
Introduction to
Reinforcement Learning

Harm van Seijen
Microsoft Research Montreal

SPCOM 2018 Tutorial

Reinforcement learning considers the task of learning
behaviour in an initially unknown environment.

What is Reinforcement Learning

• Initially, actions are tried at random
• Good behaviour is reinforcement with a positive reward

Reinforcement learning is about 30 years old….

A bit of history

TD gammon
(Tesauro, 1992)

….but the field really took off in the last 3 years

Autonomous helicopter
(Ng et al., 2004)

Some recent results…

DQN
(Mnih et al, 2015)

AlphaGo Zero
(D. Silver, 2017)

Overview Tutorial

Part 1: Reinforcement Learning Theory

Part 2: Deep Reinforcement Learning

Part 3: Open Problems

1. Markov decision processes
2. Monte Carlo
3. Temporal-Difference learning
4. Multi-Step methods
5. Function Approximation
6. Other Approaches

Reinforcement Learning Theory

credit:
course: Reinforcement Learning for Artificial Intelligence
book: Introduction to Reinforcement Learning

Markov Decision Processes

Agent-Environment Interface

Agent Environment

Action

State

Reward

Behaviour: State Action π Policy

Goal: find a policy that results in the highest sum of rewards

discrete time
finite set of states
finite set of actions
finite set of rewards
life is a trajectory:  

with arbitrary Markov (stochastic, state-dependent)
dynamics:

finite Markov Decision Process

p(r , s 0|s, a) = Prob

h
Rt+1 = r , St+1 = s

0
��� St = s,At = a

i

. . . St ,At ,Rt+1, St+1,At+1,Rt+2, St+2, . . .

t = 1, 2, 3, . . .

transition function: reward function:

Some tasks have a natural end-point; we call these episodic
tasks. 
Example: a game of Chess.
Other tasks are more continuing of nature; we call these
continuing tasks.  
Example: regulating the temperature in a room.
Episodic tasks are modelled using an MDP containing
special states, called terminal states
The MDP of a continuing tasks does not contain any
terminal states.

Episodic Tasks vs Continuing Tasks

finite Markov Decision Process

+20,
 20%

+40,20%

+40,80%

A B-10,20%

-10,80%1
2

1
2

+10,
100%

+20,80%

Agent behaviour

deterministic policy:

stochastic policy:

The agent’s goal is to maximize the discounted sum or
rewards, called the return:

continuing task:

episodic task:

The reward function together with the discount
factor γ specify the goal of the agent
The agent learns how to take actions that achieve this goal

Agent is told what to achieve, but not how

Episodic Task Example

Goal: reach the goal-state as quickly as possible

Possible reward function: -1 at every step, γ = 1
Alternatively: 0 at every step; +1 on reaching goal-state, γ < 1

Value Functions

State - value function for policy π :

vπ (s) = Eπ Gt St = s{ } = Eπ γ kRt+k+1 St = s
k=0

∞

∑
%
&
'

(
)
*

Action - value function for policy π :

qπ (s,a) = Eπ Gt St = s,At = a{ } = Eπ γ kRt+k+1 St = s,At = a
k=0

∞

∑
%
&
'

(
)
*

❐ The value of a state is the expected return starting from
that state; depends on the agent’s policy:

❐ The value of an action (in a state) is the expected return
starting after taking that action from that state; depends on
the agent’s policy:

Evaluating policies

states

expected

return

Given an MDP, there always exists a policy that is at least as

good as all other policies for each state. This is called the optimal policy .

⇡1

⇡2

⇡3

⇡4

⇡5

⇡⇤

· · ·

v⇡

q⇡

v⇤/q⇤

q⇤

v1/q1

v2/q2

v⇡1

v⇡2

⇡⇤

v⇤

MDP
�
S,A,R, p, �

�

Markov reward process M : (S,A,R, p, �):

• S : set of states

• p(s0|s) : transition probability from state s to state s

0.

1

⇡1

⇡2

⇡3

⇡4

⇡5

⇡⇤

· · ·

v⇡

q⇡

v⇤/q⇤

q⇤

v1/q1

v2/q2

Markov reward process M : (S,A,R, p, �):

• S : set of states

• p(s0|s) : transition probability from state s to state s

0.

• r(s0, s) : expected value of the reward received after transitioning from state s to state s

0.

• � : discount factor, controlling weights of future rewards

Return for continuing task:

Gt =
1X

i=1

�

i�1
Rt+i

Return for episodic task for which terminal state is reached at time step T :

Gt =
T�tX

i=1

�

i�1
Rt+i

1

⇡1

⇡2

⇡3

⇡4

⇡5

⇡⇤

· · ·

v⇡

q⇡

v⇤/q⇤

q⇤

v1/q1

v2/q2

v⇡1

v⇡2

⇡⇤

MDP
�
S,A,R, p, �

�

Markov reward process M : (S,A,R, p, �):

• S : set of states

• p(s0|s) : transition probability from state s to state s

0.

• r(s0, s) : expected value of the reward received after transitioning from state s to state s

0.

1

⇡1

⇡2

⇡3

⇡4

⇡5

⇡⇤

· · ·

v⇡

q⇡

v⇤/q⇤

q⇤

v1/q1

v2/q2

v⇡1

v⇡2

⇡⇤

MDP
�
S,A,R, p, �

�

Markov reward process M : (S,A,R, p, �):

• S : set of states

• p(s0|s) : transition probability from state s to state s

0.

• r(s0, s) : expected value of the reward received after transitioning from state s to state s

0.

1

Optimal Polices

A policy is optimal iff it maximizes the value functions:

For each MDP there is a unique and , but there can
be multiple optimal policies
Given an optimal action-value function, the optimal policy
can be easily derived as follows:

Two Tasks

❐ evaluation/prediction:
Given a policy , compute and/or

❐ control:
Find an optimal policy

Monte Carlo

Blackjack example

❐ Object: Have your card sum be greater than the dealer’s
without exceeding 21.

❐ States (200 of them):
n current sum (12-21)
n dealer’s showing card (ace-10)
n do I have a useable ace?

❐ Reward: +1 for winning, 0 for a draw, -1 for losing
❐ Actions: stick (stop receiving cards), hit (receive another

card)
❐ Policy: Stick if my sum is 20 or 21, else hit
❐ No discounting (𝜸 = 1)

Goal: for policy determine the function
full returns are sampled
the estimate of after episode t, , is the average
of the observed returns from state s after episode t.
at the end of each new episode, the estimates for states
visited during the episode are updated

Monte Carlo policy evaluation

first-visit Monte Carlo policy evaluation

100 CHAPTER 5. MONTE CARLO METHODS

To handle the nonstationarity, we adapt the idea of general policy iteration (GPI)
developed in Chapter 4 for DP. Whereas there we computed value functions from
knowledge of the MDP, here we learn value functions from sample returns with
the MDP. The value functions and corresponding policies still interact to attain
optimality in essentially the same way (GPI). As in the DP chapter, first we consider
the prediction problem (the computation of v⇡ and q⇡ for a fixed arbitrary policy ⇡)
then policy improvement, and, finally, the control problem and its solution by GPI.
Each of these ideas taken from DP is extended to the Monte Carlo case in which
only sample experience is available.

5.1 Monte Carlo Prediction

We begin by considering Monte Carlo methods for learning the state-value function
for a given policy. Recall that the value of a state is the expected return—expected
cumulative future discounted reward—starting from that state. An obvious way to
estimate it from experience, then, is simply to average the returns observed after
visits to that state. As more returns are observed, the average should converge to
the expected value. This idea underlies all Monte Carlo methods.

In particular, suppose we wish to estimate v⇡(s), the value of a state s under
policy ⇡, given a set of episodes obtained by following ⇡ and passing through s.
Each occurrence of state s in an episode is called a visit to s. Of course, s may
be visited multiple times in the same episode; let us call the first time it is visited
in an episode the first visit to s. The first-visit MC method estimates v⇡(s) as the
average of the returns following first visits to s, whereas the every-visit MC method
averages the returns following all visits to s. These two Monte Carlo (MC) methods
are very similar but have slightly di↵erent theoretical properties. First-visit MC has
been most widely studied, dating back to the 1940s, and is the one we focus on
in this chapter. Every-visit MC extends more naturally to function approximation
and eligibility traces, as discussed in Chapters 9 and 7. First-visit MC is shown in
procedural form in Figure 5.1.

Initialize:
⇡ policy to be evaluated
V an arbitrary state-value function
Returns(s) an empty list, for all s 2 S

Repeat forever:
Generate an episode using ⇡
For each state s appearing in the episode:

G return following the first occurrence of s
Append G to Returns(s)
V (s) average(Returns(s))

Figure 5.1: The first-visit MC method for estimating v⇡.

Learned blackjack state-value functions

evaluate the value function for all policies
use definition:

Naive approach to finding optimal policy

issue: number of possible policies is huge:

Policy Improvement Theorem

Given the value function for any policy :

It can always be greedified to obtain a better policy:

where better means:

with equality only if both policies are optimal

q⇡(s, a) for all s, a

⇡0
(s) = argmax

a
q⇡(s, a)

q⇡0
(s, a) � q⇡(s, a) for all s, a

⇡

(is not unique)⇡0

Policy Iteration

⇡1

q⇡1

⇡2
q⇡2

⇡3

⇡⇤

q⇡3

q⇤

⇡⇤

. . .

evaluate

greedify

evaluate

greedify

evaluate

eval

gre
ed

gree
dify

Any policy evaluates to a unique value
function, which can be greedified to
produce a better policy

That in turn evaluates to a value function

which can in turn be greedified…

Each policy is strictly better than the
previous, until eventually both are optimal

There are no local optima

The dance converges in a finite number of
steps, usually very few

Generalized Policy Iteration

evaluation

improvement

⇡ Q
⇡ greedy(Q)

Q q⇡

Generalized Policy Iteration (GPI):
any interaction of policy evaluation and policy improvement,
independent of their granularity.

 is the average of observed return for state-action
pair (s,a) after episode t
 is an estimate of , with the policy
used to generate episode t
At the end of an episode:

 is updated for the visited state-action pairs
 a new greedy policy is computed:

Monte Carlo Control

An RL agent is (partly) in control of the samples that it sees
To get a proper evaluation, MC should observe returns for all
state-action pairs
Ensuring sufficient exploration of the state-action space is a
big challenge for any RL method
For now, we consider an extremely simplistic exploration
strategy: exploring starts
Exploring starts means the initial state is drawn at random and
the initial action as well

Exploration

Monte Carlo Exploring Starts
5.3. MONTE CARLO CONTROL 107

Initialize, for all s 2 S, a 2 A(s):
Q(s, a) arbitrary
⇡(s) arbitrary
Returns(s, a) empty list

Repeat forever:
Choose S0 2 S and A0 2 A(S0) s.t. all pairs have probability > 0
Generate an episode starting from S0, A0, following ⇡
For each pair s, a appearing in the episode:

G return following the first occurrence of s, a
Append G to Returns(s, a)
Q(s, a) average(Returns(s, a))

For each s in the episode:
⇡(s) argmaxa Q(s, a)

Figure 5.4: Monte Carlo ES: A Monte Carlo control algorithm assuming exploring starts
and that episodes always terminate for all policies.

idea when we first introduced the idea of GPI in Section 4.6. One extreme form of
the idea is value iteration, in which only one iteration of iterative policy evaluation
is performed between each step of policy improvement. The in-place version of
value iteration is even more extreme; there we alternate between improvement and
evaluation steps for single states.

For Monte Carlo policy evaluation it is natural to alternate between evaluation
and improvement on an episode-by-episode basis. After each episode, the observed
returns are used for policy evaluation, and then the policy is improved at all the
states visited in the episode. A complete simple algorithm along these lines is given
in Figure 5.4. We call this algorithm Monte Carlo ES, for Monte Carlo with Exploring
Starts.

In Monte Carlo ES, all the returns for each state–action pair are accumulated and
averaged, irrespective of what policy was in force when they were observed. It is easy
to see that Monte Carlo ES cannot converge to any suboptimal policy. If it did, then
the value function would eventually converge to the value function for that policy,
and that in turn would cause the policy to change. Stability is achieved only when
both the policy and the value function are optimal. Convergence to this optimal
fixed point seems inevitable as the changes to the action-value function decrease
over time, but has not yet been formally proved. In our opinion, this is one of the
most fundamental open theoretical questions in reinforcement learning (for a partial
solution, see Tsitsiklis, 2002).

Example 5.3: Solving Blackjack It is straightforward to apply Monte Carlo
ES to blackjack. Since the episodes are all simulated games, it is easy to arrange
for exploring starts that include all possibilities. In this case one simply picks the
dealer’s cards, the player’s sum, and whether or not the player has a usable ace, all
at random with equal probability. As the initial policy we use the policy evaluated
in the previous blackjack example, that which sticks only on 20 or 21. The initial

Blackjack example continued

❐ Exploring starts
❐ Initial policy as described before

108 CHAPTER 5. MONTE CARLO METHODS

Usable
ace

No
usable

ace

20

10A 2 3 4 5 6 7 8 9

Dealer showing

P
la

y
e

r
s
u

m

HIT

STICK 19

21

11
12
13
14
15
16
17
18

!*

10A 2 3 4 5 6 7 8 9

HIT

STICK 20
19

21

11
12
13
14
15
16
17
18

V*

2
1

10 1
2

A

Dealer showing

P
la

y
e
r

s
u
m

10

A

1
2

2
1

+1

"1

v*

Usable
ace

No
usable

ace

20

10A 2 3 4 5 6 7 8 9

Dealer showing

P
la

y
e

r
s
u

m

HIT

STICK 19

21

11
12
13
14
15
16
17
18

!*

10A 2 3 4 5 6 7 8 9

HIT

STICK 20
19

21

11
12
13
14
15
16
17
18

V*

2
1

10 1
2

A

Dealer showing

P
la

y
e
r

s
u
m

10

A

1
2

2
1

+1

"1

v*

Usable
ace

No
usable

ace

20

10A 2 3 4 5 6 7 8 9

Dealer showing
P

la
y
e

r
s
u

m

HIT

STICK 19

21

11
12
13
14
15
16
17
18

!*

10A 2 3 4 5 6 7 8 9

HIT

STICK 20
19

21

11
12
13
14
15
16
17
18

V*

2
1

10 1
2

A

Dealer showing

P
la

y
e
r

s
u
m

10

A

1
2

2
1

+1

"1

v*

Dealer showing Pl
ay

er
 s

um

* *

Figure 5.5: The optimal policy and state-value function for blackjack, found by Monte
Carlo ES (Figure 5.4). The state-value function shown was computed from the action-value
function found by Monte Carlo ES.

action-value function can be zero for all state–action pairs. Figure 5.5 shows the
optimal policy for blackjack found by Monte Carlo ES. This policy is the same as the
“basic” strategy of Thorp (1966) with the sole exception of the leftmost notch in the
policy for a usable ace, which is not present in Thorp’s strategy. We are uncertain
of the reason for this discrepancy, but confident that what is shown here is indeed
the optimal policy for the version of blackjack we have described.

