Bayesian-Inspired Non-Convex Melhods for

Sparse Sighal Recovery

Chandra R. Murthy, Indian Institute of Science and

David Wipf, Microsoft Research Beijing
\{cmurthy1, davidwipf\}@gmail.com

Oubline
\leftrightarrow Background and motivation
as Algorilhms for sparse signal recovery
ce Guarankees on sparse signal recovery
∞ Non convex methods:
© MAP estimation
as Sparse Bayesian Learning
a Useful extensions
\leftrightarrow Application to wireless communication

Part 1: Selking the stage

Mokivation and background
Basic resulks

Sparse Signal Recovery

Compressed Sensing

\leftrightarrow Deals with kwo main questions:
\& Design of sensing malrices with recovery

a Computationally efficient recovery
a Our focus: sparse signal recovery from noisy Linear underdelermined measurements

Applications
a Signal representation (Mallal, Coifman, Wickerhauser, Donoho,...)
\otimes Funclional Approx. (Chen, Nagarajan, Cun, Hassibi, ...)
a Spectral estmn., carlography (Papoulis, Lee, Cabrera, Parks, ...)
© EEG/MEG (Leahy, Gordonilsky, Ioannides, ...)
as Medical imaging (Lustig, Pauly, ...)
a Speech SP (Ozawa, Ono, Kroon, Alal, ...)
Q Sparse channel estimation (Fevrier, Greenstein, Proakis, Prasad el al.,...)
\& Oullier removal and feature seleckion in machine learning

Wireless Channel Estimation

\& Wireless channels exhibit mullipalh
as Naturally sparse in the lag-domain
\& Need to estimate both support \& channel
\leftrightarrow Channel equalization \& data detection

Robust Linear Regression: Underdetermined Case

© Transform into an overcomplete problem:

$$
\begin{aligned}
& \mathbf{Y}=\boldsymbol{\Phi} \mathbf{x}+\mathbf{\Psi} \mathbf{v}_{s}+\mathbf{v}_{g} \text {, where } \mathbf{\Psi}=\mathbf{I} \\
& \text { or } \mathbf{Y}=[\boldsymbol{\Phi}, \mathbf{\Psi}]\left[\begin{array}{c}
\mathbf{x} \\
\mathbf{v}_{s}
\end{array}\right]+\mathbf{v}_{g}
\end{aligned}
$$

Sparse recovery algos are now applicable!

Robust Linear Regression: Overdetermined Case

© Measurement model:

$$
\begin{array}{cc}
\mathbf{y}=\mathbf{A} \mathbf{x}+\mathbf{E}+\mathbf{e} \\
M \times N ; & \text { Outliers; } \\
M \geq N & \text { Noise } \\
M \geq a r s e
\end{array}
$$

CR Use SVD: $\mathbf{A}=\mathbf{U}_{1} \Sigma \mathbf{V}_{1}^{T} ; \mathbf{U}_{2}^{T} \mathbf{A}=\mathbf{0}$
a Processed measurements:

$$
\tilde{\mathbf{y}}=\mathbf{U}_{2}^{T} \mathbf{y}=\mathbf{U}_{2}^{T} \mathbf{E}+\mathbf{U}_{2}^{T} \mathbf{e}
$$

Can how directly apply sparse signal recovery algorithms to estimate and remove oulliers!

The Problem

eel
\propto Noiseless case: Given y and Φ, solve

$$
\min \|\mathbf{x}\|_{0} \text { subject to } \mathbf{y}=\boldsymbol{\Phi} \mathbf{x}
$$

\propto Noisy case: solve

$$
\min \|\mathbf{x}\|_{0} \text { subject to }\|\mathbf{y}-\boldsymbol{\Phi} \mathbf{x}\|_{2} \leq \beta
$$

as Lo norm minimization
as Combinatorial complexity
\leftrightarrow Not robust to noise

Recovery Algorithms
\& Greedy algorithms:
\& M Matching pursuit [Mallet, zhang; Cotter, Rao]
\& Orthogonal matching pursuit [Tropp 03]
\propto COSAMP [Needell, Tropp]
\propto Relaxation based methods (minimize diversity meas.):
CB Basis pursuit ($L-p$, with $p=1$) [chen et al.]
cs Lasso (BPDN) [Tibshirani]
a Dankzig selector [andes, Tao]
as Homotopy based methods (e.g., LARS) [Garrigues et al. 09]
as FOCUSS ($L-p$, with $p<1$) [Gordonitsky et al.]
cu Iterative methods:
\& Basic/Iteralive hard Chresholding
Recovery guarantees exist
∞ Hard thresholding pursuit for most of these algorithms! See [Rauhut \& Foucart]

Motivational Example

Q Generate random so $\times 100$ matrix Φ
\otimes Generate sparse vector x_{0}

Q Compute $y=\Phi x_{0}$
as Solve for x_{0}, average over 1000 trials
\propto Repeat for different sparsity values

Unit magnitude entries

Limitations of Relaxation and Greed
\therefore Performance of BP and OMP depend on Φ a Poor performance when conditions are violated $)_{8}$ Hard to relate estimation error to the dictionary ∞ Correlated dictionary: disrupts $L_{0}-L_{1}$ equivalence

B BP: performance independent of nonzero coeffs [Malioutor et al. 2004]
as Cannot improve when situation is favorable
© OMP: performance highly sensitive to magnitudes of nonzero coefficients
\& Poor performance with unit magnitudes

Other Limitations of Convex Relaxation

co Scaling/shrinkage:
\propto Noiseless: $l_{0} \leftrightarrow l_{1} \leftrightarrow l_{2}$. Shrinking Large coeffs can reduce variance, bul at the cost of sparsity
$\&$ Noisy: The t in lasso that minimizes the MSE could result in a much larger number of nonzero coeffs
∞ Estimating embedded params (e.g., in Φ)

To Recap
a Sparse signal recovery
a Basic problem
\& Algorithms
a Limitations
as Scaling/shrinkage
\propto Correlated dictionary
a Embedded parameters

Part 2: Done Relax!

Bayesian Melhods
\propto MAP estimation (Type I):
Q Also a regression problem with sparsily promoking penalkies (e.g., L_{p}-norm)
$\propto L_{1}-\min$ (BP/LASSO) is a special case
as Iterative reweighted L_{1} [Candes et al. 2008]
∞ Iterakive reweighted L_{2} [Chartrand \& yin 2008]
a Hierarchical Bayesian melhods (Type II):
Q EM-based SBL [Tipping, 2001], [Wipf, Rao 2007]
CP AMP-based methods [schniter 2008], [Rangan 2011]

MAP Estimation

$$
\begin{aligned}
\hat{\mathbf{x}} & \left.=\arg \max _{\mathbf{x}} p(\mathbf{x} \mid \mathbf{y})\right) \\
& =\arg \min _{\mathbf{x}}-\log p(\mathbf{y} \mid \mathbf{x})-\operatorname{lyg} p(\mathbf{x}) \text { (Bayes' }{ }^{\prime} \text { rule) } \\
& =\arg \min _{\mathbf{x}}\|\mathbf{y}-\mathbf{\Phi} \mathbf{x}\|_{2}^{2}+\lambda \sum_{i=1}^{N} g\left(\left|x_{i}\right|\right) \longleftarrow \text { Separable prior }
\end{aligned}
$$

$@$ For sparse solutions, $g\left(\left|x_{i}\right|\right)$ should be a concave, nondecreasing function
© Example: $g\left(\left|x_{i}\right|\right)=\left|x_{i}\right|^{p}, p \leq 1$
© Lasso is a special case: $p=1$
as Any local min. of the MAP estimation problem has at most M nonzeros [Rao et al., 99]

The Optimization Problem

as To solve

$$
\arg \min _{\mathbf{x}} G(\mathbf{x}) \triangleq\|\mathbf{y}-\mathbf{\Phi} \mathbf{x}\|_{2}^{2}+\lambda \sum_{i=1}^{N} g\left(\left|x_{i}\right|\right)
$$

css $g(|x|)$ symmetric and concave, monotonically increasing for $x \in \mathbb{R}^{+}$
$\propto \in(x)$ convex + concave
cs Many options for $g(|x|)$ to promote sparsity
cs Many options for solving the optz. problem

Sparsily-Promoking Penallies

ar Concave penally fus. promote sparsily

$$
\begin{aligned}
& \text { Cs } g(|x|)=\log \left(|x|^{2}+\varepsilon\right), \varepsilon>0 \text { [Chartrand } \neq \text { Yin 2008] } \\
& \propto g(|x|)=\log (|x|+\varepsilon), \varepsilon>0 \text { [Candes et al. 2008] } \\
& \text { Cs } g(|x|)=|x|^{p}, 0<p<1 \text { [Rao et al., 99] }
\end{aligned}
$$

\propto A general approach:

Majorization-Minimization Approach
\propto Find an upper bound $g(x) \leq f(x \mid x(m))$ as Equality at $x=x^{(m)}$, convenient for opt.
a Step 1: Optimize

$$
\arg \min _{\mathbf{x}} F\left(\mathbf{x} \mid \mathbf{x}^{(m)}\right) \triangleq\|\mathbf{y}-\Phi \mathbf{x}\|_{2}^{2}+\lambda \sum_{i=1}^{N} f\left(\mid x_{i} \| x_{i}^{(m)}\right)
$$

\propto Step 2: Set $m<-m+1$, update $f\left(x \mid x^{(m)}\right)$, iterate as Works because

$$
G\left(x^{(m+1)}\right) \leq F\left(x^{(m+1)} \mid x^{(m)}\right) \leq F\left(x^{(m)} \mid x^{(m)}\right)=G\left(x^{(m)}\right)
$$

Iterative Reweighted l_{1}
as Concavity in $|x|: g(x) \leq g^{\prime}\left(x^{(m)}\right)\left(x-x^{(m)}\right)+g\left(x^{(m)}\right)$
as Equality at $x=x(m)$, Linear in x
Co Iterative reweighted \mathcal{L}_{1} : [Candes et al. 08]
a Init: $m=0, x^{(m)}=$ something convenient
Co Iterate:
$\mathbf{x}^{(m+1)}=\arg \min _{\mathbf{x}}\|\mathbf{y}-\mathbf{\Phi} \mathbf{x}\|_{2}^{2}+\lambda \sum_{i=1}^{N} g^{\prime}\left(x_{i}^{(m)}\right) \mid x_{i}$
Optimize $m<-m+1$, update $g^{\prime}\left(x_{i}^{(m)}\right)$
Weighted I_{1} minimization convergence
\& Until convergence
Weighted I_{1} minimization

