Compressed Sensing

presented by

Anamitra Makur

School of Electrical & Electronic Engineering Nanyang Technological University Singapore

SPCOM 2016 June 12 Bangalore

Sections

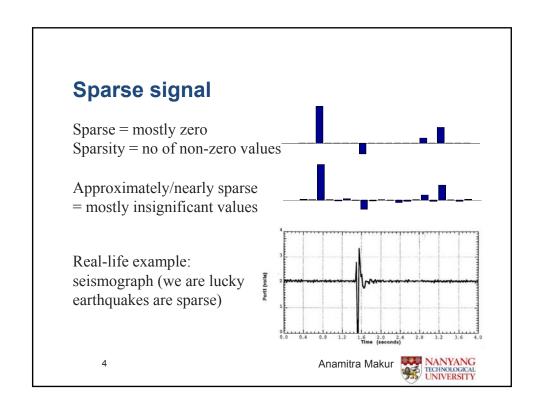
- Introduction
- Analysis of l_1 minimization
- Measurement matrix
- Reconstruction algorithms
- Applications
- Conclusion

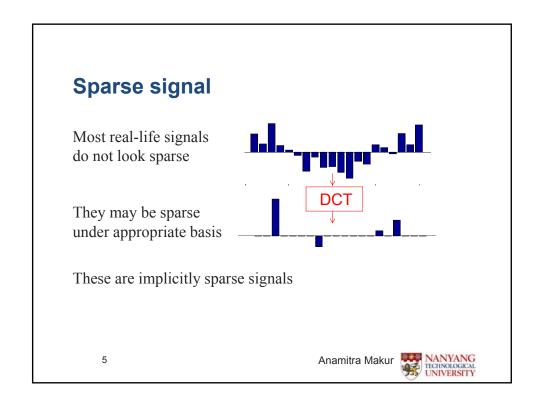
2

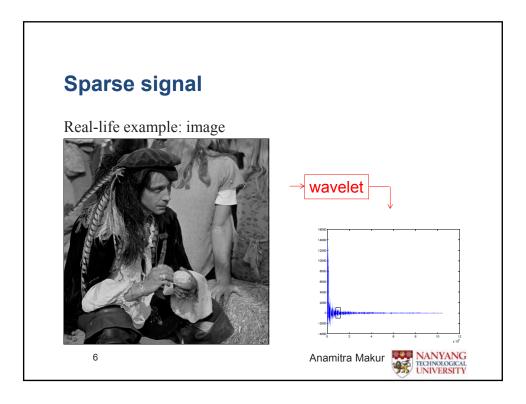
Section 1. INTRODUCTION

- Introduction to sparse signal
- Compressed sensing versus conventional sampling
- The idea of compressed sensing
- Reconstruction by l_0 minimization
- Reconstruction by l_1 minimization

Ana







CS versus sampling

CS = compressed/compressive sensing/sampling

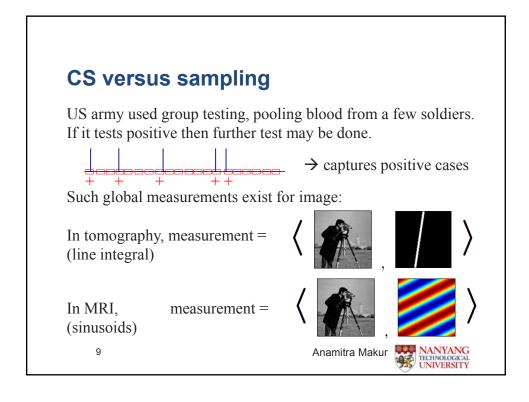
Conventional sampling: local/sparse

image sample/pixel =

Assume each measurement has a cost

→ Use minimum number of measurements Is local measurement a good choice for sparse signals?

Real-life example: US army during WW-II, syphilis test (0 = negative, 1 = positive) Syphilis blood test was expensive. Random individual test: Anamitra Makur RANYANG DEPARTMENT OF THE PROPERTY OF THE PROP



CS versus sampling

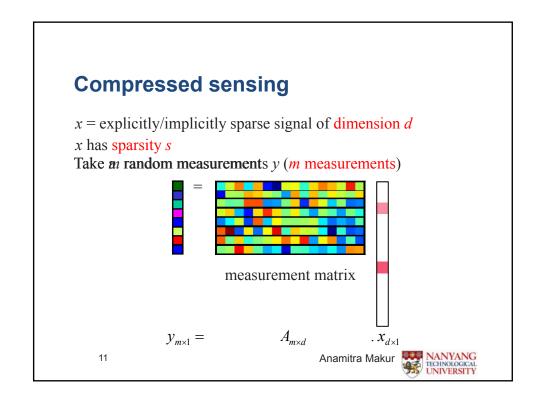
For sparse signals, global/dense measurements are better, as long as the signal may be reconstructed back from its measurements

In CS, measurement = \(\)

CS guarantees that a sparse signal may be reconstructed back from its measurements

Further, CS requires less measurements/samples than conventional sampling for sparse signals

10



Compressed sensing

Few measurements: $m \ll d$ Can *x* be reconstructed from *y*?