5.4 Monte Carlo Control without Exploring Starts

How can we avoid the unlikely assumption of exploring starts? The only general way
to ensure that all actions are selected infinitely often is for the agent to continue to
select them. There are two approaches to ensuring this, resulting in what we call
on-policy methods and o↵-policy methods. On-policy methods attempt to evaluate
or improve the policy that is used to make decisions, whereas o↵-policy methods
evaluate or improve a policy di↵erent from that used to generate the data. The
Monte Carlo ES method developed above is an example of an on-policy method. In
this section we show how an on-policy Monte Carlo control method can be designed
that does not use the unrealistic assumption of exploring starts. O↵-policy methods
are considered in the next section.

In on-policy control methods the policy is generally soft, meaning that ⇡(a|s) > 0
for all s 2 S and all a 2 A(s), but gradually shifted closer and closer to a deterministic
optimal policy. Many of the methods discussed in Chapter 2 provide mechanisms
for this. The on-policy method we present in this section uses "-greedy policies,

When doing control, maintaining an average of all returns
per state-action pairs can result in very slow learning
A better update rule is to take a weighted average of
returns, with higher weights for more recent returns
This can be achieved by update rule:

The step-size determines how much weight is
put on recent observations

Better update rule

or

Updates only occur at the end of an episode, which can
delay learning for long episodes
Cannot be used for continuing tasks
In stochastic environments, the variance can be very high

Disadvantages of Monte Carlo

Temporal Difference Learning

Motivating Example

Consider:
• γ = 1
• all rewards are stochastic
• state-values for state A and B:

• state-value evaluation for state E:

A B C D
r1 r2 r3 r4

E
r5

Instead of using the full return as update target, an update
target is used that bootstraps from other value estimates
Updates happen at each step of an episode

Temporal difference learning

Bellman Equation for a Policy π

Gt = Rt+1 + γ Rt+2 + γ
2Rt+3 + γ

3Rt+4L
= Rt+1 + γ Rt+2 + γ Rt+3 + γ

2Rt+4L()
= Rt+1 + γGt+1

The basic idea:

So: vπ (s) = Eπ Gt St = s{ }
= Eπ Rt+1 + γ vπ St+1() St = s{ }

Or, without the expectation operator:

...+

...+

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)

i

TD Prediction

Policy Evaluation (the prediction problem):
 for a given policy π, compute the state-value function vπ

Recall: Simple every-visit Monte Carlo method:

target: the actual return after time t

target: an estimate of the return

Chapter 6

Temporal-Di↵erence Learning

If one had to identify one idea as central and novel to reinforcement learning, it would
undoubtedly be temporal-di↵erence (TD) learning. TD learning is a combination
of Monte Carlo ideas and dynamic programming (DP) ideas. Like Monte Carlo
methods, TD methods can learn directly from raw experience without a model of
the environment’s dynamics. Like DP, TD methods update estimates based in part
on other learned estimates, without waiting for a final outcome (they bootstrap).
The relationship between TD, DP, and Monte Carlo methods is a recurring theme in
the theory of reinforcement learning. This chapter is the beginning of our exploration
of it. Before we are done, we will see that these ideas and methods blend into each
other and can be combined in many ways. In particular, in Chapter 7 we introduce
the TD(�) algorithm, which seamlessly integrates TD and Monte Carlo methods.

As usual, we start by focusing on the policy evaluation or prediction problem, that
of estimating the value function v⇡ for a given policy ⇡. For the control problem
(finding an optimal policy), DP, TD, and Monte Carlo methods all use some variation
of generalized policy iteration (GPI). The di↵erences in the methods are primarily
di↵erences in their approaches to the prediction problem.

6.1 TD Prediction

Both TD and Monte Carlo methods use experience to solve the prediction problem.
Given some experience following a policy ⇡, both methods update their estimate v
of v⇡ for the nonterminal states St occurring in that experience. Roughly speaking,
Monte Carlo methods wait until the return following the visit is known, then use
that return as a target for V (St). A simple every-visit Monte Carlo method suitable
for nonstationary environments is

V (St) V (St) + ↵
h
Gt � V (St)

i
, (6.1)

where Gt is the actual return following time t, and ↵ is a constant step-size parameter
(c.f., Equation 2.4). Let us call this method constant-↵ MC. Whereas Monte Carlo
methods must wait until the end of the episode to determine the increment to V (St)

127

The simplest temporal-difference method TD(0):

128 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

(only then is Gt known), TD methods need wait only until the next time step. At
time t + 1 they immediately form a target and make a useful update using the
observed reward Rt+1 and the estimate V (St+1). The simplest TD method, known
as TD(0), is

V (St) V (St) + ↵
h
Rt+1 + �V (St+1)� V (St)

i
. (6.2)

In e↵ect, the target for the Monte Carlo update is Gt, whereas the target for the TD
update is Rt+1 + �V (St+1).

Because the TD method bases its update in part on an existing estimate, we say
that it is a bootstrapping method, like DP. We know from Chapter 3 that

v⇡(s)
.
= E⇡[Gt | St =s] (6.3)

= E⇡

" 1X

k=0

�kRt+k+1

����� St =s

#

= E⇡

"
Rt+1 + �

1X

k=0

�kRt+k+2

����� St =s

#

= E⇡[Rt+1 + �v⇡(St+1) | St =s] . (6.4)

Roughly speaking, Monte Carlo methods use an estimate of (6.3) as a target, whereas
DP methods use an estimate of (6.4) as a target. The Monte Carlo target is an
estimate because the expected value in (6.3) is not known; a sample return is used
in place of the real expected return. The DP target is an estimate not because of
the expected values, which are assumed to be completely provided by a model of the
environment, but because v⇡(St+1) is not known and the current estimate, V (St+1),
is used instead. The TD target is an estimate for both reasons: it samples the
expected values in (6.4) and it uses the current estimate V instead of the true v⇡.
Thus, TD methods combine the sampling of Monte Carlo with the bootstrapping of
DP. As we shall see, with care and imagination this can take us a long way toward
obtaining the advantages of both Monte Carlo and DP methods.

Figure 6.1 specifies TD(0) completely in procedural form.

Input: the policy ⇡ to be evaluated
Initialize V (s) arbitrarily (e.g., V (s) = 0, 8s 2 S+)
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

A action given by ⇡ for S
Take action A; observe reward, R, and next state, S0

V (S) V (S) + ↵
⇥
R + �V (S0)� V (S)

⇤

S S0

until S is terminal

Figure 6.1: Tabular TD(0) for estimating v⇡.

TD Prediction

98 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

one-step TD, because it is a special case of the TD(�) and n-step TD methods developed in Chapter 12
and Chapter 7. The box below specifies TD(0) completely in procedural form.

Tabular TD(0) for estimating v⇡

Input: the policy ⇡ to be evaluated
Initialize V (s) arbitrarily (e.g., V (s) = 0, for all s 2 S+)
Repeat (for each episode):

Initialize S

Repeat (for each step of episode):
A action given by ⇡ for S

Take action A, observe R, S

0

V (S) V (S) + ↵

⇥
R + �V (S0)� V (S)

⇤

S S

0

until S is terminal

Because the TD(0) bases its update in part on an existing estimate, we say that it is a bootstrapping
method, like DP. We know from Chapter 3 that

v⇡(s)
.
= E⇡[Gt | St =s] (6.3)

= E⇡[Rt+1 + �Gt+1 | St =s] (from (3.8))

= E⇡[Rt+1 + �v⇡(St+1) | St =s] . (6.4)

Roughly speaking, Monte Carlo methods use an estimate of (6.3) as a target, whereas DP methods use
an estimate of (6.4) as a target. The Monte Carlo target is an estimate because the expected value
in (6.3) is not known; a sample return is used in place of the real expected return. The DP target
is an estimate not because of the expected values, which are assumed to be completely provided by a
model of the environment, but because v⇡(St+1) is not known and the current estimate, V (St+1), is
used instead. The TD target is an estimate for both reasons: it samples the expected values in (6.4)
and it uses the current estimate V instead of the true v⇡. Thus, TD methods combine the sampling of
Monte Carlo with the bootstrapping of DP. As we shall see, with care and imagination this can take us
a long way toward obtaining the advantages of both Monte Carlo and DP methods.

TD(0)

The diagram to the right is the update diagram for tabular TD(0). The value estimate
for the state node at the top of the update diagram is updated on the basis of the one
sample transition from it to the immediately following state. We refer to TD and Monte
Carlo updates as sample updates because they involve looking ahead to a sample successor
state (or state–action pair), using the value of the successor and the reward along the way
to compute a backed-up value, and then updating the value of the original state (or state–
action pair) accordingly. Sample updates di↵er from the expected updates of DP methods
in that they are based on a single sample successor rather than on a complete distribution
of all possible successors.

Finally, note that the quantity in brackets in the TD(0) update is a sort of error, measuring the
di↵erence between the estimated value of St and the better estimate Rt+1 + �V (St+1). This quantity,
called the TD error, arises in various forms throughout reinforcement learning:

�t
.
= Rt+1 + �V (St+1) � V (St). (6.5)

Notice that the TD error at each time is the error in the estimate made at that time. Because the TD
error depends on the next state and next reward, it is not actually available until one time step later.
That is, �t is the error in V (St), available at time t + 1. Also note that if the array V does not change
during the episode (as it does not in Monte Carlo methods), then the Monte Carlo error can be written

Values learned by TD from one run, after various
numbers of episodes

130 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

Example 6.2: Random Walk In this example we empirically compare the
prediction abilities of TD(0) and constant-↵ MC applied to the small Markov reward
process shown in the upper part of Figure 6.3. All episodes start in the center
state, C, and proceed either left or right by one state on each step, with equal
probability. This behavior can be thought of as due to the combined e↵ect of a
fixed policy and an environment’s state-transition probabilities, but we do not care
which; we are concerned only with predicting returns however they are generated.
Episodes terminate either on the extreme left or the extreme right. When an episode
terminates on the right, a reward of +1 occurs; all other rewards are zero. For
example, a typical epsiode might consist of the following state-and-reward sequence:
C, 0, B, 0, C, 0, D, 0, E, 1. Because this task is undiscounted, the true value of each
state is the probability of terminating on the right if starting from that state. Thus,
the true value of the center state is v⇡(C) = 0.5. The true values of all the states, A
through E, are 1

6 , 2
6 , 3

6 , 4
6 , and 5

6 . The left part of Figure 6.3 shows the values learned
by TD(0) approaching the true values as more episodes are experienced. Averaging
over many episode sequences, the right part of the figure shows the average error
in the predictions found by TD(0) and constant-↵ MC, for a variety of values of ↵,
as a function of number of episodes. In all cases the approximate value function
was initialized to the intermediate value V (s) = 0.5, for all s. The TD method was
consistently better than the MC method on this task.

0.8

0

0.2

0.4

0.6

A B C D E

0

10

1

100

State

Estimated

value

true

values

A B C D E
100000

start

Estimated
value

0

0.05

0.1

0.15

0.2

0.25

0 25 50 75 100

Walks / Episodes

TD

MC

!=.05

!=.01

!=.1

!=.15

!=.02

!=.04

!=.03

RMS error,
averaged
over states

Empirical RMS error,
averaged over states

Figure 6.3: Results with the 5-state random walk. Above: The small Markov reward
process generating the episodes. Left: Results from a single run after various numbers of
episodes. The estimate after 100 episodes is about as close as they ever get to the true
values; with a constant step-size parameter (↵ = 0.1 in this example), the values fluctuate
indefinitely in response to the outcomes of the most recent episodes. Right: Learning curves
for TD(0) and constant-↵ MC methods, for various values of ↵. The performance measure
shown is the root mean-squared (RMS) error between the value function learned and the
true value function, averaged over the five states. These data are averages over 100 di↵erent
sequences of episodes.

130 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

Example 6.2: Random Walk In this example we empirically compare the
prediction abilities of TD(0) and constant-↵ MC applied to the small Markov reward
process shown in the upper part of Figure 6.3. All episodes start in the center
state, C, and proceed either left or right by one state on each step, with equal
probability. This behavior can be thought of as due to the combined e↵ect of a
fixed policy and an environment’s state-transition probabilities, but we do not care
which; we are concerned only with predicting returns however they are generated.
Episodes terminate either on the extreme left or the extreme right. When an episode
terminates on the right, a reward of +1 occurs; all other rewards are zero. For
example, a typical epsiode might consist of the following state-and-reward sequence:
C, 0, B, 0, C, 0, D, 0, E, 1. Because this task is undiscounted, the true value of each
state is the probability of terminating on the right if starting from that state. Thus,
the true value of the center state is v⇡(C) = 0.5. The true values of all the states, A
through E, are 1

6 , 2
6 , 3

6 , 4
6 , and 5

6 . The left part of Figure 6.3 shows the values learned
by TD(0) approaching the true values as more episodes are experienced. Averaging
over many episode sequences, the right part of the figure shows the average error
in the predictions found by TD(0) and constant-↵ MC, for a variety of values of ↵,
as a function of number of episodes. In all cases the approximate value function
was initialized to the intermediate value V (s) = 0.5, for all s. The TD method was
consistently better than the MC method on this task.

0.8

0

0.2

0.4

0.6

A B C D E

0

10

1

100

State

Estimated

value

true

values

A B C D E
100000

start

Estimated
value

0

0.05

0.1

0.15

0.2

0.25

0 25 50 75 100

Walks / Episodes

TD

MC

!=.05

!=.01

!=.1

!=.15

!=.02

!=.04

!=.03

RMS error,
averaged
over states

Empirical RMS error,
averaged over states

Figure 6.3: Results with the 5-state random walk. Above: The small Markov reward
process generating the episodes. Left: Results from a single run after various numbers of
episodes. The estimate after 100 episodes is about as close as they ever get to the true
values; with a constant step-size parameter (↵ = 0.1 in this example), the values fluctuate
indefinitely in response to the outcomes of the most recent episodes. Right: Learning curves
for TD(0) and constant-↵ MC methods, for various values of ↵. The performance measure
shown is the root mean-squared (RMS) error between the value function learned and the
true value function, averaged over the five states. These data are averages over 100 di↵erent
sequences of episodes.

TD and MC on the Random Walk

130 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

Example 6.2: Random Walk In this example we empirically compare the
prediction abilities of TD(0) and constant-↵ MC applied to the small Markov reward
process shown in the upper part of Figure 6.3. All episodes start in the center
state, C, and proceed either left or right by one state on each step, with equal
probability. This behavior can be thought of as due to the combined e↵ect of a
fixed policy and an environment’s state-transition probabilities, but we do not care
which; we are concerned only with predicting returns however they are generated.
Episodes terminate either on the extreme left or the extreme right. When an episode
terminates on the right, a reward of +1 occurs; all other rewards are zero. For
example, a typical epsiode might consist of the following state-and-reward sequence:
C, 0, B, 0, C, 0, D, 0, E, 1. Because this task is undiscounted, the true value of each
state is the probability of terminating on the right if starting from that state. Thus,
the true value of the center state is v⇡(C) = 0.5. The true values of all the states, A
through E, are 1

6 , 2
6 , 3

6 , 4
6 , and 5

6 . The left part of Figure 6.3 shows the values learned
by TD(0) approaching the true values as more episodes are experienced. Averaging
over many episode sequences, the right part of the figure shows the average error
in the predictions found by TD(0) and constant-↵ MC, for a variety of values of ↵,
as a function of number of episodes. In all cases the approximate value function
was initialized to the intermediate value V (s) = 0.5, for all s. The TD method was
consistently better than the MC method on this task.

