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Section 1. INTRODUCTION

¢ Introduction to sparse signal

» Compressed sensing versus conventional sampling
* The idea of compressed sensing

* Reconstruction by /, minimization

* Reconstruction by /, minimization
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Sparse signal

Sparse = mostly zero 1
Sparsity = no of non-zero values |
Approximately/nearly sparse I [
= mostly insignificant values
Real-life example: ) k‘
seismograph (we are lucky  §
earthquakes are sparse) :
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Sparse signal
Most real-life signals I.I I I
do not look sparse ."I'||III|.-' "
‘ y ‘
DCT
They may be sparse I 7
under appropriate basis I = 1
These are implicitly sparse signals
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Sparse signal

Real-life example: image

o 7

— wavelet _l

. ¢ 888§ §

]

o
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CS versus sampling

CS = compressed/compressive sensing/sampling

|k

Assume each measurement has a cost
- Use minimum number of measurements
Is local measurement a good choice for sparse signals?

Conventional sampling: local/sparse

image sample/pixel = (

7 Anamitra Makur [R88 NANYANG
| TECHNOLOGICAL
' UNIVERSITY




CS versus sampling

Real-life example: US army during
WWe-II, syphilis test
(0 = negative, 1 = positive)

Syphilis blood test was expensive.
Random individual test:

‘ ‘ | ‘ ‘ - all negative!
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CS versus sampling

US army used group testing, pooling blood from a few soldiers.
If it tests positive then further test may be done.

JLJ_ e J_‘_ _u_”JS L_ﬁ_“_ _..—> captures positive cases
+ + + ++
Such global measurements exist for image:

In tomography, measurement = (
(line integral)

In MRI, measurement = <
(sinusoids)
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CS versus sampling

For sparse signals, global/dense measurements are better, as long
as the signal may be reconstructed back from its measurements

In CS, measurement = <
(random)

CS guarantees that a sparse signal may be reconstructed back
from its measurements

Further, CS requires less measurements/samples than
conventional sampling for sparse signals
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Compressed sensing

x = explicitly/implicitly sparse signal of dimension d
x has sparsity s
Take m random measurements y (72 measurements)

measurement matrix =
Y = Amxd « X
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Compressed sensing

Few measurements: m << d
Can x be reconstructed from y?

Example: m=4,d=06 To find x, consider solving
Ty ] X, +x,+x5=0
0
10100 1]x/| [0 Xtx oy =2
0 1 1.1.00)x - 2 More unknowns than
1 00 1 1 Ofxg| (2 equations
01 001 1fx,| [0 - Infinite solutions!
) X Typical of inverse problems
L4
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Compressed sensing
Some solutions: lynorm [, norm [/, norm
1 0100 1|[K%] |0 1 o) o)
01 1 100|452 Z 2 3-5
1 001 1 04| |2 5 10 4.5
01 001 1|[%] 10 6 33 1.6
% I lo=20x" llxlh= 20 |
7% i i
L : Ix b= D x}
In order to choose from infinite solutions, use 2 —
some criterion such as the /, norm (sparsity)
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Compressed sensing

Under certain conditions, an explicitly sparse signal x of sparsity
s and dimension d may be reconstructed from m measurements

Sensing: given signal x and measurement matrix A4,
y=Ax

Reconstruction: given measurement y and measurement matrix A4,
min||x]l, subjectto Ax=y
X

x— 4 — Y —lreconstruction — x

|
A

14 Anamitra Makur 9588 NANYANG
TECHNOLOGICAL
5/ UNIVERSITY

Compressed sensing

For nearly sparse u, let x be the most significant s-sparse part of u

Sensing: given signal u and measurement matrix 4,
yv=Au=Ax+Au—-x)=Ax+e

where let ||e|,< ¢

Also for noisy measurement y, sensing is A.x buty = 4.x + e

Reconstruction: given y, 4, and &

min || x ||, subjectto ||[4x—y|,<¢

x— 4 ﬁ@% Y —{reconstruction |~ x
. \

A
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Compressed sensing

For implicitly sparse x in a basis ¥ such that x = ¥.u where u is
sparse:

Sensing: y=Ax

Reconstruction: min||¥ x|, subjectto A.x=y

or, use the explicit réconstruction with a modified measurement

matrix,
min ||u ||, subjectto AY.u=y

such that the solution is x = ¥.u

x— A — Y —reconstruction — x

AY
16 Anamitra Makur S8 NANYANG
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I, minimization
Recovery using /, minimization:
min || x|, subjectto Ax=y
X, 0]
Example: 1 01 00 1]x/| [0 2
Find x where 01 110 0fx ) 0
[xllo =2 = x=
1 0 0 11 Ofnx, 3 0
001 0 071 1jx, 5 3
xi _0_
(a sophisticated version of US army group testing)
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I, minimization

Can there be solutions other than x?

