing function can be designed by solving

min £(w) ]
W = {w € {0,1}°|||wl|o = d}.

@ The above problem is convex on w if the set W is relaxed to
We ={w € [0,1]° | [lw]} = d}.

@ Monotone submodular cost functions can be optimized using
near-optimal greedy methods.

+ Sampler needs to be designed offline only once, and samplers
are obtained by optimizing ensemble performance.

- Design might suffer from any possible outliers or model
mismatch.
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Model-driven design for other inference tasks

@ Can be generalized to nonlinear models by optimizing scalar
functions of the Cramér-Rao bound matrix.

S.P. Chepuri and G. Leus. Sparsity-Promoting Sensor Selection for
Non-linear Measurement Models. IEEE Trans. on Signal Processing,
Volume 63, Issue 3, pp. 684-698, February 2015.

@ Samplers for nonlinear models with correlated errors can be
obtained by solving a convex program.

S.P. Chepuri and G. Leus. Sparse Sensing for Estimation with Correlated
Observations. In Proc. of Asilomar 2015, Pacific Grove, CA, Nov. 2015.

@ Samplers can be designed for detection problems by optimizing
Kullback-Leibler or Bhattacharyya distance measures.

S.P. Chepuri and G. Leus. Sparse Sensing for Distributed Detection.
Trans. on Signal Processing, October 2015.
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Linear regression setup— data-driven

@ The output data {xn}2_; is possibly contaminated with up
to o outliers.

@ We know the (uncontaminated) data model
>'<m:a,29+nm, m=12,...,D

- 0 € R” unknown parameter

- Ny, i.i.d. zero-mean unit-variance Gaussian noise

Problem statement

Given {xn}, {am}, and noise pdf:
(a) design w to censor less-informative samples and reject
outliers
(b) estimate @ that performs using the uncensored data
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Data-driven design

@ Data samples with smaller residuals are informative; more
generally the one's with large likelihood

@ Sensing function is obtained by solving

D

2
min E w, (X —a 9) < min r(w
wew,o mAsm m w ( )

r(w) = x5, (1= Au (ALAL) AL ) X
A, = diag,(w)A; x,, = diag,(w)x.

@ Also known as least trimmed squares.

@ This problem is non-convex in general
- Can be convexified for linear Gaussian case
- Markov chain Monte Carlo methods (e.g.,
Metropolis-Hastings sampling)
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Generalization of data-driven design

@ For linear Gaussian models, the cost function amounts to
sparsity based outlier rejection methods
[Fuchs-1999], [Rousseeuw-Leroy-2005], [Giannakis et al.-2011]
@ Can be generalized to nonlinear models by optimizing
likelihood function parameterized with 8 and w.

G. Kail, S.P. Chepuri, and G. Leus. Robust Censoring Using
Metropolis-Hastings Sampling. IEEE Journ. of Selec. Topics in Signal
Processing, Nov. 2015.

+ Designs are robust to outliers.

- Sampler needs to be designed for each data realization, and
samplers are obtained by optimizing instantaneous measure
(performance could be bad).
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Hybrid Model-data-driven design

@ Data-driven samplers are robust to outliers, but don't take the
resulting inference performance (i.e., MSE) into account

@ Model-driven samplers are MSE optimal, but are not robust to
outliers.

@ Hybrid model-data-driven designs allow to combine (and
trade) the above two advantages.

+ Designs are robust to outliers, and take into account the
inference performance.

- Sampler needs to be designed for each data realization.
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Optimization problem

@ Hybrid model-data-driven sensing scheme jointly optimizes the
likelihood function (i.e., residual) and the MSE:

mir;/v r(w) + Af(w) J

w e
W = {w € {0,1}° |||lw|lo = d}.
@ A\ — 0(o0) results in the related data (model)-driven scheme
@ This problem is non-convex in general
- Can be convexified for linear Gaussian case

- Markov chain Monte Carlo methods (e.g.,
Metropolis-Hastings sampling)
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Convex optimization based solver

@ Hybrid model-data-driven sensing design is equivalent to
min t1 + Aty
w e W,t,bt
st r(w) <t
f(W) < tr.

@ Using Schur complement and ®T® = diag(w)

min t1 + At
w € W.t, b
ATdiag(w)A  ATdiag(w)x
T T > 0,
x'diag(w)A t; —x' diag(w)x

f(W) < t.

s.t.

@ The above problem is convex after relaxing W to W,.
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Metropolis-Hastings sampler

@ Powerful concept for generating samples from complex
distributions:

1. Each iteration generates a proposal w from some proposal
distribution q(v~v|w0_1)).
2. The new sample wU) is obtained as

) w with probability «;
we = (-1 i ity 1— s
w with probability 1—q;

a._min{ pi(w) g(wU D |w) 1}
’ Pt )’

(W) g(ww0 D
1
pe(w) o exp (— = (r(w) + /\f(w)))
@ Doesn't involve convex relaxations (W to W,).

14/17



Numerical experiments
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@ Best performance of the hybrid scheme is not necessarily in
between the best performances of the data-driven and
model-driven schemes.
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Numerical experiments
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@ Error distribution achieved with the MH method almost
coincides with that of exhaustive search.
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Conclusions and future directions

@ Model-driven, data-driven, hybrid sparse sensing
- for basic inference problems

- respective strengths and weaknesses

@ Future directions
- Correlated observations, clustering, and
classification

- Greedy algorithms (submodular)

Thank You!!
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