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Roadmap

e Drivers of 5G

» Single network caters to diverse use cases, which is
revolutionary

e Building Blocks: Evolution at Multiple Layers
» Radio
» Access
» Network
» Computing

e Case Studies
» SDN in wireless access
» Mobile augmented reality through edge computing
» LTE in the Sky: UAVs for on-demand LTE connectivity



Diverse 5G Services
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loT Proliferation
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New Opportunities
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Optimization across Multiple Dimensions

e Services drive multi-dimensional network requirements
for 5G
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4G: Today ...

No stringent
coupling

Radio Access
Network

Network QoS k

(data rates)

® Consumers/creators of content (audio, video, data)
® Today’s 4G (LTE,WiFi) networks focus on data rates



5G: Heading Towards ...
RemBE3lHYEN

User Recreation coupling

Ny

° InterRet o) Us,eri/Thi,ngf: Disruptive in multieledd?,mains
How should a single wiréless network evolve to deliver
these revolutionary user experiences and services?



5G Architecture Evolution

Network architecture
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5G Vision
ONE NETWORK - MULTIPLE INDUSTRIES
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Several Network Slices

source: Ericsson W.P. on 5G Systems

e Wireless network (RAN + core) plays a critical role in this vision
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Evolution at Multiple Layers

New Radio (NR), flexible OFDM numerology, mmWVave,
u massive MIMO, advanced coding
. loT-optimized access, hybrid/dynamic spectrum access
\_/

. Cloud-RAN deployments, SDN, network slicing
. NFV for scalable core design, mobile edge computing
\/’
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Roadmap

e Drivers of 5G

» Single network caters to diverse use cases, which is
revolutionary

e Building Blocks: Evolution at Multiple Layers
» Radio
» Access
» Network
» Computing

e Case Studies
» SDN in wireless access
» Mobile augmented reality through edge computing
» LTE in the Sky: UAVs for on-demand LTE connectivity
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(I) Radio (New Radio, NR)

Scalable OFDM interface,Advanced channel
coding, Massive MIMO, mmWave
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A Unified 5G Interface
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Seamless Convergence to 5G
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Standardization Status
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e LTE and 5G NR will evolve in parallel
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Key Components of NR

Scalable OFDM-
based air interface

.............
""""""""""""

: "1'. "I'. | ")" ""‘ |
SOOSETEO6L

Scalable OFDM
numerology

Efficiently address
diverse spectrum,
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A

Massive
MIMO

Multi-Edge LDPC and Reciprocity-based
CRC-Aided Polar MU-MIMC
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Mobile
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Scalable OFDM Numerology
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e Scaling reduces FFT processing complexity for wider
bandwidths while reusing hardware

e Serves diverse 5G deployment scenarios
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Advanced Multi-edge LDPC Coding

Normalized throughput (for given clock rats)

High efficiency
Signficantgains over LTE Turbo—partcularly
tor large black sizas sutable for MBR
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achieve high throughput at low complexity

Low latency
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e High efficiency at low complexity and latency
o Useful as 5G targets high throughput transmissions
e Selected for 5G NR eMBB data channel in Rel-15
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CRC-aided Polar Codes

5G NR CRC-Aided (CA-Polar) design

Efficiant construction based on single Cyclic Radundancy
Check (CRC) for joint detection and decoding
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e Adopted for many 5G NR control use cases
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Massive MIMO

Exploit 30 beamforming with
up to 236 antenna elements __Accurate and timely channel
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e Key enabler for using higher frequency, e.g. 4 GHz with
existing LTE cell sites

e Optimized design for TDD reciprocity using UL SRS

e High spatial resolution codebook for up to 256
antennas
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Massive MIMO

Step 1:
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Source: Qualcomm

e NR slot structure and enhanced reference signals
enable fast and accurate feedback
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Massive MIMO
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mmWVave

Unified design across diverse spectrum bandsitypes

5G NR sub-6GHz
(e.g. 3.4-3.6 GHz)

5G NR mmWave
(e.g. 24.25-27. S BH2N27.5-25.5 GHz)

Coverage

Innovations to overcome
significant path loss in bands
above 24 GHz

Robustness

Innovations to overcome
mmWave blockage from hand,
body, walls. foliage, stc.

