Introduction to
Reinforcement Learning

Harm van Seijen
Microsoft Research Montreal

SPCOM 2018 Tutorial

BT Microsoft

What is Reinforcement Learning

Reinforcement learning considers the task of learning
behaviour in an initially unknown environment.

- Initially, actions are tried at random

* Good behaviour is reinforcement with a positive reward

A bit of history

Reinforcement learning is about 30 years old....

TD gammon Autonomous helicopter

(Tesauro, 1992) (Ng et al., 2004)

....but the field really took off in the last 3 years

Some recent results...

AlphaGo Zero
(Mnih et al, 2015) (D. Silver, 2017)

Overview Tutorial

Part 1: Reinforcement Learning Theory

Part 2: Deep Reinforcement Learning

Part 3: Open Problems

Reinforcement Learning Theory

. Markov decision processes

. Monte Carlo

. Temporal-Difference learning
. Multi-Step methods

. Function Approximation

SO U1l A W N B

. Other Approaches

credit:

course: Reinforcement Learning for Artificial Intelligence
book: Introduction to Reinforcement Learning

Markov Decision Processes

Agent-Environment Interface

State
l Reward
g :
Agent q©l©F =% Environment
Action
o — ‘:
Behaviour: i State —» —» Action E Policy
|]
N e o o o o 4

Goal: find a policy that results in the highest sum of rewards

finite Markov Decision Process

discrete time t=1,2,3,...
finite set of states

finite set of actions

finite set of rewards

@ @ @ @ @

life 1s a trajectory:
SR 51‘7 Ata Rt—l—la 5t—|—17 At—i—la Rt—|—27 St—|—27 R

@ with arbitrary Markov (stochastic, state-dependent)
dynamics:

p(r,s'|s,a) = Prob[RtH =r,Sii1 =5 | St =5, A = a]

.. . . /
transition function: p(s’|s.a) reward function: 7(s,a,s’)

Episodic Tasks vs Continuing Tasks

» Some tasks have a natural end-point; we call these episodic
tasks.
Example: a game of Chess.

» Other tasks are more continuing of nature; we call these
continuing tasks.
Example: regulating the temperature in a room.

» Episodic tasks are modelled using an MDP containing
special states, called terminal states

» The MDP of a continuing tasks does not contain any
terminal states.

finite Markov Decision Process

-10,80%

+10,

10,20%
100% 10,20%

+20,
20%
1 0

+40,80%

+40,20%

+20,80%

Agent behaviour

@ deterministic policy: 7:8 — A

@ stochastic policy: :S8xA—[0,1]

@ The agent’s goal is to maximize the discounted sum or
rewards, called the return:

discount factor v € [0, 1]

continuing task:

o0
Gt = Riy1+7YRipo+7°Reyz+ -+ = Z";’th+k+1
k=0

episodic task:
gy

Gt = Rey1 +YReg2+ -+ - + "/T_t_lRT = Z W'th+k+1
k=0

Agent is told what to achieve, but not how

@ The reward function 7 (s, a, s") together with the discount
factor y specity the goal of the agent

@ The agent learns how to take actions that achieve this goal

Episodic Task Example

IGI

’

actions

Goal: reach the goal-state as quickly as possible

Possible reward function: -1 at every step, y =1

Alternatively: O at every step; +1 on reaching goal-state, y < 1

Value Functions

1 The value of a state is the expected return starting from
that state; depends on the agent’s policy:
S, = s}

1 The value of an action (in a state) is the expected return
starting after taking that action from that state; depends on
the agent’s policy:

State - value function for policy 7 :

Vﬂ(S) = En {Gt | St = S} = En {iykRHkﬂ
k=0

Action - value function for policy 7 :

qE(S,Cl) - EJT {Gt | St = S’At - Cl} - En {iykRHkH St = S’At = Cl}
k=0

Evaluating policies

Ux
expected

U
return 1

states

Given an MDP, there always exists a policy that is at least as

good as all other policies for each state. This is called the optimal policy 7Ty .

