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What is Reinforcement Learning

Reinforcement learning considers the task of learning
behaviour in an initially unknown environment.

- Initially, actions are tried at random

* Good behaviour is reinforcement with a positive reward



A bit of history

Reinforcement learning is about 30 years old....

TD gammon Autonomous helicopter

(Tesauro, 1992) (Ng et al., 2004)

....but the field really took off in the last 3 years



Some recent results...

AlphaGo Zero
(Mnih et al, 2015) (D. Silver, 2017)



Overview Tutorial

Part 1: Reinforcement Learning Theory

Part 2: Deep Reinforcement Learning

Part 3: Open Problems



Reinforcement Learning Theory

. Markov decision processes

. Monte Carlo

. Temporal-Difference learning
. Multi-Step methods

. Function Approximation

SO U1l A W N B

. Other Approaches

credit:

course: Reinforcement Learning for Artificial Intelligence
book: Introduction to Reinforcement Learning




Markov Decision Processes




Agent-Environment Interface
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Goal: find a policy that results in the highest sum of rewards



finite Markov Decision Process

discrete time t=1,2,3,...
finite set of states

finite set of actions

finite set of rewards

@ @ @ @ @

life 1s a trajectory:
SR 51‘7 Ata Rt—l—la 5t—|—17 At—i—la Rt—|—27 St—|—27 R

@ with arbitrary Markov (stochastic, state-dependent)
dynamics:

p(r,s'|s,a) = Prob[RtH =r,Sii1 =5 | St =5, A = a]

.. . . /
transition function: p(s’|s.a)  reward function: 7(s,a,s’)




Episodic Tasks vs Continuing Tasks

» Some tasks have a natural end-point; we call these episodic
tasks.
Example: a game of Chess.

» Other tasks are more continuing of nature; we call these
continuing tasks.
Example: regulating the temperature in a room.

» Episodic tasks are modelled using an MDP containing
special states, called terminal states

» The MDP of a continuing tasks does not contain any
terminal states.



finite Markov Decision Process

-10,80%

+10,

10,20%
100% 10,20%

+20,
20%
1 0

+40,80%

+40,20%

+20,80%



Agent behaviour

@ deterministic policy: 7:8 — A

@ stochastic policy: :S8xA—[0,1]

@ The agent’s goal is to maximize the discounted sum or
rewards, called the return:

discount factor v € [0, 1]

continuing task:

o0
Gt = Riy1+7YRipo+7°Reyz+ -+ = Z";’th+k+1
k=0

episodic task:
gy

Gt = Rey1 +YReg2+ -+ - + "/T_t_lRT = Z W'th+k+1
k=0



Agent is told what to achieve, but not how

@ The reward function 7 (s, a, s") together with the discount
factor y specity the goal of the agent

@ The agent learns how to take actions that achieve this goal



Episodic Task Example

IGI

_’_

actions

Goal: reach the goal-state as quickly as possible

Possible reward function: -1 at every step, y =1

Alternatively: O at every step; +1 on reaching goal-state, y < 1



Value Functions

1 The value of a state is the expected return starting from
that state; depends on the agent’s policy:
S, = s}

1 The value of an action (in a state) is the expected return
starting after taking that action from that state; depends on
the agent’s policy:

State - value function for policy 7 :

Vﬂ(S) = En {Gt | St = S} = En {iykRHkﬂ
k=0

Action - value function for policy 7 :

qE(S,Cl) - EJT {Gt | St = S’At - Cl} - En {iykRHkH St = S’At = Cl}
k=0




Evaluating policies

Ux
expected

U
return 1

states

Given an MDP, there always exists a policy that is at least as

good as all other policies for each state. This is called the optimal policy 7Ty .