0.8

0

0.2

0.4

0.6

A B C D E

0

10

1

100

State

Estimated

value

true

values

A B C D E
100000

start

Estimated
value

0

0.05

0.1

0.15

0.2

0.25

0 25 50 75 100

Walks / Episodes

TD

MC

!=.05

!=.01

!=.1

!=.15

!=.02

!=.04

!=.03

RMS error,
averaged
over states

Empirical RMS error,
averaged over states

Figure 6.3: Results with the 5-state random walk. Above: The small Markov reward
process generating the episodes. Left: Results from a single run after various numbers of
episodes. The estimate after 100 episodes is about as close as they ever get to the true
values; with a constant step-size parameter (↵ = 0.1 in this example), the values fluctuate
indefinitely in response to the outcomes of the most recent episodes. Right: Learning curves
for TD(0) and constant-↵ MC methods, for various values of ↵. The performance measure
shown is the root mean-squared (RMS) error between the value function learned and the
true value function, averaged over the five states. These data are averages over 100 di↵erent
sequences of episodes.

Data averaged over
100 sequences of episodes

Learning An Action-Value Function

Estimate qπ for the current policy π

St,At

Rt+1St St+1, At+1

Rt+2St+1
Rt+3St+2 St+3.

St+2, At+2 St+3, At+3

After every transition from a nonterminal state, St , do this:
Q(St ,At)←Q(St ,At)+α Rt+1 + γQ(St+1,At+1)−Q(St ,At)[]
If St+1 is terminal, then define Q(St+1,At+1) = 0

To ensure sufficient exploration of all state-action pairs,
typically a stochastic policy is used to generate samples
For example, an ε-greedy policy select with 1-ε probability
the greedy action, and selects with ε probability an action
uniformly at random

Exploration

Sarsa(0): TD Control
142 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

Initialize Q(s, a), 8s 2 S, a 2 A(s), arbitrarily, and Q(terminal-state, ·) = 0
Repeat (for each episode):

Initialize S

Choose A from S using policy derived from Q (e.g., "-greedy)
Repeat (for each step of episode):

Take action A, observe R, S0

Choose A

0 from S

0 using policy derived from Q (e.g., "-greedy)
Q(S,A) Q(S,A) + ↵[R+ �Q(S0

, A

0)�Q(S,A)]
S S

0; A A

0;
until S is terminal

Figure 6.9: Sarsa: An on-policy TD control algorithm.

long as all state–action pairs are visited an infinite number of times and the
policy converges in the limit to the greedy policy (which can be arranged, for
example, with "-greedy policies by setting " = 1/t), but this result has not yet
been published in the literature.

Example 6.5: Windy Gridworld Figure 6.10 shows a standard gridworld,
with start and goal states, but with one di↵erence: there is a crosswind upward
through the middle of the grid. The actions are the standard four—up, down,

right, and left—but in the middle region the resultant next states are shifted
upward by a “wind,” the strength of which varies from column to column. The
strength of the wind is given below each column, in number of cells shifted
upward. For example, if you are one cell to the right of the goal, then the
action left takes you to the cell just above the goal. Let us treat this as an
undiscounted episodic task, with constant rewards of �1 until the goal state
is reached. Figure 6.11 shows the result of applying "-greedy Sarsa to this
task, with " = 0.1, ↵ = 0.5, and the initial values Q(s, a) = 0 for all s, a. The
increasing slope of the graph shows that the goal is reached more and more
quickly over time. By 8000 time steps, the greedy policy (shown inset) was
long since optimal; continued "-greedy exploration kept the average episode
length at about 17 steps, two more than the minimum of 15. Note that Monte
Carlo methods cannot easily be used on this task because termination is not
guaranteed for all policies. If a policy was ever found that caused the agent to
stay in the same state, then the next episode would never end. Step-by-step
learning methods such as Sarsa do not have this problem because they quickly
learn during the episode that such policies are poor, and switch to something
else.

Exercise 6.6: Windy Gridworld with King’s Moves Re-solve the
windy gridworld task assuming eight possible actions, including the diagonal
moves, rather than the usual four. How much better can you do with the extra

Note: because a stochastic policy is used (e.g. ε-greedy), Sarsa does not
converge to the optimal policy, unless the stochasticity is decreased slowly
over time.

behaviour policy: policy that generates the samples
estimation policy: policy that is being estimated

on-policy learning: behaviour policy = estimation policy
off-policy learning: behaviour policy estimation policy

up to now, we only considered on-policy learning
off-policy learning offers more much more flexibility

On-policy versus off-policy control

Q-Learning: Off-Policy TD Control

6.5. Q-LEARNING: OFF-POLICY TD CONTROL 145

Initialize Q(s, a), 8s 2 S, a 2 A(s), arbitrarily, and Q(terminal-state, ·) = 0
Repeat (for each episode):

Initialize S

Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., "-greedy)
Take action A, observe R, S0

Q(S,A) Q(S,A) + ↵[R+ �max
a

Q(S0
, a)�Q(S,A)]

S S

0;
until S is terminal

Figure 6.12: Q-learning: An o↵-policy TD control algorithm.

(Figure 3.7). Can you guess now what the diagram is? If so, please do make
a guess before turning to the answer in Figure 6.14.

Reward
per

epsiode

!100

!75

!50

!25

0 100 200 300 400 500

Episodes

Sarsa

Q-learning

S G

r = !100

T h e C l i f f

r = !1 safe path

optimal path

Figure 6.13: The cli↵-walking task. The results are from a single run, but
smoothed.

Example 6.6: Cli↵ Walking This gridworld example compares Sarsa
and Q-learning, highlighting the di↵erence between on-policy (Sarsa) and o↵-
policy (Q-learning) methods. Consider the gridworld shown in the upper part
of Figure 6.13. This is a standard undiscounted, episodic task, with start and
goal states, and the usual actions causing movement up, down, right, and left.
Reward is �1 on all transitions except those into the the region marked “The

6.5. Q-LEARNING: OFF-POLICY TD CONTROL 139

6.5 Q-learning: O↵-Policy TD Control

One of the most important breakthroughs in reinforcement learning was the devel-
opment of an o↵-policy TD control algorithm known as Q-learning (Watkins, 1989).
Its simplest form, one-step Q-learning , is defined by

Q(St, At) Q(St, At) + ↵
h
Rt+1 + � max

a
Q(St+1, a)�Q(St, At)

i
. (6.6)

In this case, the learned action-value function, Q, directly approximates q⇤, the op-
timal action-value function, independent of the policy being followed. This dramat-
ically simplifies the analysis of the algorithm and enabled early convergence proofs.
The policy still has an e↵ect in that it determines which state–action pairs are visited
and updated. However, all that is required for correct convergence is that all pairs
continue to be updated. As we observed in Chapter 5, this is a minimal requirement
in the sense that any method guaranteed to find optimal behavior in the general case
must require it. Under this assumption and a variant of the usual stochastic approx-
imation conditions on the sequence of step-size parameters, Q has been shown to
converge with probability 1 to q⇤. The Q-learning algorithm is shown in procedural
form in Figure 6.10.

What is the backup diagram for Q-learning? The rule (6.6) updates a state–action
pair, so the top node, the root of the backup, must be a small, filled action node.
The backup is also from action nodes, maximizing over all those actions possible in
the next state. Thus the bottom nodes of the backup diagram should be all these
action nodes. Finally, remember that we indicate taking the maximum of these “next
action” nodes with an arc across them (Figure 3.7). Can you guess now what the
diagram is? If so, please do make a guess before turning to the answer in Figure 6.12.

Initialize Q(s, a), 8s 2 S, a 2 A(s), arbitrarily, and Q(terminal-state, ·) = 0
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., ✏-greedy)
Take action A, observe R, S0

Q(S, A) Q(S, A) + ↵
⇥
R + � maxa Q(S0, a)�Q(S, A)

⇤

S S0;
until S is terminal

Figure 6.10: Q-learning: An o↵-policy TD control algorithm.

One-step Q-learning:

Cliffwalking

ε−greedy, ε = 0.1

R

R

Multi-step methods

Monte Carlo:

TD:
Use Vt to estimate remaining return

On random walk task, TD outperformed MC

Monte Carlo vs TD

7.1. N -STEP TD PREDICTION 153

More formally, consider the backup applied to state St as a result of the state–
reward sequence, St, Rt+1, St+1, Rt+2, . . . , RT , ST (omitting the actions for simplic-
ity). We know that in Monte Carlo backups the estimate of v⇡(St) is updated in the
direction of the complete return:

Gt
.
= Rt+1 + �Rt+2 + �2Rt+3 + · · · + �T�t�1RT ,

where T is the last time step of the episode. Let us call this quantity the target of
the backup. Whereas in Monte Carlo backups the target is the return, in one-step
backups the target is the first reward plus the discounted estimated value of the next
state, which we call the one-step return:

G(1)
t

.
= Rt+1 + �Vt(St+1),

where Vt : S ! R here is the estimate at time t of v⇡, in which case it makes sense
that �Vt(St+1) should take the place of the remaining terms �Rt+2 + �2Rt+3 + · · · +
�T�t�1RT , as we discussed in the previous chapter. Our point now is that this idea
makes just as much sense after two steps as it does after one. The target for a
two-step target is the two-step return:

G(2)
t

.
= Rt+1 + �Rt+2 + �2Vt(St+2),

where now �2Vt(St+2) corrects for the absence of the terms �2Rt+3 + �3Rt+4 + · · · +
�T�t�1RT . Similarly, the target for an arbitrary n-step backup is the n-step return:

G(n)
t

.
= Rt+1 + �Rt+2 + �2 + · · · + �n�1Rt+n + �nVt(St+n), 8n � 1. (7.1)

All the n-step returns can be considered approximations to the full return, truncated
after n steps and then corrected for the remaining missing terms by Vt(St+n).

The time t + n is called the horizon of the n-step return. If the episode ends
before the horizon is reached, then the truncation in an n-step return e↵ectively
occurs at the episode’s end, resulting in the conventional complete return. In other

words, if t+n � T , then G(n)
t = Gt. Thus, the last n n-step returns of an episode are

always complete returns, and an infinite-step return is always a complete return. This
definition enables us to treat Monte Carlo methods as the special case of infinite-step
targets. All of this is consistent with the tricks for treating episodic and continuing
tasks equivalently that we introduced in Section 3.4. There we chose to treat the
terminal state as a state that always transitions to itself with zero reward. Under
this trick, all n-step returns that last up to or past termination have the same value
as the complete return.

An n-step backup is defined to be a backup toward the n-step return. In the tab-
ular, state-value case, the n-step backup at time t produces the following increment
�t(St) in the estimated value Vt(St):

�t(St)
.
= ↵

h
G(n)

t � Vt(St)
i
, (7.2)

116 CHAPTER 7. N -STEP BOOTSTRAPPING

updates, four-step updates, and so on. Figure 7.1 shows the update diagrams of the spectrum of n-step
updates for v⇡, with the one-step TD update on the left and the up-until-termination Monte Carlo
update on the right.

1-step TD
and TD(0) 2-step TD 3-step TD n-step TD

∞-step TD
and Monte Carlo

···

· · ·

···

· · ·

Figure 7.1: The update diagrams of n-step methods. These methods form a spectrum ranging from one-step
TD methods to Monte Carlo methods.

The methods that use n-step updates are still TD methods because they still change an earlier
estimate based on how it di↵ers from a later estimate. Now the later estimate is not one step later,
but n steps later. Methods in which the temporal di↵erence extends over n steps are called n-step TD
methods. The TD methods introduced in the previous chapter all used one-step updates, which is why
we called them one-step TD methods.

More formally, consider the update of the estimated value of state St as a result of the state–reward
sequence, St, Rt+1, St+1, Rt+2, . . . , RT , ST (omitting the actions). We know that in Monte Carlo updates
the estimate of v⇡(St) is updated in the direction of the complete return:

Gt
.
= Rt+1 + �Rt+2 + �2Rt+3 + · · · + �T�t�1RT ,

where T is the last time step of the episode. Let us call this quantity the target of the update. Whereas
in Monte Carlo updates the target is the return, in one-step updates the target is the first reward plus
the discounted estimated value of the next state, which we call the one-step return:

Gt:t+1
.
= Rt+1 + �Vt(St+1),

where Vt : S ! R here is the estimate at time t of v⇡. The subscripts on Gt:t+1 indicate that it is a
truncated return for time t using rewards up until time t + 1, with the discounted estimate �Vt(St+1)
taking the place of the other terms �Rt+2 + �2Rt+3 + · · · + �T�t�1RT of the full return, as discussed
in the previous chapter. Our point now is that this idea makes just as much sense after two steps as it
does after one. The target for a two-step update is the two-step return:

Gt:t+2
.
= Rt+1 + �Rt+2 + �2Vt+1(St+2)

where now �2Vt+1(St+2) corrects for the absence of the terms �2Rt+3 + �3Rt+4 + · · · + �T�t�1RT .
Similarly, the target for an arbitrary n-step update is the n-step return:

Gt:t+n
.
= Rt+1 + �Rt+2 + · · · + �n�1Rt+n + �nVt+n�1(St+n), (7.1)

130 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

Example 6.2: Random Walk In this example we empirically compare the
prediction abilities of TD(0) and constant-↵ MC applied to the small Markov reward
process shown in the upper part of Figure 6.3. All episodes start in the center
state, C, and proceed either left or right by one state on each step, with equal
probability. This behavior can be thought of as due to the combined e↵ect of a
fixed policy and an environment’s state-transition probabilities, but we do not care
which; we are concerned only with predicting returns however they are generated.
Episodes terminate either on the extreme left or the extreme right. When an episode
terminates on the right, a reward of +1 occurs; all other rewards are zero. For
example, a typical epsiode might consist of the following state-and-reward sequence:
C, 0, B, 0, C, 0, D, 0, E, 1. Because this task is undiscounted, the true value of each
state is the probability of terminating on the right if starting from that state. Thus,
the true value of the center state is v⇡(C) = 0.5. The true values of all the states, A
through E, are 1

6 , 2
6 , 3

6 , 4
6 , and 5

6 . The left part of Figure 6.3 shows the values learned
by TD(0) approaching the true values as more episodes are experienced. Averaging
over many episode sequences, the right part of the figure shows the average error
in the predictions found by TD(0) and constant-↵ MC, for a variety of values of ↵,
as a function of number of episodes. In all cases the approximate value function
was initialized to the intermediate value V (s) = 0.5, for all s. The TD method was
consistently better than the MC method on this task.

0.8

0

0.2

0.4

0.6

A B C D E

0

10

1

100

State

Estimated

value

true

values

A B C D E
100000

start

Estimated
value

0

0.05

0.1

0.15

0.2

0.25

0 25 50 75 100

Walks / Episodes

TD

MC

!=.05

!=.01

!=.1

!=.15

!=.02

!=.04

!=.03

RMS error,
averaged
over states

Empirical RMS error,
averaged over states

Figure 6.3: Results with the 5-state random walk. Above: The small Markov reward
process generating the episodes. Left: Results from a single run after various numbers of
episodes. The estimate after 100 episodes is about as close as they ever get to the true
values; with a constant step-size parameter (↵ = 0.1 in this example), the values fluctuate
indefinitely in response to the outcomes of the most recent episodes. Right: Learning curves
for TD(0) and constant-↵ MC methods, for various values of ↵. The performance measure
shown is the root mean-squared (RMS) error between the value function learned and the
true value function, averaged over the five states. These data are averages over 100 di↵erent
sequences of episodes.