Lol gnbecing imudale
S (0K, Y 7 cdivectinn)

Dack gnvenng module
(=X, =Y, =2 dueschue)

Device size/power

Innovations to fit mmWave design
in smartphone form factor and
thermal constraints

Source: Qualcomm
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mmWave

Mscro
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e Spatial reuse for dense deployment

e Fast beam steering/switching within a cell and switching
across cells

e Integration with sub-6 GHz
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mmWave

e Path diversity to handle LOS blockage
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New Radio (NR) Recap

e Rel-15 has set the stage for various NR ingredients

» Scalable OFDM numerology, advanced channel coding,
massive MIMO, mmWave

e Rel-16+ will build on these features and introduce new
features for NR evolution

e Targets beyond enhanced mobile broadband (eMBB)

» Cellular-V2X, wireless industrial ethernet, etc.
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(I1) Access

Dual connectivity, Flexible frame structure,
Spectrum sharing
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Dual Connectivity

Existing deployments 5G augmented deployments
Ciyabil LTE, VOLTE
Gigubil LTC, Vel T ’ 5G NR Lekon 10 Gl e 7 5 NR minWave
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netwaorks fevices subscnpfions

Source: Qualcomm

e Leverage LTE investments and provide path to 5G
convergence

e Evolve from non-standalone (4G LTE + 5G NR) to
standalone (5G NR)

e Dual connectivity for LTE + NR in NSA
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Dual Connectivity for NSA

=
Control and user plane '
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LTE RAN
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user/control plane
capability for SG NR,
seamlessly coexisting
with NSA UEs

Source: Qualcomm

e Control and coverage from LTE, data from LTE + NR

e Reuse core network (EPC) from LTE
» NSA stepping stone to SA 5G NR
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Flexible Frame Structure

e Enables heterogeneous access modes

Scalable slot duration Forward compatibility

Lricent rmuttpdcxang of diverse 2tency and
S requirameants

lransmissions well connned n e requency
mn simplify adding new fasturas in firura

Self-contained
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Scalable Slot Duration

- 1ms subframe aligned with LTE -

CR-OFDM Subframe

Symbol

15 kHz SCS 0 1 2 3 B S 6 7 8 9 10 11 12 13

-

500 ps >
30 kHz SCS Slot

— 250ps —

60 kHz SCS Slot

+— 125ps —
120 kHz 5CS Slot

Source: Qualcomm

e Diverse latency and QoS
e Mini-slots (2,4 or 7 symbols) for shorter transmissions

e Slot aggregation for data-heavy transmissions
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Suited for 5G NR loT Evolution

1.4 MHz carrier — 6 RBs' 200 kHz carrier — 1 RB?

Source: Qualcomm

e Rel 16:In-band eMTC/NB-loT support
e |5 KHz sub-carrier spacing
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Shared Spectrum Access

Licensed spectrum aggregation Enhanced local broadband Private 5G networks

Setter user experisnce with higher speeds Neutral host, neighborhead network Industrial loT, Enterprice

§
| .

R o

Enhancing existing New types of deployments

deployments

Frinnples lodioy Gugabil L TF wilh | AA! Fxirnplos loday Povale T TF nelworks

Source: Qualcomm

e Lack of sufficient licensed spectrum

e Ciritical for wide range of deployments and new

business models
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Spectrum Sharing Models

Aggragation
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Source: Qualcomm

e License-assisted access
» Supplement licensed with unlicensed channels

» LTE/NR on unlicensed carrier, aggregated with LTE or
NR on licensed (anchor) carrier

e Standalone access

» LTE/NR on unlicensed carrier (also serves as anchor)
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Convergence in Access!

e Started with LTE using WiFi bands
as unlicensed carriers Licnsea W
\\ Act;;lrc't';ron
e Other bands (e.g. CBRS 3.5 GHz) . = /
Urified netweork for s L i g e s N —
licoreod and urliconcs
for shared and standalone S\ Rpesaed Source: Qualcomm
» Shared (using spectrum server), -
unlicensed (e.g. MulteFire) ()
S Ar.
R ....’ * ’."‘ * ’4 0’
e Co-existence challenges % LTE (1)
» Co-existence with WiFi and -
other LTE operators W (@)
, A AL
» Asynchronous access in it
traditional synchronous network i 4@
LTE (2)
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LTE-WiFi Co-existence

e Two modes of operation
o LTE-U

» Duty cycling at time scales of tens of ms

» Can be realized today: switch on/off unlicensed carriers
» Short-term unfairness to WiFi, higher latency