Iterakive Reweighted L_{2}

Qs $g(x)$ concave in $x^{2}: g(x) \leq\left(\left.\frac{\partial g\left(\sqrt{x^{2}}\right)}{\partial\left(x^{2}\right)}\right|_{x=x_{0}}\right)\left(x^{2}-x_{0}^{2}\right)+g\left(x_{0}\right)$
© Optimization problem

$$
\begin{aligned}
& \text { Oplimizalion problem } \\
& \qquad \mathbf{x}^{(m+1)}=\arg \min _{\mathbf{x}}\|\mathbf{y}-\mathbf{\Phi} \mathbf{x}\|_{2}^{2}+\lambda \sum_{i=1}^{N} w_{i}^{(m)}\left|x_{i}\right|^{2} \\
& \text { Ileralive reweighled } 12 \text { [chartrandet al.o8] } \\
& \text { as Init: } m=0, x^{(m)}=\text { something convenient }
\end{aligned}\left\|\mathbf{W}_{m}^{-\frac{1}{2}} \mathbf{x}\right\|_{2}^{2}, ~ l
$$

© Iteralive reweighted [2 [chartrand et al. o8]
as Iterate: ${ }^{\text {as }}$ Compute $\mathbf{x}^{(m+1)}=\mathbf{W}_{m} \Phi^{T}\left(\lambda \mathbf{I}+\Phi \mathbf{W}_{m} \Phi^{T}\right)^{-1} \mathbf{y}$
\& $m<-m+1$, update W_{m}
as Unkil convergence

Other Ways to Bound

Q Taylor's expansion
ar Jensen's inequalily
a Concave conjugate inequalily
a Good opportunity to innovate!

An Example

a Suppose $g(x)=\log (|x|+\varepsilon), \varepsilon>0$ \leftrightarrow Concave in $|x|, x^{2}$
as Iterative reweighted 11

$$
g^{\prime}\left(x_{i}^{(m)}\right)=\left[\left|x_{i}^{(m)}\right|+\epsilon\right]^{-1}
$$

∞ Iterative reweighted 12

$$
w_{i}^{(m)}=\left[\left(x_{i}^{(m)}\right)^{2}+\epsilon\left|x_{i}^{(m)}\right|\right]^{-1}
$$

Limitations of MAP
\& Many Local minima $O\left({ }^{N} C_{M}\right)$
as May get stuck at a Local minimum
\propto MAP only guarantees max $p\left(x=x_{0} \mid y\right)$
\& Probability mass, rather than mode, may be more relevant for continuous random vars
\& Perhaps posterior mean $E(x / y)$?
Q Even with the true prior, MAP estimators do not minimize MSE: so MSE may be high!
© In fact, using "true" statistics often does not lead to the lowest MSE!

To Recap

Cs Bayesian estimation
Q Basic MAP estimation
© Majorization-minimization approach
∞ Iterative reweighted algorithms
∞ Limitations
\& Many Local minima
as Posterior mean vs, posterior mode

Part 3: Sparse Bayesian Learning

Use loks of priors and pick the best one!

Point of Departure: Alternative Prior

a Need tractable representations for sparsity promoting priors
\propto Gaussian Scaled Mixtures (GSM)

$$
\begin{gathered}
\mathbf{x}=\sqrt{\Gamma} G ; G \sim \mathcal{N}(\mathbf{g} ; 0,1) \\
p(\mathbf{x})=\int p(\mathbf{x} \mid \gamma) p(\gamma) \mathrm{d} \gamma=\int \mathcal{N}(\mathbf{x} ; 0, \gamma) p(\gamma) \mathrm{d} \gamma
\end{gathered}
$$

$\infty \quad \gamma$: non-negative random variable, independent of G

Why GSMs?
as Deft.: A function $f(x)$ is completely monotonic on (a, b) if $(-1)^{n f(n)}(x) \geq 0, n=0,1, \ldots$ where $f^{(n)}(x)=n^{\text {th }}$ order derivative
∞ Theorem: A density $p(x)$ can be represented by a GSM iff $p\left(x^{1 / 2}\right)$ is completely monotonic on $(0, \infty)$
as Most sparse priors on x can be expressed using GSMS (incl, ones with concave g) [Palmer et al., 2006]

Examples

\because Laplacian densily
\propto We use: $\quad p(\gamma)=\frac{a^{2}}{2} \exp \left(-\frac{a^{2}}{2} \gamma\right), \gamma \geq 0$
\& And get: $p\left(x_{i} ; a\right)=\frac{a}{2} \exp \left(-a\left|x_{i}\right|\right)$
ar Which leads to the familiar LASSO problem
∞ Student's E distribution
CB We use: gamma distribution
a And get:

$$
p\left(x_{i} ; a, b\right)=\frac{b^{a} \Gamma(a+1 / 2)}{\sqrt{2 \pi} \Gamma(a)} \frac{1}{\left(b+x_{i}^{2} / 2\right)^{a+1 / 2}}
$$

Examples
∞ Generalized Gaussian
ca We use: positive alpha-stable density of order p/2 Ca And get: $p\left(x_{i} ; p\right)=\frac{1}{2 \Gamma\left(1+\frac{1}{p}\right)} \exp \left(-\left|x_{i}\right|^{p}\right)$ Q Generalized Logistic distribution
as We use: A scale mixing density related to the Kolmogorov Smirnoff distance
∞ And get:

$$
p\left(x_{i} ; \alpha\right)=\frac{\Gamma(2 \alpha)}{\Gamma(\alpha)^{2}} \frac{\exp \left(-\alpha\left|x_{i}\right|\right)}{\left(1+\exp \left(-\left|x_{i}\right|\right)\right)^{2 \alpha}}
$$

Sparse Bayesian Learning

∞ Recall the canonical model

∞ Gaussian noise model:

$$
p(\mathbf{y} \mid \mathbf{x})=\frac{1}{\left(2 \pi \sigma^{2}\right)^{\frac{N}{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}\|\mathbf{y}-\mathbf{\Phi} \mathbf{x}\|_{2}^{2}\right)
$$

a Paramelerized Gaussian prior:

$$
p\left(x_{i} ; \gamma_{i}\right)=\frac{1}{\sqrt{2 \pi \gamma_{i}}} \exp \left(-\frac{x_{i}^{2}}{2 \gamma_{i}}\right), \gamma_{i} \geq 0
$$

Graphical Model
\& Markov chain: $\gamma \rightarrow x \rightarrow y$
\& V: nonnegative hyperparameters
∞ Potential advantages:
\propto Given $\gamma, p(x / y ; \gamma)$ is Gaussian: easy to find point estimates
\propto Averaging over $x \rightarrow$ fewer Local minima in $p(y / y)$

c) γ can be used to lie parameters logether: fewer

$$
y=\Phi x+v
$$ params. to estimate

Hierarchical Bayesian Framework

C2 First, estimate hyperparameters: $\hat{\gamma}=\arg \max _{\gamma} p(\gamma \mid \mathbf{y})$
$Q_{B} \gamma$: deterministic and unknown, or random with hyperprior distbn.

Q Then, find posterior distribution $p(x \mid y ; \hat{\gamma})$

$$
\begin{gathered}
p(\mathbf{x} \mid \mathbf{y} ; \hat{\gamma})=\mathcal{N}\left(\mu_{x}, \Sigma_{x}\right) \\
\mu_{x}=\hat{\Gamma} \Phi^{T}\left(\Phi \hat{\Gamma} \Phi^{T}+\lambda \mathbf{I}\right)^{-1} \mathbf{y} \\
\Sigma_{x}=\hat{\Gamma}-\hat{\Gamma} \Phi^{T}\left(\Phi \Gamma \Phi^{T}+\lambda \mathbf{I}\right)^{-1} \Phi \hat{\Gamma}
\end{gathered}
$$

a For point estimates: e.g., posterior mean: $\mathbb{E}(x \mid y ; \hat{\gamma})$

Sparse Bayesian Methods

as Estimate γ_{i} from the data: Type-II ML

$$
\begin{aligned}
& \mathcal{L}(\Gamma)=\log p(\mathbf{y} ; \Gamma)=\log \int p(\mathbf{y} \mid \mathbf{x} ; \Gamma) p(\mathbf{x} ; \Gamma) \mathrm{d} \mathbf{x} \\
& p(\mathbf{y} ; \Gamma)=\mathcal{N}(0, \underbrace{\sigma^{2} \mathbf{I}+\Phi \Gamma \Phi^{T}}_{\Sigma_{\mathbf{y}}})
\end{aligned}
$$

\therefore When γ is random: can find MAP estimates as Just add $\sum_{i=1}^{N} \log p\left(\gamma_{i}\right)$ term bo log likelihood fun
© SBL cost function: $\quad \mathcal{L}(\Gamma) \propto-\log \operatorname{det}\left(\Sigma_{\mathbf{y}}\right)-\mathbf{y}^{T} \Sigma_{\mathbf{y}}^{-1} \mathbf{y}$

Optimization via EM

-le

$\cdots \log$ likelihood of the complete data

$$
\begin{array}{rc}
-\log p(\mathbf{y}, \mathbf{x} ; \gamma)= & \frac{\|\mathbf{y}-\mathbf{\Phi} \mathbf{x}\|_{2}^{2}}{2 \sigma^{2}}+\frac{1}{2}\left[\sum_{i=1}^{N} \frac{x_{i}^{2}}{\gamma_{i}}+\log \gamma_{i} \int-\sum_{i=1}^{N} \log p\left(\gamma_{i}\right)\right. \\
- & \begin{array}{r}
\log p(\mathbf{y} \mid \mathbf{x} ; \gamma) \\
\text { indep. of } \gamma
\end{array} \\
-\log p(\mathbf{x} ; \gamma) \\
\text { func. of } \gamma
\end{array} \quad \begin{array}{r}
\text { Facilitates type-II } \\
\text { algorithms }
\end{array}
$$

as E-Step: compute "Q-function"

$$
\begin{aligned}
Q\left(\Gamma \mid \Gamma^{(t)}\right) & =\mathbb{E}_{\mathbf{x} \mid \mathbf{y} ; \Gamma^{(t)}}[-\log p(\mathbf{y}, \mathbf{x} ; \Gamma)] \\
& \doteq \sum_{i=1}^{N} \frac{\mathbb{E}\left(x_{i}^{2} \mid \mathbf{y} ; \Gamma^{(t)}\right)}{\gamma_{i}}+\log \gamma_{i}
\end{aligned}
$$