Example: m = 4, d = 6

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 2 \\ 0 \end{bmatrix}$$

To find x, consider solving $x_0 + x_2 + x_5 = 0$

$$x_1 + x_2 + x_3 = 2$$

More unknowns than equations

→ Infinite solutions! Typical of inverse problems

12

Anamitra Makur

Compressed sensing

Some solutions:

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{4}{3} \\ \frac{1}{3} \\ \frac{1}$$

 l_0 norm l_1 norm l_2 norm

$$||x||_0 = \sum_i x_i^0 \qquad ||x||_1 = \sum_i |x_i|$$

In order to choose from infinite solutions, use some criterion such as the l_0 norm (sparsity)

13

Compressed sensing

Under certain conditions, an explicitly sparse signal x of sparsity s and dimension d may be reconstructed from m measurements

Sensing: given signal x and measurement matrix A, v = A x

Reconstruction: given measurement y and measurement matrix A, $\min ||x||_0$ subject to A.x = y

14

Compressed sensing

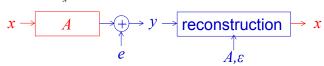
For nearly sparse u, let x be the most significant s-sparse part of u Sensing: given signal u and measurement matrix A,

$$y = A.u = A.x + A(u - x) = A.x + e$$

where let $||e||_2 \le \varepsilon$

Also for noisy measurement y, sensing is A.x but y = A.x + eReconstruction: given y, A, and ε

 $\min_{x} ||x||_{0} \text{ subject to } ||A.x - y||_{2} \le \varepsilon$



Compressed sensing

For implicitly sparse x in a basis Ψ such that $x = \Psi . u$ where u is sparse:

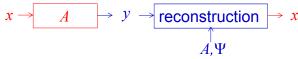
Sensing: y = A.x

Reconstruction: $\min_{x \in \mathbb{R}} || \Psi^{-1}.x ||_0$ subject to A.x = y

or, use the explicit reconstruction with a modified measurement matrix,

 $\min \|u\|_0$ subject to $A\Psi . u = y$

such that the solution is $x = \Psi . u$



16

Anamitra Makur NANYANG TECHNOLOGICAL UNIVERSITY

I_0 minimization

Recovery using l_0 minimization:

$$\min_{x} ||x||_{0} \text{ subject to } A.x = y$$

Example: Find x where $||x||_0 = 2$

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 3 \\ 5 \end{bmatrix}$$

 $x = \begin{bmatrix} 0 \\ 2 \\ 0 \\ 0 \\ 3 \\ 0 \end{bmatrix}$

(a sophisticated version of US army group testing)

17

I_0 minimization

Can there be solutions other than x?

Same *A*: Find *x* where $||x||_0 = 2$

						x_0			
1	0	1	0	0	1	x_1		$\lceil 3 \rceil$	
0	1	1	1	0	0	x_2		3	
1	0	0	1	1	0	x_3	=	3	
0	1	0	0	1	1	x_4		3	
						$ x_{\varepsilon} $			

$$x = \begin{bmatrix} 3 \\ 3 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 3 \\ 0 \\ 0 \end{bmatrix}, \dots$$

18

Anamitra Makur

I_0 minimization

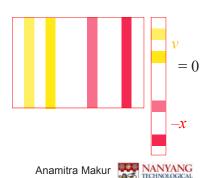
Theorem: Unique recovery using l_0 minimization is possible if spark of A > 2s.

spark of A = smallest number of linearly dependent columns of A

Proof: Let there be another solution *v* such that

$$A.v = y$$
, $||v||_0 \le s$

Then
$$A.v - A.x = A.(v - x) = 0$$



s = sparsity

I_0 minimization

Or weighted sum of $||v - x||_0$ columns of A is zero

Or $||v - x||_0$ columns of A are linearly dependent

But $||v||_0 \le s, ||x||_0 = s$

So even if v and x has entirely different non-zero locations, $||v-x||_0 \le 2s$ which is not possible, since spark of A > 2s means any 2s or less columns are linearly independent

20

Anamitra Makur

I_0 minimization

Check our example:

e:
$$A = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \end{bmatrix}, s = 2$$

Some set of 2s = 4 columns are not linearly independent, such as

$$\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} = 0$$

21

I_0 minimization

Good news: recovery is guaranteed using l_0 minimization

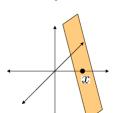
Bad news: l_0 minimization is essentially combinatorial (try out all possible combinations)

Therefore complexity is high (NP-hard)

22

I_1 minimization

Convex relaxation: relax highly non-convex l_0 minimization to convex l_1 minimization



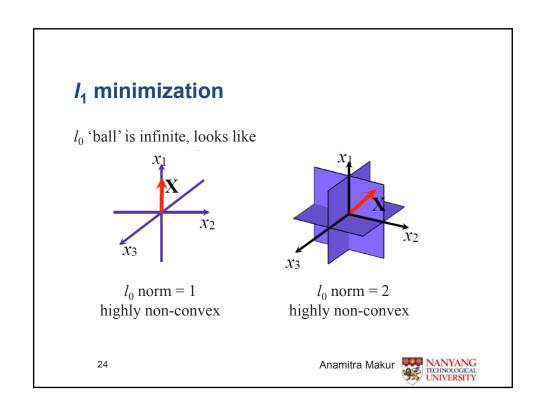
$$\min_{x} \|x\|_{0} \text{ subject to } A.x = y$$

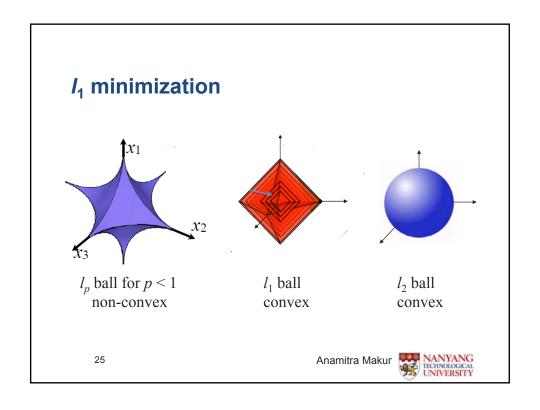
$$\min_{x} \|x\|_{1} \text{ subject to } A.x = y$$

All solutions lie in a d-m dimensional null space plane $\{v : A.v = y\}$

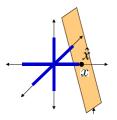
solution = where the null space plane intersects the l_* ball (region with l_* norm = constant)

