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Part 1: Setting the Stage  

Motivation and background 

Basic results



Sparse Signal Recovery

! Goal: Recover x from y 

! M << N: infinitely many solutions

y

M × 1

measurements


M < N

x

N × 1
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k nonzero 
entries,

k << N

vФ

M × N M × 1

noise

Measurement matrix

a.k.a. Dictionary



Compressed Sensing

! Deals with two main questions: 

! Design of sensing matrices with recovery 
guarantees 

! Computationally efficient recovery 

! Our focus: sparse signal recovery from noisy 
linear underdetermined measurements

�M⇥N = AM⇥N N⇥N

Sparsifying 
Basis



Applications
! Signal representation (Mallat, Coifman, Wickerhauser, 

Donoho, …) 

! Functional Approx. (Chen, Nagarajan, Cun,  
Hassibi, …) 

! Spectral estmn., cartography (Papoulis, Lee, Cabrera,  
Parks, …) 

! EEG/MEG (Leahy, Gordonitsky, Ioannides, …) 

! Medical imaging (Lustig, Pauly, …) 

! Speech SP (Ozawa, Ono, Kroon, Atal, …) 

! Sparse channel estimation (Fevrier, Greenstein, Proakis, 
Prasad et al.,…) 

! Outlier removal and feature selection in machine learning



Wireless Channel 
Estimation

! Wireless channels exhibit multipath 
! Naturally sparse in the lag-domain 
! Need to estimate both support & channel 

! Channel equalization & data detection
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Robust Linear Regression: 
Underdetermined Case

! Transform into an overcomplete problem: 

y

M × 1

x

N × 1

sparse signal

vФ

M × N v =

Model noise

Outliers Gaussian  
noise

vs vg
Goal: Given y, 
, recover x

Sparse recovery algos  
are now applicable!

Y = �x+ vs + vg, where  = I

or Y = [�, ]


x

vs

�
+ vg



Robust Linear Regression: 
Overdetermined Case

! Measurement model: 

! Use SVD:  

! Processed measurements: 

! Can now directly apply sparse signal recovery 
algorithms to estimate and remove outliers!

y = Ax+E+ e

A = U1⌃V
T
1 ; UT

2 A = 0

M ⇥N ;

M � N

Outliers;

sparse

Noise

ỹ = UT
2 y = UT

2 E+UT
2 e



The Problem

! Noiseless case: Given y and   , solve 

! Noisy case: solve 

! l0 norm minimization 
! Combinatorial complexity  
! Not robust to noise

Ф

min kxk0 subject to y = �x

min kxk0 subject to ky ��xk2  �



Recovery Algorithms

! Greedy algorithms:  
! Matching pursuit [Mallat, Zhang; Cotter, Rao] 
! Orthogonal matching pursuit [Tropp 03] 
! CoSAMP [Needell, Tropp] 

! Relaxation based methods (minimize diversity meas.):  
! Basis pursuit (l-p, with p=1) [Chen et al.] 

! Lasso (BPDN) [Tibshirani] 
! Dantzig selector [Candes, Tao] 
! Homotopy based methods (e.g., LARS) [Garrigues et al. 09] 
! FOCUSS (l-p, with p < 1) [Gordonitsky et al.] 

! Iterative methods: 
! Basic/Iterative hard thresholding 
! Hard thresholding pursuit

Recovery guarantees exist  
for most of these algorithms!

See [Rauhut & Foucart]



! Generate random 50 
x 100 matrix 
  

! Generate sparse 
vector x0 

! Compute y = 
x0 

! Solve for x0, average 
over 1000 trials 

! Repeat for different 
sparsity values

Motivational Example

Unit magnitude 
entries

Highly scaled 
entries



Limitations of Relaxation 
and Greed

! Performance of BP and OMP depend on 
! Poor performance when conditions are violated 
! Hard to relate estimation error to the dictionary 
! Correlated dictionary: disrupts l0-l1 equivalence  

! BP: performance independent of nonzero coeffs 
[Malioutov et al. 2004] 
! Cannot improve when situation  is favorable 

! OMP: performance highly sensitive to magnitudes 
of nonzero coefficients 
! Poor performance with unit magnitudes

Ф



Other Limitations of 
Convex Relaxation

! Scaling/shrinkage:  
! Noiseless: l0 <-> l1 <-> l2. Shrinking large 

coeffs can reduce variance, but at the 
cost of sparsity  

! Noisy: The τ in lasso that minimizes the 
MSE could result in a much larger 
number of nonzero coeffs   

! Estimating embedded params (e.g., in  )    Ф



To Recap

! Sparse signal recovery 
! Basic problem 
! Algorithms 

! Limitations 
! Scaling/shrinkage 
! Correlated dictionary 
! Embedded parameters



Part 2: Don’t Relax!
A time and place for nonconvex methods?



Bayesian Methods

! MAP estimation (Type I): 
! Also a regression problem with sparsity 

promoting penalties (e.g., lp-norm) 
! l1-min (BP/LASSO) is a special case 
! Iterative reweighted l1 [Candes et al. 2008] 

! Iterative reweighted l2 [Chartrand & Yin 2008] 

! Hierarchical Bayesian methods (Type II): 
! EM-based SBL [Tipping, 2001], [Wipf, Rao 2007] 
! AMP-based methods [Schniter 2008], [Rangan 2011]



MAP Estimation

! For sparse solutions, g(|xi|) should be a concave, 
nondecreasing function 
! Example: g(|xi|) = |xi|

p, p ≤ 1 
! Lasso is a special case: p=1 

! Any local min. of the MAP estimation problem has at 
most M nonzeros [Rao et al., 99]  

Separable prior

x1 x2 xN

y1 y2 yM

M << N
ˆ

x = argmax

x

p(x|y)

= argmin

x

� log p(y|x)� log p(x) (Bayes’ rule)

= argmin

x

ky ��xk22 + �

NX

i=1

g(|xi|)

Type-I method



The Optimization Problem

! To solve 

! g(|x|) symmetric and concave, monotonically 
increasing for  

! G(x) convex + concave 
! Many options for g(|x|) to promote sparsity 
! Many options for solving the optz. problem

argmin
x

G(x) , ky ��xk22 + �

NX

i=1

g(|xi|)

x 2 R+



Sparsity-Promoting 
Penalties

! Concave penalty fns. promote sparsity 

! g(|x|) = log(|x|2 + ε), ε > 0 [Chartrand & Yin 2008] 

! g(|x|) = log(|x| + ε), ε > 0 [Candes et al. 2008] 

! g(|x|) = |x|p, 0 < p < 1 [Rao et al., 99] 

! A general approach:  
majorize-minimize G

G G



Majorization-Minimization 
Approach

! Find an upper bound g(x) ≤ f(x|x(m)) 
! Equality at x = x(m), convenient for opt. 