Is TD always better?

0 0 0 0 0 1
0 0 0 0 0 0

TD:

0 0 0 0 0 1
MC:

1 1 1 1 1 1

1

Consider: γ = 1, α = 1

variance-bias trade-off

variance bias
ideal low low
TD low high
MC high* low

*In tasks with high environment stochasticity
 and/or policy stochasticity.

Monte Carlo:

TD:
Use Vt to estimate remaining return

n-step TD:
2-step return:

n-step return:

with

n-step Update Targets

7.1. N -STEP TD PREDICTION 153

More formally, consider the backup applied to state St as a result of the state–
reward sequence, St, Rt+1, St+1, Rt+2, . . . , RT , ST (omitting the actions for simplic-
ity). We know that in Monte Carlo backups the estimate of v⇡(St) is updated in the
direction of the complete return:

Gt
.
= Rt+1 + �Rt+2 + �2Rt+3 + · · · + �T�t�1RT ,

where T is the last time step of the episode. Let us call this quantity the target of
the backup. Whereas in Monte Carlo backups the target is the return, in one-step
backups the target is the first reward plus the discounted estimated value of the next
state, which we call the one-step return:

G(1)
t

.
= Rt+1 + �Vt(St+1),

where Vt : S ! R here is the estimate at time t of v⇡, in which case it makes sense
that �Vt(St+1) should take the place of the remaining terms �Rt+2 + �2Rt+3 + · · · +
�T�t�1RT , as we discussed in the previous chapter. Our point now is that this idea
makes just as much sense after two steps as it does after one. The target for a
two-step target is the two-step return:

G(2)
t

.
= Rt+1 + �Rt+2 + �2Vt(St+2),

where now �2Vt(St+2) corrects for the absence of the terms �2Rt+3 + �3Rt+4 + · · · +
�T�t�1RT . Similarly, the target for an arbitrary n-step backup is the n-step return:

G(n)
t

.
= Rt+1 + �Rt+2 + �2 + · · · + �n�1Rt+n + �nVt(St+n), 8n � 1. (7.1)

All the n-step returns can be considered approximations to the full return, truncated
after n steps and then corrected for the remaining missing terms by Vt(St+n).

The time t + n is called the horizon of the n-step return. If the episode ends
before the horizon is reached, then the truncation in an n-step return e↵ectively
occurs at the episode’s end, resulting in the conventional complete return. In other

words, if t+n � T , then G(n)
t = Gt. Thus, the last n n-step returns of an episode are

always complete returns, and an infinite-step return is always a complete return. This
definition enables us to treat Monte Carlo methods as the special case of infinite-step
targets. All of this is consistent with the tricks for treating episodic and continuing
tasks equivalently that we introduced in Section 3.4. There we chose to treat the
terminal state as a state that always transitions to itself with zero reward. Under
this trick, all n-step returns that last up to or past termination have the same value
as the complete return.

An n-step backup is defined to be a backup toward the n-step return. In the tab-
ular, state-value case, the n-step backup at time t produces the following increment
�t(St) in the estimated value Vt(St):

�t(St)
.
= ↵

h
G(n)

t � Vt(St)
i
, (7.2)

116 CHAPTER 7. N -STEP BOOTSTRAPPING

updates, four-step updates, and so on. Figure 7.1 shows the update diagrams of the spectrum of n-step
updates for v⇡, with the one-step TD update on the left and the up-until-termination Monte Carlo
update on the right.

1-step TD
and TD(0) 2-step TD 3-step TD n-step TD

∞-step TD
and Monte Carlo

···

· · ·

···

· · ·

Figure 7.1: The update diagrams of n-step methods. These methods form a spectrum ranging from one-step
TD methods to Monte Carlo methods.

The methods that use n-step updates are still TD methods because they still change an earlier
estimate based on how it di↵ers from a later estimate. Now the later estimate is not one step later,
but n steps later. Methods in which the temporal di↵erence extends over n steps are called n-step TD
methods. The TD methods introduced in the previous chapter all used one-step updates, which is why
we called them one-step TD methods.

More formally, consider the update of the estimated value of state St as a result of the state–reward
sequence, St, Rt+1, St+1, Rt+2, . . . , RT , ST (omitting the actions). We know that in Monte Carlo updates
the estimate of v⇡(St) is updated in the direction of the complete return:

Gt
.
= Rt+1 + �Rt+2 + �2Rt+3 + · · · + �T�t�1RT ,

where T is the last time step of the episode. Let us call this quantity the target of the update. Whereas
in Monte Carlo updates the target is the return, in one-step updates the target is the first reward plus
the discounted estimated value of the next state, which we call the one-step return:

Gt:t+1
.
= Rt+1 + �Vt(St+1),

where Vt : S ! R here is the estimate at time t of v⇡. The subscripts on Gt:t+1 indicate that it is a
truncated return for time t using rewards up until time t + 1, with the discounted estimate �Vt(St+1)
taking the place of the other terms �Rt+2 + �2Rt+3 + · · · + �T�t�1RT of the full return, as discussed
in the previous chapter. Our point now is that this idea makes just as much sense after two steps as it
does after one. The target for a two-step update is the two-step return:

Gt:t+2
.
= Rt+1 + �Rt+2 + �2Vt+1(St+2)

where now �2Vt+1(St+2) corrects for the absence of the terms �2Rt+3 + �3Rt+4 + · · · + �T�t�1RT .
Similarly, the target for an arbitrary n-step update is the n-step return:

Gt:t+n
.
= Rt+1 + �Rt+2 + · · · + �n�1Rt+n + �nVt+n�1(St+n), (7.1)

116 CHAPTER 7. N -STEP BOOTSTRAPPING

updates, four-step updates, and so on. Figure 7.1 shows the update diagrams of the spectrum of n-step
updates for v⇡, with the one-step TD update on the left and the up-until-termination Monte Carlo
update on the right.

1-step TD
and TD(0) 2-step TD 3-step TD n-step TD

∞-step TD
and Monte Carlo

···

· · ·

···

· · ·

Figure 7.1: The update diagrams of n-step methods. These methods form a spectrum ranging from one-step
TD methods to Monte Carlo methods.

The methods that use n-step updates are still TD methods because they still change an earlier
estimate based on how it di↵ers from a later estimate. Now the later estimate is not one step later,
but n steps later. Methods in which the temporal di↵erence extends over n steps are called n-step TD
methods. The TD methods introduced in the previous chapter all used one-step updates, which is why
we called them one-step TD methods.

More formally, consider the update of the estimated value of state St as a result of the state–reward
sequence, St, Rt+1, St+1, Rt+2, . . . , RT , ST (omitting the actions). We know that in Monte Carlo updates
the estimate of v⇡(St) is updated in the direction of the complete return:

Gt
.
= Rt+1 + �Rt+2 + �2Rt+3 + · · · + �T�t�1RT ,

where T is the last time step of the episode. Let us call this quantity the target of the update. Whereas
in Monte Carlo updates the target is the return, in one-step updates the target is the first reward plus
the discounted estimated value of the next state, which we call the one-step return:

Gt:t+1
.
= Rt+1 + �Vt(St+1),

where Vt : S ! R here is the estimate at time t of v⇡. The subscripts on Gt:t+1 indicate that it is a
truncated return for time t using rewards up until time t + 1, with the discounted estimate �Vt(St+1)
taking the place of the other terms �Rt+2 + �2Rt+3 + · · · + �T�t�1RT of the full return, as discussed
in the previous chapter. Our point now is that this idea makes just as much sense after two steps as it
does after one. The target for a two-step update is the two-step return:

Gt:t+2
.
= Rt+1 + �Rt+2 + �2Vt+1(St+2)

where now �2Vt+1(St+2) corrects for the absence of the terms �2Rt+3 + �3Rt+4 + · · · + �T�t�1RT .
Similarly, the target for an arbitrary n-step update is the n-step return:

Gt:t+n
.
= Rt+1 + �Rt+2 + · · · + �n�1Rt+n + �nVt+n�1(St+n), (7.1)

116 CHAPTER 7. N -STEP BOOTSTRAPPING

updates, four-step updates, and so on. Figure 7.1 shows the update diagrams of the spectrum of n-step
updates for v⇡, with the one-step TD update on the left and the up-until-termination Monte Carlo
update on the right.

1-step TD
and TD(0) 2-step TD 3-step TD n-step TD

∞-step TD
and Monte Carlo

···

· · ·

···

· · ·

Figure 7.1: The update diagrams of n-step methods. These methods form a spectrum ranging from one-step
TD methods to Monte Carlo methods.

The methods that use n-step updates are still TD methods because they still change an earlier
estimate based on how it di↵ers from a later estimate. Now the later estimate is not one step later,
but n steps later. Methods in which the temporal di↵erence extends over n steps are called n-step TD
methods. The TD methods introduced in the previous chapter all used one-step updates, which is why
we called them one-step TD methods.

More formally, consider the update of the estimated value of state St as a result of the state–reward
sequence, St, Rt+1, St+1, Rt+2, . . . , RT , ST (omitting the actions). We know that in Monte Carlo updates
the estimate of v⇡(St) is updated in the direction of the complete return:

Gt
.
= Rt+1 + �Rt+2 + �2Rt+3 + · · · + �T�t�1RT ,

where T is the last time step of the episode. Let us call this quantity the target of the update. Whereas
in Monte Carlo updates the target is the return, in one-step updates the target is the first reward plus
the discounted estimated value of the next state, which we call the one-step return:

Gt:t+1
.
= Rt+1 + �Vt(St+1),

where Vt : S ! R here is the estimate at time t of v⇡. The subscripts on Gt:t+1 indicate that it is a
truncated return for time t using rewards up until time t + 1, with the discounted estimate �Vt(St+1)
taking the place of the other terms �Rt+2 + �2Rt+3 + · · · + �T�t�1RT of the full return, as discussed
in the previous chapter. Our point now is that this idea makes just as much sense after two steps as it
does after one. The target for a two-step update is the two-step return:

Gt:t+2
.
= Rt+1 + �Rt+2 + �2Vt+1(St+2)

where now �2Vt+1(St+2) corrects for the absence of the terms �2Rt+3 + �3Rt+4 + · · · + �T�t�1RT .
Similarly, the target for an arbitrary n-step update is the n-step return:

Gt:t+n
.
= Rt+1 + �Rt+2 + · · · + �n�1Rt+n + �nVt+n�1(St+n), (7.1)

7.1. N -STEP TD PREDICTION 117

for all n, t such that n � 1 and 0  t < T�n. All n-step returns can be considered approximations to the
full return, truncated after n steps and then corrected for the remaining missing terms by Vt+n�1(St+n).
If t+n � T (if the n-step return extends to or beyond termination), then all the missing terms are taken
as zero, and the n-step return defined to be equal to the ordinary full return (Gt:t+n

.
= Gt if t+n � T).

Note that n-step returns for n > 1 involve future rewards and states that are not available at the
time of transition from t to t + 1. No real algorithm can use the n-step return until after it has seen
Rt+n and computed Vt+n�1. The first time these are available is t+n. The natural state-value learning
algorithm for using n-step returns is thus

Vt+n(St)
.
= Vt+n�1(St) + ↵

⇥
Gt:t+n � Vt+n�1(St)

⇤
, 0  t < T, (7.2)

while the values of all other states remain unchanged: Vt+n(s) = Vt+n�1(s), for all s 6=St. We call this
algorithm n-step TD. Note that no changes at all are made during the first n� 1 steps of each episode.
To make up for that, an equal number of additional updates are made at the end of the episode, after
termination and before starting the next episode.

n-step TD for estimating V ⇡ v⇡

Initialize V (s) arbitrarily, s 2 S

Parameters: step size ↵ 2 (0, 1], a positive integer n
All store and access operations (for St and Rt) can take their index mod n

Repeat (for each episode):
Initialize and store S0 6= terminal
T 1
For t = 0, 1, 2, . . . :
| If t < T , then:
| Take an action according to ⇡(·|St)
| Observe and store the next reward as Rt+1 and the next state as St+1

| If St+1 is terminal, then T t + 1
| ⌧ t� n + 1 (⌧ is the time whose state’s estimate is being updated)
| If ⌧ � 0:

| G
Pmin(⌧+n,T)

i=⌧+1 �i�⌧�1Ri

| If ⌧ + n < T , then: G G + �nV (S⌧+n) (G⌧ :⌧+n)
| V (S⌧) V (S⌧) + ↵ [G� V (S⌧)]
Until ⌧ = T � 1

Exercise 7.1 In Chapter 6 we noted that the Monte Carlo error can be written as the sum of TD
errors (6.6) if the value estimates don’t change from step to step. Show that the n-step error used in
(7.2) can also be written as a sum TD errors (again if the value estimates don’t change) generalizing
the earlier result. ⇤

Exercise 7.2 (programming) With an n-step method, the value estimates do change from step to
step, so an algorithm that used the sum of TD errors (see previous exercise) in place of the error in
(7.2) would actually be a slightly di↵erent algorithm. Would it be a better algorithm or a worse one?
Devise and program a small experiment to answer this question empirically. ⇤

The n-step return uses the value function Vt+n�1 to correct for the missing rewards beyond Rt+n.
An important property of n-step returns is that their expectation is guaranteed to be a better estimate
of v⇡ than Vt+n�1 is, in a worst-state sense. That is, the worst error of the expected n-step return is

n-step TD

Recall the n-step return:

Of course, this is not available until time t+n

The natural algorithm is thus to wait until then:

This is called n-step TD

116 CHAPTER 7. N -STEP BOOTSTRAPPING

updates, four-step updates, and so on. Figure 7.1 shows the update diagrams of the spectrum of n-step
updates for v⇡, with the one-step TD update on the left and the up-until-termination Monte Carlo
update on the right.

1-step TD
and TD(0) 2-step TD 3-step TD n-step TD

∞-step TD
and Monte Carlo

···

· · ·

···

· · ·

Figure 7.1: The update diagrams of n-step methods. These methods form a spectrum ranging from one-step
TD methods to Monte Carlo methods.

The methods that use n-step updates are still TD methods because they still change an earlier
estimate based on how it di↵ers from a later estimate. Now the later estimate is not one step later,
but n steps later. Methods in which the temporal di↵erence extends over n steps are called n-step TD
methods. The TD methods introduced in the previous chapter all used one-step updates, which is why
we called them one-step TD methods.