Q Easy to compute: $p\left(x_{i} \mid \mathbf{y} ; \Gamma^{(t)}\right)$ is Gaussian

The EM Iterations

\mathcal{Q} E-step (continued): $p\left(\mathbf{x} \mid \mathbf{y} ; \Gamma^{(t)}\right)=\mathcal{N}(\mu, \Sigma)$
$\mu=\sigma^{-2}\left(\sigma^{-2} \Phi^{T} \Phi+\left(\Gamma^{(t)}\right)^{-1}\right)^{-1} \Phi^{T} \mathbf{y} \quad \Sigma=\left(\sigma^{-2} \Phi^{T} \Phi+\left(\Gamma^{(t)}\right)^{-1}\right)^{-1}$
Co M-step: maximize $Q\left(\Gamma \mid \Gamma^{(t)}\right)$ given $\mathbb{E}\left(x_{i}^{2} \mid \mathbf{y} ; \Gamma^{(t)}\right)$ posteriors gathered in the E-skep:

$$
\Gamma^{(t+1)}=\arg \max _{\gamma_{i} \geq 0} Q\left(\Gamma \mid \Gamma^{(t)}\right)=\operatorname{diag}\left(\mu_{i}^{2}+\Sigma_{i i}\right)
$$

a Component-wise updates
Can recover type-I methods by treating γ as hidden and taking expectation over γ instead of x

The SBL Algorithm

1. Initialize $\Gamma=I$
2. Compute

$$
\begin{aligned}
& \mu=\sigma^{-2}\left(\sigma^{-2} \Phi^{T} \Phi+\left(\Gamma^{(t)}\right)^{-1}\right)^{-1} \Phi^{T} \mathbf{y} \\
& \Sigma=\left(\sigma^{-2} \Phi^{T} \Phi+\left(\Gamma^{(t)}\right)^{-1}\right)^{-1}
\end{aligned}
$$

3. Update $\quad \Gamma^{(t+1)}=\operatorname{diag}\left(\mu_{i}^{2}+\Sigma_{i i}\right)$
4. Repeat steps 2 and 3
5. Output μ after convergence

Variational Interpretation

- eel

as Lower bound on L:

$$
\begin{aligned}
\mathcal{L}(\Gamma) & =\log \int q_{\mathbf{x}}(\mathbf{x}) \frac{p(\mathbf{x}, \mathbf{y} ; \Gamma)}{q_{\mathbf{x}}(\mathbf{x})} \mathrm{d} \mathbf{x} \\
\Rightarrow & \geq \int q_{\mathbf{x}}(\mathbf{x}) \log \left(\frac{p(\mathbf{x}, \mathbf{y} ; \Gamma)}{q_{\mathbf{x}}(\mathbf{x})}\right) \mathrm{d} \mathbf{x} \\
& \triangleq \mathcal{F}\left(q_{\mathbf{x}}(\mathbf{x}) ; \Gamma\right)
\end{aligned}
$$

Jensen's inequality
\leftrightarrow In each iteration, EM maximizes the bound

Convergence
∞ Convergence guaranteed to a fixed pl. of L from any initialization (property of EM)
as The global min of L occurs at the sparsest solution in the noiseless case \Rightarrow no structural problems! [wipf et al. 04]
a Attempts to estimate posterior $p(x / y)$ in regions with significant mass
c) All local minima occur at sparse solutions in the noisy case [Wipf et al. 04]
\& Cost function much smoother than the associated MAP estimation: fewer local minima [Wipf and Nagarajan 09]

Recall Empirical Example

\propto Generate random so $\times 100$ matrix Φ
as Generate sparse vector x_{0}

Unit magnitude entries

Highly scaled entries

Type I vs. Type II

Other Options for SBL Cost Min.

CR MCKay updates [Tipping, 2001]
$C B$ Set gradient of SBL cost $=0$
Q Faster convergence than EM
CR Greedy approach:
as Update hyperparams one at a lime [Tipping \ddagger Fail, 2003]
\& Closed-form update for each hyperparam
ar Fast, but can get trapped in a local min.
© Fast Bayesian matching pursuit [schniter et al., os]

Other Options for SBL Cost Min.

a Use dual-form of SBL. Cost function:

$$
\begin{aligned}
& \mathbf{x}_{\mathrm{Opt}}=\arg \min _{\mathbf{x}}\|\mathbf{y}-\mathbf{\Phi} \mathbf{x}\|_{2}^{2}+\sigma^{2} g_{\mathrm{SBL}}(\mathbf{x}) \\
& g_{\mathrm{SBL}}(\mathbf{x}) \triangleq \min _{\gamma \geq 0} \mathbf{x}^{T} \Gamma^{-1} \mathbf{x}+\log \operatorname{det}\left(\sigma^{2} \mathbf{I}+\Phi \Gamma \Phi^{T}\right) \\
& \text { as Facilitates ikerative reweighted } \iota_{1} \text { and } \iota_{2} \\
& \text { algorithms [Wipf and Nagarajan, 09] }
\end{aligned}
$$

as Overcomes some limitations of EM
Replace E-step with an approx. posterior computakion: AMP-SBL [AL-shoukairi and Rao 14]

Approximate Message
Passing
© AMP [Donoho, Maleki, Montanari 09]:
\propto Uses loopy belief propagation + Gaussian approximations to solve LASSO
\& Key advantage: Low complexity
\propto In SBL:
C) All Gaussian PDFs: approximation is not necessary
\propto Only need to track means and variances
Can replace computationally expensive E-step with the AMP based iterations

Factor Graph

\therefore In the E-Step, we're after

$$
\begin{array}{r}
p\left(\mathbf{x} \mid \mathbf{y} ; \Gamma^{(t)}\right) \propto p(\mathbf{y} \mid \mathbf{x}) p\left(\mathbf{x} ; \Gamma^{(t)}\right) \\
\propto \prod_{m=1}^{M} p\left(y_{m} \mid \mathbf{x}\right) \prod_{n=1}^{N} p\left(x_{n} ; \gamma_{n}^{(t)}\right)
\end{array}
$$

a And we define

$$
g_{m}(\mathbf{x}) \triangleq p\left(y_{m} \mid \mathbf{x}\right)=\mathcal{N}\left(y_{m} ; \Phi_{m}^{H} \mathbf{x}, \sigma^{2}\right)
$$

$$
f_{n}\left(x_{n}\right) \triangleq p\left(x_{n} ; \gamma_{n}\right)=\mathcal{N}\left(x_{n} ; 0, \gamma_{n}\right)
$$

AMP-SBL

Definitions:
\propto General form of updates:

$$
\begin{gathered}
\hat{\mathbf{x}}^{t+1}=\eta_{t}\left(\Phi^{H} \mathbf{z}^{t}+\hat{\mathbf{x}}^{t}\right) \\
\mathbf{z}^{t}=\mathbf{y}-\Phi \hat{\mathbf{x}}^{t}+\underbrace{\frac{1}{\delta} \mathbf{z}^{t-1}\left\langle\eta^{\prime}{ }_{t-1}\left(\Phi^{H} \mathbf{z}^{t-1}+\hat{\mathbf{x}}^{t-1}\right)\right\rangle}_{\text {Message passing term }}
\end{gathered}
$$

Message Updates:

Co η_{t} : soft-thresholding
function - Linear for SBL

$$
\begin{array}{r}
F_{n}\left(K_{n}, c\right)=K_{n}\left(\frac{\gamma_{n}}{c+\gamma_{n}}\right) \\
G_{n}\left(K_{n}, c\right)=\frac{c \gamma_{n}}{c+\gamma_{n}} \\
F_{n}^{\prime}\left(K_{n}, c\right)=\frac{\gamma_{n}}{c+\gamma_{n}}
\end{array}
$$

$$
\begin{array}{r}
K_{n}=\sum_{m=1}^{M} \Phi_{m n}^{*} z_{m}+\mu_{n} \\
\mu_{n}=F_{n}\left(K_{n}, c\right) \\
v_{n}=G_{n}\left(K_{n}, c\right) \\
c=\sigma^{2}+\frac{1}{M} \sum_{n=1}^{N} v_{n}
\end{array}
$$

Co $0(M+N)$ mss updates: ${ }^{z_{m}=y_{m}-\sum_{n=1}^{N} \Phi_{m n} \mu_{n}+\frac{z_{m}}{M} \sum_{n=1}^{N} F_{n}^{\prime}\left(\mu_{n}, c\right)}$ Low computational cost!

Parameter Update/M-Step:

$$
\gamma_{n}=v_{n}+\mu_{n}^{2}
$$

Empirical Example

$C R=200, M=100, K=20$, Gaussian measurement makrix

Advantages of SBL
\& Averaging over x : fewer minima in $p(y ; \gamma)$
a Get an estimate of the error in recovery
as Allows for "exact inference"
∞ Versatile: γ can also be used to lie several params. together - easier to estimate
a Useful extensions: incorporate structure \& Intra/inter-vector correlation

CB SBL allows the use of Kalman framework
QB Block/cluster sparsity
as Colored noise (rank-deficient cov.)

