
5G: An Evolution Towards a Revolution

Karthikeyan Sundaresan
NEC Labs America

SPCOM Tutorial, July 2018.



Roadmap

• Drivers of 5G
‣ Single network caters to diverse use cases, which is 

revolutionary
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• Building Blocks: Evolution at Multiple Layers
‣ Radio

‣ Access

‣ Network

‣ Computing

• Case Studies
‣ SDN in wireless access

‣ Mobile augmented reality through edge computing

‣ LTE in the Sky: UAVs for on-demand LTE connectivity



Diverse 5G Services

• Services drive network requirements for 5G
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Source: Ericcson



IoT Proliferation
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Source: Ericsson W.P. on IoT



New Opportunities
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Source: Qualcomm



Optimization across Multiple Dimensions

• Services drive multi-dimensional network requirements 
for 5G
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4G: Today …
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Internet

No stringent 
coupling

MME

SGWe PGW

HSS

PCRF

Radio Access  
Network

Core 

• Consumers/creators of content (audio, video, data)
• Today’s 4G (LTE, WiFi) networks focus on data rates

4G
Network QoS 

(data rates)



5G: Heading Towards …

!8

Connected Transport

User Recreation

Industrial Automation

Remote Surgery

• Internet of Users/Things: Disruptive in multiple domains

Internet

Real-time  
coupling

MME

SGWe PGW

HSS

PCRF

Radio Access  
Network Core 

5G
User QoE 
(data rates, latency, energy  
scalability, reliability)

How should a single wireless network evolve to deliver 
these revolutionary user experiences and services?

?



5G Architecture Evolution
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Source: Qualcomm



5G Vision
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• Wireless network (RAN + core) plays a critical role in this vision



Evolution at Multiple Layers
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Radio
New Radio (NR), flexible OFDM numerology, mmWave, 
massive MIMO, advanced coding

IoT-optimized access, hybrid/dynamic spectrum access 

NFV for scalable core design, mobile edge computing

Access

Network

Computing

Cloud-RAN deployments, SDN, network slicing



Roadmap

• Drivers of 5G
‣ Single network caters to diverse use cases, which is 

revolutionary
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• Building Blocks: Evolution at Multiple Layers
‣ Radio

‣ Access

‣ Network

‣ Computing

• Case Studies
‣ SDN in wireless access

‣ Mobile augmented reality through edge computing

‣ LTE in the Sky: UAVs for on-demand LTE connectivity



(I) Radio (New Radio, NR)

Scalable OFDM interface, Advanced channel 
coding, Massive MIMO, mmWave
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A Unified 5G Interface
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Source: Qualcomm



Seamless Convergence to 5G
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Source: Qualcomm



Standardization Status
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• LTE and 5G NR will evolve in parallel

Source: Qualcomm



Key Components of NR
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Source: Qualcomm



Scalable OFDM Numerology

• Scaling reduces FFT processing complexity for wider 
bandwidths while reusing hardware

• Serves diverse 5G deployment scenarios
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Source: Qualcomm



Advanced Multi-edge LDPC Coding

• High efficiency at low complexity and latency 

• Useful as 5G targets high throughput transmissions
• Selected for 5G NR eMBB data channel in Rel-15 
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Source: Qualcomm



CRC-aided Polar Codes

• Adopted for many 5G NR control use cases 
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Source: Qualcomm



Massive MIMO

• Key enabler for using higher frequency, e.g. 4 GHz with 
existing LTE cell sites

• Optimized design for TDD reciprocity using UL SRS

• High spatial resolution codebook for up to 256 
antennas 
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Source: Qualcomm



Massive MIMO

• NR slot structure and enhanced reference signals 
enable fast and accurate feedback
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Source: Qualcomm