More formally, consider the update of the estimated value of state St as a result of the state–reward
sequence, St, Rt+1, St+1, Rt+2, . . . , RT , ST (omitting the actions). We know that in Monte Carlo updates
the estimate of v⇡(St) is updated in the direction of the complete return:

Gt
.
= Rt+1 + �Rt+2 + �2Rt+3 + · · · + �T�t�1RT ,

where T is the last time step of the episode. Let us call this quantity the target of the update. Whereas
in Monte Carlo updates the target is the return, in one-step updates the target is the first reward plus
the discounted estimated value of the next state, which we call the one-step return:

Gt:t+1
.
= Rt+1 + �Vt(St+1),

where Vt : S ! R here is the estimate at time t of v⇡. The subscripts on Gt:t+1 indicate that it is a
truncated return for time t using rewards up until time t + 1, with the discounted estimate �Vt(St+1)
taking the place of the other terms �Rt+2 + �2Rt+3 + · · · + �T�t�1RT of the full return, as discussed
in the previous chapter. Our point now is that this idea makes just as much sense after two steps as it
does after one. The target for a two-step update is the two-step return:

Gt:t+2
.
= Rt+1 + �Rt+2 + �2Vt+1(St+2)

where now �2Vt+1(St+2) corrects for the absence of the terms �2Rt+3 + �3Rt+4 + · · · + �T�t�1RT .
Similarly, the target for an arbitrary n-step update is the n-step return:

Gt:t+n
.
= Rt+1 + �Rt+2 + · · · + �n�1Rt+n + �nVt+n�1(St+n), (7.1)

7.1. N -STEP TD PREDICTION 117

for all n, t such that n � 1 and 0  t < T�n. All n-step returns can be considered approximations to the
full return, truncated after n steps and then corrected for the remaining missing terms by Vt+n�1(St+n).
If t+n � T (if the n-step return extends to or beyond termination), then all the missing terms are taken
as zero, and the n-step return defined to be equal to the ordinary full return (Gt:t+n

.
= Gt if t+n � T).

Note that n-step returns for n > 1 involve future rewards and states that are not available at the
time of transition from t to t + 1. No real algorithm can use the n-step return until after it has seen
Rt+n and computed Vt+n�1. The first time these are available is t+n. The natural state-value learning
algorithm for using n-step returns is thus

Vt+n(St)
.
= Vt+n�1(St) + ↵

⇥
Gt:t+n � Vt+n�1(St)

⇤
, 0  t < T, (7.2)

while the values of all other states remain unchanged: Vt+n(s) = Vt+n�1(s), for all s 6=St. We call this
algorithm n-step TD. Note that no changes at all are made during the first n� 1 steps of each episode.
To make up for that, an equal number of additional updates are made at the end of the episode, after
termination and before starting the next episode.

n-step TD for estimating V ⇡ v⇡

Initialize V (s) arbitrarily, s 2 S

Parameters: step size ↵ 2 (0, 1], a positive integer n
All store and access operations (for St and Rt) can take their index mod n

Repeat (for each episode):
Initialize and store S0 6= terminal
T 1
For t = 0, 1, 2, . . . :
| If t < T , then:
| Take an action according to ⇡(·|St)
| Observe and store the next reward as Rt+1 and the next state as St+1

| If St+1 is terminal, then T t + 1
| ⌧ t� n + 1 (⌧ is the time whose state’s estimate is being updated)
| If ⌧ � 0:

| G
Pmin(⌧+n,T)

i=⌧+1 �i�⌧�1Ri

| If ⌧ + n < T , then: G G + �nV (S⌧+n) (G⌧ :⌧+n)
| V (S⌧) V (S⌧) + ↵ [G� V (S⌧)]
Until ⌧ = T � 1

Exercise 7.1 In Chapter 6 we noted that the Monte Carlo error can be written as the sum of TD
errors (6.6) if the value estimates don’t change from step to step. Show that the n-step error used in
(7.2) can also be written as a sum TD errors (again if the value estimates don’t change) generalizing
the earlier result. ⇤

Exercise 7.2 (programming) With an n-step method, the value estimates do change from step to
step, so an algorithm that used the sum of TD errors (see previous exercise) in place of the error in
(7.2) would actually be a slightly di↵erent algorithm. Would it be a better algorithm or a worse one?
Devise and program a small experiment to answer this question empirically. ⇤

The n-step return uses the value function Vt+n�1 to correct for the missing rewards beyond Rt+n.
An important property of n-step returns is that their expectation is guaranteed to be a better estimate
of v⇡ than Vt+n�1 is, in a worst-state sense. That is, the worst error of the expected n-step return is

n-step TD

19-state Random Walk
7.2. N -STEP SARSA 157

↵

Average
RMS error

over 19 states
and first 10
episodes n=1

n=2
n=4

n=8

n=16

n=32

n=32n=64128512
256

Figure 7.2: Performance of n-step TD methods as a function of ↵, for various values of n,
on a 19-state random walk task (Example 7.1).

parameter settings). Note that methods with an intermediate value of n worked best.
This illustrates how the generalization of TD and Monte Carlo methods to n-step
methods can potentially perform better than either of the two extreme methods.

Exercise 7.1 Why do you think a larger random walk task (19 states instead of
5) was used in the examples of this chapter? Would a smaller walk have shifted the
advantage to a di↵erent value of n? How about the change in left-side outcome from
0 to �1 made in the larger walk? Do you think that made any di↵erence in the best
value of n?

7.2 n-step Sarsa

How can n-step methods be used not just for prediction, but for control? In this
section we show how n-step methods can be combined with Sarsa in a straightforward
way to produce an on-policy TD control method. The n-step version of Sarsa we call
n-step Sarsa, and the original version presented in the previous chapter we henceforth
call one-step Sarsa, or Sarsa(0).

The main idea is to simply switch states for actions (state–action pairs) and then
use an "-greedy policy. The backup diagrams for n-step Sarsa, shown in Figure 7.3
are like those of n-step TD (Figure 7.1), strings of alternating states and actions,
except that the Sarsa ones all start and end with an action rather a state. We redefine
n-step returns in terms of estimated action values:

G(n)
t , Rt+1+�Rt+2+· · ·+�n�1Rt+n+�nQt+n�1(St+n, At+n), n � 1, 0  t < T �n,

(7.4)

n-step TD
results

An intermediate α is best
An intermediate n is best

On-policy n-step control is straightforward

Action-value form of n-step return

n-step Sarsa:

152 CHAPTER 7. N -STEP BOOTSTRAPPING

7.2 n-step Sarsa

How can n-step methods be used not just for prediction, but for control? In this
section we show how n-step methods can be combined with Sarsa in a straightforward
way to produce an on-policy TD control method. The n-step version of Sarsa we call
n-step Sarsa, and the original version presented in the previous chapter we henceforth
call one-step Sarsa, or Sarsa(0).

The main idea is to simply switch states for actions (state–action pairs) and then
use an "-greedy policy. The backup diagrams for n-step Sarsa (shown in Figure 7.3),
like those of n-step TD (Figure 7.1), are strings of alternating states and actions,
except that the Sarsa ones all start and end with an action rather a state. We redefine
n-step returns (update targets) in terms of estimated action values:

Gt:t+n
.
= Rt+1+�Rt+2+· · ·+�n�1Rt+n+�nQt+n�1(St+n, At+n), n � 1, 0  t < T�n,

(7.4)

with Gt:t+n
.
= Gt if t + n � T . The natural algorithm is then

Qt+n(St, At)
.
= Qt+n�1(St, At)+↵ [Gt:t+n � Qt+n�1(St, At)] , 0  t < T, (7.5)

while the values of all other states remain unchanged: Qt+n(s, a) = Qt+n�1(s, a),
for all s, a such that s 6= St or a 6= At. This is the algorithm we call n-step Sarsa.

1-step Sarsa
aka Sarsa(0) 2-step Sarsa 3-step Sarsa n-step Sarsa

∞-step Sarsa
aka Monte Carlo

n-step
Expected Sarsa

Figure 7.3: The backup diagrams for the spectrum of n-step methods for state–action values.
They range from the one-step update of Sarsa(0) to the up-until-termination update of the
Monte Carlo method. In between are the n-step updates, based on n steps of real rewards
and the estimated value of the nth next state–action pair, all appropriately discounted. On
the far right is the backup diagram for n-step Expected Sarsa.

152 CHAPTER 7. N -STEP BOOTSTRAPPING

7.2 n-step Sarsa

How can n-step methods be used not just for prediction, but for control? In this
section we show how n-step methods can be combined with Sarsa in a straightforward
way to produce an on-policy TD control method. The n-step version of Sarsa we call
n-step Sarsa, and the original version presented in the previous chapter we henceforth
call one-step Sarsa, or Sarsa(0).

The main idea is to simply switch states for actions (state–action pairs) and then
use an "-greedy policy. The backup diagrams for n-step Sarsa (shown in Figure 7.3),
like those of n-step TD (Figure 7.1), are strings of alternating states and actions,
except that the Sarsa ones all start and end with an action rather a state. We redefine
n-step returns (update targets) in terms of estimated action values:

Gt:t+n
.
= Rt+1+�Rt+2+· · ·+�n�1Rt+n+�nQt+n�1(St+n, At+n), n � 1, 0  t < T�n,

(7.4)

with Gt:t+n
.
= Gt if t + n � T . The natural algorithm is then

Qt+n(St, At)
.
= Qt+n�1(St, At)+↵ [Gt:t+n � Qt+n�1(St, At)] , 0  t < T, (7.5)

while the values of all other states remain unchanged: Qt+n(s, a) = Qt+n�1(s, a),
for all s, a such that s 6= St or a 6= At. This is the algorithm we call n-step Sarsa.

1-step Sarsa
aka Sarsa(0) 2-step Sarsa 3-step Sarsa n-step Sarsa

∞-step Sarsa
aka Monte Carlo

n-step
Expected Sarsa

Figure 7.3: The backup diagrams for the spectrum of n-step methods for state–action values.
They range from the one-step update of Sarsa(0) to the up-until-termination update of the
Monte Carlo method. In between are the n-step updates, based on n steps of real rewards
and the estimated value of the nth next state–action pair, all appropriately discounted. On
the far right is the backup diagram for n-step Expected Sarsa.

Off-policy n-step control is challenging

Recall: off-policy updating involves a behaviour policy, b,
and an estimation policy, π.

Off-policy multi-step updates is possible using Importance
Sampling

Each update target is multiplied by importance sampling
ratio:  

Off-policy n-step TD:

Off-policy n-step updates suffer from a large variance  

7.3. N -STEP OFF-POLICY LEARNING BY IMPORTANCE SAMPLING 121

except with the n-step return redefined as

Gt:t+n
.
= Rt+1 + · · · + �n�1Rt+n + �n

X

a

⇡(a|St+n)Qt+n�1(St+n, a), (7.6)

for all n and t such that n � 1 and 0  t  T � n.

7.3 n-step O↵-policy Learning by Importance Sampling

Recall that o↵-policy learning is learning the value function for one policy, ⇡, while following another
policy, b. Often, ⇡ is the greedy policy for the current action-value-function estimate, and b is a more
exploratory policy, perhaps "-greedy. In order to use the data from b we must take into account the
di↵erence between the two policies, using their relative probability of taking the actions that were taken
(see Section 5.5). In n-step methods, returns are constructed over n steps, so we are interested in the
relative probability of just those n actions. For example, to make a simple o↵-policy version of n-step
TD, the update for time t (actually made at time t + n) can simply be weighted by ⇢t:t+n�1:

Vt+n(St)
.
= Vt+n�1(St) + ↵⇢t:t+n�1 [Gt:t+n � Vt+n�1(St)] , 0  t < T, (7.7)

where ⇢t:t+n�1, called the importance sampling ratio, is the relative probability under the two policies
of taking the n actions from At to At+n�1 (cf. Eq. 5.3):

⇢t:h
.
=

min(h,T�1)Y

k=t

⇡(Ak|Sk)

b(Ak|Sk)
. (7.8)

For example, if any one of the actions would never be taken by ⇡ (i.e., ⇡(Ak|Sk) = 0) then the n-step
return should be given zero weight and be totally ignored. On the other hand, if by chance an action is
taken that ⇡ would take with much greater probability than b does, then this will increase the weight
that would otherwise be given to the return. This makes sense because that action is characteristic of ⇡
(and therefore we want to learn about it) but is selected only rarely by b and thus rarely appears in the
data. To make up for this we have to over-weight it when it does occur. Note that if the two policies
are actually the same (the on-policy case) then the importance sampling ratio is always 1. Thus our
new update (7.7) generalizes and can completely replace our earlier n-step TD update. Similarly, our
previous n-step Sarsa update can be completely replaced by a simple o↵-policy form:

Qt+n(St, At)
.
= Qt+n�1(St, At) + ↵⇢t+1:t+n�1 [Gt:t+n � Qt+n�1(St, At)] , (7.9)

for 0  t < T . Note that the importance sampling ratio here starts one step later than for n-step TD
(above). This is because here we are updating a state–action pair. We do not have to care how likely
we were to select the action; now that we have selected it we want to learn fully from what happens,
with importance sampling only for subsequent actions. Pseudocode for the full algorithm is shown in
the box on the next page.

The o↵-policy version of n-step Expected Sarsa would use the same update as above for n-step Sarsa
except that the importance sampling ratio would have one less factor in it. That is, the above equation
would use ⇢t+1:t+n�2 instead of ⇢t+1:t+n�1, and of course it would use the Expected Sarsa version of
the n-step return (7.6). This is because in Expected Sarsa all possible actions are taken into account
in the last state; the one actually taken has no e↵ect and does not have to be corrected for.

7.3. N -STEP OFF-POLICY LEARNING BY IMPORTANCE SAMPLING 121

except with the n-step return redefined as

Gt:t+n
.
= Rt+1 + · · · + �n�1Rt+n + �n

X

a

⇡(a|St+n)Qt+n�1(St+n, a), (7.6)

for all n and t such that n � 1 and 0  t  T � n.

7.3 n-step O↵-policy Learning by Importance Sampling

Recall that o↵-policy learning is learning the value function for one policy, ⇡, while following another
policy, b. Often, ⇡ is the greedy policy for the current action-value-function estimate, and b is a more
exploratory policy, perhaps "-greedy. In order to use the data from b we must take into account the
di↵erence between the two policies, using their relative probability of taking the actions that were taken
(see Section 5.5). In n-step methods, returns are constructed over n steps, so we are interested in the
relative probability of just those n actions. For example, to make a simple o↵-policy version of n-step
TD, the update for time t (actually made at time t + n) can simply be weighted by ⇢t:t+n�1:

Vt+n(St)
.
= Vt+n�1(St) + ↵⇢t:t+n�1 [Gt:t+n � Vt+n�1(St)] , 0  t < T, (7.7)

where ⇢t:t+n�1, called the importance sampling ratio, is the relative probability under the two policies
of taking the n actions from At to At+n�1 (cf. Eq. 5.3):

⇢t:h
.
=

min(h,T�1)Y

k=t

⇡(Ak|Sk)

b(Ak|Sk)
. (7.8)

For example, if any one of the actions would never be taken by ⇡ (i.e., ⇡(Ak|Sk) = 0) then the n-step
return should be given zero weight and be totally ignored. On the other hand, if by chance an action is
taken that ⇡ would take with much greater probability than b does, then this will increase the weight
that would otherwise be given to the return. This makes sense because that action is characteristic of ⇡
(and therefore we want to learn about it) but is selected only rarely by b and thus rarely appears in the
data. To make up for this we have to over-weight it when it does occur. Note that if the two policies
are actually the same (the on-policy case) then the importance sampling ratio is always 1. Thus our
new update (7.7) generalizes and can completely replace our earlier n-step TD update. Similarly, our
previous n-step Sarsa update can be completely replaced by a simple o↵-policy form:

Qt+n(St, At)
.
= Qt+n�1(St, At) + ↵⇢t+1:t+n�1 [Gt:t+n � Qt+n�1(St, At)] , (7.9)

for 0  t < T . Note that the importance sampling ratio here starts one step later than for n-step TD
(above). This is because here we are updating a state–action pair. We do not have to care how likely
we were to select the action; now that we have selected it we want to learn fully from what happens,
with importance sampling only for subsequent actions. Pseudocode for the full algorithm is shown in
the box on the next page.