Optimal Polices

@ A policy 7« is optimal iff it maximizes the value functions:

V. (8) = maxvy(s) = v«(8) for all s
T

gr.(8,a) = maxqr(s,a) = q«(s,a) for all s,a
()

@ For each MDP there is a unique VU and (x ,but there can
be multiple optimal policies

@ Given an optimal action-value function, the optimal policy
can be easily derived as follows:

T« (8) = arg max ¢« (s, a)
a

Two Tasks

1 evaluation/prediction:
Given a policy 7, compute Uz and/or Qr

1 control:
Find an optimal policy 7T 4

Blackjack example

1 Object: Have your card sum be greater than the dealer’s
without exceeding 21.

[States (200 of them):
= current sum (12-21) i
= dealer’s showing card (ace-10) n_]j‘\
= do I have a useable ace? =

1 Reward: +1 for winning, O for a draw, -1 for losing

1 Actions: stick (stop receiving cards), hit (receive another
card)

Monte Carlo policy evaluation

» Goal: for policy 7T determine the function U
» full returns are sampled

» the estimate of v, () after episode ¢, V;(s) , is the average
of the observed returns from state s after episode z.

» at the end of each new episode, the estimates for states
visited during the episode are updated

first-visit Monte Carlo policy evaluation

Initialize:
m <— policy to be evaluated
V < an arbitrary state-value function
Returns(s) < an empty list, for all s € §

Repeat forever:
Generate an episode using
For each state s appearing in the episode:
G < return following the first occurrence of s
Append G to Returns(s)
V(s) < average(Returns(s))

Learned blackjack state-value functions

After 10,000 episodes After 500,000 episodes

" T~ .',. [
P 7 y |
e o f
4 sl [d ’_.»:z,, y f
v N - d - v Ay ,
/_ — - ’__.—‘ vy - 1 e - v’ /* . 2z //'—, .l
sapie LL AL AR . + LT A TS .
e . et et _f"" -~ - v s o
™~ a 4 y -~ o »~ o
\ " P A e ST~ o
/ 4 Y / ~
ace AL N AL -
Y/ N 1<, K
/ < S o~
¥ /\ // .
y /
4
s
g ' >
/ e / r P~
/ / /J Pt
— —— f .)
. L f ! A f
No LASLTZ T A CZAZ S |
e — - e 4 — oL
5 o T — ’ .-'/- P S P s
P L 4 . f ~ 4
- ~ 7 e S

usable 2K TS 7L A TTT e
ace SSLATA LA L //

Naive approach to finding optimal policy

@ cvaluate the value function for all policies

@ use definition: vy, (8) = maxv,(s) = v.(s) for all s
n

1ssue: number of possible policies is huge: 220 ~ 1.6.10%

Policy Improvement Theorem

@

@

@

Given the value function for any policy

g-(s, a) for all s, a
It can always be greedified to obtain a better policy:
7'(s) = arg max g-(s, a)
where better means:
gr'(s,a) > qr(s,a) foralls,a

with equality only if both policies are optimal

(7" is not unique)

Policy Iteration

i T
dry
A/gfeedM
2

W-»
dr,

greed\f\/
7i
3 %»
drs

Any policy evaluates to a unique value
function, which can be greedified to
produce a better policy

That in turn evaluates to a value function

which can in turn be greedified...

Each policy is strictly better than the
previous, until eventually both are optimal

There are no local optima

The dance converges in a finite number of
steps, usually very few

Generalized Policy Iteration

Generalized Policy Iteration (GPI):
any interaction of policy evaluation and policy improvement,
independent of their granularity.

evaluation
m
T @,
7~ greedy(Q)

improvement

Monte Carlo Control

@ Q:(s,a) 1s the average of observed return for state-action
pair (s,a) after episode ¢

@ Qq(s,a) 1S an estimate of (G, (8, a) ,with 7T¢ the policy
used to generate episode ¢

@ At the end of an episode:
® Q:(s,a) is updated for the visited state-action pairs

@ anew greedy policy is computed:

mi+1(8) = arg max Qy(s, a)
a

Exploration

An RL agent 1s (partly) in control of the samples that it sees

To get a proper evaluation, MC should observe returns for all
state-action pairs

Ensuring sufficient exploration of the state-action space 1s a
big challenge for any RL method

For now, we consider an extremely simplistic exploration
strategy: exploring starts

Exploring starts means the initial state 1s drawn at random and
the initial action as well