Same A4:
Find x where
llxllo = 2

S = O =
- o = O
S = = O
—_— = O O

3
3
— X=
3
3

O O = =
—_— 0 O
|
S W O W o O

S O O O W W
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I, minimization

Theorem: Unique recovery using /, minimization is possible
if spark of 4 > 2s.

spark of 4 = smallest number of linearly dependent columns of 4

Proof: Let there be another
solution v such that

Av=y, |v|,<s ~0

Then Av — Ax=4.(v—x)=0

—X
s = sparsity
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I, minimization

Or weighted sum of ||v — x||, columns of 4 is zero

+ +|+|0

Or [|[v —x]|, columns of 4 are linearly dependent
But [|v[o<s,[[x[p=s

So even if v and x has entirely different non-zero locations,
||v—x|,< 2s which is not possible, since spark of 4 > 25 means
any 2s or less columns are linearly independent
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I, minimization

Check our example: |1
0
A=
1
0

Some set of 2s = 4 columns are not linearly independent, such as
1| (0 |1] |O

0 1 1 0
+ =1 |=l.1=0
1 0 0 1
0 1 0 1
21 Anamitra Makur “ NANYANC;
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I, minimization

Good news: recovery is guaranteed using /, minimization

Bad news: /, minimization is essentially combinatorial
(try out all possible combinations)
Therefore complexity is high (NP-hard)
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I, minimization

Convex relaxation: relax highly non-convex /, minimization to

convex /, minimization
min || x ]|, subjectto Ax=y
X

min || x|, subjectto Ax=y

\’;z::
/l All solutions lie in a d — m dimensional

null space plane {v: A.v =y}

solution = where the null space plane intersects the /. ball

(region with /., norm = constant)
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I, minimization

[, ‘ball’ is infinite, looks like

X
X
X2
X3
[y norm = 1 I, norm = 2
highly non-convex highly non-convex
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I, minimization

3

[, ball for p <1 [, ball [, ball
non-convex convex convex
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I, minimization

H o6 @

[, ‘ball:’ [, ball: [, ball:
correct solution correct solution wrong solution,
ifm>2s under certain typically not
conditions sparse
m = measurements, s = sparsity
26 Anamitra Makur NANYANG
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Section 2. ANALYSIS OF /; MINIMIZATION

* [, minimization: theorem and sketch of proof
* Proof part 1: tail probabilities

* Proof part 2: number of measurements

* Proof part 3: RIP constant

* Proof part 4: null space property
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Analysis of I, minimization

Recovery using /; minimization:

min || x|, subjectto Ax=y

Theorem: For a random Gaussian matrix 4, choosing

m 2 c;slog(d /), recovery using /; minimization occurs with
probability 1—e %",

(c; = constants > 0, H = H(2s/d) = entropy)

(Proofs using JL lemma show with probability 1—e ")

d = dimension, m = measurements, s = sparsity
28 Anamitra Makur 588 NANYANG
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Analysis of /I, minimization

Non-uniform recovery result: For a given x, choose 4 at random.
Show recovery in probability for a constraint on .

Easier to show. For one x, some 4 may not work. For another x,
some other 4 doesn’t work. It is possible that all 4 are such that
they don’t work for some x.

Uniform recovery result: For any x, choose 4 at random. Show
recovery in probability for a constraint on m.

For all x, a random 4 works with certain probability.
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TECHNOLOGICAL
' UNIVERSITY

14



Analysis of I, minimization

Sketch of proof: random measurement matrix 4

probabilistic

deterministic

30

Proof'1

tail probabilities of singular
values of sub-matrix of 4
to RIP constant

p{Jl +0,, = 1+/1}S e
JI+6,, <1+4

Proof 2 | required m so that
A< (2-3)N3
1
0,, <—
3 Anamitra Makur “ NANYANG
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Analysis of /I, minimization

deterministic

31

1
§2S < 5
Proof 3 | RIP constant to null space property

A satisfies null

space property

Proof 4

null space property means recovery

recovery

Anamitra Makur &5 NANYANC;
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Analysis of I, minimization: Proof 1

Proof I: random measurement matrix A4

Proof 1 | tail probabilities of singular
values of sub-matrix of 4
to RIP constant

p{,/l+§2s > 1+ﬂ}£ e o

This part finds upper bound on the probability that the RIP
constant is much larger than 1.