Massive MIMO
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Source: Qualcomm



mmWave
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Source: Qualcomm



mmWave

• Spatial reuse for dense deployment

• Fast beam steering/switching within a cell and switching 
across cells

• Integration with sub-6 GHz
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Source: Qualcomm



mmWave
• Path diversity to handle LOS blockage

!26

• UE antenna diversity to handle hand blockage
Source: Qualcomm

Source: Qualcomm



New Radio (NR) Recap

• Rel-15 has set the stage for various NR ingredients
‣ Scalable OFDM numerology, advanced channel coding, 

massive MIMO, mmWave

• Rel-16+ will build on these features and introduce new 
features for NR evolution

• Targets beyond enhanced mobile broadband (eMBB)
‣ Cellular-V2X, wireless industrial ethernet, etc.
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(II) Access

Dual connectivity, Flexible frame structure, 
Spectrum sharing
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Dual Connectivity
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• Leverage LTE investments and provide path to 5G 
convergence

• Evolve from non-standalone (4G LTE + 5G NR) to 
standalone (5G NR)

• Dual connectivity for LTE + NR in NSA

Source: Qualcomm



Dual Connectivity for NSA

• Control and coverage from LTE, data from LTE + NR

• Reuse core network (EPC) from LTE
‣ NSA stepping stone to SA 5G NR
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Source: Qualcomm



Flexible Frame Structure

• Enables heterogeneous access modes
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Source: Qualcomm



Scalable Slot Duration 
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• Diverse latency and QoS
• Mini-slots (2, 4 or 7 symbols) for shorter transmissions

• Slot aggregation for data-heavy transmissions

Source: Qualcomm



Suited for 5G NR IoT Evolution

• Rel 16: In-band eMTC/NB-IoT support
• 15 KHz sub-carrier spacing 
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Source: Qualcomm



Shared Spectrum Access

• Lack of sufficient licensed spectrum
• Critical for wide range of deployments and new 

business models
!34

Source: Qualcomm



Spectrum Sharing Models

• License-assisted access
‣ Supplement licensed with unlicensed channels

‣ LTE/NR on unlicensed carrier, aggregated with LTE or 
NR on licensed (anchor) carrier

• Standalone access
‣ LTE/NR on unlicensed carrier (also serves as anchor)
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Source: Qualcomm



Source: Qualcomm

Convergence in Access?

• Started with LTE using WiFi bands 
as unlicensed carriers

• Other bands (e.g. CBRS 3.5 GHz) 
for shared and standalone 
‣ Shared (using spectrum server), 

unlicensed (e.g. MulteFire)

• Co-existence challenges
‣ Co-existence with WiFi and 

other LTE operators

‣ Asynchronous access in 
traditional synchronous network
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Wi-Fi

LTE (1)

LTE (2)



LTE-WiFi Co-existence
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• Two modes of operation
• LTE-U
‣ Duty cycling at time scales of tens of ms
‣ Can be realized today: switch on/off unlicensed carriers
‣ Short-term unfairness to WiFi, higher latency

Source: Cable labs



LTE-WiFi Co-existence

• LTE-U
!Duty cycling at time scales of 100 ms
!Short-term unfairness to WiFi, higher latency

• LAA-LTE: License assisted access
‣ Energy sensing CCA; Operation at 1-10 ms granularity

‣ Modification to LTE specification for Listen-before-Talk

!38
Source: Cable labs



Un-resolved Challenges

• Im-balanced channel access between LTE and WiFi
‣ WiFi detects/notifies other WiFi through “WiFi carrier” 

sensing/notification (-84 dBm sensitivity)

‣ WiFi-LTE detect each other through “energy” sensing  
alone (-62 dBm sensitivity)
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Un-resolved Challenges

• In-efficient LTE operation in unlicensed spectrum
‣ Conflict between concurrency and asynchronous interference
• Synchronous, multi-user transmissions increase capacity

• Lead to utilization loss in the presence of asynchronous interference 
(from WiFi and LTE)

‣ Pronounced impact on uplink, where eNodeB schedules all UL 
transmissions  
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Access Recap

• Dual connectivity for non-standalone access (LTE+NR)
‣ Stepping stone for standalone NR