Optimal Polices

@ A policy 7« is optimal iff it maximizes the value functions:

V. (8) = maxvy(s) = v«(8) for all s
T

gr.(8,a) = maxqr(s,a) = q«(s,a) for all s,a
()

@ For each MDP there is a unique VU and (x ,but there can
be multiple optimal policies

@ Given an optimal action-value function, the optimal policy
can be easily derived as follows:

T« (8) = arg max ¢« (s, a)
a



Two Tasks

1 evaluation/prediction:
Given a policy 7, compute Uz and/or Qr

1 control:
Find an optimal policy 7T 4






Blackjack example

1 Object: Have your card sum be greater than the dealer’s
without exceeding 21.

[ States (200 of them):
= current sum (12-21) i
= dealer’s showing card (ace-10) n_]j‘\
= do I have a useable ace? =

1 Reward: +1 for winning, O for a draw, -1 for losing

1 Actions: stick (stop receiving cards), hit (receive another
card)



Monte Carlo policy evaluation

» Goal: for policy 7T determine the function U
» full returns are sampled

» the estimate of v, () after episode ¢, V;(s) , is the average
of the observed returns from state s after episode z.

» at the end of each new episode, the estimates for states
visited during the episode are updated



first-visit Monte Carlo policy evaluation

Initialize:
m <— policy to be evaluated
V < an arbitrary state-value function
Returns(s) < an empty list, for all s € §

Repeat forever:
Generate an episode using
For each state s appearing in the episode:
G < return following the first occurrence of s
Append G to Returns(s)
V(s) < average(Returns(s))




Learned blackjack state-value functions

After 10,000 episodes After 500,000 episodes
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Naive approach to finding optimal policy

@ cvaluate the value function for all policies

@ use definition: vy, (8) = maxv,(s) = v.(s) for all s
n

1ssue: number of possible policies is huge: 220 ~ 1.6.10%




Policy Improvement Theorem

@

@

@

Given the value function for any policy

g-(s, a) for all s, a
It can always be greedified to obtain a better policy:
7'(s) = arg max g-(s, a)
where better means:
gr'(s,a) > qr(s,a) foralls,a

with equality only if both policies are optimal

(7" is not unique)



Policy Iteration

i T
dry
A/gfeedM
2

W-»
dr,

greed\f\/
7i
3 %»
drs

Any policy evaluates to a unique value
function, which can be greedified to
produce a better policy

That in turn evaluates to a value function

which can in turn be greedified...

Each policy is strictly better than the
previous, until eventually both are optimal

There are no local optima

The dance converges in a finite number of
steps, usually very few



Generalized Policy Iteration

Generalized Policy Iteration (GPI):
any interaction of policy evaluation and policy improvement,
independent of their granularity.

evaluation
m
T @,
7~ greedy(Q)

improvement



Monte Carlo Control

@ Q:(s,a) 1s the average of observed return for state-action
pair (s,a) after episode ¢

@ Qq(s,a) 1S an estimate of (G, (8, a) ,with 7T¢ the policy
used to generate episode ¢

@ At the end of an episode:
® Q:(s,a) is updated for the visited state-action pairs

@ anew greedy policy is computed:

mi+1(8) = arg max Qy(s, a)
a



Exploration

An RL agent 1s (partly) in control of the samples that it sees

To get a proper evaluation, MC should observe returns for all
state-action pairs

Ensuring sufficient exploration of the state-action space 1s a
big challenge for any RL method

For now, we consider an extremely simplistic exploration
strategy: exploring starts

Exploring starts means the initial state 1s drawn at random and
the initial action as well



Monte Carlo Exploring Starts

Initialize, for all s € 8, a € A(s):
Q(s,a) < arbitrary
7(s) < arbitrary
Returns(s,a) < empty list

Repeat forever:
Choose Sy € 8§ and Ay € A(Sp) s.t. all pairs have probability > 0
Generate an episode starting from Sy, Ag, following 7
For each pair s, a appearing in the episode:
GG < return following the first occurrence of s, a
Append G to Returns(s,a)
Q(s,a) < average(Returns(s,a))
For each s in the episode:
7(s) < argmax, (s, a)