32 Anamitra Makur 9588 NANYANG
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Analysis of I, minimization: Proof 1

Random Gaussian matrix = elements of 4 iid Gaussian
A, = some column sub-matrix of 4 made of 2s columns (recall
X — v in /, minimization is 2s sparse), singular values ~ 1

d 2s

m A mA,, \

1+4 O, (A.,)

max

Applying concentration inequality for Gaussian measures,

p{o-max(Asub) >1+ JE +t+ } < e—mtz/z
m

” A Anamira Makur [ NANYANG
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Analysis of I, minimization: Proof 1

Let 2:1/£+t=1/§+‘/(2+2cl)[{—'d
m m m
2 2 2s d-2s d-2s

where H =H| 2> =——S10g—— log
d d d d d

then p{o-max(Asub) >1+ /1}3 e—mt2/2 _ e—(l+cl)H.d

), the maximum singular value among
all possible 4,
Evenifany one o,,(4,,)>1+A4,then 6 >1+4

max

Let & =maxo
A:ub

max

(4

sub

So p{c >1+ A} = p{unionofall o, (4,,)>1+A4}

max
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Analysis of I, minimization: Proof 1

ple>1+4)=

all having identical probability

sub >

There are d
2s

plo>1+ A} < (ZJ plo...(4,,)>1+ A4}

< d o (et d
2s
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Analysis of I, minimization: Proof 1

d
Now log(2 jz logd!-log2s!—log(d —2s)!
s

Using Stirling approximation
logd!~dlogd —d +..

- —2slog§— (d—25)log P =25 + .
=Hd+..
p{E > 1 + /1} < eH.d+..'e—(l+c1)H.d
— e—clH.d+..
< e—czH.d
36 Anamitra Makur S8 NANYANG
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Analysis of I, minimization: Proof 1
Similarly, for minimum singular value of 4,
1 - ﬂ‘ O-min(Asub)
o=mino, (4,,)
It may be shown that p{o <1-A}<e "
37 Anamitra Makur EREI NANYANG
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Analysis of I, minimization: Proof 1

Restricted isometry property (RIP) of order s:
For a measurement matrix 4, the /, norm of 4x for all s-sparse
signal x is bounded by
(=0 llxl; < [l4x[f < A+8)x]p
o, = restricted isometry constant, or simply RIP constant
Ax
X Ax
x
1 +6, > 1, Ax larger than x 1 -0, <1, Ax smaller than x
Small 6, means Ax is nearly equal to x (in /, norm sense)

38 Anamitra Makur 9588 NANYANG

TECHNOLOGICAL
3 UNIVERSITY

Analysis of I, minimization: Proof 1

Consider RIP for 2s-sparse signal u

A=) lull < lduly < A+68,) [lulh

Au
1+ J,, measures " u in which direction
how much larger results in largest Au ?
can Au be than u
Au
singular values direction of the %" (scaled
and right- Of’gﬂﬂ-l largest singular 7, by l.l)
singular vectors value 0.9
of 4 (= 1)
39 Anamitra Makur SR8 NANYANG
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Analysis of I, minimization: Proof 1

o 1s the maximum singular value among all possible 4,

(1_52s)||usub||§ < ||Asubusub||§ \LS (1+§2s)||usub||§

?
Since ” Asubusub ||§S 52 || usub ||§ s 1+ 525‘ :E

We have to check lower bound, too

?
. 2 )
Slnce o ” usub ”g S|| Asubusub ”g ’ 1- é‘2\“ _g

r 140, =42-
Combining, \/1+6,, :max{c?,q/Z—g }

40 Anamitra Makur m E.‘.E‘:.k}‘“
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Analysis of I, minimization: Proof 1