23

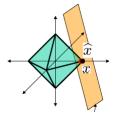




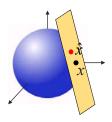
I_1 minimization



 l_0 'ball:' correct solution if $m \ge 2s$



 l_1 ball: correct solution under certain conditions



 l_2 ball: wrong solution, typically not sparse

m = measurements, s = sparsity26

Section 2. ANALYSIS OF I₁ MINIMIZATION

- l_1 minimization: theorem and sketch of proof
- Proof part 1: tail probabilities
- Proof part 2: number of measurements
- Proof part 3: RIP constant
- Proof part 4: null space property

Analysis of I₁ minimization

Recovery using l_1 minimization:

$$\min_{x} ||x||_{1}$$
 subject to $A.x = y$

Theorem: For a random Gaussian matrix A, choosing $m \ge c_s s \log(d/s)$, recovery using l_1 minimization occurs with probability $1 - e^{-c_3 H \cdot d}$.

$$(c_i = \text{constants} > 0, H = H(2s/d) = \text{entropy})$$

(Proofs using JL lemma show with probability $1 - e^{-c_6 m}$)

d = dimension, m = measurements, s = sparsity 28

Anamitra Makur NANYA

Analysis of I_1 minimization

Non-uniform recovery result: For a given x, choose A at random. Show recovery in probability for a constraint on m.

Easier to show. For one x, some A may not work. For another x, some other A doesn't work. It is possible that all A are such that they don't work for some x.

Uniform recovery result: For any x, choose A at random. Show recovery in probability for a constraint on m.

For all x, a random A works with certain probability.

Analysis of
$$I_1$$
 minimization

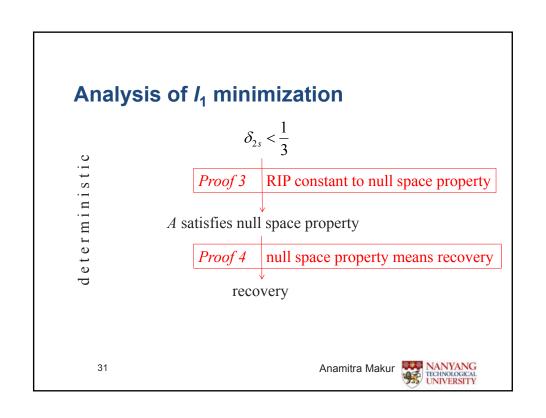
Sketch of proof: random measurement matrix A

Proof I tail probabilities of singular values of sub-matrix of A to RIP constant

$$p\{\sqrt{1+\delta_{2s}} \geq 1+\lambda\} \leq e^{-c_3 H \cdot d}$$

$$\sqrt{1+\delta_{2s}} < 1+\lambda$$
Proof 2 required m so that $\lambda \leq (2-\sqrt{3})/\sqrt{3}$

$$\delta_{2s} < \frac{1}{3}$$
Anamitra Makur NANYANG TRANYANG TOWN TOWN THE PROPOSITION OF THE PROPOSITION



Proof 1: random measurement matrix *A*

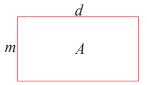
Proof 1 tail probabilities of singular values of sub-matrix of A to RIP constant $p\left\{\sqrt{1+\delta_{2s}} \ge 1+\lambda\right\} \le e^{-c_3H.d}$

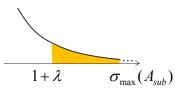
This part finds upper bound on the probability that the RIP constant is much larger than 1.

32

Analysis of I_1 minimization: Proof 1

Random Gaussian matrix = elements of A iid Gaussian A_{sub} = some column sub-matrix of A made of 2s columns (recall x - v in l_0 minimization is 2s sparse), singular values ≈ 1





Applying concentration inequality for Gaussian measures,

$$p\left\{\sigma_{\max}(A_{sub}) > 1 + \sqrt{\frac{2s}{m}} + t + \ldots\right\} \le e^{-mt^2/2}$$

$$\lambda \qquad \text{Anamitra Makur}$$

Let
$$\lambda = \sqrt{\frac{2s}{m}} + t = \sqrt{\frac{2s}{m}} + \sqrt{(2+2c_1)\frac{H.d}{m}}$$

where $H = H\left(\frac{2s}{d}\right) = -\frac{2s}{d}\log\frac{2s}{d} - \frac{d-2s}{d}\log\frac{d-2s}{d}$

then $p\{\sigma_{\max}(A_{sub}) > 1 + \lambda\} \le e^{-mt^2/2} = e^{-(1+c_1)H.d}$

Let $\overline{\sigma} = \max_{A_{out}} \sigma_{\max}(A_{sub})$, the maximum singular value among

Even if any one $\sigma_{\max}(A_{sub}) > 1 + \lambda$, then $\overline{\sigma} > 1 + \lambda$

So $p\{\overline{\sigma} > 1 + \lambda\} = p\{\text{union of all } \sigma_{\text{max}}(A_{sub}) > 1 + \lambda\}$

34

Anamitra Makur

Analysis of I_1 minimization: Proof 1

$$p\{\overline{\sigma} > 1 + \lambda\} = \begin{array}{c} p_1 & p_2 \\ p_3 & p_4 \\ \end{array} \dots \leq \begin{array}{c} p_1 & p_2 \\ \text{sum} \end{array} \begin{array}{c} p_3 & p_4 \\ \end{array} \dots$$

There are $\binom{d}{2s}$ different A_{sub} , all having identical probability $p\{\overline{\sigma} > 1 + \lambda\} \le \binom{d}{2s} p\{\sigma_{\max}(A_{sub}) > 1 + \lambda\}$

$$p\{\overline{\sigma} > 1 + \lambda\} \le \binom{d}{2s} p\{\sigma_{\max}(A_{sub}) > 1 + \lambda$$

$$\le \binom{d}{2s} e^{-(1+c_1)H.d}$$

35

Now
$$\log \binom{d}{2s} = \log d! - \log 2s! - \log(d - 2s)!$$

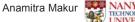
Using Stirling approximation $\log d! \approx d \log d - d + ...$

$$= -2s \log \frac{2s}{d} - (d - 2s) \log \frac{d - 2s}{d} + \dots$$

= H.d + ..