Juty Cyrle Pancce

< >

_TECH
I'Tr Oin ITF COr
>
\ J tima
' VWil access gaons
C.‘JL}' C)"\.I':‘ ’ el o0 Cle 3

#oefeyele | TRz achve when LTE s o

Source: Cable labs
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LTE-WiFi Co-existence

o L AA-LTE: License assisted access
» Energy sensing CCA; Operation at |-10 ms granularity
» Moadification to LTE specification for Listen-before-Talk

CCA CCA Extended CCA
< —» - "

20 ps 20 us
Y

Channel Busy next frame

|<' — t

Extended CCA = Q * 20 us
Q& {0.1,...,q}andq € {4,5, ... .32}

Source: Cable labs
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Un-resolved Challenges

¢ |[m-balanced channel access between LTE and WiFi

» WiFi detects/notifies other WiFi through “WiFi carrier”
sensing/notification (-84 dBm sensitivity)

» WIiFi-LTE detect each other through “energy” sensing
alone (-62 dBm sensitivity) - )

1072

Il 130dB
E19dB | . I
[ ]27dB| : :

WiFi Bitrate (Mbps)
o

-52 -63 -80
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Un-resolved Challenges

e In-efficient LTE operation in unlicensed spectrum

» Conflict between concurrency and asynchronous interference

hidden
terminals

® Synchronous, multi-user transmissions increase capacity

e Lead to utilization loss in the presence of asynchronous interference
(from WiFi and LTE)

» Pronounced impact on uplink, where eNodeB schedules all UL
transmissions

client

hedul f +.ans_un-ysed UL erant .Ana -used UL grant
sC e, u ef‘grag% 801 un-yse | erants ] ___un-us .m““g-r-a-\-n-i
e —
(@)
LTE 2= @80 ¢+ 3
4| WV : 4
6 | -— % BS 7 >
DLS 40 + e uL
CCA clear @\IB) A clear (1,7)
| 520 |
flen 5 NG
Terminals > . . . . . .
w I | I >
o TCC% clea‘J"(I-_Il,Q ) 8 1 0 12 CCA clear (H,)
= No. of hidden terminals
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Access Recap

e Dual connectivity for non-standalone access (LTE+NR)
» Stepping stone for standalone NR

e Flexible frame structure enables diverse services
(eMBB, MTC, loT, URLLC)

e Room for future access and services

» Non-orthogonal multiple access (NOMA), C-V2X,
wireless industrial ethernet, grant-free UL, mesh

e Shared spectrum: important access model in 5G

» Boundaries between synchronous (e.g. LTE, NR) and
asynchronous (e.g. WiFi) access models will get blurred

e Deeper understanding to realize converged access

» Several interesting and important problems

41



(Ill) Network

SDN in Wireless Access, Network Slicing
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Network Evolutions

___________________________

I .
. Edge Cloud
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i distibuted ot edge : | based computing
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: E servicos such as VR and
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.......................... ndushral sulomalion

5G NR RAN

Source: Qualcomm

e [wo trends aid in evolution from non-standalone to
standalone access

» Cloud-based RAN and mobile edge computing
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Cloud-RAN Architecture

A A

e Decouple processing from
transmission

e Baseband unit (BBU) pool
» Centralized processing

e Remote radio/antenna head
» Cost and power efficient

e Front-haul network

» Optical, heterogeneous

BPU

o0 |

BPU | =

BPU

Processing Cluster

(R)) RRH

() (
(@ () (@)

ENE= DU+ CU

P T T T T L L L L L

H v ot '
: DU = :
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Cloud-RAN Architecture

BPU El|sm *er*lleru =||eeu | =

Processing Cluster

— il = @l

(@)

e Several benefits : () () ((i)) S
» Capex/Opex savings: simplified ST el Tl
cell-sites % :‘“A‘:"“ﬁi‘ *é
» Cooperative interference -

management

» Better compute management

e Attractive for high-density
deployments (eg. stadiums,
convention centers, etc.)
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C-RAN Split Options

e 8 different functional split options

» Front-haul bandwidth vs. performance and RRU
complexity

» Popular options: Options |, 2 (low front-haul

requirements), options 7, 8 (low RRU complexity and
higher system performance)

Higr- Lave- <ign- Low- High-
{3 lnlm . - - o -~ ' :
—  RRC - ocr ™ kLe ™ e - LAC ot BTV SHY Low-T-Y L RF
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ligh= Lovse ligne Lows Highe« -
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Some Popular Split Options