If either &>1+4 or \2—0” >1+4, then 1465, >1+4

p 1+§ >l+ﬂ
sum

Lll’llOl’l

So p{\/1+523 >1+}t}$p{5>1+}t}+p{\/2—g2 >1+}t}

41 Anamitra Makur SR8 } ANYANG
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Analysis of I, minimization: Proof 1

Now p{\/Z—gz >1+/1}

= plo<N1-21-2

<po<NI-21+ 1 Vi -2 o
= plo<1-2}
So pfI+6,, >1+ A< plz >1+ )+ plo <1- 4}
S ZefczH.d
< e—c3H.d
42 Anamitra Makur 5 NANYANG
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Analysis of I, minimization: Proof 2

Proof 2: J1+06,, <1+4

Proof 2 | required m so that
A< (2-\3)N3

52s <

This part finds the required m such that the RIP constant of 4
is small.
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Analysis of I, minimization: Proof 2

As we see later in proof part 3, recovery requires d,,< 3

Or, probability that J,,> '3 should be very small

e ol oI
If A< then pid, >—;= 1+0, >—
\/g Py Oy 3 p 2s \/g
<phi+6, 21+ 4}
< e—c3H.d
or p{é‘k < —} >1—e oM
44 Anamitra Makur S8 NANYANG
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Analysis of I, minimization: Proof 2

From proofpart 1, 4 = /2_S+ /(2.,.201)[_1_'“’
m m

Am=2s+2+2c)H.d+..
=25+ (2+2c)H.d

=25+ (2+ 201)(— 25log 2 — (d — 25)log _2Sj
d v d
since 2s << d , this term is smaller

<2s+ c{— 2s log%}

d
=2s+¢,| 2slog—
2s -
45 Anamitra Makur m NANYANG

TECHNOLOGICAL
» UNIVERSITY

22



Analysis of I, minimization: Proof 2
=2¢,s logi— (2c,log2—2)s <2¢,s logi
S S

Choose m > css logi such that Am < 2¢,s logi < gm
s s

Recall that ¢, depends on ¢, . /20 2— ﬁ
Cs

Choose c: large enough to make [—% <
5 larg g \/5

1
Therefore o, < gwith very high probability

46 Anamitra Makur 9588 NANYANG
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Analysis of I, minimization: Proof 3

Proof 3: 0,, < %

Proof'3 | RIP constant to null space property

A satisfies null space property

This part shows that a small enough RIP constant implies that
null space vectors of 4 are not sparse (null space property).
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Analysis of I, minimization: Proof 3

Null space property of order s:

For all null space vectors u (such that 4.u = 0),
for all subset S consisting of s components of u,
split u into parts u; and u,:

Laa 1B
" S ——
S Se

Then A satisfies null space property of order s if [|u; || <[[ug. ||

48 Anamitra Makur 9588 NANYANG
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Analysis of I, minimization: Proof 3

Null space property implies that u is not sparse

In the earlier example, if u is sparse, then S may be chosen such
that [Jug [ > u. [} :

The worst case S is choosing s (absolute-)largest components of u
Let this case be uy = u,

* Anamitra Makur R NANYANG
' UNIVERSITY
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Analysis of I, minimization: Proof 3
Split u into s-sparse parts from large to small components
U=Uy+u +U,+-

s (absolute-)largest componentsl
s+1 to 2s (absolute-)largest components

s=2 example: u u, + u

w0 .

50 Anamitra Makur m hl“\lhl‘“&(“x
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Analysis of I, minimization: Proof 3
How does the /; norm of a s-sparse vector compare to its /, norm?

Example: v=1... a..a...a...]
l—T—J
s ‘a’ terms

[, norm = sla| but /, norm = +/sa’
— [, norm is larger than /, norm

Scaling the , norm by v/s, [[v [,=+/s ||v |,
The next slide formally shows that in general, ||v < Js vl
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Analysis of I, minimization: Proof 3

For any s-sparse vector v with components {v},, take the inner
product of |v| =

with w= [101001010]

Note that <|v|,w>=||v||, the /, norm of v

Also <]v|,w>2=( D y.1]2 s( Z{v}fj( lej

fI‘OIn CauChy— nonzero nonzero nonzero

Schwartz inequality ~ [, norm of v
or [|[vIF<|[vIE s Therefore ||u, ||,<||u, |, Js
52 Anamitra Makur S5 ml\l}“;l}}(\‘
/ UNIVERSITY