The o↵-policy version of n-step Expected Sarsa would use the same update as above for n-step Sarsa
except that the importance sampling ratio would have one less factor in it. That is, the above equation
would use ⇢t+1:t+n�2 instead of ⇢t+1:t+n�1, and of course it would use the Expected Sarsa version of
the n-step return (7.6). This is because in Expected Sarsa all possible actions are taken into account
in the last state; the one actually taken has no e↵ect and does not have to be corrected for.

Value Function Approximation

So far, we discussed tabular methods, where values are stored
and estimated on a per-state basis
This approach only works when the total number of states is
relatively small
RL suffers from the curse of dimensionality: the number of
states tends to grow exponentially with the problem size
Value function approximation scales RL to large (or
continuous) state-spaces

Motivation

Value Function Approximation

V (s) ⇡ v⇡(s) ⇡ v̂(s,w)
.

= w

>
x(s)

.

=
nX

i=1

wi · xi(s)
d

Q(s, a) ⇡ q⇡(s, a) ⇡ q̂(s, a,w)
.

= w

>
x(s, a)

.

=
nX

i=1

wi · xi(s, a)

inner product

transpose ith components

= 1.71

feature
vector

, x(s) =

2

66666666664

0
1
0
1
0
0
0
1

3

77777777775

, x : S ! Rnd

parameter
vector

w 2 Rn, e.g., w =

2

66666666664

2.1
0.01
�1.1
1.2
�0.1
0.01
4.93
0.5

3

77777777775

d

d

w w + ↵ [Targett � q̂(St, At,w)]x(St, At)

w w � ↵rw Error

2
t

 w � ↵rw [Targett � v̂(St,w)]2

 w � 2↵ [Targett � v̂(St,w)]rw [Targett � v̂(St,w)]

 w + ↵ [Targett � v̂(St,w)]rwv̂(St,w)

 w + ↵ [Targett � v̂(St,w)]x(St)

Stochastic Gradient Descent (SGD) is the
idea behind most approximate learning

General SGD:
For VFA:

Chain rule:
Semi-gradient:

Linear case:

Action-value form:

Different features give different
generalization

9.5. FEATURE CONSTRUCTION FOR LINEAR METHODS 207

s0

s

Figure 9.6: Coarse coding. Generalization from state s to state s0 depends on the number
of their features whose receptive fields (in this case, circles) overlap. These states have one
feature in common, so there will be slight generalization between them.

component of ✓) that is a↵ected by learning. If we train at one state, a point in the
space, then the weights of all circles intersecting that state will be a↵ected. Thus, by
(9.8), the approximate value function will be a↵ected at all states within the union
of the circles, with a greater e↵ect the more circles a point has “in common” with
the state, as shown in Figure 9.6. If the circles are small, then the generalization will
be over a short distance, as in Figure 9.7a, whereas if they are large, it will be over a
large distance, as in Figure 9.7b. Moreover, the shape of the features will determine
the nature of the generalization. For example, if they are not strictly circular, but
are elongated in one direction, then generalization will be similarly a↵ected, as in
Figure 9.7c.

Features with large receptive fields give broad generalization, but might also seem
to limit the learned function to a coarse approximation, unable to make discrimina-
tions much finer than the width of the receptive fields. Happily, this is not the case.
Initial generalization from one point to another is indeed controlled by the size and
shape of the receptive fields, but acuity, the finest discrimination ultimately possible,

a) Narrow generalization b) Broad generalization c) Asymmetric generalization

Figure 9.7: Generalization in linear function approximation methods is determined by the
sizes and shapes of the features’ receptive fields. All three of these cases have roughly the
same number and density of features.

9.5. FEATURE CONSTRUCTION FOR LINEAR METHODS 207

s0

s

Figure 9.6: Coarse coding. Generalization from state s to state s0 depends on the number
of their features whose receptive fields (in this case, circles) overlap. These states have one
feature in common, so there will be slight generalization between them.

component of ✓) that is a↵ected by learning. If we train at one state, a point in the
space, then the weights of all circles intersecting that state will be a↵ected. Thus, by
(9.8), the approximate value function will be a↵ected at all states within the union
of the circles, with a greater e↵ect the more circles a point has “in common” with
the state, as shown in Figure 9.6. If the circles are small, then the generalization will
be over a short distance, as in Figure 9.7a, whereas if they are large, it will be over a
large distance, as in Figure 9.7b. Moreover, the shape of the features will determine
the nature of the generalization. For example, if they are not strictly circular, but
are elongated in one direction, then generalization will be similarly a↵ected, as in
Figure 9.7c.

Features with large receptive fields give broad generalization, but might also seem
to limit the learned function to a coarse approximation, unable to make discrimina-
tions much finer than the width of the receptive fields. Happily, this is not the case.
Initial generalization from one point to another is indeed controlled by the size and
shape of the receptive fields, but acuity, the finest discrimination ultimately possible,

a) Narrow generalization b) Broad generalization c) Asymmetric generalization

Figure 9.7: Generalization in linear function approximation methods is determined by the
sizes and shapes of the features’ receptive fields. All three of these cases have roughly the
same number and density of features.

Idea

The width of the receptive fields
determines breadth of generalization

208 CHAPTER 9. ON-POLICY PREDICTION WITH APPROXIMATION

is controlled more by the total number of features.

Example 9.3: Coarseness of Coarse Coding This example illustrates the
e↵ect on learning of the size of the receptive fields in coarse coding. Linear function
approximation based on coarse coding and (9.7) was used to learn a one-dimensional
square-wave function (shown at the top of Figure 9.8). The values of this function
were used as the targets, Ut. With just one dimension, the receptive fields were
intervals rather than circles. Learning was repeated with three di↵erent sizes of the
intervals: narrow, medium, and broad, as shown at the bottom of the figure. All
three cases had the same density of features, about 50 over the extent of the function
being learned. Training examples were generated uniformly at random over this
extent. The step-size parameter was ↵ = 0.2

m , where m is the number of features
that were present at one time. Figure 9.8 shows the functions learned in all three
cases over the course of learning. Note that the width of the features had a strong
e↵ect early in learning. With broad features, the generalization tended to be broad;
with narrow features, only the close neighbors of each trained point were changed,
causing the function learned to be more bumpy. However, the final function learned
was a↵ected only slightly by the width of the features. Receptive field shape tends to
have a strong e↵ect on generalization but little e↵ect on asymptotic solution quality.

10

40

160

640

2560

10240

Narrow
features

desired
function

Medium
features

Broad
features

#Examples
approx-
imation

feature
width

Figure 9.8: Example of feature width’s strong e↵ect on initial generalization (first row) and
weak e↵ect on asymptotic accuracy (last row).

9.5.4 Tile Coding

Tile coding is a form of coarse coding for multi-dimensional continuous spaces that
is flexible and computationally e�cient. It may be the most practical feature repre-
sentation for modern sequential digital computers. Open-source software is available
for many kinds of tile coding.

1D example,
supervised training

Tile coding is coarse coding for digital computers,  
with rectangular receptive fields, controlled overlap

9.5. FEATURE CONSTRUCTION FOR LINEAR METHODS 209

In tile coding the receptive fields of the features are grouped into partitions of the
input space. Each such partition is called a tiling, and each element of the partition
is called a tile. For example, the simplest tiling of a two-dimensional state space is a
uniform grid such as that shown on the left side of Figure 9.9. The tiles or receptive
field here are squares rather than the circles in Figure 9.6. If just this single tiling
were used, then the state indicated by the white spot would be represented by the
single feature whose tile it falls within; generalization would be complete to all states
within the same tile and nonexistent to states outside it. With just one tiling, we
would not have coarse coding by just a case of state aggregation.

To get the strengths of coarse coding requires overlapping receptive fields, and by
definition the tiles of a partition do not overlap. To get true coarse coding with
tile coding, multiple tilings are used, each o↵set by a fraction of a tile width. A
simple case with four tilings is shown on the right side of Figure 9.9. Every state,
such as that indicated by the white spot, falls in exactly one tile in each of the four
tilings. These four tiles correspond to four features that become active when the
state occurs. Specifically, the feature vector �(s) has one component for each tile in
each tiling. In this example there are 4 ⇥ 4 ⇥ 4 = 64 components, all of which will
be 0 except for the four corresponding to the tiles that s falls within. Figure 9.10
shows the advantage of multiple o↵set tilings (coarse coding) over a single tiling on
the 1000-state random walk example.

An immediate practical advantage of tile coding is that, because it works with
partitions, the overall number of features that are active at one time is the same
for any state. Exactly one feature is present in each tiling, so the total number of
features present is always the same as the number of tilings. This allows the step-
size parameter, ↵, to be set in an easy, intuitive way. For example, choosing ↵ = 1

m ,
where m is the number of tilings, results in exact one-trial learning. If the example
s 7! v is trained on, then whatever the prior estimate, v̂(s,✓t), the new estimate will
be v̂(s,✓t+1) = v. Usually one wishes to change more slowly than this, to allow for
generalization and stochastic variation in target outputs. For example, one might
choose ↵ = 1

10m , in which case the estimate for the trained state would move one-

Point in
state space

to be
represented

Tiling 1
Tiling 2

Tiling 3
Tiling 4Continuous

2D state
space

Four active
tiles/features

overlap the point
and are used to

represent it

Figure 9.9: Multiple, overlapping grid-tilings on a limited two-dimensional space. These
tilings are o↵set from one another by a uniform amount in each dimension.

2D example

Example: The Mountain-Car problem

SITUATIONS:  
car's position and velocity

ACTIONS:  
three thrusts: forward,
reverse, none

REWARDS:  
always –1 until car reaches
the goal

Episodic, No Discounting,
𝜸=1

Minimum-Time-to-Goal Problem

Goal

Gravity wins

Values learned while solving Mountain-Car  
with tile coding function approximation

!1.2

Position

0.6

Step 428

Goal

Position

4

0

!
.0
7

.0
7

V
e
lo

c
it
y

V
e
lo

c
it
y

V
e
lo

c
it
y

V
e
lo

c
it
y

V
e
lo

c
it
y

V
e
lo

c
it
y

Position

Position

Position

0

27

0

120

0

104

0

46

Episode 12

Episode 104 Episode 1000 Episode 9000

MOUNTAIN CAR Goal

10.1. EPISODIC SEMI-GRADIENT CONTROL 253

!1.2

Position

0.6

Step 428

Goal

Position

4

0

!
.0
7

.0
7

V
e
lo

c
it
y

V
e
lo

c
it
y

V
e
lo

c
it
y

V
e
lo

c
it
y

V
e
lo

c
it
y

V
e
lo

c
it
y

Position

Position

Position

0

27

0

120

0

104

0

46

Episode 12

Episode 104 Episode 1000 Episode 9000

MOUNTAIN CAR Goal

Figure 10.1: The Mountain Car task (upper left panel) and the cost-to-go function
(� maxa q̂(s, a,w)) learned during one run.

applying full throttle the car can build up enough inertia to carry it up the steep
slope even though it is slowing down the whole way. This is a simple example of a
continuous control task where things have to get worse in a sense (farther from the
goal) before they can get better. Many control methodologies have great di�culties
with tasks of this kind unless explicitly aided by a human designer.

The reward in this problem is �1 on all time steps until the car moves past its goal
position at the top of the mountain, which ends the episode. There are three possible
actions: full throttle forward (+1), full throttle reverse (�1), and zero throttle (0).
The car moves according to a simplified physics. Its position, xt, and velocity, ẋt,
are updated by

xt+1
.
= bound

⇥
xt + ẋt+1

⇤

ẋt+1
.
= bound

⇥
ẋt + 0.001At � 0.0025 cos(3xt)

⇤
,

where the bound operation enforces �1.2  xt+1  0.5 and �0.07  ẋt+1  0.07.
In addition, when xt+1 reached the left bound, ẋt+1 was reset to zero. When it
reached the right bound, the goal was reached and the episode was terminated.
Each episode started from a random position xt 2 [�0.6, �0.4) and zero velocity. To
convert the two continuous state variables to binary features, we used grid-tilings
as in Figure 9.9. We used 8 tilings, with each tile covering 1/8th of the bounded
distance in each dimension, and asymmetrical o↵sets as described in Section 9.5.4.1

1In particular, we used the tile-coding software, available on the web, version 3 (Python), with

Other Approaches

So far, we discussed methods that learn a value function
directly from samples with the policy being simplicity defined
(f.e. greedy w.r.t. the value function)
There are other approaches to learning a policy:

policy-gradient methods directly update a parameterized
policy using gradient ascent
model-based RL methods estimate a model of the
environment dynamics from samples and then use any
planning method to find a policy based on the estimated
model

Other Approaches

Policy-gradient setup
Given a policy parameterization:

⇡(a|s,✓)

Approximate stochastic gradient ascent:

Typically, based on the Policy-Gradient Theorem:

And objective:

268 CHAPTER 13. POLICY GRADIENT METHODS

13.2 The Policy Gradient Theorem

In addition to the practical advantages of policy parameterization over "-greedy action selection, there
is also an important theoretical advantage. With continuous policy parameterization the action proba-
bilities change smoothly as a function of the learned parameter, whereas in "-greedy selection the action
probabilities may change dramatically for an arbitrarily small change in the estimated action values,
if that change results in a di↵erent action having the maximal value. Largely because of this stronger
convergence guarantees are available for policy-gradient methods than for action-value methods. In
particular, it is the continuity of the policy dependence on the parameters that enables policy-gradient
methods to approximate gradient ascent (13.1).

The episodic and continuing cases define the performance measure, J(✓), di↵erently and thus have to
be treated separately to some extent. Nevertheless, we will try to present both cases uniformly, and we
develop a notation so that the major theoretical results can be decribed with a single set of equations.

In this section we treat the episodic case, for which we define the performance measure as the value
of the start state of the episode. We can simplify the notation without losing any meaningful generality
by assuming that every episode starts in some particular (non-random) state s0. Then, in the episodic
case we define performance as

J(✓)
.
= v⇡✓ (s0), (13.4)

where v⇡✓ is the true value function for ⇡✓, the policy determined by ✓. From here on in our discussion
we will assume no discounting (� = 1) for the episodic case, although for completeness we do include
the possibility of discounting in the boxed algorithms.

With function approximation, it may seem challenging to change the policy parameter in a way that
ensures improvement. The problem is that performance depends on both the action selections and the
distribution of states in which those selections are made, and that both of these are a↵ected by the
policy parameter. Given a state, the e↵ect of the policy parameter on the actions, and thus on reward,
can be computed in a relatively straightforward way from knowledge of the parameterization. But the
e↵ect of the policy on the state distribution is a function of the environment and is typically unknown.
How can we estimate the performance gradient with respect to the policy parameter when the gradient
depends on the unknown e↵ect of policy changes on the state distribution?