Blackjack example continued

1 Exploring starts
1 Initial policy as described before
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Better update rule

@ When doing control, maintaining an average of all returns
per state-action pairs can result in very slow learning

@ A better update rule is to take a weighted average of
returns, with higher weights for more recent returns

@ This can be achieved by update rule:

Qr+1(8,a) = Qk(s,a) + a(Gk — Qk(s,a))

or Qrt+1(s,a) = (1 —a)Qk(s,a)+ aGi

@ The step-size a € (0,1] determines how much weight 1s
put on recent observations



Disadvantages of Monte Carlo

@ Updates only occur at the end of an episode, which can
delay learning for long episodes

@ Cannot be used for continuing tasks

@ In stochastic environments, the variance can be very high



Temporal Difference Learning



Motivating Example

Consider:

I3
I'l 1'2 1'3 1'4
o 'Y =1

- all rewards are stochastic

« state-values for state A and B:
v(A) =E{ry +ro+r3+ 74}
v(B) = E{ry +r3 + 14}

« state-value evaluation for state E:
v(E) = E{rs+re+r3+ 714}
= E{rs}+E{ro+r3+ rs}
= E{rs}+ v(B)



Temporal difference learning

@ Instead of using the full return as update target, an update
target 1s used that bootstraps from other value estimates

@ Updates happen at each step of an episode



Bellman Equation for a Policy n

The basic 1dea:
Gt = Rt+1 +Y Rt+2 +Y 2I€t+3 TV 3Rt+4+
= Rt+1 + )/ (Rt+2 + )/ Rt+3 + y 2I€t+4+“.)

= Rt+1 + y Gt+1

So: | v,(9)=E,{G,[S, =5}
-E{R

t+1

St=s}

Or, without the expectation operator:

U (8) = Z 7(als) Zp(s’, rls,a) [r + vvﬁ(s’)}

+ )/Vﬂ (St+1)




TD Prediction

Policy Evaluation (the prediction problem):
for a given policy m, compute the state-value function vx

Recall: Simple every-visit Monte Carlo method:

V(S1)  V(S0) +a|Gi - V(Sy)]

target: the actual return after time ¢

The simplest temporal-difference method TD(0):
V(5:) <= VI(S) + OéLRtH + ”YV(St—I—l? - V(St)}

target: an estimate of the return




TD Prediction

Tabular TD(0) for estimating v,

Input: the policy 7 to be evaluated
Initialize V (s) arbitrarily (e.g., V(s) = 0, for all s € 8%)
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
A < action given by 7 for S
Take action A, observe R, S’
V(S) «+ V(S) +a|R+~V(S") = V(S)]
S+ S’

until S is terminal



Values learned by TD from one run, after various
numbers of episodes

.< 0 @40». 0 . 0 . 0 . 1 .

start

0.8 - Estimated

0.6

0.4 -

0.2




0.25 =

0.2 -

0.15 =

0.1

0.05 =

D and MC on the Random Walk

Empirical RMS error,
1averaged over states

Data averaged over
100 sequences of episodes

Walks / Episodes



Learning An Action-Value Function

Estimate gr for the current policy 7

( ) Rt+1 m Rt+2 m Rt+3 ( )
* S . S + . S + . S + L] L] L]
t St,At " St+l)At+l U St+2;At+2 " St+3’At+3

After every transition from a nonterminal state, S, , do this:

0(S,.A) < Q(S,.A) +a[R,, +70(S,,,.A,) - O(S,.A)]
If S,,, 1s terminal, then define Q(S,,,,A,,,) =0

r+1



Exploration

@ To ensure sufficient exploration of all state-action pairs,
typically a stochastic policy 1s used to generate samples

@ For example, an e-greedy policy select with 1-€ probability
the greedy action, and selects with € probability an action
uniformly at random



Sarsa(0): TD Control

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A’ from S’ using policy derived from Q (e.g., e-greedy)
Q(S,4) = Q(S, 4) + a[R+7Q(5", A") — Q(S, 4)]
S« S A+ A

until S is terminal

Note: because a stochastic policy is used (e.g. e-greedy), Sarsa does not
converge to the optimal policy, unless the stochasticity is decreased slowly
over time.