Monte Carlo Exploring Starts

Initialize, for all s € 8, a € A(s):
Q(s,a) < arbitrary
7(s) < arbitrary
Returns(s,a) < empty list

Repeat forever:
Choose Sy € 8§ and Ay € A(Sp) s.t. all pairs have probability > 0
Generate an episode starting from Sy, Ag, following 7
For each pair s, a appearing in the episode:
GG < return following the first occurrence of s, a
Append G to Returns(s,a)
Q(s,a) < average(Returns(s,a))
For each s in the episode:
7(s) < argmax, (s, a)

Blackjack example continued

1 Exploring starts
1 Initial policy as described before

'TE*
121
STICK ‘?8
Usable JLESSS
ace 116
115
HIT 114
113
112
,,,,,,,,,, 11

121
20

STICK 119 €

118 3
No 17 @

usable 116 ©
ace 18
HIT 5

112

......... 1
A2345678910

Dealer showing

Better update rule

@ When doing control, maintaining an average of all returns
per state-action pairs can result in very slow learning

@ A better update rule is to take a weighted average of
returns, with higher weights for more recent returns

@ This can be achieved by update rule:

Qr+1(8,a) = Qk(s,a) + a(Gk — Qk(s,a))

or Qrt+1(s,a) = (1 —a)Qk(s,a)+ aGi

@ The step-size a € (0,1] determines how much weight 1s
put on recent observations

Disadvantages of Monte Carlo

@ Updates only occur at the end of an episode, which can
delay learning for long episodes

@ Cannot be used for continuing tasks

@ In stochastic environments, the variance can be very high

Temporal Difference Learning

Motivating Example

Consider:

I3
I'l 1'2 1'3 1'4
o 'Y =1

- all rewards are stochastic

« state-values for state A and B:
v(A) =E{ry +ro+r3+ 74}
v(B) = E{ry +r3 + 14}

« state-value evaluation for state E:
v(E) = E{rs+re+r3+ 714}
= E{rs}+E{ro+r3+ rs}
= E{rs}+ v(B)

Temporal difference learning

@ Instead of using the full return as update target, an update
target 1s used that bootstraps from other value estimates

@ Updates happen at each step of an episode

Bellman Equation for a Policy n

The basic 1dea:
Gt = Rt+1 +Y Rt+2 +Y 2I€t+3 TV 3Rt+4+
= Rt+1 +)/ (Rt+2 +)/ Rt+3 + y 2I€t+4+“.)

= Rt+1 + y Gt+1

So: | v,(9)=E,{G,[S, =5}
-E{R

t+1

St=s}

Or, without the expectation operator:

U (8) = Z 7(als) Zp(s’, rls,a) [r + vvﬁ(s’)}

+)/Vﬂ (St+1)

TD Prediction

Policy Evaluation (the prediction problem):
for a given policy m, compute the state-value function vx

Recall: Simple every-visit Monte Carlo method:

V(S1) V(S0) +a|Gi - V(Sy)]

target: the actual return after time ¢

The simplest temporal-difference method TD(0):
V(5:) <= VI(S) + OéLRtH + ”YV(St—I—l? - V(St)}

target: an estimate of the return

TD Prediction

Tabular TD(0) for estimating v,

Input: the policy 7 to be evaluated
Initialize V (s) arbitrarily (e.g., V(s) = 0, for all s € 8%)
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
A < action given by 7 for S
Take action A, observe R, S’
V(S) «+ V(S) +a|R+~V(S") = V(S)]
S+ S’

until S is terminal

Values learned by TD from one run, after various
numbers of episodes

.< 0 @40». 0 . 0 . 0 . 1 .

start

0.8 - Estimated

0.6

0.4 -

0.2

0.25 =

0.2 -

0.15 =

0.1

0.05 =

D and MC on the Random Walk

Empirical RMS error,
1averaged over states

Data averaged over
100 sequences of episodes

Walks / Episodes

Learning An Action-Value Function

Estimate gr for the current policy 7

() Rt+1 m Rt+2 m Rt+3 ()
* S . S + . S + . S + L] L] L]
t St,At " St+l)At+l U St+2;At+2 " St+3’At+3

After every transition from a nonterminal state, S, , do this:

0(S,.A) < Q(S,.A) +a[R,, +70(S,,,.A,) - O(S,.A)]
If S,,, 1s terminal, then define Q(S,,,,A,,,) =0

r+1

Exploration

@ To ensure sufficient exploration of all state-action pairs,
typically a stochastic policy 1s used to generate samples

@ For example, an e-greedy policy select with 1-€ probability
the greedy action, and selects with € probability an action
uniformly at random

Sarsa(0): TD Control

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A’ from S’ using policy derived from Q (e.g., e-greedy)
Q(S,4) = Q(S, 4) + a[R+7Q(5", A") — Q(S, 4)]
S« S A+ A

until S is terminal

Note: because a stochastic policy is used (e.g. e-greedy), Sarsa does not
converge to the optimal policy, unless the stochasticity is decreased slowly
over time.

On-policy versus off-policy control

behaviour policy: policy that generates the samples

estimation policy: policy that 1s being estimated

on-policy learning: behaviour policy = estimation policy

off-policy learning: behaviour policy # estimation policy

up to now, we only considered on-policy learning

off-policy learning offers more much more flexibility

Q-Learning: Off-Policy TD Control

One-step Q-learning:

Q(S1, A1) < Q(St, Ar) + | Riy +7max Q(Sii1,0) = Q(Sh, Ar)|

Initialize Q(s,a),Vs € §,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S, A) + a|R + v max, QS a) — Q(S, A)]
S« 5

until S is terminal

Cliffwalking

fe ! - safe path

optimal path

S The Cliff Y

me

e—greedy, € =0.1

Sarsa
Reward _so [+~ AU
per Q-learning
epsiode
_.75..
-100 : : ' | |

Episodes

Multi-step methods

Monte Carlo vs TD

@ Monte Carlo: G = Riy1 +vRiio + v Rz + -+~ 1Ry

@ I'D: Guiy1r = Rip1 +9Vi(Se41)
@ Use V; to estimate remaining return

@ On random walk task, TD outperformed MC

0.257 Empirical RMS error,

o N N averaged over states
0.15

0.1

';(x:.()
0.05
a=.05
0 T T T 1
0 25 50 75 100

Walks / Episodes

Is TD always better?

Consider: y=1,a=1
D:

1
(OO0 00—
" AN AN A

- 0 0 0 1
DDA DA DD
W

T

M

variance-bias trade-off

variance bias

*In tasks with high environment stochasticity
and/or policy stochasticity.

n-step Update Targets

@ Monte Carlo: G = Riy1 +vRiio + v Rz + -+~ 1Ry

@ ID: Guir1 = Rey1 +vVi(Ses1)

@ Use V; to estimate remaining return

@ n-step TD:
@ 2-step return: Giiio = Riy1 + YRivo + v Vi1 (Sii2)

@ n-step return: G.,.,, = Riy1 +YRip2 + -+ 9" Rign + 7" Vign—1(St4n)

Wlth Gt:t—l—n = Gt if t+n Z T)

n-step TD

@ Recall the n-step return:

Giiasn = Rip1 +YRiva+ -+ 9" R + 7" Vitn—1(Sttn)

@ Of course, this 1s not available until time 7+n

@ The natural algorithm 1s thus to wait until then:
V;ﬁ—l—n(St) = V;H—n—l(st) + a[Gt:H—n - %+n—1(St)]a 0 S t < T

@ This 1s called n-step TD

n-step TD

n-step TD for estimating V ~ v,

Input: a policy 7

Algorithm parameters: step size a € (0,1}, a positive integer n

Initialize V(s) arbitrarily, for all s € §

All store and access operations (for S; and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal
T «+ o0
Loop fort=0,1,2,...:
| Ift <T, then:
| Take an action according to w(:|S;)
| Observe and store the next reward as R;.; and the next state as Sy,
| If S;.y is terminal, then T« ¢t + 1
| 7+ t—n+1 (7isthe time whose state's estimate is being updated)
|
I
|
|

Ifr>0:
T
fr4+n<T,then: G+ G+ ‘7’"V(S¢+n) (GT:f+'l)

V(Sr) + V(S;) +a[G - V(S;))
Until r=T~-1

19-state Random Walk

0.55

0.5

n-step TD
Average 0.45
RMS error results
over 19 states 04
and first 10
episodes %%

0.3

025,

@ An intermediate a 1s best
@ An intermediate n 1s best

On-policy n-step control is straightforward

@ Action-value form of n-step return

Giiin = Rip1+YRisot+ -+ ' R +7"Qrn—1(Stan, Avin)

® n-step Sarsa:

Qt1n(St, At) = Qran—1(5t, At) + @ [Grtan — Qran—1(St, At)]

Off-policy n-step control is challenging

» Recall: off-policy updating involves a behaviour policy, b,
and an estimation policy, 7.