• Flexible frame structure enables diverse services 
(eMBB, MTC, IoT, URLLC) 

• Room for future access and services
‣ Non-orthogonal multiple access (NOMA), C-V2X, 

wireless industrial ethernet, grant-free UL, mesh

• Shared spectrum:  important access model in 5G
‣ Boundaries between synchronous (e.g. LTE, NR) and 

asynchronous (e.g. WiFi) access models will get blurred

• Deeper understanding to realize converged access
‣ Several interesting and important problems
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(III) Network 

SDN in Wireless Access, Network Slicing
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Network Evolutions

• Two trends aid in evolution from non-standalone to 
standalone access
‣ Cloud-based RAN and mobile edge computing

!43

Source: Qualcomm



Cloud-RAN Architecture

• Decouple processing from 
transmission

• Baseband unit (BBU) pool
‣ Centralized processing

• Remote radio/antenna head

‣ Cost and power efficient

• Front-haul network
‣ Optical, heterogeneous
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Cloud-RAN Architecture

• Several benefits
‣ Capex/Opex savings: simplified 

cell-sites

‣ Cooperative interference 
management

‣ Better compute management

• Attractive for high-density 
deployments (eg. stadiums, 
convention centers, etc.)
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C-RAN Split Options

• 8 different functional split options
‣ Front-haul bandwidth vs. performance and RRU 

complexity

‣ Popular options: Options 1, 2 (low front-haul 
requirements), options 7, 8 (low RRU complexity and 
higher system performance)
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Some Popular Split Options
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Source: Ericsson W.P. on Cloud RAN



Realize C-RAN’s True Potential

• Key: handle diverse traffic and user 
profiles
‣ Unicast vs. multicast traffic
‣ Mobile users vs. static users
‣ Spatio-temporal traffic load 

variations

➢ Orchestrate the unique 
component of a C-RAN: the 
front-haul that maps BBU     
signals to RRHs

• Optimize performance and energy
‣ Improved user performance in RAN
‣ Intelligent use of BBU resources in 

BBU pool

!48

Front-haul Network



Strategies and Configurations
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Ch 1 Ch 1Ch 6
Ch 1• One-one logical mapping on front-

haul
‣ Currently used configuration
‣ Different frames to different small cells

‣ Strategy: frequency reuse (FFR) in LTE, 
spatial reuse in WiFi

• One-many logical mapping on front-
haul (Options 7, 8)
‣ A complementary configuration
‣ Single frame sent to multiple small cells
‣ Strategy: Distributed Antenna System 

(DAS)



Characteristics
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• Capacity

‣ FFR better suited for high, unicast 
traffic demand

• Mobility management
‣ DAS reduces handoff interruptions

• Multicasting capability
‣ DAS provides network-wide 

multicasting capability

• Compute/energy-efficiency

‣ DAS is compute/energy-efficient

➢ Dynamic combination of strategies, i.e. a reconfigurable front-haul



C-RAN System with SDN Transport
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BBU1            BBU2            BBU3

• Key features
‣ Different transmission 

strategies through appropriate 
front-haul configurations

‣ Caters to spatial and temporal 
variations in traffic/user 
profiles 

‣ Optimizes for performance 
and energy

‣ Customizes configurations for 
services (MBB, IoT, URLLC), 
operators and technologies 
(LTE, 3G, WiFi)

• C-RAN with a software-defined front-haul (SDF) transport network



C-RAN Architecture with SDF  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BBU Manager

Switching 
Controller

BBU Pool

Switching Fabric

Traffic
Profile

Front-haul Network



Objectives for Reconfiguration

• Compute/energy-focused objective (LTE)
‣ Determine configuration (Γ) that sustains as much 

traffic demand (D) as an optimal scheme, while 
minimizing the BBU resource units (RU) used in the 
pool

• Throughput-focused objective (WiFi)
‣ Determine configuration (Γ) that maximizes the amount 

of traffic demand (  ) supported in the network for a 
given number of BBU units (R)
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Network Slicing