To Recap
as Sparse Bayesian learning
a Sparse vector recovery via estimating hyperparameters
∞ Expectation-maximization iterations
\& Convergence properties
as Alternative implementations
as Limitations
as Computational complexity
as More recent AMP-based algos overcome this
a Slow convergence
@ Fast versions exist, but without the same convergence guarantees

Part 4: Extensions
\qquad Cluster-sparsity, inter-vector correlation 4. Deep learning

Multiple Measurement vectors

as Observation Model

as Why? Multiple measurements can provide complementary information
\propto Joint Prior $p\left(\mathrm{x}_{j} ; \Gamma\right)=\mathcal{N}(0, \Gamma), j=1, \ldots, L$

Algos for Joint-Sparse Recovery

© 8 M-OMP [Top et al., ob]
∞ M-BP [cotter et al. os, Malioutov et al, os]
(l l_{1} norm across rows)

es M-Jeffreys [Figueiredo on, Roo et al. 97 , candes et al. 08] (l_{2} norm of $i^{\text {th }}$ row)

$$
\min _{\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{L}\right\}} \sum_{l=1}^{L}\left\|\mathbf{y}_{l}-\Phi_{l} \mathbf{x}_{l}\right\|_{2}^{2}+\lambda \sum_{i=1}^{N} \log \left\|\mathbf{x}_{i}^{T}\right\|_{2}
$$

as M-FOCUSS [Roo et al. 03, cotter et al. os, chen et al. 09]

$$
\min _{\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{L}\right\}} \sum_{l=1}^{L}\left\|\mathbf{y}_{l}-\Phi_{l} \mathbf{x}_{l}\right\|_{2}^{2}+\lambda \sum_{i=1}^{N}\left(\left\|\mathbf{x}_{i}^{T}\right\|_{2}\right)^{p}, p<1
$$

The M-SBL Algo

- CeO

∞ Cost function

$$
p(\mathbf{Y} ; \gamma)=\int p(\mathbf{Y}, \mathbf{X} ; \gamma) \mathrm{d} \mathbf{X}=\prod_{j=1}^{L} \int p\left(\mathbf{y}_{j} \mid \mathbf{x}_{j}\right) p\left(\mathbf{x}_{j} ; \gamma\right) \mathrm{d} \mathbf{x}_{j}
$$

as Key point: γ couples the sparsity pattern across x_{j}
∞ Fewer parameters to estimate: $N \ll(N \times L)$
CP EM Iterations

$$
\begin{aligned}
& \text { E-step: } Q\left(\gamma \mid \gamma^{k}\right)=\mathbb{E}_{\mathbf{X} \mid \mathbf{Y}, \gamma^{k}}[\log p(\mathbf{Y}, \mathbf{X} ; \gamma)] \\
& \text { M-step: } \gamma^{k+1}=\arg \max _{\gamma \in \mathbb{R}_{+}^{N}} Q\left(\gamma \mid \gamma^{k}\right)
\end{aligned}
$$

\propto Posterior distbu.: $p\left(\mathbf{x}_{j} \mid \mathbf{y}_{j} ; \gamma^{k}\right) \sim \mathcal{N}\left(\mu_{j}^{k+1}, \Sigma_{j}^{k+1}\right)$

E \& M Steps

as Es ep:

$$
\begin{aligned}
& \Sigma_{j}^{k+1}=\Gamma^{k}-\Gamma^{k} \Phi_{j}^{T}\left(\sigma_{j}^{2} \mathbf{I}_{M}+\Phi_{j} \Gamma^{k} \Phi_{j}^{T}\right)^{-1} \Phi_{j} \Gamma^{k} \\
& \mu_{j}^{k+1}=\sigma_{j}^{-2} \Sigma_{j}^{k+1} \Phi_{j}^{T} \mathbf{y}_{j}
\end{aligned}
$$

\& M Step:

$$
\gamma^{k+1}(i)=\frac{1}{L} \sum_{j=1}^{L} \mu_{j}^{k+1}(i)^{2}+\Sigma_{j}^{k+1}(i, i)
$$

\& Average of the individual estimates of γ_{i} across measurements

Empirical Example

$\operatorname{CR} M=25$
$N=50$
$L=3$
[Wipf \& Rao, 07]

Analysis: Failure of

Standard Sparse Regression

\propto Let $\tilde{\mathbf{X}}_{0} \in \mathbb{R}^{k \times L}=$ nonzero rows in X_{0}, and $\Phi_{j}=\Phi \forall j$
\propto suppose $\tilde{\mathbf{X}}_{0} \tilde{\mathbf{X}}_{0}^{T}$ is full rank $(L \geq K)$, $\mathbf{\$}=\boldsymbol{\Phi} \mathbf{X}_{0}=\tilde{\boldsymbol{\Phi}} \tilde{\mathbf{X}}_{0}$
\propto Lemma: [Wipf et al. 11]
a There exist Φ, X_{0} such that solving

$$
\min _{\mathbf{X}} \sum_{i=1}^{N} g_{i}\left(\left\|\mathbf{x}_{i}^{T}\right\|_{2}\right) \text { s. t. } \mathbf{Y}=\boldsymbol{\Phi} \mathbf{X}_{0}=\boldsymbol{\Phi} \mathbf{X}
$$

for any possible gi will have solutions NOT equal to X_{0} !
as Sparse regression can fail!

Analysis: Success of MUSIC

-

CQ When $\tilde{\mathbf{X}}_{0} \tilde{\mathbf{X}}_{0}^{T}$ is full rank, $\operatorname{span}[\mathbf{Y}]=\operatorname{span}[\tilde{\mathbf{\Phi}}]$
\because MUSIC algorithm:
${ }^{2}$ Compute $\epsilon_{i}=\min _{\alpha}\left\|\phi_{i}-\mathbf{Y} \alpha\right\|_{2} \quad \forall \phi_{i} \in \boldsymbol{\Phi}$
a Index i is in the support iff $\varepsilon_{i}=0$
Q Result: MUSIC is guaranteed to estimate the correct support whenever $\tilde{\mathbf{X}}_{0} \tilde{\mathbf{X}}_{0}^{T}$ is full rank!

Hybrid Algorithms
a Combine MUSIC and sparse recovery
[Davies and Eldar, 2012; Kim et al., 2012; Lee et al., 2012]
a MUSIC only works if $L \geq K$
CB Sparse recovery can sometimes work even if $L<K$
a Problem: correlated columns in Φ
$Q 8$

Easy: $\Phi^{T} \Phi \approx \mathbf{I}$

Hard: $\Phi^{T} \Phi \neq \mathbf{I}$

Compensating for Dictionary Structure

Q Simple example: building column norm invariance
Let $\alpha_{i} \triangleq\left\|\Phi_{i}\right\|_{2}$ and $g(\mathbf{X}, \alpha) \triangleq \sum_{i=1}^{N} \alpha_{i}\left\|\mathbf{x}_{i}^{T}\right\|_{2}$
Then, the problem

$$
\min _{\mathbf{x}}\|\mathbf{Y}-\boldsymbol{\Phi} \mathbf{X}\|_{2}^{2}+\lambda g(\mathbf{X}, \alpha)
$$

is invariant to dictionary column norms.
as So what about some fun. g that depends on the correlation structure $\Phi^{T} \Phi$?

Analysis of M-SBL Cost

as M-SBL is equivalent to solving Incorporates \mathbf{X} correlation structure into the cost function
∞ Result: Unique stationary point X_{0} when:
Q Rows of X_{0} sufficiently uncorrelated, OR
as Sorted row norms of X_{0} decay sufficiently fast
[Min \& Wipf 15; Wipf et al. 15]
∞ True even under correlated dictionaries
\leftrightarrow But failure still possible when MUSIC succeeds...

Augmented M-SBL Model

as Modified Likelihood function:

$$
p(\mathbf{Y} \mid \mathbf{X} ; \boldsymbol{\Psi}) \propto \exp \left[-\frac{1}{2 \sigma^{2}}\|\mathbf{Y}-\boldsymbol{\Phi} \mathbf{X} \boldsymbol{\Psi}\|_{F}^{2}\right]
$$

as Posterior distribution is Gaussian with mean

$$
\hat{\mathbf{X}}=\mathbb{E}_{p(\mathbf{X} \mid \mathbf{Y} ; \boldsymbol{\Gamma}, \boldsymbol{\Psi})}[\mathbf{X}] \approx \underbrace{\boldsymbol{\Gamma} \boldsymbol{\Phi}^{T}\left(\boldsymbol{\Phi} \boldsymbol{\Gamma} \boldsymbol{\Phi}^{T}+\sigma^{2} \mathbf{I}\right)^{-1} \mathbf{Y} \boldsymbol{\Psi}}_{\text {If } \Gamma \text { is sparse, so }}
$$

ca Estimate both Γ and Ψ via marginalization:

$$
\max _{\Psi, \boldsymbol{\Gamma} \geq 0} \int p(\mathbf{Y} \mid \mathbf{X} ; \mathbf{\Psi}) p(\mathbf{X} ; \boldsymbol{\Gamma}) \mathrm{d} \mathbf{X}
$$

Analysis of A-SBL
\propto Augmented SBL is equivalent to solving

$$
\min _{\mathbf{X}, \mathbf{\Psi}} g_{\mathrm{aug}}\left(\mathbf{X}, \mathbf{\Psi} ; \boldsymbol{\Phi}^{T} \boldsymbol{\Phi}\right) \text { s.t. } \mathbf{Y}=\boldsymbol{\Phi} \mathbf{X}_{0}=\boldsymbol{\Phi} \mathbf{X} \mathbf{\Psi}
$$

for some gang. Moreover,

1. Have unique stationary point at $X^{*} \Psi^{*}$ if

$$
\tilde{\mathbf{X}}_{0} \tilde{\mathbf{X}}_{0}^{T}=\text { full rank }
$$

2. For any fixed Ψ, have unique stationary point at $X^{*} \Psi^{*}=X_{0}$ if sorted row norms of $X_{0} \Psi$ decay sufficiently fast
∞ Exploits both signal and dictionary correlation

Empirical Evaluation

-eec

∞ Generate correlated dictionary

$$
\mathbf{\Phi}=\sum_{i=1}^{m} \frac{1}{i} \mathbf{a}_{i} \mathbf{b}_{i}^{T} ; \quad \mathbf{a}_{i}, \mathbf{b}_{i} \rightarrow \operatorname{iid} \mathcal{N}(0,1)
$$

a Generate correlated X_{0}, varying rank

$$
\tilde{\mathbf{X}}_{0}=\sum_{i=1}^{L} \frac{1}{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T} \quad \mathbf{u}_{i}, \mathbf{v}_{i} \rightarrow \operatorname{iid} \mathcal{N}(0,1)
$$

a Compute observations

$$
\mathbf{Y}=\boldsymbol{\Phi} \mathbf{X}_{0}
$$

a Compare algos as problem dimensions change

Fixed:
$\mathrm{N}=200$ (num. cols.) $k=20$ (row sparsity)

Varying:
$M=$ num. rows
$L=$ num. cols in X_{0}

A-SBL outperforms existing algos, including MUSIC and convex LASSO based methods!