Centralized

Distributed

L

=]

Source: Ericsson W.P. on Cloud RAN
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Realize C-RAN'’s True Potential

e Key: handle diverse traffic and user
profiles
» Unicast vs. multicast traffic

» Mobile users vs. static users

» Spatio-temporal traffic load
variations

> Orchestrate the unique
component of a C-RAN: the
front-haul that maps BBU
signals to RRHs

e Optimize performance and energy
» Improved user performance in RAN

» Intelligent use of BBU resources in
BBU pool
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Strategies and Configurations

e One-one logical mapping on front-
haul
» Currently used configuration
» Different frames to different small cells

» Strategy: frequency reuse (FFR) in LTE,
spatial reuse in WiFi

e One-many logical mapping on front-
haul (Options 7, 8)
» A complementary configuration
» Single frame sent to multiple small cells

» Strategy: Distributed Antenna System
(DAS)
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Characteristics

e Capacity
» FFR better suited for high, unicast m

traffic demand o ~—— "//ﬁ ~—
e Mobility management SR a .

Traditional AP-level broadcast
» DAS reduces handoff interruptions

(v

e Multicasting capability 1 [ e ) Ly )
» DAS provides network-wide ' i E
multicasting capability P e i =] )

Netwark-devel broadcast

e Compute/energy-efficiency
» DAS is compute/energy-efficient

> Dynamic combination of strategies, i.e. a reconfigurable front-haul
50



C-RAN System with SDN Transport

e C-RAN with a software-defined front-haul (SDF) transport network

o Key features

Core

Network » Different transmission

strategies through appropriate

Poot gg:l front-haul configurations
BBui  B8U2 - BBUS » Caters to spatial and temporal

BBU: Building Basuband Unit g = = Uy . L. . .
vidm Behed? - 82 BE! B variations in traffic/user

RAU: Radiv Access Unit
profiles

MS: Moblle Stztion
» Optimizes for performance

and energy
g gy » Customizes configurations for
: services (MBB, loT, URLLC),

operators and technologies
(LTE, 3G, WiFi)

& L
2
ol n »
-,
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C-RAN Architecture with SDF

[ BBU Manager

)

Switching

Controller
Traffic

Profile

-

[

BBU Pool

)

Switching Fabric
\Q J

() (@) (@)

(@)

(@)
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Objectives for Reconfiguration

e Compute/energy-focused objective (LTE)

» Determine configuration (I') that sustains as much
traffic demand (D) as an optimal scheme, while
minimizing the BBU resource units (RU) used in the
pool

mrin RUr, subject to Dr > A - Dopr

e Throughput-focused objective (WiFi)

» Determine configuration (I') that maximizes the amount
of traffic demand () supported in the network for a
given number of BBU units (R)

mlgx Ar, subject to RUr < R
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Network Slicing

Mobile Communication
broad Entertainment
el Internet
Machine Retail
-to- Shipping
aschiae Manufaduring
Reliable Automotive
low Medical

latency Infrastructure

Other
applications

lo ! inlerne! of hings network

Others

e Key component in helping a single 5G physical network
cater to diverse services “simultaneously”

e Creates multiple logical slices of a single physical
network
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CN MBER Slire
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e «  Small Date Optimization A
Mever « Bettery Conservaton
»  Charging Support —
/
Fixed Access |
Slice #1 ) CN MVNDO Slice
rd -

=  MVNQCperator Feastun Set
=  MAP Support

= Operatos Specific Crarging

Source: 5G Americas

e Each slice corresponds to slicing both RAN and core
resources

e Each slice can be configured to suit different
application requirements

» Different QoS, charging, performance, etc. features
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Network Slicing
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Devie A |-~ =—— e | 2 ' -
'L" RANSTe#a— ———1" [ ° d
nevee B -u:-,f-_'_"' ’ r C“EQ.T S
I . ] N N |-
P
et . ’
Nevire ";,_} - \ - -
- | _PANSiredde——_ - | CN Slice #4
/J/ ‘\\ T ~NEL_ NF? NE3 | -
Doviee D K5 N s = : ~
R, Feed Acoess \Y 2 N
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—— PG ST \
Slice #2 * \
YRR e CNSlice #6
v | Wl —we -
b 7’

e A device can belong to multiple slices

Source: 5G Americas

¢ In addition to RAN and core, access network (e.g.
fronthaul transport in C-RAN) can also be sliced
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RAN Slicing