! Step 1: Optimize 

! Step 2: Set m <- m+1, update f(x|x(m)), iterate 

! Works because  
   G(x(m+1)) ≤ F(x(m+1)|x(m)) ≤ F(x(m)|x(m)) = G(x(m))

argmin
x

F

⇣
x|x(m)

⌘
, ky ��xk22 + �

NX

i=1

f

⇣
|xi||x(m)

i

⌘



Iterative Reweighted l1

Weighted l1 minimization

! Concavity in |x|: g(x) ≤ g’(x(m))(x–x(m)) + g(x(m)) 
! Equality at x = x(m), linear in x 

! Iterative reweighted l1: [Candes et al. 08] 

! Init: m = 0, x(m) = something convenient 
! Iterate:  

! Optimize 

  
! m <- m+1, update g’(xi

(m))  
! Until convergence

x

(m+1) = argmin
x

ky ��xk22 + �

NX

i=1

g

0(x(m)
i )|xi|



Iterative Reweighted l2

! g(x) concave in x2: 

! Optimization problem 

! Iterative reweighted l2 [Chartrand et al. 08]  
! Init: m = 0, x(m) = something convenient 
! Iterate: 

! Compute 
! m <- m+1, update Wm 

! Until convergence

g(x) 
 

@g(
p
x

2)

@(x2)

�����
x=x0

!
(x2 � x

2
0) + g(x0)

x

(m+1) = argmin
x

ky ��xk22 + �

NX

i=1

w

(m)
i |xi|2

kW� 1
2

m xk22

x

(m+1) = Wm�T
�
�I+ �Wm�T

��1
y



Other Ways to Bound

! Taylor’s expansion 

! Jensen’s inequality 

! Concave conjugate inequality 

! Good opportunity to innovate!



An Example

! Suppose g(x) = log (|x| + ε), ε > 0 
! Concave in |x|, x2 

! Iterative reweighted l1 

! Iterative reweighted l2

g

0
⇣
x

(m)
i

⌘
=

h���x(m)
i

���+ ✏

i�1

w

(m)
i =

⇣
x

(m)
i

⌘2
+ ✏

���x(m)
i

���
��1



Limitations of MAP

! Many local minima O(NCM) 
! May get stuck at a local minimum 

! MAP only guarantees max p(x = x0|y) 
! Probability mass, rather than mode, may be more 

relevant for continuous random vars 
! Perhaps posterior mean E(x|y)? 

! Even with the true prior, MAP estimators do not 
minimize MSE: so MSE may be high! 
! In fact, using “true” statistics often does not lead to 

the lowest MSE!



To Recap

! Bayesian estimation 
! Basic MAP estimation 
! Majorization-minimization approach 
! Iterative reweighted algorithms 

! Limitations 
! Many local minima 
! Posterior mean vs. posterior mode



Part 3: Sparse Bayesian 
Learning

Use lots of priors and pick the best one!



Point of Departure: 
Alternative Prior

! Need tractable representations for 
sparsity promoting priors 

! Gaussian Scaled Mixtures (GSM) 

! γ: non-negative random variable, 
independent of G

p(x) =

Z
p(x|�)p(�)d� =

Z
N (x; 0, �)p(�)d�

x =
p
�G; G ⇠ N (g; 0, 1)



Why GSMs?

! Defn.: A function f(x) is completely monotonic 
on (a,b) if (-1)nf(n)(x) ≥ 0, n = 0, 1, … where  
f(n)(x) = nth order derivative 

! Theorem: A density p(x) can be 
represented by a GSM iff p(x½) is 
completely monotonic on (0, ∞) 

! Most sparse priors on x can be expressed 
using GSMs (incl. ones with concave g)  
[Palmer et al., 2006]



Examples

! Laplacian density 

! We use:  

! And get:  

! Which leads to the familiar LASSO problem 

! Student’s t distribution 

! We use: gamma distribution 

! And get:  

p(�) =
a2

2

exp

✓
�a2

2

�

◆
, � � 0

p(xi; a, b) =
b

a�(a+ 1/2)p
2⇡�(a)

1

(b+ x

2
i /2)

a+1/2

p(xi; a) =
a

2

exp(�a|xi|)



Examples

! Generalized Gaussian  

! We use: positive alpha-stable density of order p/2 

! And get:  

! Generalized logistic distribution 

! We use: A scale mixing density related to the 
Kolmogorov Smirnoff distance 

! And get: 

p(xi; p) =
1

2�

⇣
1 +

1
p

⌘
exp(�|xi|p)

p(xi;↵) =
�(2↵)

�(↵)

2

exp(�↵|xi|)
(1 + exp(�|xi|))2↵



Sparse Bayesian Learning

! Recall the canonical model  

! Gaussian noise model: 

! Parameterized Gaussian prior:

y x

sparse  
signal

 

vФ

noise

p(y|x) = 1

(2⇡�2
)

N
2

exp

✓
� 1

2�2
ky ��xk22

◆

p(xi; �i) =
1p
2⇡�i

exp

✓
� x

2
i

2�i

◆
, �i � 0



Graphical Model

! Markov chain: γ -> x -> y 

! γ: nonnegative hyperparameters 

! Potential advantages: 

! Given γ, p(x|y;γ) is 
Gaussian: easy to find 
point estimates  

! Averaging over x -> fewer 
local minima in p(γ|y) 

! γ can be used to tie 
parameters together: fewer 
params. to estimate

x1 x2 xN

y1 y2 yM

M << N

γ1 γ2 γN

y = 
x + v

x ⇠ N (0,�)

M << N



Hierarchical Bayesian 
Framework

! First, estimate hyperparameters:  

! γ : deterministic and unknown, or random 
with hyperprior distbn.  