Fortunately, there is an excellent theoretical answer to this challenge in the form of the policy gradient
theorem, which provides us an analytic expression for the gradient of performance with respect to the
policy parameter (which is what we need to approximate for gradient ascent (13.1)) that does not
involve the derivative of the state distribution. The policy gradient theorem establishes that

rJ(✓) /
X

s

µ(s)
X

a

q⇡(s, a)r✓⇡(a|s, ✓), (13.5)

where the gradients are column vectors of partial derivatives with respect to the components of ✓, and
⇡ denotes the policy corresponding to parameter vector ✓. The symbol / here means “proportional
to”. In the episodic case, the constant of proportionality is the average length of an episode, and in the
continuing case it is 1, so that the relationship is actually an equality. The distribution µ here (as in
Chapters 9 and 10) is the on-policy distribution under ⇡ (see page 163). The policy gradient theorem
is proved for the episodic case in the box on the next page.

✓t+1
.
= ✓t + ↵ \rJ(✓t)

268 CHAPTER 13. POLICY GRADIENT METHODS

13.2 The Policy Gradient Theorem

In addition to the practical advantages of policy parameterization over "-greedy action selection, there
is also an important theoretical advantage. With continuous policy parameterization the action proba-
bilities change smoothly as a function of the learned parameter, whereas in "-greedy selection the action
probabilities may change dramatically for an arbitrarily small change in the estimated action values,
if that change results in a di↵erent action having the maximal value. Largely because of this stronger
convergence guarantees are available for policy-gradient methods than for action-value methods. In
particular, it is the continuity of the policy dependence on the parameters that enables policy-gradient
methods to approximate gradient ascent (13.1).

The episodic and continuing cases define the performance measure, J(✓), di↵erently and thus have to
be treated separately to some extent. Nevertheless, we will try to present both cases uniformly, and we
develop a notation so that the major theoretical results can be decribed with a single set of equations.

In this section we treat the episodic case, for which we define the performance measure as the value
of the start state of the episode. We can simplify the notation without losing any meaningful generality
by assuming that every episode starts in some particular (non-random) state s0. Then, in the episodic
case we define performance as

J(✓)
.
= v⇡✓ (s0), (13.4)

where v⇡✓ is the true value function for ⇡✓, the policy determined by ✓. From here on in our discussion
we will assume no discounting (� = 1) for the episodic case, although for completeness we do include
the possibility of discounting in the boxed algorithms.

With function approximation, it may seem challenging to change the policy parameter in a way that
ensures improvement. The problem is that performance depends on both the action selections and the
distribution of states in which those selections are made, and that both of these are a↵ected by the
policy parameter. Given a state, the e↵ect of the policy parameter on the actions, and thus on reward,
can be computed in a relatively straightforward way from knowledge of the parameterization. But the
e↵ect of the policy on the state distribution is a function of the environment and is typically unknown.
How can we estimate the performance gradient with respect to the policy parameter when the gradient
depends on the unknown e↵ect of policy changes on the state distribution?

Fortunately, there is an excellent theoretical answer to this challenge in the form of the policy gradient
theorem, which provides us an analytic expression for the gradient of performance with respect to the
policy parameter (which is what we need to approximate for gradient ascent (13.1)) that does not
involve the derivative of the state distribution. The policy gradient theorem establishes that

rJ(✓) /
X

s

µ(s)
X

a

q⇡(s, a)r✓⇡(a|s, ✓), (13.5)

where the gradients are column vectors of partial derivatives with respect to the components of ✓, and
⇡ denotes the policy corresponding to parameter vector ✓. The symbol / here means “proportional
to”. In the episodic case, the constant of proportionality is the average length of an episode, and in the
continuing case it is 1, so that the relationship is actually an equality. The distribution µ here (as in
Chapters 9 and 10) is the on-policy distribution under ⇡ (see page 163). The policy gradient theorem
is proved for the episodic case in the box on the next page.

on-policy distribution

REINFORCE with baseline

Thus

Policy-gradient theorem with baseline:

Because

274 CHAPTER 13. POLICY GRADIENT METHODS

13.4 REINFORCE with Baseline

The policy gradient theorem (13.5) can be generalized to include a comparison of
the action value to an arbitrary baseline b(s):

r⌘(✓) =
X

s

d⇡(s)
X

a

⇣
q⇡(s, a) � b(s)

⌘
r✓⇡(a|s, ✓). (13.8)

The baseline can be any function, even a random variable, as long as it does not vary
with a; the equation remains true, because the the subtracted quantity is zero:

X

a

b(s)r✓⇡(a|s, ✓) = b(s)r✓

X

a

⇡(a|s, ✓) = b(s)r✓1 = 0 8s 2 S.

However, after we convert the policy gradient theorem to an expectation and an
update rule, using the same steps as in the previous section, then the baseline can
have a significant e↵ect on the variance of the update rule.

The update rule that we end up with is a new version of REINFORCE that includes
a general baseline:

✓t+1 , ✓t + ↵
⇣
Gt � b(St)

⌘r✓⇡(At|St, ✓)

⇡(At|St, ✓)
. (13.9)

As the baseline could be uniformly zero, this update is a strict generalization of
REINFORCE. In general, the baseline leaves the expected value of the update un-
changed, but it can have a large e↵ect on its variance. For example, we saw in
Section 2.8 that an analogous baseline can significantly reduce the variance (and
thus speed the learning) of gradient bandit algorithms. In the bandit algorithms the
baseline was just a number (the average of the rewards seen so far), but for MDPs
the baseline should vary with state. In some states all actions have high values and
we need a high baseline to di↵erentiate the higher valued actions from the less highly
valued ones; in other states all actions will have low values and a low baseline is
appropriate.

One natural choice for the baseline is an estimate of the state value, v̂(St,w), where
w 2 Rm is a second learned weight vector learned by one of the methods presented
in previous chapters. Because REINFORCE is a Monte Carlo method for learning
the policy weights, ✓, it seems natural to also use a Monte Carlo method to learn
the state-value weights, w. A complete pseudocode algorithm for REINFORCE with
baseline is given in the box using such a learned state-value function as the baseline.

Here it would be nice to repeat experiments as in the previous section, or other
experiments, showing a nice improvement with the baseline.

Here it would also be nice to discuss the choice of the step-size parameters, ↵ and
�. The step size for values is relatively easy; we have rules of thumb. For action
values though it is much less clear. It depends on the range of variation of the
rewards, and on the policy parameterization.

e.g., b(s) = v̂(s,w)

any function of state, not action

268 CHAPTER 13. POLICY GRADIENT METHODS

13.2 The Policy Gradient Theorem

In addition to the practical advantages of policy parameterization over "-greedy action selection, there
is also an important theoretical advantage. With continuous policy parameterization the action proba-
bilities change smoothly as a function of the learned parameter, whereas in "-greedy selection the action
probabilities may change dramatically for an arbitrarily small change in the estimated action values,
if that change results in a di↵erent action having the maximal value. Largely because of this stronger
convergence guarantees are available for policy-gradient methods than for action-value methods. In
particular, it is the continuity of the policy dependence on the parameters that enables policy-gradient
methods to approximate gradient ascent (13.1).

The episodic and continuing cases define the performance measure, J(✓), di↵erently and thus have to
be treated separately to some extent. Nevertheless, we will try to present both cases uniformly, and we
develop a notation so that the major theoretical results can be decribed with a single set of equations.

In this section we treat the episodic case, for which we define the performance measure as the value
of the start state of the episode. We can simplify the notation without losing any meaningful generality
by assuming that every episode starts in some particular (non-random) state s0. Then, in the episodic
case we define performance as

J(✓)
.
= v⇡✓ (s0), (13.4)

where v⇡✓ is the true value function for ⇡✓, the policy determined by ✓. From here on in our discussion
we will assume no discounting (� = 1) for the episodic case, although for completeness we do include
the possibility of discounting in the boxed algorithms.

With function approximation, it may seem challenging to change the policy parameter in a way that
ensures improvement. The problem is that performance depends on both the action selections and the
distribution of states in which those selections are made, and that both of these are a↵ected by the
policy parameter. Given a state, the e↵ect of the policy parameter on the actions, and thus on reward,
can be computed in a relatively straightforward way from knowledge of the parameterization. But the
e↵ect of the policy on the state distribution is a function of the environment and is typically unknown.
How can we estimate the performance gradient with respect to the policy parameter when the gradient
depends on the unknown e↵ect of policy changes on the state distribution?

Fortunately, there is an excellent theoretical answer to this challenge in the form of the policy gradient
theorem, which provides us an analytic expression for the gradient of performance with respect to the
policy parameter (which is what we need to approximate for gradient ascent (13.1)) that does not
involve the derivative of the state distribution. The policy gradient theorem establishes that

rJ(✓) /
X

s

µ(s)
X

a

q⇡(s, a)r✓⇡(a|s, ✓), (13.5)

where the gradients are column vectors of partial derivatives with respect to the components of ✓, and
⇡ denotes the policy corresponding to parameter vector ✓. The symbol / here means “proportional
to”. In the episodic case, the constant of proportionality is the average length of an episode, and in the
continuing case it is 1, so that the relationship is actually an equality. The distribution µ here (as in
Chapters 9 and 10) is the on-policy distribution under ⇡ (see page 163). The policy gradient theorem
is proved for the episodic case in the box on the next page.

272 CHAPTER 13. POLICY GRADIENT METHODS

local optimum under standard stochastic approximation conditions for decreasing ↵. However, as a
Monte Carlo method REINFORCE may be of high variance and thus produce slow learning.

Exercise 13.2 Prove (13.7) using the definitions and elementary calculus. ⇤

13.4 REINFORCE with Baseline

The policy gradient theorem (13.5) can be generalized to include a comparison of the action value to
an arbitrary baseline b(s):

rJ(✓) /
X

s

µ(s)
X

a

⇣
q⇡(s, a) � b(s)

⌘
r✓⇡(a|s, ✓). (13.8)

The baseline can be any function, even a random variable, as long as it does not vary with a; the
equation remains valid because the subtracted quantity is zero:

X

a

b(s)r✓⇡(a|s, ✓) = b(s)r✓

X

a

⇡(a|s, ✓) = b(s)r✓1 = 0.

The policy gradient theorem with baseline (13.8) can be used to derive an update rule using similar
steps as in the previous section. The update rule that we end up with is a new version of REINFORCE
that includes a general baseline:

✓t+1
.
= ✓t + ↵

⇣
Gt � b(St)

⌘r✓⇡(At|St, ✓t)

⇡(At|St, ✓t)
. (13.9)

Because the baseline could be uniformly zero, this update is a strict generalization of REINFORCE. In
general, the baseline leaves the expected value of the update unchanged, but it can have a large e↵ect
on its variance. For example, we saw in Section 2.8 that an analogous baseline can significantly reduce
the variance (and thus speed the learning) of gradient bandit algorithms. In the bandit algorithms the
baseline was just a number (the average of the rewards seen so far), but for MDPs the baseline should
vary with state. In some states all actions have high values and we need a high baseline to di↵erentiate
the higher valued actions from the less highly valued ones; in other states all actions will have low values
and a low baseline is appropriate.

One natural choice for the baseline is an estimate of the state value, v̂(St,w), where w 2 Rm is a
weight vector learned by one of the methods presented in previous chapters. Because REINFORCE is
a Monte Carlo method for learning the policy parameter, ✓, it seems natural to also use a Monte Carlo
method to learn the state-value weights, w. A complete pseudocode algorithm for REINFORCE with
baseline is given in the box on the next page using such a learned state-value function as the baseline.

This algorithm has two step sizes, denoted ↵✓ and ↵w (where ↵✓ is the ↵ in (13.9)). The step size
for values (here ↵w) is relatively easy; in the linear case we have rules of thumb for setting it, such as
↵w = 0.1/E

⇥
krwv̂(St,w)k2

µ

⇤
. It is much less clear how to set the step size ↵✓ for the policy parameters.

It depends on the range of variation of the rewards and on the policy parameterization.

272 CHAPTER 13. POLICY GRADIENT METHODS

local optimum under standard stochastic approximation conditions for decreasing ↵. However, as a
Monte Carlo method REINFORCE may be of high variance and thus produce slow learning.

Exercise 13.2 Prove (13.7) using the definitions and elementary calculus. ⇤

13.4 REINFORCE with Baseline

The policy gradient theorem (13.5) can be generalized to include a comparison of the action value to
an arbitrary baseline b(s):

rJ(✓) /
X

s

µ(s)
X

a

⇣
q⇡(s, a) � b(s)

⌘
r✓⇡(a|s, ✓). (13.8)

The baseline can be any function, even a random variable, as long as it does not vary with a; the
equation remains valid because the subtracted quantity is zero:

X

a

b(s)r✓⇡(a|s, ✓) = b(s)r✓

X

a

⇡(a|s, ✓) = b(s)r✓1 = 0.

The policy gradient theorem with baseline (13.8) can be used to derive an update rule using similar
steps as in the previous section. The update rule that we end up with is a new version of REINFORCE
that includes a general baseline:

✓t+1
.
= ✓t + ↵

⇣
Gt � b(St)

⌘r✓⇡(At|St, ✓t)

⇡(At|St, ✓t)
. (13.9)

Because the baseline could be uniformly zero, this update is a strict generalization of REINFORCE. In
general, the baseline leaves the expected value of the update unchanged, but it can have a large e↵ect
on its variance. For example, we saw in Section 2.8 that an analogous baseline can significantly reduce
the variance (and thus speed the learning) of gradient bandit algorithms. In the bandit algorithms the
baseline was just a number (the average of the rewards seen so far), but for MDPs the baseline should
vary with state. In some states all actions have high values and we need a high baseline to di↵erentiate
the higher valued actions from the less highly valued ones; in other states all actions will have low values
and a low baseline is appropriate.

One natural choice for the baseline is an estimate of the state value, v̂(St,w), where w 2 Rm is a
weight vector learned by one of the methods presented in previous chapters. Because REINFORCE is
a Monte Carlo method for learning the policy parameter, ✓, it seems natural to also use a Monte Carlo
method to learn the state-value weights, w. A complete pseudocode algorithm for REINFORCE with
baseline is given in the box on the next page using such a learned state-value function as the baseline.

This algorithm has two step sizes, denoted ↵✓ and ↵w (where ↵✓ is the ↵ in (13.9)). The step size
for values (here ↵w) is relatively easy; in the linear case we have rules of thumb for setting it, such as
↵w = 0.1/E

⇥
krwv̂(St,w)k2

µ

⇤
. It is much less clear how to set the step size ↵✓ for the policy parameters.

It depends on the range of variation of the rewards and on the policy parameterization.

272 CHAPTER 13. POLICY GRADIENT METHODS

local optimum under standard stochastic approximation conditions for decreasing ↵. However, as a
Monte Carlo method REINFORCE may be of high variance and thus produce slow learning.

Exercise 13.2 Prove (13.7) using the definitions and elementary calculus. ⇤

13.4 REINFORCE with Baseline

The policy gradient theorem (13.5) can be generalized to include a comparison of the action value to
an arbitrary baseline b(s):

rJ(✓) /
X

s

µ(s)
X

a

⇣
q⇡(s, a) � b(s)

⌘
r✓⇡(a|s, ✓). (13.8)

The baseline can be any function, even a random variable, as long as it does not vary with a; the
equation remains valid because the subtracted quantity is zero:

X

a

b(s)r✓⇡(a|s, ✓) = b(s)r✓

X

a

⇡(a|s, ✓) = b(s)r✓1 = 0.