» Off-policy multi-step updates is possible using Importance
Sampling

» Each update target is multiplied by importance sampling

10" min(h,T—1
ratio: o (H)w(Ak\Sk)
" Ll b(Ak]S%)

» Off-policy n-step TD:

‘/t—l—n(st) = V;ﬁ—l—n—l(st) + O Ptt+n—1 [Gt:t—i—n - V;f—l—n—l(st)]

» Off-policy n-step updates suffer from a large variance

Value Function Approximation

Motivation

So far, we discussed tabular methods, where values are stored
and estimated on a per-state basis

This approach only works when the total number of states 1s
relatively small

RL suffers from the curse of dimensionality: the number of
states tends to grow exponentially with the problem size

Value function approximation scales RL to large (or
continuous) state-spaces

Value Function Approximation

transpose ith components

/ \
y /
/

MUW(S) ~ U(s,w) = sz :1:@) =1.71

inner product

2.1 0
0.01 1
—1.1 0
weR?, eg., w= _1(')21 , x(s) = (1) , x:8 > RY
parameter 0.01 feature |
vector 4.93 vector | g
L 0B | N

QR qr(s,a) = G(s,a,w) = w'x(s,a) = Y w;-x(s,a)

Stochastic Gradient Descent (SGD) is the
idea behind most approximate learning

General SGD: w « w —aVy, Error?
For VFA: —w — aVy [Target; — 0(S, W)]2
Chain rule: —w —2a[Target; — 0(S;, w)| Vaw [Targety — 0(S¢, w))
Semi-gradient: < w+a[Target, — (S, w)] Vi d(Si, w)
Linear case: < w+a[Target; — 9(S;, w)] x(St)

Action-value form: w+ w+« (Target; — ¢(S, Ae, W)] x(St, At)

Ditferent features give different
generalization

The width of the receptive fields
determines breadth of generalization

1D example,
supervised training
######## ~— fination — ation
Op _/\/_/_f _/‘X’/ S
A\ /\ /\
. O L /N
N YAV A
00000 N e
Narrow Mgtdbi#m Broad

Tile coding is coarse coding for digital computers,
with rectangular receptive fields, controlled overlap

2D example
Tiling 2
Tiling 3
. Tiling 4
Continuous e
2D state
pace
\ Point in
state space
to be

represented

Tiling 1 —

Four active
—— tiles/features
overlap the point

_; and are used to

represent it

—xample: The Mountain-Car problem

SITUATIONS:
Goal car's position and velocity

ACTIONS:
three thrusts: forward,
reverse, none

J Gravity wins

REWARDS:
. _ always —1 until car reaches
Minimum-Time-to-Goal Problem the goal

Episodic, No Discounting,
y=1

M

' N
 approximati
. S 1

le

ned wh

lea

S

ye

Val

o
ion ap
nctio
coding fu

ith tile

With

|
Goa
AR

UNTAN C

Mo

w)
a,
Q(Sv

aXCL

m

N
"’ 25 o
s

s

Al

\ t] ' Vave

i) l‘ X9

sy
il

S
oy
=

e

it
{ : ';’mmlmn"'
i i
e
i

Iy N2

; D

AL
7

oy L
».n-q-t..
)

=

L
o

S

—

i
L
5

—

E==

YAy

=

&5
%
é%%%%
0."’0'0’.;.:«»0».
.0..0.00‘.‘.' Lz
.00.0.‘...'.
4“5‘.‘{"’.’