! Then, find posterior distribution p(x|y;γ)  

! For point estimates: e.g., posterior mean:E (x|y; �̂)

p(x|y; �̂) = N (µ
x

,⌃
x

)

µ
x

= �̂�T

⇣
��̂�T + �I

⌘�1
y

⌃
x

= �̂� �̂�T

�
���T + �I

��1
��̂

�̂ = argmax

�
p(�|y)



Sparse Bayesian Methods

! Estimate γi from the data: Type-II ML 

! When γ is random: can find MAP estimates 

! Just add             term to log likelihood fn 

! SBL cost function:

L(�) = log p(y;�) = log

Z
p(y|x;�)p(x;�)dx

p(y;�) = N

0

@0,�2I+ ���T
| {z }

⌃y

1

A

L(�) / � log det(⌃y)� yT
⌃

�1
y y

NX

i=1

log p(�i)



Optimization via EM

! Log likelihood of the complete data 

! E-Step: compute “Q-function” 

! Easy to compute:            is Gaussian

� log p(y|x; �)
indep. of �

� log p(x; �)

func. of �

p(xi|y;�(t))

Q

⇣
�|�(t)

⌘
= E

x|y;�(t) [� log p(y,x;�)]

.

=

NX

i=1

E(x2
i |y;�(t)

)

�i
+ log �i

from previous 

iteration

� log p(y,x; �) =

ky ��xk22
2�

2
+

1

2

"
NX

i=1

x

2
i

�i
+ log �i

#
�

NX

i=1

log p(�i)

Facilitates type-II

algorithms



The EM Iterations

! E-step (continued): 

! M-step: maximize Q(Γ|Γ(t)) given 
posteriors gathered in the E-step: 

! Component-wise updates

p
⇣
x|y;�(t)

⌘
= N (µ,⌃)

�

(t+1)
= argmax

�i�0
Q
⇣
�|�(t)

⌘
= diag

�
µ2
i + ⌃ii

�

⌃ =

✓
��2�T�+

⇣
�(t)

⌘�1
◆�1

µ = ��2

✓
��2�T�+

⇣
�(t)

⌘�1
◆�1

�Ty

Can recover type-I methods by  
treating � as hidden and taking  
expectation over � instead of x

E(x2
i |y;�(t))



The SBL Algorithm

1. Initialize Γ = I  

2. Compute 

3. Update 

4. Repeat steps 2 and 3  

5. Output � after convergence 

µ = ��2

✓
��2�T�+

⇣
�(t)

⌘�1
◆�1

�Ty

⌃ =

✓
��2�T�+

⇣
�(t)

⌘�1
◆�1

�(t+1) = diag
�
µ2
i + ⌃ii

�



Variational Interpretation

! Lower bound on L: 

! In each iteration, EM maximizes the bound 

Jensen’s inequality

L(�) = log

Z
q
x

(x)

p(x,y;�)

q
x

(x)

dx

�
Z

q
x

(x) log

✓
p(x,y;�)

q
x

(x)

◆
dx

, F(q
x

(x);�)



Convergence

! Convergence guaranteed to a fixed pt. of L from any 
initialization (property of EM) 

! The global min of L occurs at the sparsest solution in 
the noiseless case => no structural problems! [Wipf et al. 04] 

! Attempts to estimate posterior p(x|y) in regions with 
significant mass 

! All local minima occur at sparse solutions in the noisy 
case [Wipf et al. 04] 

! Cost function much smoother than the associated MAP 
estimation: fewer local minima [Wipf and Nagarajan 09] 



! Generate random 50 
x 100 matrix 
  

! Generate sparse 
vector x0 

! Compute y = 
x0 

! Solve for x0, average 
over 1000 trials 

! Repeat for different 
sparsity values

Recall Empirical Example

Unit magnitude 
entries

Highly scaled 
entries



Type I vs. Type II
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Other Options for SBL Cost Min.

! McKay updates [Tipping, 2001] 

! Set gradient of SBL cost = 0 

! Faster convergence than EM 

! Greedy approach:  

! Update hyperparams one at a time [Tipping & Faul, 2003] 

! Closed-form update for each hyperparam 

! Fast, but can get trapped in a local min. 

! Fast Bayesian matching pursuit [Schniter et al., 08]



Other Options for SBL Cost Min.

! Use dual-form of SBL. Cost function: 

! Facilitates iterative reweighted l1 and l2 
algorithms [Wipf and Nagarajan, 09] 

! Overcomes some limitations of EM 

! Replace E-step with an approx. posterior 
computation: AMP-SBL [Al-Shoukairi and Rao 14]

x

opt

= argmin
x

ky ��xk2
2

+ �2g
SBL

(x)

gSBL(x) , min

��0
x

T
�

�1
x+ log det

�
�2

I+ ���

T
�



Approximate Message 
Passing

! AMP [Donoho, Maleki, Montanari 09]:  

! Uses loopy belief propagation + Gaussian 
approximations to solve LASSO 

! Key advantage: low complexity 

! In SBL:  

! All Gaussian PDFs: approximation is not necessary 

! Only need to track means and variances 

! Can replace computationally expensive E-step with 
the AMP based iterations



Factor Graph

! In the E-Step, we’re after 

! And we define 

! To get the factor graph

g1

g2

gM

x1

x1

x1

f1

f2

fN

p

⇣
x|y;�(t)

⌘
/ p(y|x)p

⇣
x;�(t)

⌘

/
MY

m=1

p(ym|x)
NY

n=1

p(xn; �
(t)
n )

gm(x) , p(ym|x) = N (ym;�H
mx,�2)

fn(xn) , p(xn; �n) = N (xn; 0, �n)



AMP-SBL

! General form of updates: 

! �t: soft-thresholding 
function — linear for SBL 

! O(M+N) msg updates:  
low computational cost!

x̂

t+1 = ⌘t
�
�H

z

t + x̂

t
�

z

t = y � �x̂t +
1

�
z

t�1h⌘0t�1

�
�H

z

t�1 + x̂

t�1
�
i

Message passing term

Message Updates:

Kn =
MX

m=1

�⇤
mnzm + µn

µn = Fn(Kn, c)

vn = Gn(Kn, c)

c = �2 +
1

M

NX

n=1

vn

zm = ym �
NX

n=1

�mnµn +
zm
M

NX

n=1

F 0
n(µn, c)

Definitions:

Fn(Kn, c) = Kn

✓
�n

c+ �n

◆

Gn(Kn, c) =
c�n

c+ �n

F 0
n(Kn, c) =

�n
c+ �n

Parameter Update/M-Step:

�n = vn + µ2
n



Empirical Example

! N = 200, M = 100, K = 20, Gaussian measurement matrix
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Advantages of SBL

! Averaging over x: fewer minima in p(y;γ) 
! Get an estimate of the error in recovery 
! Allows for “exact inference” 
! Versatile: γ can also be used to tie several 

params. together - easier to estimate 
! Useful extensions: incorporate structure 

! Intra/inter-vector correlation 
! SBL allows the use of Kalman framework 

! Block/cluster sparsity 
! Colored noise (rank-deficient cov.)