Analysis of I, minimization: Proof 3

Since u, is s-sparse, using RIP result (1-3,) ||u, |<|| Ay, |}

Js
g 1o Vs < Il A |

N

s

= _—5<AHO,AMO>

s Since A(u, +u, +u, +---)=0,
N Auy =—Au, — Au, —
1_ —Au, — Au, —--)
T1- 5 A
53 s k=1 Anamitra Makur SR8 }“\I}“;&}E‘
! UNIVERSITY
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Analysis of I, minimization: Proof 3

We’ll use the following results of RIP constant:

1) Let u, v be sparse vectors with support S, , S, such that

Then

SNS, =¢, 1S/+1S, =25
| {Au, Av) [< 6y [[u[L][v ],

2)if s<t then o, <o,

54
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Analysis of I, minimization: Proof 3

s

SO

1_ s k=1

Therefore

Or

Therefore
55

5 Z(Auo,—Auk> < —1

Js .
>0, 1y LNl ll, using result 1)

—Ug k1

_ s,

2 luy |, Y llug |, using result 2)

1 0, o1
\/_ \/_525
|24 ||2 < 5 |24 |l Z”uk I,
— Uy k>1
f )
oty I Vs <=2l u, |,
2? k=1

\/55
llu, || < 2wy ||
o Il 1—5%2 kb

s k21 Anamitra Makur m } ANYANG
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Analysis of I, minimization: Proof 3

Any component in u, is smaller than average absolute component

inu,

In earlier example,
u, average of i, u,

I I i =

[ |
[l 2ty |l
so [{u}, |<s———
S
56 Anamitra Makur m ml\l}“;l}}(\;
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Analysis of I, minimization: Proof 3
2
S |
{u,}; < kzl 1
S
Z{ } < W1 T ||le 1 ||1
U
nonzero
||”k il
{uk} S—F
non%,;ro J_
u
||uk ||2_ || k-1 ||1
Vs
\/Egzs ZHU I, < \/;525 Z”uk i
k1 =
1_52s k>1 1_525 k>1
57 Anamitra Makur m }“\I}“;&}E‘
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Analysis of I, minimization: Proof 3

1)
Therefore |[u, ||| < —= ZHMH l
1 - 52S k>1

0.
51 23 (”“0”1"'“”1 ||1+||u2||1+"',)
-5, ‘
et Il

N

. 15, 1 1
Since 52s<§a > <5 or ||uo||1<E(H“0 [+ [y 1)

1-6,

s

Therefore||u, || <||u, || or 4 satisfies null space property of order s

58 Anamitra Makur 9588 NANYANG
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Analysis of I, minimization: Proof 4

Proof 4: A satisfies null space property

Proof 4 |null space property means recovery

recovery

Apart from the sparse solution, consider any other solution.

The difference between these two solutions (a null space vector)
is not sparse.

Thus the other solution is not sparse, and has a larger /, norm.
The sparse solution indeed has minimum /, norm.

59 Anamitra Makur S5 NANYANG
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Analysis of I, minimization: Proof 4

Let x be the s-sparse solution with support S x

Let there be another solution v such %

that A.x = A.v /l

Splitvinto vy and v, g Ve
xX=(x—-vy)+vy x—vS.J Vg
60 Anamitra Makur “; NANYANG
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Analysis of I, minimization: Proof 4

x| <||x=vg |l +][vs |, from triangle inequality
X VSIJ Vs

=l x.—ve |l +]|v since the support of xis S
s ~ Vs li s 1 pPp

teru=x—v o m_l_mm

=lug [ +1[vs Il “S.J Vs

61 Anamitra Makur 5588 NANYANG
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Analysis of I, minimization: Proof 4

since 4.u=0, from null space property, ||ug [ <||ug. ||
“SIJ_ a—— |
-

s Il ue.  HBR vs
-

<ug

=|| _ch 1 + || Vg ||1 since uSC = xSC — ch = _VS‘
Ve v
=l vl v
N Anamia Malur S NANYANG
Iy UNIVERSITY

Analysis of I, minimization: Proof 4

Thus, for a sparse signal x, for any other solution v

= <vl
or the /;, minimization will recover x successfully.

In fact, null space property is a necessary and sufficient condition
for recovery using /; minimization (necessary not proved here).