Frequen
QA cy

Radio slice #1
Radio slice | Radioslice | Radio slice | Radio slice | Radioslice | Radio slice
#2 #3 #2 #3 #2 #3

Virtualizing the RAN spectrum

Slice Scheduling

Time

Source: 5G Ameicas

» Scheduling resources (time, frequency, spatial) across

slices

Admission control for slices

Single-cell and multi-cell RAN slicing
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Network Recap

e Software-defined networking plays an important role in
5G network deployments

e SDN + network slicing (virtualization) enables flexible
orchestration of RAN + transport + core network

Sub-6 Gl Iz —
—_— \ Mult-hop Radundan:
y / .,aoabllltv links
nav!
e pack
M \
EI “’”& F / \D
|
Fiber backhaul Efficient oparation nrough dynamic resource
pariitioning betwsen access and backhaul Source: Qualcomm

e Helps realization of integrated access and backhaul in
mmVVave spectrum

e New business models and expansion of 5G ecosystem
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(IV) Computing

NFV for core slicing, Mobile edge computing
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Confluence of Connectivity and Computing

Radio Access

Network Core Network

Software-
defined Mobile Networks

e Hardware-oriented arc
e Not scalable for growing'dé
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Today’s Core Networks

Traditional Network Model:
APPLIANCE APPROACH

GGSN/SGSN

i D PE Router

Session Border

Firewall CG-NAT Controller

* Network Functions are based on specific HW&SW
“ One physical node per role

Source: Telefonica, I+D, NFV

e Complex and cannot scale easily
e Launching new services is difficult and time consuming

e Procurement and operation is expensive
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5G Next Generation Core (NGC)

LTE EPC

5G NGC

N

7
Conircl and user plane *
4

SA provides full
usar/centrol plane
capability for 5G NR,
seamlessly coexisting
with NSA UEs

h LTE RAN

kUser plane

Control and user plana

5G NR RAN

Source: Qualcomm

5G standalone NR relies on NGC

Leverages SDN/NFV to create optimized network
slices

Flexible business models, deployments

Dynamic creation of services o



5G: Virtualized Core

Virtualised Network Model:
VIRTUAL APPLIANCE APPROACH

(ClCEL N/ IRTUAL

O scsw APPLIANCES
Firewall PE Router

ORCHESTRATION, AUTOMATION
& REMOTE INSTALL

! STANDARD
: HIGH VOLUME
| SERVERS

Network Functions are SW-based over well-known HW

" Multiple roles over same HW

Source: Telefonica, I+D, NFV

e Network Function Virtualization

» Flexible use of logical resources, decoupled from
physical resources

» Dynamic scaling, programmability, orchestration
» Performance, multi-tenancy, automation
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Scaling the Mobile Core

E ‘?‘_ Applications & Services
5= BSS & Policies decision —l I
|
2 5
c - —
g2
& = / \
s © S— | I
E ey somx | SDM-C
S = Common control layer functlons Dedlcated contrgl layer functlons
1 f t f
I e [
s ‘6 et VNE . DT T B :- VNF
Ll | PNF | | PNF jo | PNF =Sy IZIEI}' .........
Common data layer functions Dedicated data layer functions

e SDN: decoupling control and data plane

e NFV:virtualization of control and data plane network
functions

Source: 5G PPP
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Scaling the Control Plane

Contral Path
MME

= o
s

Data Fath

STAP,

— g —

Fackel Dals Niw Caleways

(o
Radio Access Network Evolved Packet Core (EPC)
(cNodeBs)

Serving Galeways

_““%,.
*

e Mobility Management Entity (MME)

» Main control plane entity: overload affects user
experience (connectivity and handover delays)

» Static configurations limit flexibility and efficiency:
cannot scale to the density of loT connections
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Virtualizing the Control Plane

Serving GW MMP VMs

SLB VMs

SLB VMs

;'<

A \4, g S1AP
eNodeBs A

e Standard interfaces decoupled from MME device management
» MME processing (MMP) entities store device state and process
requests

» Software load balancers forward requests from devices, SGWV,
HSS to the appropriate MMPVM
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Virtualizing the Control Plane