• Key component in helping a single 5G physical network 
cater to diverse services “simultaneously”

• Creates multiple logical slices of a single physical 
network 
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Network Slicing

• Each slice corresponds to slicing both RAN and core 
resources

• Each slice can be configured to suit different 
application requirements
‣ Different QoS, charging, performance, etc. features

!55

Source: 5G Americas



Network Slicing

• A device can belong to multiple slices

• In addition to RAN and core, access network (e.g. 
fronthaul transport in C-RAN) can also be sliced
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Source: 5G Americas



RAN Slicing

• Virtualizing the RAN spectrum

• Slice Scheduling
‣ Scheduling resources (time, frequency, spatial) across 

slices 

• Admission control for slices
• Single-cell and multi-cell RAN slicing

!57

Source: 5G Ameicas



Network Recap

• Software-defined networking plays an important role in 
5G network deployments 

• SDN + network slicing (virtualization) enables flexible 
orchestration of RAN + transport + core network
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• Helps realization of integrated access and backhaul in 
mmWave spectrum

• New business models and expansion of 5G ecosystem

Source: Qualcomm



(IV) Computing 

!59

NFV for core slicing, Mobile edge computing



Software-
defined Mobile Networks

Confluence of Connectivity and Computing
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MME

SGW PGW

HSS

PCRF

Radio Access  
Network Core Network

• Hardware-oriented architectureSoftware-
defined RANs

Scalable 
Mobile Core 
Networks• Not scalable for growing demand, IoT



Today’s Core Networks

• Complex and cannot scale easily

• Launching new services is difficult and time consuming
• Procurement and operation is expensive
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Source: Telefonica, I+D, NFV



5G Next Generation Core (NGC)

• 5G standalone NR relies on NGC

• Leverages SDN/NFV to create optimized network 
slices

• Flexible business models, deployments
• Dynamic creation of services

!62

Source: Qualcomm



5G: Virtualized Core

• Network Function Virtualization
‣ Flexible use of logical resources, decoupled from 

physical resources

‣ Dynamic scaling, programmability, orchestration

‣ Performance, multi-tenancy, automation 
!63

Source: Telefonica, I+D, NFV



Scaling the Mobile Core

• SDN: decoupling control and data plane
• NFV: virtualization of control and data plane network 

functions
!64

Source: 5G PPP



Scaling the Control Plane

• Mobility Management Entity (MME)
‣ Main control plane entity: overload affects user 

experience (connectivity and handover delays)
‣ Static configurations limit flexibility and efficiency: 

cannot scale to the density of IoT connections
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Virtualizing the Control Plane

• Standard interfaces decoupled from MME device management
‣ MME processing (MMP) entities store device state and process 

requests

‣ Software load balancers forward requests from devices, SGW, 
HSS to the appropriate MMP VM
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Virtualizing the Control Plane

• Device state partitioned and replicated across VMs
• VMs provisioned based on perceived traffic load

• Concepts from distributed data stores can be leveraged for 
state management
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Scaling the Data Plane

• Flexible provisioning of data plane gateway elements

• Agile routing and forwarding between gateway 
elements

• Service chaining of gateway elements and other IP 
middle boxes (firewall, transcoding, DPI, etc.) - critical 
for network slicing
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Scaling the Data Plane

• Effective multiplexing of resources both within and 
across remote datacenters

• Network functions span both data plane gateway 
elements as well as other IP middle box functions
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Mobile Edge Computing

• Emergence of continuous 
interactive (CI) mobile 
applications at scale
‣ AR/VR, face recognition, 

autonomous driving

• Common characteristics
‣ Highly responsive 

(~100ms)
‣ Computationally intensive
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MEC Use Cases
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Source: ETSi, MEC W.P.

• Several use cases: video analytics, mobile AR, etc.