On-policy versus off-policy control

behaviour policy: policy that generates the samples

estimation policy: policy that 1s being estimated

on-policy learning: behaviour policy = estimation policy

off-policy learning: behaviour policy # estimation policy

up to now, we only considered on-policy learning

off-policy learning offers more much more flexibility



Q-Learning: Off-Policy TD Control

One-step Q-learning:

Q(S1, A1) < Q(St, Ar) + | Riy +7max Q(Sii1,0) = Q(Sh, Ar)|

Initialize Q(s,a),Vs € §,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S, A) + a|R + v max, QS a) — Q(S, A)]
S« 5

until S is terminal




Cliffwalking
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Multi-step methods



Monte Carlo vs TD

@ Monte Carlo: G = Riy1 +vRiio + v Rz + -+~ 1Ry

@ I'D: Guiy1r = Rip1 +9Vi(Se41)
@ Use V; to estimate remaining return

@ On random walk task, TD outperformed MC

0.257 Empirical RMS error,

o N N averaged over states
0.15

0.1

';(x:.()
0.05
a=.05
0 T T T 1
0 25 50 75 100

Walks / Episodes



Is TD always better?

Consider: y=1,a=1
D:

1
(OO0 00—
" AN AN A

- 0 0 0 1
DDA DA DD
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variance-bias trade-off

variance bias

*In tasks with high environment stochasticity
and/or policy stochasticity.



n-step Update Targets

@ Monte Carlo: G = Riy1 +vRiio + v Rz + -+~ 1Ry

@ ID: Guir1 = Rey1 +vVi(Ses1)

@ Use V; to estimate remaining return

@ n-step TD:
@ 2-step return: Giiio = Riy1 + YRivo + v Vi1 (Sii2)

@ n-step return: G.,.,, = Riy1 +YRip2 + -+ 9" Rign + 7" Vign—1(St4n)

Wlth Gt:t—l—n = Gt if t+n Z T)



n-step TD

@ Recall the n-step return:

Giiasn = Rip1 +YRiva+ -+ 9" R + 7" Vitn—1(Sttn)

@ Of course, this 1s not available until time 7+n

@ The natural algorithm 1s thus to wait until then:
V;ﬁ—l—n(St) = V;H—n—l(st) + a[Gt:H—n - %+n—1(St)]a 0 S t < T

@ This 1s called n-step TD



n-step TD

n-step TD for estimating V ~ v,

Input: a policy 7

Algorithm parameters: step size a € (0,1}, a positive integer n

Initialize V(s) arbitrarily, for all s € §

All store and access operations (for S; and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal
T «+ o0
Loop fort=0,1,2,...:
| Ift <T, then:
| Take an action according to w(:|S;)
| Observe and store the next reward as R;.; and the next state as Sy,
| If S;.y is terminal, then T« ¢t + 1
| 7+ t—n+1 (7isthe time whose state's estimate is being updated)
|
I
|
|

Ifr>0:
T
fr4+n<T,then: G+ G+ ‘7’"V(S¢+n) (GT:f+'l)

V(Sr) + V(S;) +a[G - V(S;))
Until r=T~-1




19-state Random Walk

0.55

0.5

n-step TD
Average 0.45
RMS error results
over 19 states 04
and first 10
episodes %%

0.3

025,

@ An intermediate a 1s best
@ An intermediate n 1s best



On-policy n-step control is straightforward

@ Action-value form of n-step return

Giiin = Rip1+YRisot+ -+ ' R +7"Qrn—1(Stan, Avin)

® n-step Sarsa:

Qt1n(St, At) = Qran—1(5t, At) + @ [Grtan — Qran—1(St, At)]



Off-policy n-step control is challenging

» Recall: off-policy updating involves a behaviour policy, b,
and an estimation policy, 7.