Every
Consistent Hashing Epoch VM Provisioning

(=] 1 l
L=

§ State Management
o State

. PartitioningJ Consisten
‘g State Hashing

Replication

SLB I I MME Processing | MNP

e Device state partitioned and replicated across VMs
e VMs provisioned based on perceived traffic load

e Concepts from distributed data stores can be leveraged for
state management



Scaling the Data Plane

[Router
J: U Ty
,ﬁ, Q
\ ] |\ | J - J
Radio Access EPC Functions MiddleBox Functions

Network

e Flexible provisioning of data plane gateway elements
e Agile routing and forwarding between gateway
elements

e Service chaining of gateway elements and other IP
middle boxes (firewall, transcoding, DPI, etc.) - critical
for network slicing s



Scaling the Data Plane

| b Traffic demands

\ l A - ----l.. &
Y A VM
17

\
@ "‘ \% Orchestrato avaﬂqb:l:ty
S
SGWu <----‘75Gm‘ -:: Central
m ,.—; Controller

NAT| S° || Service flow

Routing

DOl

o Effective multiplexing of resources both within and
across remote datacenters

?
ol o<
a‘ bz

Egress Points

e Network functions span both data plane gateway
elements as well as other IP middle box functions
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Mobile Edge Computing

e Emergence of continuous
interactive (Cl) mobile
applications at scale

» AR/VR, face recognition,
autonomous driving

e Common characteristics

» Highly responsive
(~100ms)
» Computationally intensive
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MEC Use Cases

mgmt

N ED seper CoredT

- LTE hase station

Vidae straams Evarts meata catz and v dac ~lips
[ligh Eardwidty Low tanduidth

Source: ETSi, MEC W.P.

Content
: - TTTTTTTTT I sarver
—- AR ohject AR data E Camtral
(o cexche cadwe % AR cache
ST N Ce—
‘ , ObjactID

W MEC servat Core network

e Several use cases: video analytics, mobile AR, etc.
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MEC Advantages

Moves IT and computing capabilities to edge of core network
to increase responsiveness of applications and services

Leverages proximity to RAN edge to deliver ultra-low latency
and high bandwidth

Proximity, context and agility create opportunities for multiple
players (mobile operators, service providers, OTT players, etc.)

SDN and NFV enable mobile edge computing (MEC)
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MEC Deployment Scenarios

Mg
Server

-
MILC St the LI L macro [E\'
base station [(eNB) site - -

MEC 3t themulti- E

tochnalogy (1G/1TE)

cells auprepation site - _'rl -

MEC at tF c Radio
Netvrork Controller
(RNG) site

Source: ETSI, MEC W.P.
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MEC Orchestration

Mobile Edge Network (Cloudlets)

——_,
- R e

- Default Bearer ' § Cl Server \) \|
<— (Internet) ‘ Z >
D Dedicated Bearer ) g
a—p (MEC) )
-’ ‘
Mobile device (client) - -
4 I'

-
-
-

eNodeB
> <« >
Radio Access Network Mobile Core Network

e SDN/NFV orchestrated mobile core/edge network
» Scalable, low-latency control plane sets-up policies
» LTE QoS bearers to set-up new flow to closest Cl server
» Deploy multiple G/W data elements, route to closest element

e eNB scheduler prioritizes bearer with spectrum virtualization
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Computing Recap

e Next Generation Core (NGC) will heavily leverage
SDN/NFV to create dynamic network slices that cater
to diverse services

» Both control and data planes will be capable of flexible
scaling

e Computing will move closer to the edge to cater to
bandwidth/latency-intensive interactive services

e Hybrid models of cloud and edge computing will be
leveraged as appropriate for hosted services
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Roadmap

e Drivers of 5G

» Single network caters to diverse use cases, which is
revolutionary

e Building Blocks: Evolution at Multiple Layers
» Radio
» Access
» Network
» Computing

e Case Studies
» SDN in wireless access
» Mobile augmented reality through edge computing
» LTE in the Sky: UAVs for on-demand LTE connectivity
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(1) SDN in Wireless Access (2012)
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FluidNet C-RAN Architecture

]\ [[ BBU Pool

—
—
/ - J

\
[ BBU Manager ]

Switching
Controller

Traffic
Profile

() | | (o)
(‘) ((x)) ((z)) (@)) ((l)) =

e FluidNet: A C-RAN architecture with software-defined
front-haul
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FluidNet Prototype
Gateway BBU Pool Switching Fabric RRH