No other existing algo has similar guarantees.

(a) $L=4$

(c) $L=12$

(b) $L=8$

(d) $L=16$

Clustered MMV Model

-eec

a Another twist: Suppose x_{1}, \ldots, x_{L} (tasks) belong to K clusters, $K<L$
© Common support within each cluster
Q Ω_{k} : column indices of X corresponding co cluster k, unknown
a Objective: Membership of each x_{j} ?

Clustered SBL Model

هR Gaussian likelihood: $p(\mathbf{Y} \mid \mathbf{X}) \propto \prod_{j} \exp \left[-\frac{1}{2 \sigma^{2}}\left\|\mathbf{y}_{j}-\boldsymbol{\Phi}_{j} \mathbf{x}_{j}\right\|_{2}^{2}\right]$
\& Prior distribution: $\quad p(\mathbf{X} \mid \boldsymbol{\Lambda}, \mathbf{W}) \propto \prod_{j} \exp \left[-\frac{1}{2} \mathbf{x}_{j}^{T} \boldsymbol{\Gamma}_{j}^{-1} \mathbf{x}_{j}\right]$
a Hyperparamelers: $\quad \Lambda \in \mathbb{R}^{N \times K}, \mathbf{W} \in \mathbb{R}^{L \times K}$
© W: rows lie in simplex $\mathcal{S} \triangleq\left\{\mathbf{w}_{j}^{T}: \sum_{k} w_{j, k}=1, w_{j, k} \in[0,1]\right\}$
\& Covariance Γ_{j} diagonal: $\quad \Gamma_{j}^{-1}=\sum_{k} w_{j, k} \Lambda_{k}^{-1}$ where $\Lambda_{k}=\operatorname{diag}\left(k^{t h}\right.$ column of $\left.{ }^{k} \Lambda\right)$
[Wang et al. 15]

Optimization Problem

- eem

a Posterior distbn.: Gaussian with mean

$$
\hat{\mathbf{x}}_{j}=\boldsymbol{\Gamma}_{j} \boldsymbol{\Phi}_{j}^{T}(\underbrace{\sigma^{2} \mathbf{I}+\boldsymbol{\Phi}_{j} \boldsymbol{\Gamma}_{j} \boldsymbol{\Phi}_{j}^{T}}_{\triangleq \Sigma_{y_{j}}})^{-1} \mathbf{y}_{j}
$$

\therefore Can compute MAP estimates via

$$
\max _{\Lambda>0, \mathbf{W} \in \mathcal{S}} \int p(\mathbf{Y} \mid \mathbf{X}) p(\mathbf{X} ; \Lambda, \mathbf{W}) p(\Lambda) p(\mathbf{W}) \mathrm{d} \mathbf{X}
$$

Will design ρ to promote clustering
๑ Assuming $p(\Lambda)=1 ; p(\mathbf{W}) \propto \exp \left(-\frac{1}{2} \rho(\widehat{\mathbf{W}})\right)$, equivalent problem

$$
\max _{\Lambda>0, \mathbf{W} \in \mathcal{S}} \sum_{j}\left[\mathbf{y}_{j}^{T} \Sigma_{\mathbf{y}_{j}}^{-1} \mathbf{y}_{j}+\log \left|\Sigma_{\mathbf{y}_{j}}\right|\right]+\sum_{j, k} \rho\left(w_{j, k}\right)
$$

Cost Function
\leftrightarrow Determinant identities and Jensen's inequalily: get upper bound on the cost function:

$$
\mathcal{L}(\Lambda, \mathbf{W}) \triangleq \sum_{j}\left[\mathbf{y}_{j}^{T} \Sigma_{\mathbf{y}_{j}}^{-1} \mathbf{y}_{j}\right]+\sum_{j, k} \rho\left(w_{j, k}\right)+\sum_{j} \log \left|\sum_{k} w_{j, k} \Lambda_{k}^{-1}+\frac{1}{\sigma^{2}} \Phi_{j}^{T} \Phi_{j}\right|+\sum_{j, k} w_{j, k} \log \left|\Lambda_{k}\right|
$$

can be optimized using majorization-minimization
as How to choose $\rho(\omega)$?
\curvearrowright Examples: $\rho(w)=\beta w \log w, \quad \rho(w)=\beta|w|^{2}$, etc.
\propto Convex over [0,1]: favors sharing of basis functions along cols of W or merges Λ_{k} bogether - desirable

Low Noise Cost Function Behavior

© Assume that an optimal solution X^{*} to

$$
\min _{\mathbf{X}} \sum_{j}\left\|\mathbf{x}_{j}\right\|_{0} \text { s.t. } \mathbf{y}_{j}=\boldsymbol{\Phi}_{j} \mathbf{x}_{j}, \forall j
$$

exists with $\left\|\mathrm{x}_{j}^{*}\right\|_{0}<N$ and $\operatorname{spark}\left[\mathbf{\Phi}_{j}\right]=N+1, \forall j$
$a r$ Let Λ^{*}, W^{*} denote any global solution to

$$
\lim _{\sigma^{2} \rightarrow 0} \inf _{\Lambda>0, \mathbf{W} \in \mathcal{S}} \mathcal{L}(\Lambda, \mathbf{W})
$$

Then, $\hat{\mathbf{x}}_{j}=\Gamma_{j}^{*} \mathbf{\Phi}_{j}\left(\mathbf{\Phi}_{j} \Gamma_{j}^{*} \boldsymbol{\Phi}_{j}^{T}\right)^{\dagger} \mathbf{y}_{j}$, with $\Gamma_{j}^{*}=\left(\sum_{k} w_{j, k}^{*}\left(\Lambda_{k}^{*}\right)^{\dagger}\right)^{\dagger}$
forms a globally optimal solution ko

$$
\min _{\mathbf{X}} \sum_{j}\left\|\mathbf{x}_{j}\right\|_{0} \text { s.t. } \mathbf{y}_{j}=\boldsymbol{\Phi}_{j} \mathbf{x}_{j}, \forall j
$$

Experimental Results

Number of Points From Each Subspace

Mean-squared reconstruction error

Clustering error

Remarks
\cdots Demonstrated that M-SBL can be adapled for subspace segmentation
as A simple, hovel, empirical prior is justified using properties of the resulting cost function
a The associated analysis promotes understanding of the central mechanisms that lead to successful subspace clustering

Inter-Vector Correlation

a Temporal correlation is
usually present, and should be exploited
a Belter, faster recovery
© Model correlation using a first order aukoregressive process:

$$
x_{(i, l+1)}=\sqrt{\gamma_{i}} h_{(i, l+1)} \text { and } h_{(i, l+1)}=\rho h_{(i, l)}+\sqrt{1-\rho^{2}} \epsilon_{(i, l)}, l=1, \ldots, L
$$

Inter-Vector Correlation: EM Algorithm

Co-Step:

$$
\begin{aligned}
& Q\left(\gamma \mid \gamma^{r}\right)=\mathbb{E}_{\mathbf{x}_{1}, \ldots \mathbf{x}_{L} \mid \mathbf{Y} ; \gamma^{r}}\left[\log p\left(\mathbf{Y}, \mathbf{x}_{1}, \ldots \mathbf{x}_{L} ; \gamma\right)\right] \\
& \quad=\mathbb{E}\left[\sum_{l=1}^{L} \log p\left(\mathbf{y}_{l} \mid \mathbf{x}_{l}\right)+\sum_{l=1}^{L} \log p\left(\mathbf{x}_{l} \mid \mathbf{x}_{l-1} ; \gamma\right)\right]
\end{aligned}
$$

as Requires computation of fixed-interval smoothed estimates
∞ Efficient recursive implementation via Kalman smoothing [Prasad et al. TSP 2014]
\propto M-Step: Decouples as in the single measurement case: simple update rule

Simulation Result

$$
N=64, M=44, K=30, L=7, \rho=0.999
$$

Block Sparsily \& IntraBLock Correlation

Q Intra-vector correlation is often present, and is important to model \& exploit

as g blocks; few nonzero
∞ Intra-block correlation

Block-Sparse Bayesian Learning Framework

Qs Measurement model: $\mathbf{y}=\Phi \mathbf{x}+\mathbf{v}$

$$
\mathbf{x}=[\underbrace{x_{1}, \ldots x_{d_{1}}}_{\mathbf{x}_{1}^{T}}, \ldots, \underbrace{x_{d_{g-1}+1}, \ldots x_{d_{g}}}_{\mathbf{x}_{g}^{T}}]^{T}
$$

a Parameterized prior

$$
p\left(\mathbf{x}_{i} ; \gamma_{i}, \mathbf{B}_{i}\right) \sim \mathcal{N}\left(0, \gamma_{i} \mathbf{B}_{i}\right), i=1,2, \ldots, g
$$

as γ_{i} controls sparsily
Q B_{i} conerols inera-block correlation

Optimization Problem

-eee

a Poskerior distribution

$$
p\left(\mathbf{x} \mid \mathbf{y} ; \sigma^{2},\left(\gamma_{i} \mathbf{B}_{i}\right)_{i=1}^{g}\right) \sim \mathcal{N}\left(\mu_{x}, \Sigma_{x}\right)
$$

\propto where $\mu_{x}=\Sigma_{0} \Phi^{T}\left(\sigma^{2} \mathbf{I}+\Phi \Sigma_{0} \Phi^{T}\right)^{-1} \mathbf{y}$

$$
\begin{gathered}
\Sigma_{x}=\Sigma_{0}-\Sigma_{0} \Phi^{T}\left(\sigma^{2} \mathbf{I}+\Phi \Sigma_{0} \Phi^{T}\right)^{-1} \Phi \Sigma_{0} \\
\Sigma_{0}=\operatorname{diag}\left(\gamma_{1} \mathbf{B}_{1}, \ldots, \gamma_{g} \mathbf{B}_{g}\right)
\end{gathered}
$$