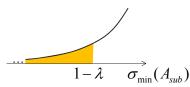
$$p\{\overline{\sigma} > 1 + \lambda\} \le e^{H.d+..} \cdot e^{-(1+c_1)H.d}$$
$$= e^{-c_1H.d+..}$$
$$\le e^{-c_2H.d}$$

36



Analysis of I_1 minimization: Proof 1

Similarly, for minimum singular value of A_{sub}



$$\underline{\sigma} = \min_{A_{sub}} \sigma_{\min}(A_{sub})$$

It may be shown that $p\{\underline{\sigma} < 1 - \lambda\} \le e^{-c_2 H . d}$

Restricted isometry property (RIP) of order s: For a measurement matrix A, the l_2 norm of Ax for all s-sparse signal x is bounded by

$$(1-\delta_s) \|x\|_2^2 \le \|Ax\|_2^2 \le (1+\delta_s) \|x\|_2^2$$

 δ_s = restricted isometry constant, or simply RIP constant

 $1 + \delta_s > 1$, Ax larger than x $1 - \delta_s < 1$, Ax smaller than x

Small δ_s means Ax is nearly equal to x (in l_2 norm sense)

Anamitra Makur NANYANG

Analysis of I_1 minimization: Proof 1

Consider RIP for 2s-sparse signal u

$$(1-\delta_{2s}) \|u\|_{2}^{2} \leq \|Au\|_{2}^{2} \leq (1+\delta_{2s}) \|u\|_{2}^{2}$$

 $1 + \delta_{2s}$ measures how much larger can Au be than u

u in which direction results in largest *Au*?

singular values and right- 0.5 1.1 singular vectors of $A \approx 1$ direction of the largest singular value

u (scaled by 1.1)

 $\overline{\sigma}$ is the maximum singular value among all possible A_{sub}

We have to check lower bound, too

$$\Rightarrow \text{ Since } \underline{\sigma}^2 ||u_{sub}||_2^2 \le ||A_{sub}u_{sub}||_2^2, \quad \sqrt{1 - \delta_{2s}} \stackrel{?}{=} \underline{\sigma}$$
or $\sqrt{1 + \delta_{2s}} \stackrel{?}{=} \sqrt{2 - \underline{\sigma}^2}$

Combining, $\sqrt{1+\delta_{2s}} = \max \left\{ \overline{\sigma}, \sqrt{2-\underline{\sigma}^2} \right\}$

40

Anamitra Makur

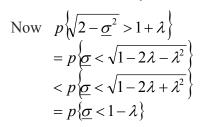
Analysis of I_1 minimization: Proof 1

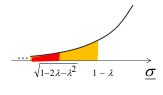
If either $\overline{\sigma} > 1 + \lambda$ or $\sqrt{2 - \underline{\sigma}^2} > 1 + \lambda$, then $\sqrt{1 + \delta_{2s}} > 1 + \lambda$

$$p\left\{\sqrt{1+\delta_{2s}}>1+\lambda\right\}=\overline{\sigma}$$
 union $\sqrt{2-\underline{\sigma}^2}$ $\leq \overline{\sigma}$ $\sqrt{2-\underline{\sigma}^2}$

So $p\left\{\sqrt{1+\delta_{2s}} > 1+\lambda\right\} \le p\left\{\overline{\sigma} > 1+\lambda\right\} + p\left\{\sqrt{2-\underline{\sigma}^2} > 1+\lambda\right\}$

41





So
$$p\left\{\sqrt{1+\delta_{2s}} > 1+\lambda\right\} < p\left\{\overline{\sigma} > 1+\lambda\right\} + p\left\{\underline{\sigma} < 1-\lambda\right\}$$

 $\leq 2e^{-c_2H.d}$
 $\leq e^{-c_3H.d}$

42

Analysis of I_1 minimization: Proof 2

Proof 2:

$$\sqrt{1 + \delta_{2s}} < 1 + \lambda$$
Proof 2 required m so that
$$\lambda \le (2 - \sqrt{3})/\sqrt{3}$$

$$\delta_{2s} < \frac{1}{3}$$

This part finds the required m such that the RIP constant of A is small.

As we see later in proof part 3, recovery requires $\delta_{2s} < \frac{1}{3}$

Or, probability that $\delta_{2s} \ge \frac{1}{3}$ should be very small

If
$$\lambda \leq \frac{2-\sqrt{3}}{\sqrt{3}}$$
 then $p\left\{\delta_{2s} \geq \frac{1}{3}\right\} = p\left\{\sqrt{1+\delta_{2s}} \geq \frac{2}{\sqrt{3}}\right\}$

$$\leq p\left\{\sqrt{1+\delta_{2s}} \geq 1+\lambda\right\}$$

$$\leq e^{-c_3H.d}$$
or $p\left\{\delta_{2s} < \frac{1}{3}\right\} \geq 1-e^{-c_3H.d}$

44

Analysis of I_1 minimization: Proof 2

From proof part 1,
$$\lambda = \sqrt{\frac{2s}{m}} + \sqrt{(2+2c_1)\frac{H.d}{m}}$$

$$\lambda^2 m = 2s + (2+2c_1)H.d + \dots$$

$$\approx 2s + (2+2c_1)H.d$$

$$= 2s + (2+2c_1)\left(-2s\log\frac{2s}{d} - (d-2s)\log\frac{d-2s}{d}\right)$$
since $2s < < d$, this term is smaller
$$\leq 2s + c_4\left(-2s\log\frac{2s}{d}\right)$$

$$= 2s + c_4\left(2s\log\frac{d}{2s}\right)$$
Anamitra Makur

$$= 2c_4 s \log \frac{d}{s} - (2c_4 \log 2 - 2)s \le 2c_4 s \log \frac{d}{s}$$

Choose $m \ge c_5 s \log \frac{d}{s}$ such that $\lambda^2 m \le 2c_4 s \log \frac{d}{s} \le \frac{2c_4}{c_5} m$

or
$$\lambda \leq \sqrt{\frac{2c_4}{c_5}}$$

Recall that c_4 depends on c_1 . Choose c_5 large enough to make $\sqrt{\frac{2c_4}{c_5}} \le \frac{2-\sqrt{3}}{\sqrt{3}}$