Switching
Controller

Switch Confrol RF Input Optical Splitiers RoF

Radlo over Fiber Transcelvers O Rstpcs

e Small-scale C-RAN test-bed based on WiMAXI/LTE
» 6 WIMAX/LTE eNBs, 6 RRHs, 6 WIiMAX/LTE clients; single sector with 6 small cells
» Four 5 MHz carriers; net 20 Mhz bandwidth; 24 logical BBUs
» Front-haul: Radio-over-Fiber (analog RF) transport using WDM
» Software-defined optical switching for front-haul configuration
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Adapting to Traffic & User Dynamics

(03]
N LN

DAS —&—
FFR —%—
FluidNet —a—

A\ ‘ Ad
..... N ———— ' 1D ":\..4' 5 A ..-"‘Q T300/0

I~
[e')

o
N

it of Active BBUS Throughpul(Mbps)

-l-l[\_[\,_‘.
\Smomcu oy

40 60 80 100 120
Time (in sec) _

N 3 Mobile Clients
Reduced Rate to
dMbps

(9] 20
6 Static Clienta with
R = 8Mbpa/Clicnt

e FluidNet adapts its front-haul configurations to traffic dynamics
e Outperforms FFR performance at less than half its BBU
consumption

4 Static Clients
Bccame Mobile
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FluidNet: A Software-

defined Front-ha

U

Network for C-RANS



(2) Mobile augmented reality through edge
computing (2015)

82



Vision-based Mobile AR Applications

e Focus camera on objects (retail application)

e Get real-time object info (price, reviews, etc.) overlaid
on camera feed
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Making it Happen with LTE

e A holistic approach that integrates device, network and
application

o ACACIA: A service abstraction framework that
orchestrates client, network and application jointly

» Key Ingredient: User context

» Optimize both network handling and application
processing

84



(i) Context-based Service Discovery

Interested in

AR (laptops)

Mobile device (CSR)

\

Mobile device (client)
LTE Modem

eNodeB

i __.@T{(Zﬁf w

Radio Access Network
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(i) Context-based Service Discovery

e D2D (LTE-direct) service

. | \ \'
discovery ((( ));
» Leverage LTE
infrastructure A
eNB
» Pub-Sub system at Timing, resource allocation,
physical Iayer User authentication

Offering

Macbook
$800

D2D Service Discovery

Sales Customer
Personnel

» Filter by user interests

» Good range, scalability
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(ii) Context-aware Traffic Classification

Mobile device (CSR)

Interested in . . ; . \

Mobile device (client)
LTE Modem

AR (laptops)

=01

3
il |
A — g dem

>

Radio Access Network

Mobile Core Network

e Client requests connectivity to Cl server

e Cl traffic classified at client (source)
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(iii) ACACIA Mobile Edge Network

Mobile Edge Network (Cloudlets)
—'H

J
/' $

- Default Bearer /7 Cl Server

< (Internet) Q

D Dedicated Bearer
—b (MEC)

Mobile device (client)

L, -
-
-

eNodeB
> <« >
Radio Access Network Mobile Core Network

e SDN/NFV orchestrated mobile core/edge network
» Scalable, low-latency control plane sets-up policies
» LTE QoS bearers to set-up new flow to closest Cl server
» Deploy multiple G/W data elements, route to closest element

e eNB scheduler prioritizes bearer with spectrum virtualization
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(iv) Context-aware Application Optimization

‘---o User Conlex! Dala —= AR Data |

Seerching space

Mobile device Cl Server /T4 7] (section 6)
Get images // X x|
Frames [ AR forsecs / 4 | el 2

AR Back-end | Geotagged :1?" ; ‘iﬁ , 'j

Front-end R a5 K

\IT;;’S Matcher ‘ﬂnges AR Database '!f:.j_r‘;.t . t|;

\ () \ ™ "..?: :

ﬁ ‘?09\:%%0' ?Esnmated \\\ y T-*{n '1"0*' ‘

(Discovery msg, | "Ta," | Userlocation (1) e

rxPower, fNRi . %) LTE-drect Saction O Landmarks
ACACIA Local zation Menager
Device Manager (Trilateration solver)

e Context speeds up object detection
» Localize client using proximity to presence points

» Geo-tagged DB of objects; targeted search using client
location

e Object detection refines client location



ACACIA Prototype (2015)