The policy gradient theorem with baseline (13.8) can be used to derive an update rule using similar
steps as in the previous section. The update rule that we end up with is a new version of REINFORCE
that includes a general baseline:

✓t+1
.
= ✓t + ↵

⇣
Gt � b(St)

⌘r✓⇡(At|St, ✓t)

⇡(At|St, ✓t)
. (13.9)

Because the baseline could be uniformly zero, this update is a strict generalization of REINFORCE. In
general, the baseline leaves the expected value of the update unchanged, but it can have a large e↵ect
on its variance. For example, we saw in Section 2.8 that an analogous baseline can significantly reduce
the variance (and thus speed the learning) of gradient bandit algorithms. In the bandit algorithms the
baseline was just a number (the average of the rewards seen so far), but for MDPs the baseline should
vary with state. In some states all actions have high values and we need a high baseline to di↵erentiate
the higher valued actions from the less highly valued ones; in other states all actions will have low values
and a low baseline is appropriate.

One natural choice for the baseline is an estimate of the state value, v̂(St,w), where w 2 Rm is a
weight vector learned by one of the methods presented in previous chapters. Because REINFORCE is
a Monte Carlo method for learning the policy parameter, ✓, it seems natural to also use a Monte Carlo
method to learn the state-value weights, w. A complete pseudocode algorithm for REINFORCE with
baseline is given in the box on the next page using such a learned state-value function as the baseline.

This algorithm has two step sizes, denoted ↵✓ and ↵w (where ↵✓ is the ↵ in (13.9)). The step size
for values (here ↵w) is relatively easy; in the linear case we have rules of thumb for setting it, such as
↵w = 0.1/E

⇥
krwv̂(St,w)k2

µ

⇤
. It is much less clear how to set the step size ↵✓ for the policy parameters.

It depends on the range of variation of the rewards and on the policy parameterization.

Actor-critic architecture

World

Actor-Critic methods

REINFORCE with baseline:

Actor-Critic method:

274 CHAPTER 13. POLICY GRADIENT METHODS

bias and an asymptotic dependence on the quality of the function approximation. As we have seen,
the bias introduced through bootstrapping and reliance on the state representation is often beneficial
because it reduces variance and accelerates learning. REINFORCE with baseline is unbiased and
will converge asymptotically to a local minimum, but like all Monte Carlo methods it tends to learn
slowly (produce estimates of high variance) and to be inconvenient to implement online or for continuing
problems. As we have seen earlier in this book, with temporal-di↵erence methods we can eliminate these
inconveniences, and through multi-step methods we can flexibly choose the degree of bootstrapping. In
order to gain these advantages in the case of policy gradient methods we use actor–critic methods with
a bootstrapping critic.

First consider one-step actor–critic methods, the analog of the TD methods introduced in Chapter 6
such as TD(0), Sarsa(0), and Q-learning. The main appeal of one-step methods is that they are fully
online and incremental, yet avoid the complexities of eligibility traces. They are a special case of the
eligibility trace methods, and not as general, but easier to understand. One-step actor–critic methods
replace the full return of REINFORCE (13.9) with the one-step return (and use a learned state-value
function as the baseline) as follows:

✓t+1
.
= ✓t + ↵

⇣
Gt:t+1 � v̂(St,w)

⌘r✓⇡(At|St, ✓t)

⇡(At|St, ✓t)
(13.10)

= ✓t + ↵
⇣
Rt+1 + �v̂(St+1,w)� v̂(St,w)

⌘r✓⇡(At|St, ✓t)

⇡(At|St, ✓t)
(13.11)

= ✓t + ↵�t
r✓⇡(At|St, ✓t)

⇡(At|St, ✓t)
. (13.12)

The natural state-value-function learning method to pair with this is semi-gradient TD(0). Pseudocode
for the complete algorithm is given in the box below. Note that it is now a fully online, incremental
algorithm, with states, actions, and rewards processed as they occur and then never revisited.

One-step Actor–Critic (episodic)

Input: a di↵erentiable policy parameterization ⇡(a|s, ✓)
Input: a di↵erentiable state-value parameterization v̂(s,w)
Parameters: step sizes ↵✓ > 0, ↵w > 0

Initialize policy parameter ✓ 2 Rd0
and state-value weights w 2 Rd

Repeat forever:
Initialize S (first state of episode)
I 1
While S is not terminal:

A ⇠ ⇡(·|S, ✓)
Take action A, observe S0, R
� R + � v̂(S0,w)� v̂(S,w) (if S0 is terminal, then v̂(S0,w)

.
= 0)

w w + ↵w I �rwv̂(S,w)
✓ ✓ + ↵✓ I �r✓ ln ⇡(A|S, ✓)
I �I
S S0

The generalizations to the forward view of multi-step methods and then to a �-return algorithm are
straightforward. The one-step return in (13.10) is merely replaced by G�

t:t+k and G�
t respectively. The

backward views are also straightforward, using separate eligibility traces for the actor and critic, each
after the patterns in Chapter 12. Pseudocode for the complete algorithm is given in the box below.

272 CHAPTER 13. POLICY GRADIENT METHODS

local optimum under standard stochastic approximation conditions for decreasing ↵. However, as a
Monte Carlo method REINFORCE may be of high variance and thus produce slow learning.

Exercise 13.2 Prove (13.7) using the definitions and elementary calculus. ⇤

13.4 REINFORCE with Baseline

The policy gradient theorem (13.5) can be generalized to include a comparison of the action value to
an arbitrary baseline b(s):

rJ(✓) /
X

s

µ(s)
X

a

⇣
q⇡(s, a) � b(s)

⌘
r✓⇡(a|s, ✓). (13.8)

The baseline can be any function, even a random variable, as long as it does not vary with a; the
equation remains valid because the subtracted quantity is zero:

X

a

b(s)r✓⇡(a|s, ✓) = b(s)r✓

X

a

⇡(a|s, ✓) = b(s)r✓1 = 0.

The policy gradient theorem with baseline (13.8) can be used to derive an update rule using similar
steps as in the previous section. The update rule that we end up with is a new version of REINFORCE
that includes a general baseline:

✓t+1
.
= ✓t + ↵

⇣
Gt � b(St)

⌘r✓⇡(At|St, ✓t)

⇡(At|St, ✓t)
. (13.9)

Because the baseline could be uniformly zero, this update is a strict generalization of REINFORCE. In
general, the baseline leaves the expected value of the update unchanged, but it can have a large e↵ect
on its variance. For example, we saw in Section 2.8 that an analogous baseline can significantly reduce
the variance (and thus speed the learning) of gradient bandit algorithms. In the bandit algorithms the
baseline was just a number (the average of the rewards seen so far), but for MDPs the baseline should
vary with state. In some states all actions have high values and we need a high baseline to di↵erentiate
the higher valued actions from the less highly valued ones; in other states all actions will have low values
and a low baseline is appropriate.

One natural choice for the baseline is an estimate of the state value, v̂(St,w), where w 2 Rm is a
weight vector learned by one of the methods presented in previous chapters. Because REINFORCE is
a Monte Carlo method for learning the policy parameter, ✓, it seems natural to also use a Monte Carlo
method to learn the state-value weights, w. A complete pseudocode algorithm for REINFORCE with
baseline is given in the box on the next page using such a learned state-value function as the baseline.

This algorithm has two step sizes, denoted ↵✓ and ↵w (where ↵✓ is the ↵ in (13.9)). The step size
for values (here ↵w) is relatively easy; in the linear case we have rules of thumb for setting it, such as
↵w = 0.1/E

⇥
krwv̂(St,w)k2

µ

⇤
. It is much less clear how to set the step size ↵✓ for the policy parameters.

It depends on the range of variation of the rewards and on the policy parameterization.

Model: anything the agent can use to predict how the
environment will respond to its actions
A distribution model aims to estimate the one-step
dynamics of the environment. That is, it aims to estimate
p(s’, r | s, a) for all s, a, s’, r
Any planning method can be used to find a policy given
the estimated model, such as, dynamic programming, tree
search, etc.
Sample model, a.k.a. a simulation model

produces sample experiences for given s, a
– sampled according to the probabilities

Model-based methods

Paths to a policy

Model

Value
function

Policy

Experience

Direct RL
methods

Direct
planning

Greedification

Model
learning

SimulationEnvironmental
interaction

Model-free RL

Paths to a policy

Model

Value
function

Policy

Experience

Direct RL
methods

Direct
planning

Greedification

Model
learning

SimulationEnvironmental
interaction

Model-based RL

Paths to a policy

Model

Value
function

Policy

Experience

Direct RL
methods

Direct
planning

Greedification

Model
learning

SimulationEnvironmental
interaction

Dyna

Overview Tutorial

Part 1: Reinforcement Learning Theory

Part 2: Deep Reinforcement Learning

Part 3: Open Problems

1. DQN
2. Prioritized Sweeping
3. A3C
4. AlphaGo Zero

deep RL methods

DQN

Nature paper published in February 2015.
The algorithm achieved above-human performance on a
large number of Atari 2600 games
Combines standard RL techniques with convolutional
neural networks

Deep Q-networks (DQN)

Arcade Learning Environment (ALE)

A software framework for testing AI algorithms by providing  
an interface to Atari 2600 games, introduced in June 2013
Motivation behind ALE was to provide an uniform evaluation
platform for building general agents
For evaluation, a fixed set of 49 (later: 57) games is considered

Performance DQN

from: Human-level control through deep reinforcement learning, V. Mnih, et al., 2015

DQN was not the first method that combines RL with
neural networks (c.f. TD-Gammon, 1992).
DQN was also not the first method that achieved good
performance on the ALE set (c.f. linear methods)
However, DQN was the first method that successfully
combined modern deep neural networks with RL, resulting
in a huge jump in performance on the ALE set

Main contribution

Standard Q-learning method with two main modifications
Modification 1: large experience replay buffer to mitigate
the effect of correlated samples and catastrophic forgetting
Modification 2: two networks to stability learning:

a target network: used for update targets, updated at
low frequency
an online network: used for action selection, updated at
high frequency

DQN Algorithm Breakdown

Prioritized Experience Replay

DQN draws experience samples from the replay memory
uniformly at random
Prioritized experience replay aims to replay important
experience samples more often

Pririorized Experience Replay

from: Prioritized Experience Replay, T. Schaul et al., 2016

How to determine importance of a sample

The TD-error is a good proxy:

Greedy sample selection based on only TD error has issues:  
- samples that initially have low TD error never get selected  
- in the presence of noisy rewards, TD-error is not a good  
indicator of importance

Prioritized experience replay uses a mix between pure greedy
prioritization and uniform random sampling

Performance across ALE set

from: Prioritized Experience Replay, T. Schaul et al., 2016

A3C

Asynchronous Advantage Actor-Critic
Multiple parallel learners that—asynchronously— update
the same value function/policy
Because there are multiple parallel learners, samples are
de-correlated even without experience replay
Without experience replay buffer, multi-step updates can
be used.

A3C

AlphaZero

Background

After IBM’s Deep Blue defeated the world champion in
Chess, Garry Kasparov in 1997, researchers started focusing
on the ancient game Go
Go is much harder than Chess, among others due to its
gigantic state-space size and large branching factor

AlphaGo Zero

In January 2016, DeepMind published Nature paper on
AlphaGo, a method that was able to beat defeat 18-time
world champion, Lee Sedol
AlphaGo was pre-trained on a large database of human Go
games; deep RL was used to further improve performance
In October 2017, DeepMind published a second Nature
paper, introducing AlphaGo Zero
AlphaGo Zero did no longer rely on a database of human Go
games, but was trained fully from scratch using RL
AlphaGo Zero also no longer makes use of some hand-
engineered features, but only uses stone-positions as input

Key Component: Monte-Carlo Tree Search

Heuristic search algorithm that uses many random rollout to
the end of the game to determine how good a particular
move is
by focussing rollouts on moves that
appear to be more successful, the
efficiency is improved significantly
From the current state, a tree is build up
that stores intermediate evaluations and
guides which moves is evaluated next

AlphaGo Zero

AlphaGo Zero uses MCTS, but instead of using random
rollouts, it relies on deep value network
Because no random roll-outs are performed it is much more
computationally efficient

Results

from: Mastering the Game of Go without Human Knowledge, D. Silver et al. Nature ‘17

Main Conclusions

AlphaGo Zero unambiguously shows the power of making
value predictions using (very) deep neural networks
The results also highlight the power of learning through self-
play
Self-play is believed to be so effective, because it is a natural
form of curriculum learning

curriculum learning: providing a learning agent with
increasingly challenging tasks in order to speed up
learning of complex behaviour

Some limitations

The environment dynamics (i.e., the rules of the game) are
not learned, but provided
Hence, the problem AlphaGo Zero considers is very different
from the standard RL setting
Because AlphaGo Zero relies on MCTS, it cannot be easily
be adapted to domains where the environment dynamics are
unknown (like ALE for example)

1. Partial Observability
2. Long Decision Horizons
3. Exploration
4. Fast learning / adaptation
5. Limitations of Reward Function

Remaining Challenges / Open Issues

Partial Observability

Typically, the environment state is not directly observed
Instead, a feature vector is observed that is correlated with
the state, but does not fully disambiguate between different
states
If the state ambiguity is significant, it becomes hard to
make accurate predictions about the return, and hence
determine a good policy.

Partial Observability

Partial Observability: Example 1

reward:
• +1 if controllable agents scores point
• -1 if opponent scores
• whichever player reaches 21 points first wins

Is Pong partial observable?

Partial Observability: Example 1

reward:
• +1 if controllable agents scores point
• -1 if opponent scores
• whichever player reaches 21 points first wins

How about now?

Partial Observability: Example 2

Long Decision Horizon

The decision horizon determines how far an agent has to
look into the future to determine the optimal action
How far the agent looks into the future is controlled by the
discount factor
Often, even when the aim is to optimize the reward over
many time steps, the decision horizon is much smaller and
hence a smaller discount factor can be used

Decision Horizon

Long Decision Horizon

Long Decision Horizon

Long decision horizons are hard, because:
It requires information to be propagated back in time over
a long distance
Can result in more challenging function approximation

Long Decision Horizon

What features are relevant for making accurate predictions:
small discount factor:
• values: between -1 and 1
• relevant features: peddle-positions, ball position + direction
large discount factor
• values: between -21 and 21
• relevant features: peddle-positions, ball position + direction,

score

Exploration

Rewards drive policy improvement
When the chance of observing a reward under a random
policy is low, it becomes hard to make policy improvements
This can happen, for example, when rewards are sparse

Exploration

Fast learning / adaptation

A lot: many 3D environments

Current methods require huge amount of data

100% median human-normalized score:
15 million frames ~ 27 human-play days*

Full training period:
200 million frames ~ 370 human-play days*

* assuming:
 - framerate: 60 frames/s
 - skip-frame: 4
 - human plays 10 hours per day

average training time per game:

from: Rainbow: Combining Improvements in Deep Reinforcement Learning. M Hessel, et al. 2017

How far are we?

Adaptation to Small Task Changes is Hard

Training set:

Test set:

from: Learning invariances for Policy Generalization. R. Tachet des Combes et al., 2018

Limitations of Reward Function

Limitations Reward Function

The reward function specifies how we want our agents to
behave
However, not all behavioural goals can be easily captured
by a reward function, for example, having a meaningful
conversation
Furthermore, in a complex world, even specifying a
seemingly well-defined task like ‘get a cup of coffee’ can
be challenging

How far are we?

easy hard

After 3 decades of RL research…After 3 decades of RL research…

…. but progress is non-linear

How far are we?

Thank you!