To Recap

! Sparse Bayesian learning 
! Sparse vector recovery via estimating 

hyperparameters 
! Expectation-maximization iterations 
! Convergence properties 
! Alternative implementations 

! Limitations 
! Computational complexity  

! More recent AMP-based algos overcome this 
! Slow convergence 

! Fast versions exist, but without the same 
convergence guarantees



Part 4: Extensions
1. Multiple measurement vectors 

2. Cluster-sparsity, inter-vector correlation  

3. Distributed sparse signal recovery 

4. Deep learning



Multiple Measurement 
Vectors

! Observation Model 

! Why? Multiple measurements can provide 
complementary information 

! Joint Prior p(xj ;�) = N (0,�), j = 1, . . . , L



Algos for Joint-Sparse 
Recovery

! M-OMP [Tropp et al., 06] 

! M-BP [Cotter et al. 05, Malioutov et al. 05]  

! M-Jeffreys [Figueiredo 02, Rao et al. 97, Candes et al. 08] 

! M-FOCUSS [Rao et al. 03, Cotter et al. 05, Chen et al. 09] 

Num.  
measurements min

{x1,x2,...,xL}

LX

l=1

kyl � �lxlk22 + �
NX

i=1

kxT
i k2

(l1 norm across rows)

min

{x1,x2,...,xL}

LX

l=1

kyl � �lxlk22 + �
NX

i=1

log kxT
i k2

min
{x1,x2,...,xL}

LX

l=1

kyl � �lxlk22 + �
NX

i=1

�
kxT

i k2
�p

, p < 1

(l2 norm of ith row)



The M-SBL Algo

! Cost function 

! Key point: γ couples the sparsity pattern across xj 

! Fewer parameters to estimate: N << (N x L) 

! EM Iterations 

! Posterior distbn.:

p(Y; �) =

Z
p(Y,X; �)dX =

LY

j=1

Z
p(yj |xj)p(xj ; �)dxj

E-step: Q(�|�k
) = EX|Y,�k [log p(Y,X; �)]

M-step: �k+1
= arg max

�2RN
+

Q(�|�k
)

p
�
xj |yj ; �

k
�
⇠ N

�
µk+1
j ,⌃k+1

j

�



E & M Steps

! E Step: 

! M Step: 

! Average of the individual estimates 
of γi across measurements

⌃k+1
j = �k � �k�T

j

�
�2
j IM + �j�

k�T
j

��1
�j�

k

µk+1
j = ��2

j ⌃k+1
j �T

j yj

�k+1(i) =
1

L

LX

j=1

µk+1
j (i)2 + ⌃k+1

j (i, i)



Empirical Example

! M = 25  
N = 50  
L = 3

[Wipf & Rao, 07]



Analysis: Failure of  
Standard Sparse Regression

! Let              nonzero rows in X0, and 

! Suppose        is full rank (L ≥ k), &  

! Lemma: [Wipf et al. 11] 

! There exist 
, X0 such that solving  
 
 
for any possible gi will have solutions NOT 
equal to X0!   

! Sparse regression can fail!

min
X

NX

i=1

gi(kxT
i k2) s. t. Y = �X0 = �X

X̃0 2 Rk⇥L =

Y = �X0 = �̃X̃0X̃0X̃
T
0

�j = � 8 j



Analysis: Success of MUSIC

! When        is full rank,  

! MUSIC algorithm: 

! Compute  

! Index i is in the support iff �i = 0 

! Result: MUSIC is guaranteed to estimate the 
correct support whenever       is full rank! 

✏i = min
↵

k�i �Y↵k2 8�i 2 �

[Feng and Bresler 96]

X̃0X̃
T
0

span[Y] = span[�̃]X̃0X̃
T
0



Hybrid Algorithms

! Combine MUSIC and sparse recovery 

! MUSIC only works if L ≥ k 

! Sparse recovery can sometimes work even if L < k 

! Problem: correlated columns in 
 

!  
      
       Easy:                  Hard: �T� ⇡ I �T� 6= I

  [Davies and Eldar, 2012; Kim et al., 2012; Lee et al., 2012]  



Compensating for 
Dictionary Structure

! Simple example: building column norm 
invariance  
Let            and  
Then, the problem  
 
is invariant to dictionary column norms. 

! So what about some fn. g that depends 
on the correlation structure      ?   

↵i , k�ik2 g(X,↵) ,
NX

i=1

↵ikxT
i k2

min
x

kY ��Xk22 + �g(X,↵)

�T�



Analysis of M-SBL Cost

! M-SBL is equivalent to solving 

! Result: Unique stationary point X0 when: 

! Rows of X0 sufficiently uncorrelated, OR 

! Sorted row norms of X0 decay sufficiently fast 

! True even under correlated dictionaries 

! But failure still possible when MUSIC succeeds…

min
X

g(X;�T�) s. t. Y = �X0 = �X
Incorporates 
correlation structure 
into the cost function

[Min & Wipf 15; Wipf et al. 15]



Augmented M-SBL 
Model

! Modified likelihood function: 

! Posterior distribution is Gaussian with mean 

! Estimate both 	 and � via marginalization: 