Therefore $\delta_{2s} < \frac{1}{3}$ with very high probability

46

Anamitra Makur

Analysis of I_1 minimization: Proof 3

Proof 3:

$$\delta_{2s} < \frac{1}{3}$$

Proof 3

RIP constant to null space property

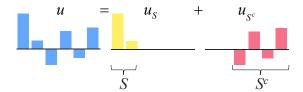
A satisfies null space property

This part shows that a small enough RIP constant implies that null space vectors of *A* are not sparse (null space property).

47

Null space property of order *s*:

For all null space vectors u (such that A.u = 0), for all subset S consisting of s components of u, split u into parts u_S and u_{S^c} :



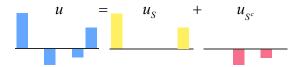
Then A satisfies null space property of order s if $\|u_S\|_1 < \|u_{S^c}\|_1$

48

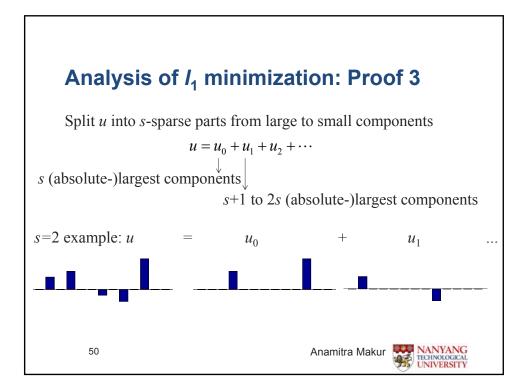
Analysis of I_1 minimization: Proof 3

Null space property implies that u is not sparse

In the earlier example, if u is sparse, then S may be chosen such that $||u_S||_1 > ||u_{S^c}||_1$:



The worst case S is choosing s (absolute-)largest components of u Let this case be $u_S = u_0$



How does the l_1 norm of a s-sparse vector compare to its l_2 norm?

Example:
$$v = [\underline{\ldots a \ldots a \ldots a \ldots}]$$
 $s 'a' \text{ terms}$

 $l_1 \text{ norm} = s|a| \quad \text{but } l_2 \text{ norm} = \sqrt{sa^2}$

 $\rightarrow l_1$ norm is larger than l_2 norm

Scaling the l_2 norm by \sqrt{s} , $||v||_1 = \sqrt{s} ||v||_2$

The next slide formally shows that in general, $\|v\|_1 \le \sqrt{s} \|v\|_2$

For any s-sparse vector v with components $\{v\}_i$, take the inner product of |v| =

with
$$w = [101001010]$$

Note that $\langle |v|, w \rangle = ||v||_1$, the l_1 norm of v

Also
$$\langle |v|, w \rangle^2 = \left(\sum_{nonzero} |\{v\}_i| . 1\right)^2 \le \left(\sum_{nonzero} \{v\}_i^2\right) \left(\sum_{nonzero} 1^2\right)$$

Schwartz inequality l_2 norm of v

or
$$||v||_1^2 \le ||v||_2^2 s$$
 Therefore $||u_0||_1 \le ||u_0||_2 \sqrt{s}$

52

Analysis of I_1 minimization: Proof 3

Since u_0 is s-sparse, using RIP result $(1 - \delta_s) ||u_0||_2^2 \le ||Au_0||_2^2$

$$||u_{0}||_{2}^{2} \sqrt{s} \leq \frac{\sqrt{s}}{1 - \delta_{s}} ||Au_{0}||_{2}^{2}$$

$$= \frac{\sqrt{s}}{1 - \delta_{s}} \langle Au_{0}, Au_{0} \rangle$$
Since $A(u_{0} + u_{1} + u_{2} + \cdots) = 0$,
$$Au_{0} = -Au_{1} - Au_{2} - \cdots$$

$$= \frac{\sqrt{s}}{1 - \delta_{s}} \langle Au_{0}, -Au_{1} - Au_{2} - \cdots \rangle$$

$$= \frac{\sqrt{s}}{1 - \delta_{s}} \sum_{k \geq 1} \langle Au_{0}, -Au_{k} \rangle$$
Fig. (Approximately approximately approximately

We'll use the following results of RIP constant:

1) Let u, v be sparse vectors with support S_u , S_v such that

$$S_u \cap S_v = \phi$$
, $|S_u| + |S_v| = 2s$

 $|\langle Au, Av \rangle| \leq \delta_{2s} ||u||_2 ||v||_2$ Then

2) if s < t then $\delta_s \le \delta_t$

54

Analysis of I_1 minimization: Proof 3

so
$$\frac{\sqrt{s}}{1-\delta_s} \sum_{k\geq 1} \langle Au_0, -Au_k \rangle \leq \frac{\sqrt{s}}{1-\delta_s} \sum_{k\geq 1} \delta_{2s} \|u_0\|_2 \|u_k\|_2 \text{ using result 1})$$

$$\leq \frac{\sqrt{s}\delta_{2s}}{1 - \delta_{2s}} \|u_0\|_2 \sum_{k \geq 1} \|u_k\|_2 \quad \text{using result 2})$$