[

i lll..
. "'-'-"."".',"""'"""l.',y:.:
v

&

L7 oy
.,w:.'.'"'-'.'.-.«
qﬂ%ﬁ

104
isode
Episo

;)
ol
s
ot

o

o

50

oo
72

by

N

\\\\\\‘\

>
A7
5

::0:"

2%
... L
2

i

A

R

Iy,
Z7
s

b

%

.
=
%

<7

77
L7

e
2%

2
=

52

o

2%
o

Pz
R S 7
% 0‘\"’&2‘0’"
N

2
=

Z

og
L7

o

=

g

i

e
=

Fay,
7
s

g
S

s

Other Approaches

Other Approaches

@ So far, we discussed methods that learn a value function
directly from samples with the policy being simplicity defined
(f.e. greedy w.r.t. the value function)

@ There are other approaches to learning a policy:

e policy-gradient methods directly update a parameterized
policy using gradient ascent

e model-based RL methods estimate a model of the
environment dynamics from samples and then use any
planning method to find a policy based on the estimated
model

Policy-gradient setup

Given a policy parameterization:

m(als,6)
And objective:

J(0) = vrg(50)

Approximate stochastic gradient ascent:

A

975_|_1 = Ht + OéVJ(Ht)

Typically, based on the Policy-Gradient Theorem:
VJ(0) x Z ,u\(s) Z Q- (s,a)Vem(als,8)

on-policy distribution

REINFORCE with baseline

Policy-gradient theorem with baseline:

0
VJ(O) X zs: 'LL(S) Za: QTr(S7 a)Veﬂ(CL|S,) any function of state, not action

/
= > 1(5) D" (an(s,) — b(s)) Vor(als, 6)

Because

> b(s)Ver(als,0) = b(s)Ve » 7(als,8) =b(s)Vel=0 VseS§

a

Thus

. Ver(A:|S:, 0
0t+1:9t+a<Gt—b(St)) om(Ai]5, 6:)

(A, |5, 07) e.g., b(s) = v(s,w)

Actor-critic architecture

\\
= Policy
AN

Actor

D

Critic error

/

Value
state r > . i
Function action
/

'/A

reward

L w

Actor-Critic methods

REINFORCE with baseline:

VQTF(At‘St, Ht)
W(At‘st, 975)

0,1 =6, + oz(Gt _ b(St))

Actor-Critic method:

VQ’/T(At‘St,Ht)
7T(At|st, Ht)

01 = 0: + Oé(Gt:tH — @(Staw))

X Vor(A,|S,, 6
o Ht + Ck(Rt+1 -+ ’}/’lA)(SIH_l,W) — U(St,W)) 97T(t’ L t)

7T(At|St, Ht)
VQTF(At ‘St, Ht)

—0; +«ad .
t t W(At\St,Ht)

Model-based methods

@ Model: anything the agent can use to predict how the
environment will respond to its actions

@ A distribution model aims to estimate the one-step
dynamics of the environment. That is, it aims to estimate
p(s’,rls,a)foralls,a,s’ r

@ Any planning method can be used to find a policy given
the estimated model, such as, dynamic programming, tree
search, etc.

@ Sample model, a.k.a. a simulation model
e produces sample experiences for given s, a

— sampled according to the probabilities

Paths to a policy

Model
learning

Direct

Environmental)
planning

interaction >‘ Experience

& Simulation

Direct RL

methods Value
:unction

Greedificati .-)

Model-free RL

Paths to a policy

Model
learning, ==

Direct

Simulation -
planning

Environmental
interaction

Experience

Direct RL

methods Value
‘“unction

Model-based RL

Paths to a policy

Direct

Environmental _ .
planning

interaction

Direct RL o
methods] Value
vanction

Pyna

Overview Tutorial

Part 1: Reinforcement Learning Theory

Part 2: Deep Reinforcement Learning

Part 3: Open Problems

deep RL methods

1. DQN

2. Prioritized Sweeping
3 A0

4. AlphaGo Zero

Deep Q-networks (DQN)

@ Nature paper published in February 2015.