[Wipf et al. 15]

p(Y|X; ) / exp


� 1

2�2
kY ��X k2F

�

X̂ = Ep(X|Y;�, )[X] ⇡ ��T
⇣
���T + �2I

⌘�1
Y 

max

 ,��0

Z
p(Y|X; )p(X;�)dX

If 	 is sparse, so is the mean



Analysis of A-SBL

! Augmented SBL is equivalent to solving 
 
 
for some gaug. Moreover, 

1. Have unique stationary point at X*�* if  

2. For any fixed �, have unique stationary point 
at X*�* = X0 if sorted row norms of X0� decay 
sufficiently fast 

! Exploits both signal and dictionary correlation

min
X, 

gaug(X, ;�T�) s.t. Y = �X0 = �X 

X̃0X̃
T
0 = full rank



Empirical Evaluation

! Generate correlated dictionary 

! Generate correlated X0, varying rank 

! Compute observations 

! Compare algos as problem dimensions change

Y = �X0

� =
mX

i=1

1

i
aib

T
i ; ai,bi ! iid N (0, 1)

X̃0 =
LX

i=1

1

i
uiv

T
i ui,vi ! iid N (0, 1)



Results

L= 8

L= 12 L= 16

Fixed:


N = 200 (num. cols.)

k = 20 (row sparsity)


Varying:


M = num. rows

L = num. cols in X0 


A-SBL outperforms 
existing algos,  
including MUSIC 
and convex LASSO  
based methods! 
 
No other existing  
algo has similar 
guarantees. 

M M

M M

L= 4

M-SBL
A-SBL

M-SBL
A-SBL

M-SBL

M-SBL

A-SBL

A-SBL



Clustered MMV Model

! Another twist: Suppose x1, …, xL (tasks) 
belong to K clusters, K < L 

!  Common support within each cluster 

! Ωk: column indices of X corresponding 
to cluster k, unknown 

! Objective: Membership of each xj?



Clustered SBL Model

! Gaussian likelihood: 

! Prior distribution: 

! Hyperparameters:           , 

! W: rows lie in simplex 

! Covariance 	j diagonal:  
where �k = diag(kth column of �) 

p(Y|X) /
Y

j

exp


� 1

2�2
kyj ��jxjk22

�

p(X|⇤,W) /
Y

j

exp


�1

2

x

T
j �

�1
j xj

�

⇤ 2 RN⇥K W 2 RL⇥K

S ,
(
wT

j :
X

k

wj,k = 1, wj,k 2 [0, 1]

)

��1
j =

X

k

wj,k⇤
�1
k

[Wang et al. 15]



Optimization Problem

! Posterior distbn.: Gaussian with mean 

! Can compute MAP estimates via 

! Assuming                      , equivalent 
problem

x̂j = �j�
T
j

�
�2

I+�j�j�
T
j| {z }

,⌃yj

��1
yj

max

⇤>0,W2S

Z
p(Y|X)p(X;⇤,W)p(⇤)p(W)dX

p(⇤) = 1; p(W) / exp(�1

2

⇢(W))

max

⇤>0,W2S

X

j

h
yT
j ⌃

�1
yj

yj + log |⌃yj |
i
+

X

j,k

⇢(wj,k)

Will design � to 

promote clustering



Cost Function

! Determinant identities and Jensen’s inequality: get 
upper bound on the cost function: 

! Can be optimized using majorization-minimization 

! How to choose �(w)?  

! Examples: 

! Convex over [0,1]: favors sharing of basis 
functions along cols of W or merges �k 
together - desirable

L(⇤,W) ,
X

j

h
yT
j ⌃

�1
yj

yj

i
+

X

j,k

⇢(wj,k) +

X

j

log

�����
X

k

wj,k⇤
�1
k +

1

�2
�

T
j �j

�����+
X

j,k

wj,k log |⇤k|

⇢(w) = �w logw, ⇢(w) = �|w|2, etc.



Low Noise Cost 
Function Behavior

! Assume that an optimal solution X* to  
 
 
exists with           and  

! Let �*, W* denote any global solution to  
 
 
Then,                           , with  
forms a globally optimal solution to  
 
 

min
X

X

j

kxjk0 s.t. yj = �jxj , 8j

kx⇤
jk0 < N spark[�j ] = N + 1, 8j

lim
�2!0

inf
⇤>0,W2S

L(⇤,W)

x̂j = �⇤
j�j(�j�

⇤
j�

T
j )

†
yj �⇤

j =

 
X

k

w⇤
j,k(⇤

⇤
k)

†

!†

min
X

X

j

kxjk0 s.t. yj = �jxj , 8j



Experimental Results

C-SBL
C-SBL

C-SBL

C-SBL

C-SBL
C-SBL

Mean-squared reconstruction error

Clustering error



Remarks

! Demonstrated that M-SBL can be adapted 
for subspace segmentation 

! A simple, novel, empirical prior is 
justified using properties of the resulting 
cost function 

! The associated analysis promotes 
understanding of the central mechanisms 
that lead to successful subspace clustering



Inter-Vector 
Correlation

! Temporal correlation is 
usually present, and 
should be exploited 

! Better, faster recovery 

! Model correlation 
using a first order 
autoregressive process:

x1 x1 xL

Correlated

x(i,l+1) =
p
�ih(i,l+1) and h(i,l+1) = ⇢h(i,l) +

p
1� ⇢

2
✏(i,l), l = 1, . . . , L



Inter-Vector Correlation: 
EM Algorithm

! E-Step: 

! Requires computation of fixed-interval 
smoothed estimates 

! Efficient recursive implementation via 
Kalman smoothing [Prasad et al. TSP 2014] 

! M-Step: Decouples as in the single 
measurement case: simple update rule

Q(�|�r
) = E

x1,...xL|Y;�r
[log p(Y,x1, . . .xL; �)]

= E
"

LX

l=1

log p(yl|xl) +

LX

l=1

log p(xl|xl�1; �)

#



Simulation Result

N = 64, M = 44, K = 30, L = 7, ρ = 0.999



Block Sparsity & Intra-
Block Correlation

! Intra-vector correlation is often present, 
and is important to model & exploit 

! g blocks; few nonzero 

! Intra-block correlation

y x

sparse  
signal

Ф v

noise

x1
x2

xg

N (0,�2IM )



Block-Sparse Bayesian 
Learning Framework

! Measurement model: 