Therefore
$$||u_0||_2^2 \sqrt{s} \le \frac{\sqrt{s}\delta_{2s}}{1-\delta_{2s}} ||u_0||_2 \sum_{k>1} ||u_k||_2$$

Or
$$||u_0||_2 \sqrt{s} \le \frac{\sqrt{s}\delta_{2s}}{1 - \delta_{2s}} \sum_{k \ge 1} ||u_k||_2$$

Therefore
$$||u_0||_{\mathbf{I}} \leq \frac{\sqrt{s}\delta_{2s}}{1-\delta_{2s}} \sum_{k\geq 1} ||u_k||_2$$
 Anamitra Makur NANYANG TECHNOLOGICAL UNIVERSITY

Any component in u_k is smaller than average absolute component in u_{k-1}

In earlier example,

so
$$|\{u_k\}_i| \le \frac{||u_{k-1}||_1}{s}$$

56

Analysis of I_1 minimization: Proof 3

$$\begin{aligned} \left\{u_{k}\right\}_{i}^{2} &\leq \frac{\|u_{k-1}\|_{1}^{2}}{s^{2}} \\ &\sum_{nonzero} \left\{u_{k}\right\}_{i}^{2} \leq \frac{\|u_{k-1}\|_{1}^{2}}{s} \\ &\sqrt{\sum_{nonzero}} \left\{u_{k}\right\}_{i}^{2} \leq \frac{\|u_{k-1}\|_{1}}{\sqrt{s}} \\ &\|u_{k}\|_{2} \leq \frac{\|u_{k-1}\|_{1}}{\sqrt{s}} \\ &\frac{\sqrt{s}\delta_{2s}}{1-\delta_{2s}} \sum_{k \geq 1} \|u_{k}\|_{2} \leq \frac{\sqrt{s}\delta_{2s}}{1-\delta_{2s}} \sum_{k \geq 1} \frac{\|u_{k-1}\|_{1}}{\sqrt{s}} \end{aligned}$$

57

Therefore
$$\|u_0\|_1 \le \frac{\delta_{2s}}{1 - \delta_{2s}} \sum_{k \ge 1} \|u_{k-1}\|_1$$

 $\le \frac{\delta_{2s}}{1 - \delta_{2s}} (\|u_0\|_1 + \underbrace{\|u_1\|_1 + \|u_2\|_1 + \cdots}_{\|u_{0^c}\|_1})$

Since
$$\delta_{2s} < \frac{1}{3}$$
, $\frac{\delta_{2s}}{1 - \delta_{2s}} < \frac{1}{2}$, or $||u_0||_1 < \frac{1}{2} (||u_0||_1 + ||u_{0^c}||_1)$

Therefore $\|u_0\|_1 < \|u_0\|_1$ or A satisfies null space property of order s

58

Analysis of I_1 minimization: Proof 4

Proof 4: A satisfies null space property

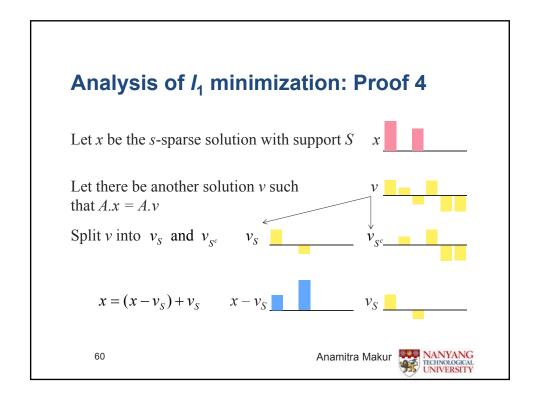
Proof 4 null space property means recovery recovery

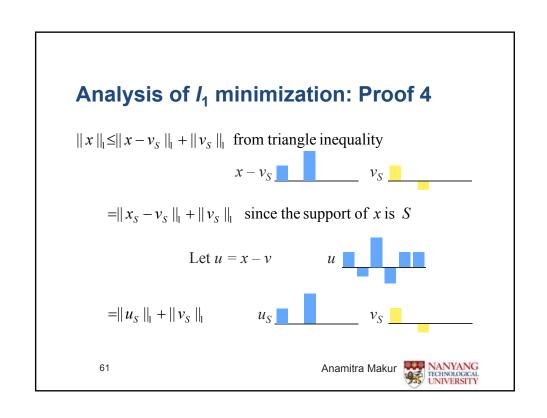
Apart from the sparse solution, consider any other solution. The difference between these two solutions (a null space vector) is not sparse.

Thus the other solution is not sparse, and has a larger l_1 norm. The sparse solution indeed has minimum l_1 norm.

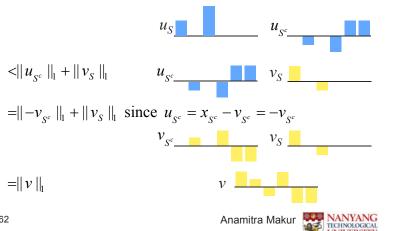
59

Anamitra Makur NANYANC TECHNOLOGICA UNIVERSITY





since A.u=0, from null space property, $||u_S||_1 < ||u_{S^c}||_1$



Analysis of I_1 minimization: Proof 4

Thus, for a sparse signal x, for any other solution v $||x||_1 < ||v||_1$ or the l_1 minimization will recover x successfully.

In fact, null space property is a necessary and sufficient condition for recovery using l_1 minimization (necessary not proved here).