@ The algorithm achieved above-human performance on a
large number of Atari 2600 games

@ Combines standard RL techniques with convolutional
neural networks

Arcade Learning Environment (ALE)

@ A software framework for testing Al algorithms by providing
an interface to Atari 2600 games, introduced in June 2013

@ Motivation behind ALE was to provide an uniform evaluation
platform for building general agents

@ For evaluation, a fixed set of 49 (later: 57) games is considered

Performance DQN

|iii
"

Al hurman-level or sabove
Bolow humar-evel

Er. . 08
Blharniddniilid i
""""'"""""llllIIII||||‘|||

3
?
:s??Fggl

il

|
|
E

Y T T Y T
100 200 0 &0 500 00 1000 £ 500%

M
o 4%

from: Human-level control through deep reinforcement learning, V. Mnih, et al., 2015

Main contribution

@ DQN was not the first method that combines RL with
neural networks (c.f. TD-Gammon, 1992).

@ DQN was also not the first method that achieved good
performance on the ALE set (c.1. linear methods)

@ However, DQN was the first method that successfully
combined modern deep neural networks with RL, resulting
in a huge jump in performance on the ALE set

DQN Algorithm Breakdown

@ Standard Q-learning method with two main modifications

@ Modification 1: large experience replay buffer to mitigate
the effect of correlated samples and catastrophic forgetting

@ Modification 2: two networks to stability learning:

@ a target network: used for update targets, updated at
low frequency

@ an online network: used for action selection, updated at
high frequency

Prioritized Experience Replay

Pririorized Experience Replay

@ DQN draws experience samples from the replay memory
uniformly at random

@ Prioritized experience replay aims to replay important
experience samples more often

from: Prioritized Experience Replay, T. Schaul et al., 2016

How to determine importance of a sample

@ The TD-error 1s a good proxy:
o0t = Ri+m e Q(St, a) — Q(St-1,At-1)

@ Greedy sample selection based on only TD error has issues:
- samples that initially have low TD error never get selected
- in the presence of noisy rewards, TD-error i1s not a good
indicator of importance

@ Prioritized experience replay uses a mix between pure greedy
prioritization and uniform random sampling

Performance across ALE set

140% 4

120% 4

TOOOE esas st s s s e i

80% 1

60% 4

40% -

normalized mean score

20% 4

0% A - - ;
0 50 100 150 200
training step (1e6)

s uniform === rank-based == proportional - uniform DQN

from: Prioritized Experience Replay, T. Schaul et al., 2016

A3C

@ Asynchronous Advantage Actor-Critic

@ Multiple parallel learners that—asynchronously — update
the same value function/policy

@ Because there are multiple parallel learners, samples are
de-correlated even without experience replay

@ Without experience replay buffer, multi-step updates can
be used.

AlphaZero

Background

@ After IBM’s Deep Blue defeated the world champion in
Chess, Garry Kasparov in 1997, researchers started focusing
on the ancient game Go

@ Go is much harder than Chess, among others due to its
gigantic state-space size and large branching factor

AlphaGo Zero

@

@

In January 2016, DeepMind published Nature paper on
AlphaGo, a method that was able to beat defeat 18-time
world champion, Lee Sedol

AlphaGo was pre-trained on a large database of human Go
games; deep RL was used to further improve performance

In October 2017, DeepMind published a second Nature
paper, introducing AlphaGo Zero

AlphaGo Zero did no longer rely on a database of human Go
games, but was trained fully from scratch using RL

AlphaGo Zero also no longer makes use of some hand-
engineered features, but only uses stone-positions as input

Key Component: Monte-Carlo Tree Search

@ Heuristic search algorithm that uses many random rollout to
the end of the game to determine how good a particular
move 18

@ by focussing rollouts on moves that Va \
appear to be more successful, the @[j Q)\'@
efficiency is improved significantly Sl AN

@ From the current state, a tree 1s build up \
that stores intermediate evaluations and @) (
guides which moves is evaluated next

AlphaGo Zero

@ AlphaGo Zero uses MCTS, but instead of using random
rollouts, it relies on deep value network

@ Because no random roll-outs are performed it is much more
computationally efficient

Results

a. b. c
#:70 038
G 03 4]
s 40
5 025
& 30
~1000 g / 8
20 |
02
-2000 § 4' g
3000 ,' — Resnforcoment Learmng g 10 (| R
— Suparsad Leanirg & / = Rpirdcecemant Loaming = Renforcoment Leaming
v AlphaGo Loe 2 / — Supensed Learmng - Supervisad Leamng
~4000 go J 0.15
0 10 20 30 & SN &0 N 0102030406060702010203060606070
Training time (hours) Training time (hours) Training time (hours)

from: Mastering the Game of Go without Human Knowledge, D. Silver et al. Nature ‘17