\& All params. can be estimated by maximizing:

$$
\begin{aligned}
\mathcal{L}(\Theta) & =-2 \log \int p\left(\mathbf{y} \mid \mathbf{x} ; \sigma^{2}\right) p\left(\mathbf{x} ; \Sigma_{0}\right) \mathrm{d} \mathbf{x} \\
& =\log \operatorname{det}\left(\sigma^{2} \mathbf{I}+\Phi \Sigma_{0} \Phi^{T}\right)+\mathbf{y}^{T}\left(\sigma^{2} \mathbf{I}+\Phi \Sigma_{0} \Phi^{T}\right)^{-1} \mathbf{y}
\end{aligned}
$$

Several Oplions for Optimization

CP BSBL-EM: Use expectation-maximization
C BSBL-BO: Use bounded optimization, i.e., majorizalion-minimization

Cor BSBL-L1: Use a reweighted 11 procedure (special case of BSBL-BO)
a Different strakegies offer a variety of performance-complexily tradeoffs

Phase
 Transition

Correlation $=0$

Correlation $=0.95$

$N=1000, M=\delta N, g=40$, block size $=25$ Curves indicate $>99 \%$ success
[Zhang et al. 2013]

Pattern-Coupled SBL

- ∞

\propto Hierarchical model: $p(\mathbf{x} \mid \alpha)=\prod_{i=1}^{N} \mathcal{N}\left(x_{i} ; 0,\left(\alpha_{i}+\beta \alpha_{i+1}+\beta \alpha_{i-1}\right)^{-1}\right)$
\& $0 \leq \beta \leq 1$ controls the coupling
© -step almost the same as before:
$\mu=\sigma^{-2}\left(\sigma^{-2} \Phi^{T} \Phi+\left(\Gamma^{(t)}\right)^{-1}\right)^{-1} \Phi^{T} \mathbf{y} \quad \Sigma=\left(\sigma^{-2} \Phi^{T} \Phi+\left(\Gamma^{(t)}\right)^{-1}\right)^{-1}$
Q $\quad \Gamma^{(t)}=$ diagonal $\left(\alpha_{i}^{(t)}+\beta \alpha_{i+1}^{(t)}+\beta \alpha_{i-1}^{(t)}\right)^{-1}$
Q M-skep: coupled equations. Approx. soln:

$$
\alpha_{i}^{(t+1)}=\left(\mu_{i}^{2}+\Sigma_{i, i}+\beta\left(\mu_{i-1}^{2}+\Sigma_{i-1, i-1}\right)+\beta\left(\mu_{i+1}^{2}+\Sigma_{i+1, i+1}\right)\right)^{-1}
$$

Empirical Performance

$N=100$ entries
$K=25$ nonzeros
L = 4 clusters

Source: J. Fang et al., "Pattern-Coupled Sparse Bayesian Learning for Recovery of BlockSparse Signals", IEEE TSP Jan. 2015

Distributed Recovery: Learning Over a Network

as Network of L data centers as Node j has observation y_{j}
\propto Want to Learn x_{j} :
as Statistically related to y_{j}
a Centralized processing:
cs optimal, but
a Computationally demanding

as Distributed (in-network) processing:
as Secure
CP Robust to node failures

Recap: SBL for Joint Sparse Recovery

CB EM Iterations:
Cos E-step:

$$
\begin{aligned}
\Sigma_{j}^{k+1} & =\Gamma^{k}-\Gamma^{k} \Phi_{j}^{T}\left(\sigma_{j}^{2} \mathbf{I}_{M}+\Phi_{j} \Gamma^{k} \Phi_{j}^{T}\right)^{-1} \Phi_{j} \Gamma^{k} \\
\mu_{j}^{k+1} & =\sigma_{j}^{-2} \Sigma_{j}^{k+1} \Phi_{j}^{T} \mathbf{y}_{j}
\end{aligned}
$$

as Separable: x_{j} are independent given Γ
as Can be computed locally at each node
Ca M-step: not separable

$$
\Gamma^{k+1}=\frac{1}{L} \sum_{j=1}^{L} \mathbf{a}_{j}^{(k+1)}
$$

A Simple Trick

- eel

co Equivalent problems

$$
\gamma^{*}=\frac{1}{L} \sum_{j=1}^{L} a_{j} \quad \gamma^{*}=\arg \min _{\gamma} \sum_{j=1}^{L}\left|\gamma-a_{j}\right|^{2}
$$

Can be computed
\& For distributed implemenkakion ${ }^{\text {lOcally at each node! }}$ Objective fr. separable

$$
\arg \min
$$

$$
\stackrel{\arg \min }{\gamma_{j}, j \in[L]}
$$

$$
\sum_{j=1}^{L}\left|\gamma_{j}-a_{j}\right|^{2}
$$

subject to $\gamma_{j}=\gamma_{b}, b \in \mathcal{B}_{j}, j \in[L]$

Alternating Directions Method of Multipliers

Q General problem: given convex fins. f and g

$$
\min _{\{\mathbf{x}, \mathbf{y}\}} f(\mathbf{x})+g(\mathbf{y})
$$

subject to $\mathbf{A x}+\mathbf{B y}=\mathbf{c}$
Q Augmented Lagrangian
$\mathcal{L}_{\rho}(\mathbf{x}, \mathbf{y}, \lambda)=f(\mathbf{x})+g(\mathbf{y})+\lambda^{T}(\mathbf{A x}+\mathbf{B y}-\mathbf{c})+\frac{\rho}{2}\|\mathbf{A} \mathbf{x}+\mathbf{B y}-\mathbf{c}\|_{2}^{2}$
as ADMM iterations

$$
\mathbf{y}^{(k+1)}=\arg \min _{\mathbf{y}} \mathcal{L}_{\rho}\left(\mathbf{x}^{(k+1)}, \mathbf{y}, \lambda^{(k)}\right)
$$ $\begin{array}{ll}\text { Convex problems, easy to solve } \\ \text { Dual update } \longrightarrow & \mathbf{y}^{(k+1)}=\arg \min _{\mathbf{y}} \mathcal{L}_{\rho}\left(\mathbf{x}^{(k+1)}, \mathbf{y}, \lambda^{(k)}\right)\end{array}$

$$
\mathbf{x}^{(k+1)}=\arg \min _{\mathbf{x}} \mathcal{L}_{\rho}\left(\mathbf{x}, \mathbf{y}^{(k)}, \lambda^{(k)}\right)
$$

$$
\Rightarrow \lambda^{(k+1)}=\lambda^{(k)}+\rho(\mathbf{A x}+\mathbf{B y}-\mathbf{c})
$$

Benefits of ADMM
as Facilitakes diskribuked algorithms Q Many rigorous convergence results exist © E.g., $\sum_{j=1}^{L}\left\|\gamma_{j}^{(r+1)}-\gamma_{j}^{*}\right\|_{2} \leq c^{(r)}$ where $c^{(r)} \rightarrow 0$ monotonically as $r \rightarrow \infty$
\leftrightarrow Can extend ko many other nonseparable objective fns, e.g., the nuclear norm
\propto Fastest convergence $\rho_{\text {opt }}=(\text { min. no. of bridge nodes per node })^{-1}$

Simulation Result:

NMSE Phase Transition

$L=5$ nodes, $n=50, m=10,10 \%$ sparsity, $S N R=30 \mathrm{~dB}$
[S. Khanna, C. R. Murthy, 2015 (under review)]

Support Recovery \& Convergence Properties

$L=10$ nodes, $h=50, S N R=10 \mathrm{~dB}, m=10(R), 10 \%$ sparsity
[S. Khanna, C. R. Murthy, 2015 (under review)]

Parameter

Identifiability in SBL

$\cos y=\Phi x+v \Rightarrow p(y ; \Theta)$
∞ Parameter Θ depends on the model:
@ Type I: x delerminiskic: $\begin{aligned} & \Theta=\mathbf{x} \\ & p^{(\mathrm{I})}(\mathbf{y})=\mathcal{N}\left(\Phi \mathbf{x}, \sigma^{2} \mathbf{I}\right)\end{aligned}$
\& Type II: x random: $\mathbf{x} \sim \mathcal{N}(0, \Gamma) ; \Theta=\Gamma$

$$
p^{(\mathrm{II})}(\mathbf{y})=\mathcal{N}\left(0, \Phi \Gamma \Phi^{H}+\sigma^{2} \mathbf{I}\right)
$$

Q Queskion: when is Θ idenkifiable?
as Idenkifiable: $p\left(y ; \Theta_{1}\right) \neq p\left(y, \Theta_{2}\right) \forall \Theta_{1} \neq \Theta_{2}$. [P. Pal and P. P. Vaidyanathan, ICASSP 14]

Type I Methods

\propto Lemma: without assuming sparsity, Θ is non-idenbifiable if $N>M$!

๑ No consistent estimator exists in the underdelermined case

N Need lo constrain the parameter space for Type I estimation to be meaningful
a Under sparsity assumptions, Θ identifiable (depends on spark/Kruskal rank of Φ)

Type II Methods

ه Thm, $\Gamma: \rightarrow p^{(\mathrm{II})}(\mathbf{y} ; \Gamma)$ is identifiable if $N=\operatorname{rank}(\Phi \odot \Phi)$
∞ For suilable $\Phi, \operatorname{rank}(\Phi \odot \Phi)=O\left(M^{2}\right)$
∞ Remains idenkifiable kill $N \approx O\left(M^{2}\right)$, without even assuming sparsily!
\propto Thm. If $N=\operatorname{rank}(\Phi \odot \Phi)$, the solution lo the SBL cost function is consistent $\&$ asymptotically efficient
\& True even if Γ has $>M$ nonzero values!

Recovery Guarantees for M-SBL: Noiseless Case
∞ If the cols of X are orthogonal, and

$$
k<\operatorname{spark}(\Phi)-1
$$

there exists a unique stable fixed point $\hat{\gamma}$ of the M-SBL cost function such that

$$
\operatorname{supp}(\hat{\gamma})=\operatorname{supp}(\mathbf{X})
$$

[Wipf \& Rio, 07]
∞ If the cols of X are orthogonal and

$$
\operatorname{rank}(\Phi \odot \Phi)=N
$$

Not difficult to satisfy
then M-SBL correctly recovers the support, even if $m<k<N$!