In conclusion, from proof part 1, recovery using l_1 minimization occurs with probability $1 - e^{-c_3H.d}$

63

Anamitra Makur NANYANG TECHNOLOGICAL UNIVERSITY

Section 3. MEASUREMENT MATRIX

- Desirable properties of measurement matrices
- Random Gaussian and Bernoulli matrices
- Structured random/deterministic matrices
- Deterministic matrices
- Measurement matrices for implicitly sparse signals

64

Properties of measurement matrix

Desirable properties of the measurement matrix:

From l_1 minimization: restricted isometry property (RIP)

$$(1 - \delta_{2s}) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + \delta_{2s}) \|x\|_2^2$$

Make δ_{2s} small so that recovery is possible

 \rightarrow Difficult to measure, let alone design, δ_{2s} Requires checking the eigenvalues of each sub-matrix

s = sparsity 65

Properties of measurement matrix

From l_0 minimization: make columns linearly independent \rightarrow make columns incoherent (different from each other)

Coherence of A having columns \mathbf{a}_i

$$\mu = \max_{i \neq j} \frac{|\langle \mathbf{a}_i, \mathbf{a}_j \rangle|}{||\mathbf{a}_i||_2 ||\mathbf{a}_j||_2}$$

→ Easy to measure, iterative design procedures available

66

Anamitra Makur NANYANG

Random measurement matrix

Random Gaussian matrix: $A = \{a_{ij}\}$ such that elements a_{ij} are iid normal with mean 0, variance $\frac{1}{m}$

We have already seen that RIP of order 2s holds in probability for this matrix for sufficiently large m

Random Bernoulli/Rademacher matrix: elements a_{ij} are iid binary with equiprobable values $\pm \frac{1}{\sqrt{m}}$

RIP of order 2s holds for Bernoulli matrix, too

d = dimension, m = measurements, s = sparsity 67

Structured random matrix

Partial random Toeplitz matrix: Begin with a *d* **x** *d* random Toeplitz matrix

$$\begin{bmatrix} a_0 & a_1 & a_2 & \cdots & a_{d-1} \\ a_{-1} & a_0 & a_1 & \cdots & a_{d-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{-d+1} & a_{-d+2} & a_{-d+3} & \cdots & a_0 \end{bmatrix}$$

Pick *m* random rows of the above matrix

68

Structured random matrix

Partial random circulant matrix:

Begin with a $d \times d$ random circulant matrix

$$\begin{bmatrix} a_0 & a_1 & a_2 & \cdots & a_{d-1} \\ a_{d-1} & a_0 & a_1 & \cdots & a_{d-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & a_3 & \cdots & a_0 \end{bmatrix}$$

Pick *m* random rows of the above matrix

Structured deterministic matrix

Partial Fourier matrix:

Begin with a d x d Fourier matrix W

$$w_{pq} = \frac{1}{\sqrt{d}} e^{2\pi i \frac{pq}{d}}$$

Pick *m* random rows of the above matrix RIP of order 2*s* holds for partial Fourier matrix (works with other orthonormal bases)

Advantages of structured random/deterministic matrices:

- Less storage requirement than unstructured matrix
- Fast matrix-vector multiplication possible using FFT

70

Anamitra Makur NANYANG TECHNOLOGICAL UNIVERSITY

Deterministic measurement matrix

Example: $d = p^{r+1}$ where p = prime, 0 < r < p, $m = p^2$ Consider all polynomials of degree r in the finite field GF(p):

$$q(w) = a_0 + a_1 w + \dots + a_r w^r, \quad a_i \in GF(p)$$

Construct $p \times p$ matrix for q(w):

Rearrange to a column

There are p^{r+1} polynomials Construct A from these columns

For any $k < \frac{p}{r} + 1$, A satisfies $\delta_k = \frac{(k-1)r}{p}$

71

Anamitra Makur NANYANG TECHNOLOGICAL UNIVERSITY

 $0\cdots 0 \quad \frac{1}{\sqrt{p}} \quad 0\cdots 0 \leftarrow w$

Case of implicitly sparse signals

For implicitly sparse signals, the measurement matrix is $A\Psi$ where Ψ is the basis

A and Ψ should not be coherent

Example: random Gaussian matrix is incoherent with any basis with high probability

Let A = random Gaussian matrix, $\Psi = \text{DCT basis}$, then $A\Psi$ remains white Gaussian noise

Random Bernoulli matrix is also incoherent with any basis

72

Anamitra Makur

Case of implicitly sparse signals

For some signals/applications, there may be multiple bases Ψ_1 and Ψ_2 , which can be concatenated to obtain a joint basis if they are not coherent

Mutual coherence of Ψ_1 and Ψ_2 having columns \mathbf{a}_j and \mathbf{b}_j $\mu = \max_{i,j} \frac{|\langle \mathbf{a}_i, \mathbf{b}_j \rangle|}{\|\mathbf{a}_i\|_2 \|\mathbf{b}_j\|_2}$

$$\mu = \max_{i,j} \frac{|\langle \mathbf{a}_i, \mathbf{b}_j \rangle|}{\|\mathbf{a}_i\|_2 \|\mathbf{b}_j\|_2}$$

Example: $\Psi_1 = d \times d$ Fourier basis (localized in frequency) $\Psi_2 = d \times d$ impulse basis or identity basis (localized in time)

 $[\Psi_1 \ \Psi_2]$ has mutual coherence $\mu = \frac{1}{\sqrt{d}}$, RIP constant $\delta_s \le \frac{s-1}{\sqrt{d}}$

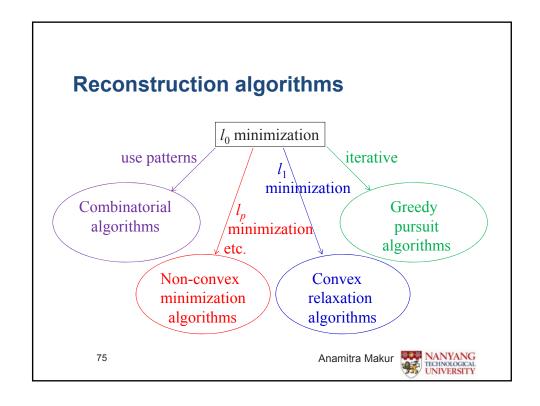
Haar wavelets and noiselets are also incoherent