In conclusion, from proof part 1, recovery using /; minimization
occurs with probability 1—e %"

63 Anamitra Makur S5 NANYANG
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Section 3. MEASUREMENT MATRIX

* Desirable properties of measurement matrices
* Random Gaussian and Bernoulli matrices

» Structured random/deterministic matrices

* Deterministic matrices

* Measurement matrices for implicitly sparse signals

64 Anamitra Makur 9588 NANYANG
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Properties of measurement matrix

Desirable properties of the measurement matrix:

From /, minimization: restricted isometry property (RIP)

(1=,) | x [E<]| Ax [E=< (1+8,0) [l x |}

Make J,, small so that recovery is possible

- Difficult to measure, let alone design, J,,
Requires checking the eigenvalues of each sub-matrix

s = sparsity
65 Anamitra Makur S5 NANYANG
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Properties of measurement matrix

From /, minimization: make columns linearly independent
-> make columns incoherent (different from each other)

Coherence of 4 having columns a;

l<a,a, >

#i | a; [Lla; [,

-> Easy to measure, iterative design procedures available

66 Anamitra Makur 9588 NANYANG
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Random measurement matrix

Random Gaussian matrix: 4 ={a,} such that

elements a; are iid normal with mean 0, variance —
m

We have already seen that RIP of order 2s holds in
probability for this matrix for sufficiently large m

Random Bernoulli/Rademacher matrix: 1
elements a;; are iid binary with equiprobable values + T
m

RIP of order 2s holds for Bernoulli matrix, too

d = dimension, m = measurements, s = sparsity

67 Anamitra Makur 5588 NANYANG

TECHNOLOGICAL

' UNIVERSITY

33



Structured random matrix

Partial random Toeplitz matrix:
Begin with a d X d random Toeplitz matrix

4 4 ay v Ay

a a, a g,

Az A g Ay a,
Pick m random rows of the above matrix
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Structured random matrix
Partial random circulant matrix:
Begin with a d X d random circulant matrix
a, a4 a, - dg,
. 4y a - dy,
a a a - 4
Pick m random rows of the above matrix
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Structured deterministic matrix

Partial Fourier matrix:
Begin with a d X d Fourier matrix W
1 2u24
_ d
W, = _«/3 e
Pick m random rows of the above matrix

RIP of order 2s holds for partial Fourier matrix
(works with other orthonormal bases)

Advantages of structured random/deterministic matrices:
* Less storage requirement than unstructured matrix
» Fast matrix-vector multiplication possible using FFT

70 Anamitra Makur 9588 NANYANG

TECHNOLOGICAL
3 UNIVERSITY

Deterministic measurement matrix

Example: d = p*! where p = prime, 0 <r<p, m =p?
Consider all polynomials of degree r in the finite field GF(p):

gw)=a,+aw+--+aw’, a, eGF(p)

Construct p x p matrix for g(w):
Rearrange to a column 0---0 ﬁ 0---0F—w
There are p*! polynomials
Construct 4 from these columns
)
. k-1
Forany k < L 1, Asatisfies o, = (k=Dr q(w)
r p
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Case of implicitly sparse signals

For implicitly sparse signals, the measurement matrix is 4'Y
where W is the basis

A and ¥ should not be coherent

Example: random Gaussian matrix is incoherent with any basis
with high probability

Let A = random Gaussian matrix, ¥ = DCT basis, then 4Y
remains white Gaussian noise

Random Bernoulli matrix is also incoherent with any basis
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Case of implicitly sparse signals

For some signals/applications, there may be multiple bases ¥,
and ¥,, which can be concatenated to obtain a joint basis if they
are not coherent

Mutual coherence of ¥, and ¥, having columns a;and b,
[<a,b, >|
[ =max———
[l (Ll b [l
Example: ¥, = d x d Fourier basis (localized in frequency)
¥, = d x d impulse basis or identity basis (localized in time)

1 -
[V, ¥,] has mutual coherence = JZ RIP constant §, < s—1

Jd

Haar wavelets and noiselets are also incoherent
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Section 4. RECONSTRUCTION
ALGORITHMS

» Combinatorial algorithms
» Non-convex minimization algorithms

» Convex relaxation algorithms
« BP

* Greedy pursuit algorithms

e OMP
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5/ UNIVERSITY

Reconstruction algorithms

[, minimization

use patterns iterative

[ 1
minimization

Combinatorial l, Greedy
algorithms minimization pursuit
etc. algorithms

Convex
relaxation

Non-convex
minimization

algorithms algorithms
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Combinatorial algorithms

Exploits specific patterns in the sparsity/measurements
Applicable only for applications where such patterns exist

Examples:

HHS (heavy hitters on steroids)
CP (chaining pursuits)

FSA (Fourier sampling algorithm)
Sudocodes

etc.

computation = very low
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Non-convex minimization algorithms

Relax /, minimization to a non-convex but favorable
minimization problem, such as: Y1

[, minimization where 0 <p <1
(recall that /, ball is not convex)
X2
Examples:

IRL1 (iterative reweighted /,)
ISD (iterative support detection)

SBL (sparse Bayesian learning)
etc.
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Convex relaxation algorithms: BP

BP (basis pursuit) min||x|| subjectto 4x=y

Recall that /, ball is convex:

-> minimization may be solved using
* linear program for real values »
* Second order cone program for complex values
polynomial time complexity

sparsity s not required

typically performs the best

several fast algorithms exist, such as sparselab/CVX solver
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Convex relaxation algorithms
BPDN (basis pursuit de-noising)
min || x|, subjectto [[Ax—y|,<¢

LASSO (least absolute shrinkage and selection operator)
min || 4x—y], subjectto ||x[,<e

DS (Dantzig selector)
min || x| subjectto [|[Ax—y|. <&

and more such as LARS (least angle regression), etc.
computation = very high
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Greedy pursuit algorithms: OMP
OMP (orthogonal matching pursuit)

y = weighted sum of few Find which column is most
columns of 4 correlated with y (greedy!)

- y | % AT I correlation
<

----- <«— highest
m

add this column to support set 4
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Greedy pursuit algorithms: OMP

In some iteration, support set A has a few columns

Signal estimate for 4= solution with minimum error in /, norm
£=A"y in 4, 0 in other positions
where AT = pseudo-inverse of 4 (found recursively, no inverse)

Why in /, norm?

« Signal remains sparse since 4 has few columns
* Nice closed form solution

+ Ifthere is an exact solution, /, norm will find it

What is left? residue z = y — Ax
Find which column is most correlated with z

Continue for s iterations > sparsity s required
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Greedy pursuit algorithms: OMP

IJ 1 & . I|_|_.._I_
iteration 1, X = 'lll-l_.l__llllllll o= J..Ll"lf

I I.l I I_ 7= l-----__-_

iteration 2, X= =" I - .I -

Example: x =

and so on
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Greedy pursuit algorithms

Greedy pursuits involve iterative estimation, greedy step in
each iteration, most having convergence guarantee

Examples:

[HT/IST (iterative hard/soft thresholding)

AMP (approximate message passing)

MP (matching pursuit)

OMP (orthogonal matching pursuit)

SP (subspace pursuit)

CoSAMP (compressive sampling matching pursuit)
BAOMP (backtracking-based adaptive OMP)

etc.
computation = low
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Section 5. APPLICATIONS

» Compression
* Denoising
* Classification/recognition

» Data acquisition
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Compression

» Typically with a basis

* Typically with other refinements

* Universal encoder (basis not required)

* Asymmetrical: simple encoder, complex decoder

H.264 | CS based
video with small object size | 30 sec | 0.6 sec

video with large object size | 18 sec | 0.75 sec

Example: video compression, encoding time
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Compression

» Possible to compress after encryption

7

Example: encrypted image  after compress.treconstruction
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Compression

 Distributed compressive sensing (independent encoder, joint
decoder)

—+— CSVOEC

32| | —O— Propased CSVOC
—8— Prapased DCVS-VOC - GOP length=d
—8— Fropasad GOVS YOG - GOF langih=

Object PSNR
1
®

2 e
-
ag=="
L) -
T 015 02 0% 03 0% 04 045 05
Unda g rali

Example: video compression, PSNR results
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Denoising

* Dictionary design
* Sparse representation of signal on the dictionary permits
removing noise, filling up missing values, etc.

missing pixels noisy ige CS

88 Anamitra Makur red sl bl
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Classification/recognition

e Robust

Recognition rate (%)

B —> CS based
e
—E— SDR-SLR|

~— not CS based

H 4 3
t: number of fraining expressions per subject

Example: expression-robust face recognition
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Data acquisition

Useful where measurements are limited by nature, such as
» Image acquisition
* MRI (magnetic resonance imaging)

* Radar
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Section 6. CONCLUSION
Compressed sensing:
* Founded on theoretical guarantees
* QGeneral framework with several variations
* Many algorithms
* Applications in diverse fields
Thank you for your attention!
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