To Recap
as Multiple measurement vectors
CB M-SBL algorithm and its extensions
\propto Exploits joint sparsity
as Infra- and inter-vector correlation
a Pattern-coupled SBL
\propto Distributed M-SBL
∞ M-SBL under colored noise (did not cover)

Maximal Sparsily \& Deep Networks? -eer

a Basic DNN Eemplate

Linear filter
\checkmark Nonlinearity/threshold

Observation:

Many common iterative algos follow exactly the same script
$\mathbf{x}^{(t+1)}=f\left(\mathbf{W} \mathbf{x}^{(t)}+\mathbf{b}\right)$
Examples: Compressive sensing, robust regression, sparse coding, ...

Iterative Hard Thresholding

-eAD

a Unconstrained gradient step

$$
\begin{aligned}
& \mathbf{u}=\mathbf{x}^{\text {old }}-\left.\mu \frac{\partial\|\mathbf{y}-\Phi \mathbf{x}\|_{2}^{2}}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{\text {old }}} \\
& \frac{\partial\|\mathbf{y}-\Phi \mathbf{x}\|_{2}^{2}}{\partial \mathbf{x}} \propto \Phi^{T} \Phi \mathbf{x}-\Phi^{T} \mathbf{y}
\end{aligned}
$$

a Projection/thresholding step

$$
\begin{aligned}
& \mathbf{x}^{\text {new }}=\underbrace{H_{k}(\mathbf{u})} \\
& u_{i}= \begin{cases}u_{i}: \quad\left|u_{i}\right| \text { one of the } k \text { largest elements } \\
0: \quad \text { otherwise }\end{cases}
\end{aligned}
$$

Restricted Isometry Property (RIP)

© A matrix Φ satisfies RIP with constant $\delta_{k}(\Phi)<1$ if

$$
\left(1-\delta_{k}[\Phi]\right)\|\mathbf{x}\|_{2}^{2} \leq\|\Phi \mathbf{x}\|_{2}^{2} \leq\left(1+\delta_{k}[\Phi]\right)\|\mathbf{x}\|_{2}^{2}
$$

holds for all $\left\{\mathbf{x}:\|\mathbf{x}\|_{0} \leq k\right\}$

Small RIP constant $\delta_{2}[\Phi]$
Large RIP constant $\delta_{2}[\Phi]$

Recovery Guarancee with IHT

ar Suppose there exists some x^{*} such that

$$
\begin{aligned}
\mathbf{y} & =\Phi \mathbf{x}^{*} \\
\left\|\mathbf{x}^{*}\right\|_{0} & \leq k \\
\delta_{3 k}[\Phi] & <\frac{1}{\sqrt{32}}
\end{aligned}
$$

then the IHT iterations are guaranteed to converge to x^{*}

Effects of Correlation structure

Low correlation: easy

Example
$\Phi_{(\text {uncor })} \rightarrow$ iud $\mathcal{N}(0, v)$ entries
$\delta_{3 k}[\Phi]<\frac{1}{\sqrt{32}}$ Small RIP constant

High correlation: hard

$\underset{(\text { cor })}{\text { Example }}=\Phi_{(\text {uncor })}+\Delta^{\text {Low rank }}$
$\delta_{3 k}[\Phi] \gg \frac{1}{\sqrt{32}} \quad$ Large RIP constant

Unfolded IHT Iterations

$$
\begin{aligned}
\mathbf{W} & =\mathbf{I}-\mu \Phi^{T} \Phi \\
\mathbf{b} & =\mu \Phi^{T} \mathbf{y}
\end{aligned}
$$

- Clear resemblance to the structure of a deep neural network
- So is there an advantage to learning the weights?

Performance Bound with Learned Layer Weights
as Theorem
There will always exist layer weights W and bias b such that the effective RIP constant is reduced via

$$
\delta_{3 k}^{*}[\Phi] \triangleq \inf _{\mathbf{W}, \mathbf{D}} \delta_{3 k}[\mathbf{W} \Phi \mathbf{D}]<\delta_{3 k}[\Phi]
$$

Effective RIP constant
Original RIP constant
where W is arbitrary and D is diagonal
It is therefore possible to reduce high RIP constants!

Practical Consequences

as Theorem
Suppose we have correlated dickionary formed via

$$
\Phi_{(\text {cor })}=\Phi_{(\text {uncor })}+\Delta
$$

with $\Phi_{\text {(uncor) }} \rightarrow$ iid $\mathcal{N}(0, v)$ entries and Δ Low rank. Then $\mathbb{E}\left(\delta_{3 k}^{*}\left[\Phi_{(\text {cor })}\right]\right) \approx \mathbb{E}\left(\delta_{3 k}\left[\Phi_{(\text {uncor })}\right]\right)$

Can "undo" low rank correlations that would otherwise produce a high RIP constant ...

Advantages of Independent Layer Weights \& Activations Oed

$$
W^{(2)} \mathbf{x}^{(2)}+\mathbf{b}^{(2)}
$$

Q Theorem
Independent weights on each layer

often possible ko obtain nearly ideal RIP even when full rank Δ is present

Alternative LearningBased Strategy
 CO

as Thus far: idealized deep network weights exist that improve RIP constants
\leftrightarrow Given access to feasible pairs

$$
\left\{\mathbf{y}, \mathbf{x}^{*}: \mathbf{y}=\Phi \mathbf{x}^{*},\left\|\mathbf{x}^{*}\right\|_{0} \leq k\right\}
$$

can learn an approximation to weights
\therefore Can break as a mulki-Label DNN classification problem to estimate support of x^{*}
as Many other important training modifications are motivated by this analysis

Simulation Example

$$
\Phi^{T} \Phi \neq I
$$

$\backsim \operatorname{ISTA}\left(\ell_{1}\right)$
\rightarrow IHT
\rightarrow ISTA-Net
\rightarrow IHT-Net
\rightarrow Ours
[Gregor and LeCun, 10; Wang et al., 16]

Robust Surface Normal Estimation

ar Input:

as Per-pixel model:

$$
\mathbf{y}=\mathbf{L \mathbf { n }}+\mathbf{x} \underset{\substack{\text { Lighting } \\
\text { matrix }}}{\text { Raw unknown }} \begin{aligned}
& \text { surface normal }
\end{aligned}
$$

a Can apply any sparse learning method to obtain outliers

Convert to Sparse Estimation Problem

$$
\begin{aligned}
\operatorname{Proj}_{{\mathrm{Null}\left[\mathbf{L}^{T}\right]}}(\mathbf{y}) & =\operatorname{Proj}_{\mathrm{Null}\left[\mathbf{L}^{T}\right]}(\mathbf{L n}+\mathbf{x})=\underbrace{\operatorname{Proj}_{\mathrm{Null}\left[\mathbf{L}^{T}\right]}(\mathbf{x})}_{\Phi} \\
& \min _{\mathbf{x}}\|\mathbf{x}\|_{0} \text { s.t. } \tilde{\mathbf{y}}=\Phi \mathbf{x}
\end{aligned}
$$

Once outliers are known, can estimate \boldsymbol{n} via

$$
\hat{\mathbf{n}}=\left(\Phi^{T} \Phi\right)^{-1} \Phi^{T}(\mathbf{y}-\mathbf{x})
$$

DNN Weakly-Supervised Training Setup
\therefore Generated 600,000 synthetic training points:
a Support patterns of x^{*} randomly generated
Q Nonzero values were generated iud from $N\left(\mu, \sigma^{2}\right)$ with $\left(\mu, \sigma^{2}\right)$ Loosely fit to real-world imaging data
\& Trained a 20 Layer network using SGD and a softmax output layer
© Testing performed using imaging data with known ground truth

Results

Bunny Object, INRIA 3D Database

(b) LS

(d) SBL

(c) ℓ_{1}

(e) Ours

	LS	I $_{1}$	SBL	Ours
Angular	12.13	7.10	4.02	1.48
Time	4.10	33.7	59.1	1.17

Summary

Q First rigorous analysis of how unfolded iterative algorithms can be provably enhanced by learning
C Detailed characterization of how different architecture choices affect performance
as Narrow benefit: First ultra-fast method for obtaining optimal sparse representations with correlated desighs (i.e., high RIP constants)
as Broad benefit: General insights into why DNNs can outperform hand-crafted algorithms

Part 5: Applications

Wireless channel estimation \& data detection

Wireless Channels

Cs Wireless channels exhibit multipath as Naturally sparse in the lag-domain
∞ Channel equalization \& data detection \propto Need to estimate both support \& channel

Channel Models

B Block fading channel:
Channel constant for the duration of a block (say, K symbols), changes i.i.d. from block-koblock (classic SMV-SBL)
\& Time-varying channel:
Channel varies from symbol-to-symbol \& Want to exploit temporal correlation and groupsparsity (MMV-SBL)

Outline

1. Block fading case:
2. Known channel support: Joint channel estimation \& data detection
3. Unknown channel support: Channel and support estimation using pilot symbols
4. Unknown data \& support: Joint support, channel estimation \& data detection
5. Time-varying case:
6. AR model: Kalman-EM algo for joint support, channel estimation \& data dell

OFDM with Block Fading Channel

\propto Received signal model $y=X F h+v$

Diagonal data matrix; $N \times N$ N : number of subcarriers
$N \times L$ DFT matrix, containing first L cols of $N \times N$ DFT matrix

Noise
L: max channel delay spread
\propto Goal: Given y, jointly estimate $x \not \& h$

Sparse Channel Estimation

 from Pilot Symbols
a h sparse in lime (lag) domain
\propto Hierarchical prior: $\mathbf{h}(i)=\mathcal{C N}\left(0, \gamma_{i}\right)$
γ_{i} deterministic, unknown hyperparams
Q Goal:
Given y, x, estimate h ($\$$ sparsity profile)

SBL for Basis Selection

C E-Step: $Q\left(\Gamma \mid \Gamma^{(t)}\right)=\mathbb{E}_{\mathbf{h} \mid \mathbf{y} ; \Gamma^{(t)}} \log p(\mathbf{y}, \mathbf{h} ; \Gamma)$

$$
\begin{aligned}
& p\left(\mathbf{h} \mid \mathbf{y} ; \Gamma^{(t)}\right)=\mathcal{N}\left(\mu, \Sigma_{h}\right), \mu \triangleq \sigma^{-2} \Sigma_{h} \mathbf{A}^{H} \mathbf{y} \\
& \Sigma_{h} \triangleq\left(\sigma^{-2} \mathbf{A}^{H} \mathbf{A}+\left(\Gamma^{(t)}\right)^{-1}\right)^{-1}, \mathbf{A} \triangleq \mathbf{X F}
\end{aligned}
$$

\therefore M-Step: $\Gamma^{(t+1)}=\arg \max _{\gamma_{i} \geq 0} Q\left(\Gamma \mid \Gamma^{(t)}\right)$

$$
\log p(\mathbf{y}, \mathbf{h} ; \Gamma)=\log p(\mathbf{y} \mid \mathbf{h})+\log p(\mathbf{h} ; \Gamma)
$$

not a function of y_{i} function of y_{i}

Joint Channel, Support Estmn. \& Data Detn.