! Parameterized prior 

!    controls sparsity 

!    controls intra-block correlation 

y = �x+ v

x = [x1, . . . xd1| {z }
x

T
1

, . . . , xdg�1+1, . . . xdg| {z }
x

T
g

]T

p(xi; �i,Bi) ⇠ N (0, �iBi), i = 1, 2, . . . , g

�i

Bi



Optimization Problem

! Posterior distribution 

! where 

! All params. can be estimated by maximizing: 

p
�
x|y;�2, (�

i

B

i

)g
i=1

�
⇠ N (µ

x

,⌃
x

)

µ
x

= ⌃0�
T (�2I+ �⌃0�

T )�1y

⌃
x

= ⌃0 � ⌃0�
T (�2I+ �⌃0�

T )�1�⌃0

⌃0 = diag(�1B1, . . . , �gBg)

L(⇥) = �2 log

Z
p(y|x;�2

)p(x;⌃0)dx

= log det

�
�2

I+ �⌃0�
T
�
+ y

T
�
�2

I+ �⌃0�
T
��1

y



Several Options for 
Optimization

! BSBL-EM: Use expectation-maximization 

! BSBL-BO: Use bounded optimization, i.e., 
majorization-minimization 

! BSBL-l1: Use a reweighted l1 procedure 
(special case of BSBL-BO) 

! Different strategies offer a variety of 
performance-complexity tradeoffs

[Zhang et al. 2013]



Phase Transition

N = 1000, M =   N, g = 40, block size = 25  
Curves indicate > 99% success
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Pattern-Coupled SBL

! Hierarchical model:  

!           controls the coupling 

! E-step almost the same as before:  

!     = diagonal 

! M-step: coupled equations. Approx. soln:  

p(x|↵) =
NY

i=1

N
�
xi; 0, (↵i + �↵i+1 + �↵i�1)

�1
�

0  �  1

µ = ��2

✓
��2�T�+

⇣
�(t)

⌘�1
◆�1

�Ty ⌃ =

✓
��2�T�+

⇣
�(t)

⌘�1
◆�1

�(t)
⇣
↵(t)
i + �↵(t)

i+1 + �↵(t)
i�1

⌘�1

↵(t+1)
i =

�
µ2
i + ⌃i,i + �(µ2

i�1 + ⌃i�1,i�1) + �(µ2
i+1 + ⌃i+1,i+1)

��1



Empirical Performance

N = 100 entries

K = 25 nonzeros

L = 4 clusters


Source: J. Fang et al.,

“Pattern-Coupled Sparse 
Bayesian Learning for

Recovery of Block-
Sparse Signals”,

IEEE TSP Jan. 2015



Distributed Recovery: Learning 
Over a Network

! Network of L data centers 
! Node j has observation yj 

! Want to learn xj:  
! Statistically related  

to yj 

! Centralized processing: 
! Optimal, but 
! Computationally demanding 

! Distributed (in-network) processing: 
! Secure 
! Robust to node failures



Recap: SBL for Joint Sparse 
Recovery

! EM Iterations: 
! E-step:  

! Separable: xj are independent given Γ 
! Can be computed locally at each node 

! M-step: not separable

⌃k+1
j = �k � �k�T

j

�
�2
j IM + �j�

k�T
j

��1
�j�

k

µk+1
j = ��2

j ⌃k+1
j �T

j yj

�k+1 =
1

L

LX

j=1

a(k+1)
j



A Simple Trick

! Equivalent problems 

! For distributed implementation

Can be computed 
locally at each node!  
Objective fn. separable

Bridge nodes 
Linear constraints

�⇤ = argmin
�

LX

j=1

|� � aj |2�⇤ =
1

L

LX

j=1

aj

arg min

�j , j 2 [L]
LX

j=1

|�j � aj |2

subject to �j = �b, b 2 Bj , j 2 [L]



Alternating Directions Method 
of Multipliers

! General problem: given convex fns. f and g 

! Augmented Lagrangian 

! ADMM iterations
Convex problems, easy to solve

Dual update

min

{x,y}
f(x) + g(y)

subject to Ax+By = c

x

(k+1) = argmin
x

L⇢

⇣
x,y(k),�(k)

⌘

y

(k+1) = argmin
y

L⇢

⇣
x

(k+1),y,�(k)
⌘

�(k+1) = �(k) + ⇢(Ax+By � c)

L⇢(x,y,�) = f(x) + g(y) + �T (Ax+By � c) +
⇢

2
kAx+By � ck22



Benefits of ADMM

! Facilitates distributed algorithms 
! Many rigorous convergence results exist 
! E.g.,                       where c(r) -> 0  

 
monotonically as r -> ∞ 

! Can extend to many other nonseparable 
objective fns, e.g., the nuclear norm 

! Fastest convergence

LX

j=1

k�(r+1)
j � �⇤

j k2  c(r)

⇢
opt

= (min. no. of bridge nodes per node)

�1



Simulation Result:  
NMSE Phase Transition

L = 5 nodes, n = 50, m = 10, 10% sparsity, SNR = 30 dB

[S. Khanna, C. R. Murthy, 2015 (under review)]



Support Recovery & 
Convergence Properties

L = 10 nodes, n = 50, SNR = 10dB, m = 10 (R), 10% sparsity

[S. Khanna, C. R. Murthy, 2015 (under review)]



Parameter 
Identifiability in SBL

! y = 
x + v => p(y; �) 

! Parameter � depends on the model: 

! Type I: x deterministic:  

! Type II: x random: 

! Question: when is � identifiable? 

! Identifiable: p(y;�1) ≠ p(y,�2)  �1≠�2.8

p(II)(y) = N (0,���H + �2I)

x ⇠ N (0,�);⇥ = �

⇥ = x

p(I)(y) = N (�x,�2
I)

[P. Pal and P. P. Vaidyanathan, ICASSP 14]



Type I Methods

! Lemma: without assuming sparsity, � is 
non-identifiable if N > M! 

! No consistent estimator exists in the 
underdetermined case 

! Need to constrain the parameter space 
for Type I estimation to be meaningful 

! Under sparsity assumptions, � identifiable 
(depends on spark/Kruskal rank of 
)



Type II Methods

! Thm.             is identifiable if  

! For suitable  , 

! Remains identifiable till N ≈ O(M2), 
without even assuming sparsity!   