Main Conclusions

@ AlphaGo Zero unambiguously shows the power of making
value predictions using (very) deep neural networks

@ The results also highlight the power of learning through self-
play

@ Self-play is believed to be so effective, because it 1s a natural
form of curriculum learning

curriculum learning: providing a learning agent with
increasingly challenging tasks in order to speed up
learning of complex behaviour

Some limitations

@ The environment dynamics (i.e., the rules of the game) are
not learned, but provided

@ Hence, the problem AlphaGo Zero considers 1s very different
from the standard RL setting

@ Because AlphaGo Zero relies on MCTS, it cannot be easily
be adapted to domains where the environment dynamics are
unknown (like ALE for example)

vl D W N =

Remaining Challenges / Open Issues

. Partial Observability

Long Decision Horizons

. Exploration
. Fast learning / adaptation

. Limitations of Reward Function

Partial Observability

Partial Observability

@ Typically, the environment state is not directly observed

@ Instead, a feature vector is observed that is correlated with
the state, but does not fully disambiguate between different
states

@ It the state ambiguity 1s significant, it becomes hard to
make accurate predictions about the return, and hence
determine a good policy.

Partial Observability: Example 1

Is Pong partial observable?

reward:
+1 if controllable agents scores point
-1 if opponent scores
whichever player reaches 21 points first wins

Partial Observability: Example 1

How about now?

reward:

* +1 if controllable agents scores point

* -1 if opponent scores

« whichever player reaches 21 points first wins

Partial Observability: Example 2

Long Decision Horizon

Decision Horizon

@ The decision horizon determines how far an agent has to
look into the future to determine the optimal action

@ How far the agent looks into the future is controlled by the
discount factor

@ Often, even when the aim is to optimize the reward over
many time steps, the decision horizon is much smaller and
hence a smaller discount factor can be used

Long Decision Horizon

Long Decision Horizon

Long decision horizons are hard, because:

@ It requires information to be propagated back in time over
a long distance

@ Can result in more challenging function approximation

Long Decision Horizon

What features are relevant for making accurate predictions:
@ small discount factor:

« values: between -1 and 1

« relevant features: peddle-positions, ball position + direction
@ large discount factor

+ values: between -21 and 21

« relevant features: peddle-positions, ball position + direction,

SCOTE . 1

Exploration

@ Rewards drive policy improvement

@ When the chance of observing a reward under a random
policy 1s low, it becomes hard to make policy improvements

@ This can happen, for example, when rewards are sparse

Fast learning / adaptation

telligent,

ut the one most
responsive to
ange.

~Charles Darwin, 1809

Current methods require huge amount of data

average training time per game:

DQN

DDQN

Prioritized DDQN 0
Dueling DDQN [\/*

A3C

Distributional DQN A
Noisy DQN NS
Rainbow p../“

200%

100%

Median human-normalized score

1]
100 200

Millions of frames

from: Rainbow: Combining Improvements in Deep Reinforcement Learning. M Hessel, et al. 2017

100% median human-normalized score:
15 million frames ~ 27 human-play days*

Full training period:
200 million frames ~ 370 human-play days*

* assuming:
- framerate: 60 frames/s
- skip-frame: 4
- human plays 10 hours per day

Adaptation to Small Task Changes is Hard

Training set:

Test set:

from: Learning invariances for Policy Generalization. R. Tachet des Combes et al., 2018

L.imitations of Reward Function

Limitations Reward Function

@ The reward function specifies how we want our agents to
behave

@ However, not all behavioural goals can be easily captured
by a reward function, for example, having a meaningful
conversation

@ Furthermore, in a complex world, even specifying a
seemingly well-defined task like ‘get a cup of coffee’ can
be challenging

How far are we?

After 3 decades of RL research...

casy hard

.... but progress is non-linear

r
:
o
% |
~ PN)
N \
o) - \ : »
\ (3 \
L W ' . :
‘ ' & o
1)) Q- — “

Thank you!