« D2D service discovery
» Device manager as Android service
* AR application GUI

\/

¢ OpenEPC extension for dedicated flows e OpenCV (Surf) for object detection
» Data plane routing using Open vSwitch, « Geo-tagged database
Ryu SDN controller  Client localization
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Network Set-up

e Two mobile network test-beds

One+ one, Nexus 5,
Huawei dongle

One+ one, Nexus 5,
Pantech dongle

LTE IP.access
(small cell)

LTE Basestation

OpenEPC Core Network
+ GQW-Us + MEC server
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Network Latency

P — .
D Conventional EPC m
< 2 L EPC withMEC m || | |
5 ACACIA =
sitse 0 ||
_____ =
_________ ¥ 1
— zos bbb LR
O
‘ Z. 0
17 18 O o000 %0 0%,

Background traffic (Mpbs)

ACACIA RTT (~14 ms) << LTE RTT (>70 ms)

e | ocation: MEC helps - 14ms RTT (I2ms in access,

|.bms in core)
e Traffic isolation critical to avoid core network

bottleneck
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Application and End-End Latency

N
U

g ACACIAmE 38;2 ACACIA =
e 2 | rxPower B 5 0.7 - MEC O
E 1.5 Naive ] E 82 - CLOUD ]
g 1 204
= i3
S 0.5 J 703
= < 0.2
= 0 -1 2 0.1 J

1 2 4 8 =0

The number of clients Match Compute Network Total

(5 sections, 21 subsections,>200 objects)

e Geo-tagged DB with location-based matching
» Better scaling with multiple clients: 5x reduction

e End-end: 3x reduction (~200ms) from network and
application optimization
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(3) LTE in the Sky: UAVs for on-demand LTE
Connectivity (2017)
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Airborne LTE

Connectivity for C&C

\
- Out of band (macro/satellite) I Q
- --- Inband (ground station) .

Network for Public Safety

\
’\ Satellite

PoP )/ P N
R / _ -
L N
,’I"
L’ .- /
s - /
((=)] /
/
I N
Macro eNBII @
Control A DD D
Station UE

e | ow-altitude UAV networks provide “on-demand” LTE

connectivity

» Serve as augmenting hot-spots or stand-alone networks
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Deployment Challenges

e Solutions today are “tethered”
» Only LTE radio on UAV; EPC on the ground
» UAV tethered by wire to ground for power

e Need to deploy both LTE RAN (BS) and Core on UAV
for “un-tethered” operation

» Resource-constrained UAV platforms

» Re-architect core network for UAV deployment
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Connectivity Challenges

e RAN

» Optimize connectivity for

multiple UEs jointly e ST

» Radio conditions vary Mosiity | E -e?e-
significantly based on terrain - YA
e Backhaul
» Multiple UAVs needed for

coverage

» RAN and backhaul
optimization inter-twined

e Core

» On-ground design becomes bottleneck due to wireless RAN-
Core link

98



SkyLiTE: An E2E Multi-UAV Network
for LTE Connectivity (2017)

Data plane ; .
’ AN
/s S
4

- — — Control plane (In air/ground)

From/To From/To
UEs UEs
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SkyLiTE Building Blocks

e SkyRAN

» Self-organizing mechanisms for
collecting measurements,
generation of RF maps for
optimized UAV placement

Pathloss (dB)

e SkyHaul %
» mmWave self-adapting mesh - ">§t> """"""" & m
backhaul; beamforming and tracking, A
jointly optimized with SkyRAN T
SkyCoreAgent______ e ™ L
, Refactored Legacy Appt ?EMCI £pps t- I([
e SkyCore | ] ) s | L Y
| Precorpuend i Meemoey Folity Dot stece | ..._u
» Novel edge EPC agent (SDN/NFV) teethie — A
architecture for handling resource ‘?1?5 = SiyGon e 7
““M"';'j e |- Cerse G % I — Frewa | TPV TR
constraints and mobility e = — bl |
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SkyLiTE Prototype Sytem
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Summary

e New class of diverse mobile
application and services drive 5G

» Real-time immersive experience,
loT, cyber-physical systems

. . . o fo e
e 5G wireless networks are evolving significantly
» Confluence of Connectivity, Computing and Experience
» Role of Al in heterogeneous network orchestration

e Automate connective-computing decisions to cater to
heterogeneity in network/device capabilities

e 5G’s capabilities will in turn spawn a lot of novel,
revolutionary services!

e Stay tuned!
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Questions/Comments?
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Info/Demos: https://sites.google.com/view/karthik-s/home/research
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