! Thm. If               , the solution to the 
SBL cost function is consistent & 
asymptotically efficient 

! True even if 	 has > M nonzero values!

� :! p(II)(y;�) N = rank(�� �)

rank(�� �) = O(M2)�

N = rank(�� �)



Recovery Guarantees for 
M-SBL: Noiseless Case

! If the cols of X are orthogonal, and  
 
there exists a unique stable fixed point 
of the M-SBL cost function such that  
  

! If the cols of X are orthogonal and  
 
then M-SBL correctly recovers the 
support, even if m < k < N! 

k < spark(�)� 1
�̂

supp(�̂) = supp(X)

rank(�� �) = N
Not difficult to satisfy

[Wipf & Rao, 07]

[Balkan et al., 14]



To Recap

! Multiple measurement vectors 

! M-SBL algorithm and its extensions 

! Exploits joint sparsity 

! Intra- and inter-vector correlation 

! Pattern-coupled SBL 

! Distributed M-SBL  

! M-SBL under colored noise (did not cover)



Maximal Sparsity & 
Deep Networks?

! Basic DNN template

…
	

Linear filter

Nonlinearity/threshold

Observation: 
Many common iterative algos 
follow exactly the same script

x

(t+1) = f
⇣
Wx

(t) + b

⌘

Examples: Compressive sensing,  
robust regression, sparse coding, …



Iterative Hard 
Thresholding

! Unconstrained gradient step 

! Projection/thresholding step

u = x

old � µ
@ky � �xk2

2

@x

����
x=x

old

@ky � �xk22
@x

/ �T�x� �T
y

x

new
= Hk(u)

ui =

(
ui : |ui| one of the k largest elements

0 : otherwise



Restricted Isometry 
Property (RIP)

! A matrix 
 satisfies RIP with constant 
�k(
) < 1 if  
 
 
holds for all  

(1� �k[�])kxk22  k�xk22  (1 + �k[�])kxk22
{x : kxk0  k}

Small RIP constant �2[�] Large RIP constant �2[�]

�1

�2

�1

�2



Recovery Guarantee 
with IHT

! Suppose there exists some x* such that  
 
 
 
 
then the IHT iterations are guaranteed 
to converge to x*

y = �x⇤

kx⇤k0  k

�3k[�] <
1p
32

[Blumensath and Davies, 09]



Effects of Correlation 
Structure

Low correlation: easy High correlation: hard

Example Example
�

(uncor)

! iid N (0, v) entries

�3k[�] <
1p
32

Small RIP constant

�
(cor)

= �
(uncor)

+�

�3k[�] �
1p
32

Large RIP constant

Low rank



Unfolded IHT 
Iterations

…
	

Linear filter
Nonlinearity/threshold

W = I� µ�T�

b = µ�Ty

•Clear resemblance to the structure 
of a deep neural network 

•So is there an advantage to  
learning the weights?



Performance Bound with 
Learned Layer Weights

! Theorem 
There will always exist layer weights W 
and bias b such that the effective RIP 
constant is reduced via 
 
 
where W is arbitrary and D is diagonal

[Xin and Wipf, 16]

It is therefore possible to reduce high RIP constants!

�⇤3k[�] , inf
W,D

�3k[W�D] < �3k[�]

Effective RIP constant Original RIP constant



Practical Consequences

! Theorem 
Suppose we have correlated dictionary 
formed via 
 
 
with                     entries and 
 low 
rank. Then

Can “undo” low rank correlations that would otherwise 
produce a high RIP constant … [Xin and Wipf, 16]

�
(cor)

= �
(uncor)

+�

�
(uncor)

! iid N (0, v)

E
�
�⇤
3k[�(cor)

]
�
⇡ E

�
�
3k[�

(uncor)

]
�



Advantages of Independent 
Layer Weights & Activations

! Theorem 
Independent weights 
on each layer 
 
Often possible to 
obtain nearly ideal 
RIP even when full 
rank 
 is present

…
	

[Xin and Wipf, 16]



Alternative Learning-
Based Strategy

! Thus far: idealized deep network weights exist 
that improve RIP constants 

! Given access to feasible pairs 
 
 
can learn an approximation to weights 

! Can treat as a multi-label DNN classification 
problem to estimate support of x* 

! Many other important training modifications are 
motivated by this analysis

{y,x⇤ : y = �x⇤, kx⇤k0  k}



Simulation Example

�T� 6= I

[Gregor and LeCun, 10; 

Wang et al., 16]



Robust Surface Normal 
Estimation

! Input: 

! Per-pixel model: 

! Can apply any sparse learning method 
to obtain outliers

…

y = Ln+ x

Observations under 

different lightings

Lighting

matrix

Raw unknown

surface normal

Specular reflections,

shadows, etc. (outliers)



Convert to Sparse 
Estimation Problem

ProjNull[LT ](y) = ProjNull[LT ](Ln+ x) = ProjNull[LT ](x)

ỹ �

min
x

kxk0 s.t. ỹ = �x

Once outliers are known, can estimate n via 

n̂ =
�
�T�

��1
�T (y � x)

[Candes and Tao 04]



DNN Weakly-Supervised 
Training Setup

! Generated 600,000 synthetic training points: 

! Support patterns of x* randomly generated 

! Nonzero values were generated iid from 
N(�,�2) with (�, �2) loosely fit to real-world 
imaging data 

! Trained a 20 layer network using SGD and a 
softmax output layer 

! Testing performed using imaging data with 
known ground truth



Results 
Bunny Object, INRIA 3D Database

LS l1 SBL Ours

Angular 
error

12.13 7.10 4.02 1.48

Time 4.10 33.7 59.1 1.17



Summary

! First rigorous analysis of how unfolded iterative 
algorithms can be provably enhanced by learning 

! Detailed characterization of how different 
architecture choices affect performance 

! Narrow benefit:  First ultra-fast method for 
obtaining optimal sparse representations with 
correlated designs (i.e., high RIP constants) 

! Broad benefit:  General insights into why DNNs 
can outperform hand-crafted algorithms



Part 5: Applications 

Wireless channel estimation & data detection



Wireless Channels

! Wireless channels exhibit multipath 
! Naturally sparse in the lag-domain 

! Channel equalization & data detection 
! Need to estimate both support & channel