Simulation Result

as OFDM system
as $N=256$ subcarriers, max delay spread $L=64$
as $K=7$ symbols/stot
as Ped PDP:
6 nonzero laps
44 pilot subcarriers
Data: rate $1 / 2$ turbo code, QPSK

BER Performance

Time-Varying Channels

as Channel correlated from symbol-tosymbol
© AR model: $\mathbf{h}_{k}=\rho \mathbf{h}_{k-1}+\mathbf{u}_{k}$
$\&$ The factor ρ depends on the normalized doppler freq, which in burn depends on the speed of the mobile

CS SBL framework can be extended to incorporate the temporal correlation

Joint Kalman SBL (JK-SBL)

\propto Complexity $O\left(\mathrm{KL}^{3}\right)$: smaller than block-based methods $0\left(K^{3} L^{3}\right)$ [Zhang et al. 10] $\propto \times$ ($K=$ numb. OFDM symbols used in joint estimation)
∞ In the block-fading case: get recursive, more computationally efficient versions of our algos

Simulation Result

© $f_{d} T_{s}=0.001$ (slowly lime-varying)

MIMO-OFDM

a Goal: Recover $h_{1}, \ldots, h_{N r}$ from $y_{1} \ldots y^{n}$
$\leftrightarrow \quad$ [Prasad, M. \& R., TSP 2015]

MMV Framework

a Measurement model

$$
\underbrace{\left[\mathbf{y}_{1}, \ldots, \mathbf{y}_{N_{r}}\right]}_{\mathbf{Y} \in \mathbb{C}^{N \times N_{r}}}=\underbrace{\mathbf{X}\left(\mathbf{l}_{N_{t}} \otimes \mathbf{F}\right)}_{\boldsymbol{\Phi} \in \mathbb{C}^{N \times L N_{t}}} \underbrace{\left(\begin{array}{ccc}
\mathbf{h}_{11} & \ldots & \mathbf{h}_{1 N_{r}} \\
\vdots & \vdots & \\
\mathbf{h}_{N_{t} 1} & \ldots & \mathbf{h}_{N_{t} N_{r}}
\end{array}\right)}_{\mathbf{H} \in \mathbb{C}^{L N_{t} \times N_{r}}}+\underbrace{\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{N_{r}}\right]}_{\mathbf{v} \in \mathbb{C}^{N \times N_{r}}}
$$

a Pilol subcarriers

The M-SBL Algorithm

- een

α © Step $Q\left(\gamma \mid \gamma^{(r)}\right)=\mathbb{E}_{\mathbf{H} \mid \mathbf{Y}_{p} ; \gamma^{(r)}} \log p\left(\mathbf{Y}_{p}, \mathbf{H} ; \gamma\right)$
\propto M Slep $\gamma^{(r+1)}=\arg \max _{\gamma \in \mathbb{R}_{+}^{L}} Q\left(\gamma \mid \gamma^{(r)}\right)$

The E and M Steps

or distribution $\mathcal{C N}\left(\mu_{n_{r}}, \boldsymbol{\Sigma}\right)$

\& E-Skep: Posterior distribution $\mathcal{C N}\left(\mu_{n_{r}}, \boldsymbol{\Sigma}\right)$

$$
\mu_{n_{r}}=\sigma^{-2} \boldsymbol{\Sigma} \mathbf{\Phi}_{p}^{H} \mathbf{y}_{p, n_{r}} \quad \boldsymbol{\Sigma}=\left(\frac{\Phi_{p}^{H} \Phi_{p}}{\sigma^{2}}+\left(\Gamma_{b}^{(r)}\right)^{-1}\right)^{-1}
$$

\& M-Step:

$$
\begin{gathered}
Q\left(\gamma \mid \gamma^{(r)}\right)=c^{\prime}-\mathbb{E}_{\mathbf{H} \mid \mathbf{Y}_{p}}\left[\sum_{n_{r}=1}^{N_{r}} \sum_{n_{t}=1}^{N_{t}} \mathbf{h}_{n_{t} n_{r}}^{H} \Gamma^{-1} \mathbf{h}_{n_{t} n_{r}}\right] \\
\gamma^{(r+1)}(i)=\frac{1}{N_{t} N_{r}} \sum_{n_{r}=1}^{N_{r}} \sum_{n_{t}=0}^{N_{t}-1}\left\|\mathbf{M}\left(i+n_{t} L, n_{r}\right)\right\|_{2}^{2}+\boldsymbol{\Sigma}\left(i+n_{t} L, i+n_{t} L\right)
\end{gathered}
$$

Joint Channel Esemn. \& Data Detection

? : Data
de Es Step remains unchanged
\propto M Step: $\left(\gamma^{(r+1)}, \mathbf{X}^{(r+1)}\right)=\arg \max _{\gamma \in \mathbb{R}_{+}^{L}, \mathbf{X} \in \mathcal{S}} Q\left(\gamma, \mathbf{X} \mid \gamma^{(r)}, \mathbf{X}^{(r)}\right)$
Splits as two separate sub-problems

MSE Performance

$\mathrm{C} 2 \times 2 \mathrm{MIMO}-O F D M$

syskem

Q 256 subcarriers
$\propto C P$ length 64
© 44 pilot
subcarriers
Q PedB PDP
\propto QPSK constellation

Exploiting Structure Helps!

BER Performance

But Does it Work?
\propto Implementation on GNU Radio platform
∞ In $C++/$ Pychon
a Integrated into a USRP-based lest selup
CR Single-antenna OFDM, 64 subcarriers, $C P$ length 16
as Channel estimation
∞ Least-squares estimation
a Sparse Bayesian Learning
\propto Frequency-domain interpolation

GNU-Radio Loopback-Mode Simulation Results

GNU-Radio Loopback-Mode Simulation Results

Over-Che-air Resulls

2-tap channel

3-tap channel

OFDM system, 256 subcarriers, CP length 16, 4-QAM

To Recap
\qquad
© SBL based OFDM channel estimation
a BLock-fading case: proposed J-SBL and Low-complexily recursive J-SBL for joint channel estmn \& dala deln
as Time-varying case: Low-complexily K-SBL and JK-SBL proposed
a Algos fully exploit channel correlation \propto MIMO case: Estimation in MMV Framework a Take-home poink: Exploik any known struckure!

Further Extensions

C MIMO-OFDM: Eracking kime-varying channels using the Kalman framework [Prasad et al., TSP 2015]

Cos Clusker sparsily: paths occur in closely spaced clusters [Prasad et al., ICASSP 2014]
a Approximate sparsity due to Eransmil/ receive pulse shaping, filtering, elc [prasad et al., TSP Jul. 2014]

Summary

as Bayesian methods:
as simple updates
Q Promising performance
\propto Challenges:
\& Theoretical analysis
\& New algorithms
ar Novel applications
\propto Plenky of opporkunikies!

@ J. M. Adler, B. Rao, and K. Kreutz-Delgado, Comparison of basis selection methods, Asilomar 1999

CR S. F. Cotter, B. Rao, K. Engan, and K. Kreutz-Delgado, Sparse solutions to linear inverse problems with multiple measurement vectors, IEEE Trans. Sig. Proc., 2005

Cas D. Wipf, B. Rao, and S. Nagarajan, Latent variable Bayesian models for promoting sparsity, IEEE Trans. on Inform. Theory, 2011
\leftrightarrow D. Wipf and B. Rao, An empirical bayesian strategy for solving the simultaneous sparse approximation problem, IEEE Trans. Sig. Proc., 2007
$@$ Z. Zhang and B. Rao, Sparse signal recovery with temporally correlated source vectors using sparse bayesian learning, IEEE J-STSP, 2011
$C_{3} \mathrm{Z}$. Zhang and B. Rao, Recovery of block sparse signals using the framework of block sparse bayesian learning, ICASSP 2012

Cr R. Giri, B. Rao, Type I and Type II Bayesian Methods for Sparse Signal Recovery using Scale Mixtures, submitted, IEEE Trans. Sig. Proc., 2015

een

Q R R. Prasad and C. R. Murthy, Cramér-Rao-Type Bounds for Sparse Bayesian Learning, IEEE Transactions on Sig. Proc., vol. 61, no. 3, pp. 622-632, Mar. 2013
\propto R. Prasad, C. R. Murthy and B. Rao, Joint Approximately Sparse Channel Estimation and Data Detection in OFDM Systems using Sparse Bayesian Learning, IEEE Trans. Sig. Proc., Jul. 2014
$\propto \&$ R. Prasad and C. R. Murthy, Joint Approximately Group Sparse Channel Estimation and Data Detection in MIMO-OFDM Systems Using Sparse Bayesian Learning, NCC 2014 [best paper award!]
QR S. Khanna and C. R. Murthy, Decentralized Bayesian Learning of Jointly Sparse Signals, Globecom 2014
\& V. Vinuthna, R. Prasad, and C. R. Murthy, Sparse signal recovery in the presence of colored noise and rank-deficient noise covariance matrix: an SBL approach, ICASSP 2015

Q P R. Prasad, C. R. Murthy, and B. D. Rao, Joint Channel Estimation and Data Detection in MIMO-OFDM Systems: A Sparse Bayesian Learning Approach, IEEE Trans. on Sig. Proc., Oct. 2015

References

@ Y. Wang, D. Wipf, J-M. Yun, W. Chen, I. Wassel, Clustered Sparse Bayesian Learning, UAI 2015
\leftrightarrow D. Wipf, J-M. Yun, Q. Ling, Augmented Bayesian Compressive Sensing, DCC 2015

Q B. Xin, Y. Wang, W. Gao and D. Wipf, Maximal Sparsity with Deep Networks? ArXiv:1605.01636v2, May 2016

Acknowledgements

Thank you!