Section 4. RECONSTRUCTION ALGORITHMS

- Combinatorial algorithms
- Non-convex minimization algorithms
- Convex relaxation algorithms
- BF
- Greedy pursuit algorithms
- OMP

74

Anamitra Makur NANYANG



Combinatorial algorithms

Exploits specific patterns in the sparsity/measurements Applicable only for applications where such patterns exist

Examples:

HHS (heavy hitters on steroids)

CP (chaining pursuits)

FSA (Fourier sampling algorithm)

Sudocodes

etc.

computation = very low

76

Anamitra Makur NAN

Non-convex minimization algorithms

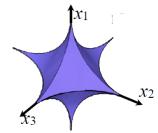
Relax l_0 minimization to a non-convex but favorable

minimization problem, such as:

 l_p minimization where $0 (recall that <math>l_p$ ball is not convex)

Examples:

IRL1 (iterative reweighted l_1) ISD (iterative support detection) SBL (sparse Bayesian learning) etc.



Convex relaxation algorithms: BP

BP (basis pursuit) $\min_{x} ||x||_1$ subject to A.x = y

Recall that l_1 ball is convex:

- → minimization may be solved using
- linear program for real values
- Second order cone program for complex values polynomial time complexity sparsity *s* not required typically performs the best several fast algorithms exist, such as sparselab/CVX solver

78

Convex relaxation algorithms

BPDN (basis pursuit de-noising)

$$\min_{x} \|x\|_{1} \text{ subject to } \|A.x - y\|_{2} \le \varepsilon$$

LASSO (least absolute shrinkage and selection operator)

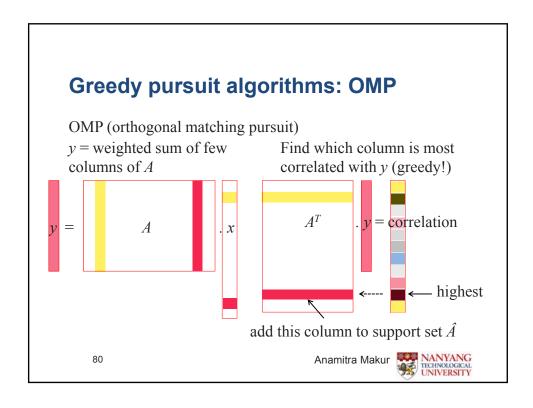
$$\min_{x} ||A.x - y||_{2} \quad \text{subject to} \quad ||x||_{1} \le \varepsilon$$

DS (Dantzig selector)

$$\min \|x\|_{1}$$
 subject to $\|A.x - y\|_{\infty} \le \varepsilon$

and more such as LARS (least angle regression), etc.

computation = very high



Greedy pursuit algorithms: OMP

In some iteration, support set \hat{A} has a few columns

Signal estimate for $\hat{A} =$ solution with minimum error in l_2 norm $\hat{x} = \hat{A}^{\dagger} y$ in \hat{A} , 0 in other positions

where \hat{A}^{\dagger} = pseudo-inverse of \hat{A} (found recursively, no inverse)

Why in l_2 norm?

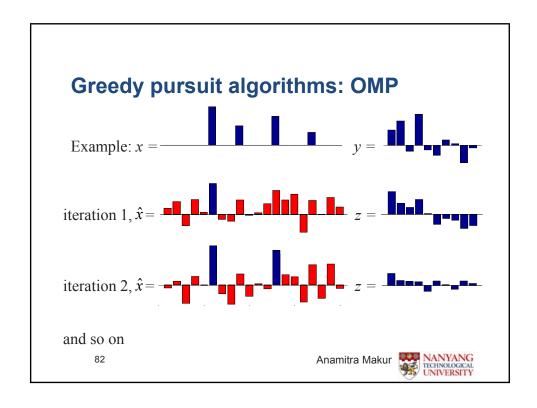
- Signal remains sparse since \hat{A} has few columns
- · Nice closed form solution
- If there is an exact solution, l_2 norm will find it

What is left? residue $z = y - A\hat{x}$

Find which column is most correlated with z

Continue for s iterations \rightarrow sparsity s required

Anamitra Makur



Greedy pursuit algorithms

Greedy pursuits involve iterative estimation, greedy step in each iteration, most having convergence guarantee

Examples:

IHT/IST (iterative hard/soft thresholding)

AMP (approximate message passing)

MP (matching pursuit)

OMP (orthogonal matching pursuit)

SP (subspace pursuit)

CoSAMP (compressive sampling matching pursuit)

BAOMP (backtracking-based adaptive OMP)

etc.

computation = low

83

Anamitra Makur NAN

Section 5. APPLICATIONS

- Compression
- Denoising
- Classification/recognition
- Data acquisition

84

Anamitra Makur NANYANG TECHNOLOGICAL UNIVERSITY

Compression

- Typically with a basis
- Typically with other refinements
- Universal encoder (basis not required)
- Asymmetrical: simple encoder, complex decoder

	H.264	CS based
video with small object size	30 sec	0.6 sec
video with large object size	18 sec	0.75 sec

Example: video compression, encoding time

Compression

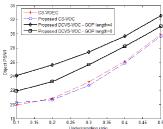
• Possible to compress after encryption

Example: encrypted image after compress.+reconstruction

86

Compression

• Distributed compressive sensing (independent encoder, joint decoder)



Example: video compression, PSNR results

Denoising

- Dictionary design
- Sparse representation of signal on the dictionary permits removing noise, filling up missing values, etc.

missing pixels

CS

noisy image

CS

88

• Robust • Robu

Data acquisition

Useful where measurements are limited by nature, such as

- Image acquisition
- MRI (magnetic resonance imaging)
- Radar

90

Section 6. CONCLUSION

Compressed sensing:

- Founded on theoretical guarantees
- General framework with several variations
- Many algorithms
- Applications in diverse fields

Thank you for your attention!