�3�1

�2
time

Am
pl

itu
de

�1 �2 �3



Channel Models

! Block fading channel:  
 
Channel constant for the duration of a block 
(say, K symbols), changes i.i.d. from block-to-
block (classic SMV-SBL) 

! Time-varying channel: 
 
Channel varies from symbol-to-symbol 
! Want to exploit temporal correlation and group-

sparsity (MMV-SBL)



Outline

1. Block fading case:  
1. Known channel support: Joint channel 

estimation & data detection 
2. Unknown channel support: Channel and support 

estimation using pilot symbols 
3. Unknown data & support: Joint support, channel 

estimation & data detection 

2. Time-varying case:  
1. AR model: Kalman-EM algo for joint support, 

channel estimation & data detn



OFDM with Block Fading 
Channel

! Received signal model y = X F h + v 

! Goal: Given y, jointly estimate X & h 

Diagonal data matrix; N x N  
N: number of subcarriers

N x L DFT matrix, containing  
first L cols of N x N DFT matrix  
L: max channel delay spread  

L x 1 channel vec

Noise



Sparse Channel Estimation 
from Pilot  Symbols

! h sparse in time (lag) domain 

! Hierarchical prior: 
γi deterministic, unknown hyperparams 

! Goal:  
Given y, X, estimate h (& sparsity profile)

h(i) = CN (0, �i)



SBL for Basis Selection

! E-Step:  

! M-Step:

Q
⇣
�|�(t)

⌘
= Eh|y;�(t) log p(y,h;�)

p
⇣
h|y;�(t)

⌘
= N (µ,⌃h), µ , ��2⌃hA

Hy

⌃h ,
✓
��2AHA+

⇣
�(t)

⌘�1
◆�1

, A , XF

�

(t+1)
= argmax

�i�0
Q
⇣
�|�(t)

⌘

log p(y,h;�) = log p(y|h) + log p(h;�)

not a function of γi function of γi



Joint Channel, Support Estmn. 
& Data Detn.

! y = X F h + v
E-step

M-step



Simulation Result

! OFDM system  

! N=256 subcarriers,  
! max delay spread  

L=64 

! K=7 symbols/slot 
! PedB PDP:  

6 nonzero taps  

! 44 pilot subcarriers 

! Data: rate ½ turbo  
code, QPSK 



BER Performance



Time-Varying Channels

! Channel correlated from symbol-to-
symbol 

! AR model: 

! The factor ρ depends on the normalized 
doppler freq, which in turn depends on 
the speed of the mobile  

! SBL framework can be extended to 
incorporate the temporal correlation

hk = ⇢hk�1 + uk



Joint Kalman SBL (JK-SBL)

! Complexity O(KL3): smaller 
than block-based methods 
O(K3L3) [Zhang et al. 10]  
! (K = num. OFDM symbols 

used in joint estimation) 

! In the block-fading case: 
get recursive, more 
computationally efficient 
versions of our algos 



Simulation Result

! fdTs = 0.001 (slowly time-varying)



MIMO-OFDM

! Goal: Recover h1, …, hNr from y1 … yNr

! [Prasad, M. & R., TSP 2015]



MMV Framework

! Measurement model 

! Pilot subcarriers



The M-SBL Algorithm

! E Step 

! M Step

Q
⇣
�|�(r)

⌘
= EH|Yp;�

(r) log p(Yp,H; �)

�(r+1)
= arg max

�2RL
+

Q
⇣
�|�(r)

⌘



The E and M Steps

! E-Step: Posterior distribution 

! M-Step:

CN (µnr ,⌃)

µnr = ��2⌃�H
p yp,nr

Q
⇣
�|�(r)

⌘
= c0 � EH|Yp

"
NrX

nr=1

NtX

nt=1

hH
ntnr

��1hntnr

#

Common γ

�(r+1)(i) =
1

NtNr

NrX

nr=1

Nt�1X

nt=0

kM(i+ ntL, nr)k22 +⌃(i+ ntL, i+ ntL)

Averaging γ across antennas

⌃ =

 
�H

p �p

�2
+
⇣
�(r)
b

⌘�1
!�1



Joint Channel Estmn. 
& Data Detection

! E Step remains unchanged 

! M Step: 
⇣
�(r+1),X(r+1)

⌘
= arg max

�2RL
+,X2S

Q
⇣
�,X|�(r),X(r)

⌘

Splits as two separate sub-problems



MSE Performance

! 2 x 2 MIMO-OFDM 
System 

! 256 subcarriers 

! CP length 64 

! 44 pilot 
subcarriers 

! PedB PDP 

! QPSK constellation



Exploiting Structure 
Helps!



BER Performance



But Does it Work?

! Implementation on GNU Radio platform 

! In C++/Python 

! Integrated into a USRP-based test setup 

! Single-antenna OFDM, 64 subcarriers, CP length 16 

! Channel estimation 

! Least-squares estimation 

! Sparse Bayesian Learning 

! Frequency-domain interpolation



GNU-Radio Loopback-Mode 
Simulation Results

SNR in dB
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GNU-Radio Loopback-Mode 
Simulation Results

SNR in dB
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Over-the-air Results

2-tap channel 3-tap channel

OFDM system, 256 subcarriers, CP length 16, 4-QAM



To Recap

! SBL based OFDM channel estimation 

! Block-fading case: proposed J-SBL and 
low-complexity recursive J-SBL for joint 
channel estmn & data detn 

! Time-varying case: low-complexity K-SBL 
and JK-SBL proposed 
! Algos fully exploit channel correlation 

! MIMO case: Estimation in MMV framework 
! Take-home point: Exploit any known structure!



Further Extensions

! MIMO-OFDM: tracking time-varying 
channels using the Kalman framework 
[Prasad et al., TSP 2015] 

! Cluster sparsity: paths occur in closely 
spaced clusters [Prasad et al., ICASSP 2014] 

! Approximate sparsity due to transmit/
receive pulse shaping, filtering, etc [Prasad 
et al., TSP Jul. 2014]



Summary

! Bayesian methods: 
! Simple updates 
! Promising performance 

! Challenges: 
! Theoretical analysis 
! New algorithms 
! Novel applications 

! Plenty of opportunities!
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