MEC Advantages 

• Moves IT and computing capabilities to edge of core network 
to increase responsiveness of applications and services

• Leverages proximity to RAN edge to deliver ultra-low latency 
and high bandwidth

• Proximity, context and agility create opportunities for multiple 
players (mobile operators, service providers, OTT players, etc.)

• SDN and NFV enable mobile edge computing (MEC)
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MEC Deployment Scenarios

!73
Source: ETSI, MEC W.P.



MEC Orchestration
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Default Bearer 
(Internet)

Dedicated Bearer 
(MEC)

Mobile device (client)

eNodeB

Radio Access Network Mobile Core Network

Mobile Edge Network (Cloudlets)

• SDN/NFV orchestrated mobile core/edge network
‣ Scalable, low-latency control plane sets-up policies 

‣ LTE QoS bearers to set-up new flow to closest CI server

‣ Deploy multiple G/W data elements, route to closest element

• eNB scheduler prioritizes bearer with spectrum virtualization



Computing Recap

• Next Generation Core (NGC) will heavily leverage 
SDN/NFV to create dynamic network slices that cater 
to diverse services
‣ Both control and data planes will be capable of flexible 

scaling 

• Computing will move closer to the edge to cater to 
bandwidth/latency-intensive interactive services  

• Hybrid models of cloud and edge computing will be 
leveraged as appropriate for hosted services
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Roadmap

• Drivers of 5G
‣ Single network caters to diverse use cases, which is 

revolutionary
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• Building Blocks: Evolution at Multiple Layers
‣ Radio

‣ Access

‣ Network

‣ Computing

• Case Studies
‣ SDN in wireless access

‣ Mobile augmented reality through edge computing

‣ LTE in the Sky: UAVs for on-demand LTE connectivity



(1) SDN in Wireless Access (2012)

!77



FluidNet C-RAN Architecture

• FluidNet: A C-RAN architecture with software-defined 
front-haul
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Front-haul Network



FluidNet Prototype
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• Small-scale C-RAN test-bed based on WiMAX/LTE 
‣ 6 WiMAX/LTE eNBs, 6 RRHs, 6 WiMAX/LTE clients; single sector with 6 small cells
‣ Four 5 MHz carriers; net 20 Mhz bandwidth; 24 logical BBUs
‣ Front-haul: Radio-over-Fiber (analog RF) transport using WDM
‣ Software-defined optical switching for front-haul configuration



Adapting to Traffic & User Dynamics
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• FluidNet adapts its front-haul configurations to traffic dynamics
•Outperforms FFR performance at less than half its BBU 

consumption

30%

60%



Demo
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(2) Mobile augmented reality through edge 
computing (2015)
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Vision-based Mobile AR Applications

• Focus camera on objects (retail application)
• Get real-time object info (price, reviews, etc.) overlaid 

on camera feed
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Making it Happen with LTE

• A holistic approach that integrates device, network and 
application

• ACACIA:  A service abstraction framework that 
orchestrates client, network and application jointly
‣ Key Ingredient: User context

‣ Optimize both network handling and application 
processing
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(i) Context-based Service Discovery
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Interested in 
AR (laptops) 

AR service (computer 
section) 

Mobile device (client)

Mobile device (CSR)

eNodeB

Radio Access Network



D2D Service Discovery

                  eNB  
Timing, resource allocation,  
User authentication

Offering
Macbook  
$800

Sales 
Personnel

Customer

• D2D (LTE-direct) service 
discovery
‣ Leverage LTE 

infrastructure 

‣ Pub-Sub system at 
physical layer

‣ Filter by user interests

‣ Good range, scalability

!86

(i) Context-based Service Discovery



(ii) Context-aware Traffic Classification

• Client requests connectivity to CI server
• CI traffic classified at client (source)
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• SDN/NFV orchestrated mobile core/edge network
‣ Scalable, low-latency control plane sets-up policies

‣ LTE QoS bearers to set-up new flow to closest CI server

‣ Deploy multiple G/W data elements, route to closest element

• eNB scheduler prioritizes bearer with spectrum virtualization
!88
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(Internet)
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(iii) ACACIA Mobile Edge Network

Mobile device (client)
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(iv) Context-aware Application Optimization

• Context speeds up object detection
‣ Localize client using proximity to presence points 

‣ Geo-tagged DB of objects; targeted search using client 
location

• Object detection refines client location
!89



ACACIA Prototype (2015)
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Client

Network CI Server

• D2D service discovery

• Device manager as Android service

• AR application GUI

• OpenEPC extension for dedicated flows

• Data plane routing using Open vSwitch, 

Ryu SDN controller

• OpenCV (Surf) for object detection

• Geo-tagged database

• Client localization



Network Set-up

• Two mobile network test-beds
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One+ one, Nexus 5, 
Huawei dongle

One+ one, Nexus 5, 
Pantech dongle



Network Latency

• Location: MEC helps - 14ms RTT (12ms in access, 
1.6ms in core)

• Traffic isolation critical to avoid core network 
bottleneck
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Application and End-End Latency

• Geo-tagged DB with location-based matching
‣ Better scaling with multiple clients: 5x reduction

• End-end: 3x reduction (~200ms) from network and 
application optimization 

!93

 0
 0.5

 1
 1.5

 2
 2.5

1 2 4 8

M
atc

hin
g t

im
e (

se
c)

The number of clients

ACACIA
rxPower
Naive

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

Match ComputeNetwork Total

En
d-

to
-E

nd
 T

im
e 

(s
ec

)

ACACIA
MEC
CLOUD

(5 sections, 21 subsections,>200 objects)



!94

Demo



(3) LTE in the Sky: UAVs for on-demand LTE 
Connectivity (2017)
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Airborne LTE Network for Public Safety

• Low-altitude UAV networks provide “on-demand” LTE 
connectivity
‣ Serve as augmenting hot-spots or stand-alone networks 
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UAV 

Satellite 

Macro eNB 

Control 
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Connectivity for C&C 
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Deployment Challenges

• Solutions today are “tethered”
‣ Only LTE radio on UAV; EPC on the ground

‣ UAV tethered by wire to ground for power

• Need to deploy both LTE RAN (BS) and Core on UAV 
for “un-tethered” operation
‣ Resource-constrained UAV platforms

‣ Re-architect core network for UAV deployment
!97



Connectivity Challenges

• Core
‣ On-ground design becomes bottleneck due to wireless RAN-

Core link
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UAV 

UE 

P1 

P2 
P3 

• RAN
‣ Optimize connectivity for 

multiple UEs jointly
‣ Radio conditions vary 

significantly based on terrain

• Backhaul
‣ Multiple UAVs needed for 

coverage

‣ RAN and backhaul 
optimization inter-twined



SkyLiTE: An E2E Multi-UAV Network 
for LTE Connectivity (2017)
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SkyLiTE Building Blocks

• SkyRAN
‣ Self-organizing mechanisms for 

collecting measurements, 
generation of RF maps for 
optimized UAV placement

• SkyHaul
‣ mmWave self-adapting mesh 

backhaul; beamforming and tracking, 
jointly optimized with SkyRAN

• SkyCore
‣ Novel edge EPC agent (SDN/NFV) 

architecture for handling resource 
constraints and mobility
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SkyLiTE Prototype Sytem

• 4 UAVs with ~150-200m ISD

• Seamless UE mobility across 
UAVs
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Demo
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Summary

• 5G wireless networks are evolving significantly
‣ Confluence of Connectivity, Computing and Experience
‣ Role of AI in heterogeneous network orchestration 
•Automate connective-computing decisions to cater to 

heterogeneity in network/device capabilities

!103

• New class of diverse mobile 
application and services drive 5G
‣ Real-time immersive experience, 

IoT, cyber-physical systems

• 5G’s capabilities will in turn spawn a lot of novel, 
revolutionary services!

• Stay tuned!
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