» Off-policy multi-step updates is possible using Importance
Sampling

» Each update target is multiplied by importance sampling

10" min(h,T—1
ratio: o (H )w(Ak\Sk)
" Ll b(Ak]S%)

» Off-policy n-step TD:

‘/t—l—n(st) = V;ﬁ—l—n—l(st) + O Ptt+n—1 [Gt:t—i—n - V;f—l—n—l(st)]

» Off-policy n-step updates suffer from a large variance



Value Function Approximation




Motivation

So far, we discussed tabular methods, where values are stored
and estimated on a per-state basis

This approach only works when the total number of states 1s
relatively small

RL suffers from the curse of dimensionality: the number of
states tends to grow exponentially with the problem size

Value function approximation scales RL to large (or
continuous) state-spaces



Value Function Approximation

transpose ith components

/ \
y /
/

MUW(S) ~ U(s,w) = sz :1:@ ) =1.71

inner product

2.1 0
0.01 1
—1.1 0
weR?, eg., w= _1(')21 , x(s) = (1) , x:8 > RY
parameter 0.01 feature |
vector 4.93 vector | g
L 0B | N

QR qr(s,a) = G(s,a,w) = w'x(s,a) = Y w;-x(s,a)



Stochastic Gradient Descent (SGD) is the
idea behind most approximate learning

General SGD: w « w —aVy, Error?
For VFA: —w — aVy [Target; — 0(S, W)]2
Chain rule: —w —2a[Target; — 0(S;, w)| Vaw [Targety — 0(S¢, w))
Semi-gradient: < w+a[Target, — (S, w)] Vi d(Si, w)
Linear case: < w+a[Target; — 9(S;, w)] x(St)

Action-value form: w+ w+« (Target; — ¢(S, Ae, W)] x(St, At)



Ditferent features give different
generalization




The width of the receptive fields
determines breadth of generalization

1D example,
supervised training
######## ~— fination — ation
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Tile coding is coarse coding for digital computers,
with rectangular receptive fields, controlled overlap

2D example
Tiling 2
Tiling 3
. Tiling 4
Continuous e
2D state
pace
\ Point in
state space
to be

represented

Tiling 1 —

Four active
—— tiles/features
overlap the point

_; and are used to

represent it




—xample: The Mountain-Car problem

SITUATIONS:
Goal car's position and velocity

ACTIONS:
three thrusts: forward,
reverse, none

J Gravity wins

REWARDS:
. _ always —1 until car reaches
Minimum-Time-to-Goal Problem the goal

Episodic, No Discounting,
y=1
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Other Approaches



Other Approaches

@ So far, we discussed methods that learn a value function
directly from samples with the policy being simplicity defined
(f.e. greedy w.r.t. the value function)

@ There are other approaches to learning a policy:

e policy-gradient methods directly update a parameterized
policy using gradient ascent

e model-based RL methods estimate a model of the
environment dynamics from samples and then use any
planning method to find a policy based on the estimated
model



Policy-gradient setup

Given a policy parameterization:

m(als,6)
And objective:

J(0) = vrg(50)

Approximate stochastic gradient ascent:

A

975_|_1 = Ht + OéVJ(Ht)

Typically, based on the Policy-Gradient Theorem:
VJ(0) x Z ,u\(s) Z Q- (s,a)Vem(als,8)

on-policy distribution



REINFORCE with baseline

Policy-gradient theorem with baseline:

0
VJ(O) X zs: 'LL(S) Za: QTr(S7 a)Veﬂ(CL|S, ) any function of state, not action

/
= > 1(5) D" (an(s,) — b(s) ) Vor(als, 6)

Because

> b(s)Ver(als,0) = b(s)Ve » 7(als,8) =b(s)Vel=0  VseS§

a

Thus

. Ver(A:|S:, 0
0t+1:9t+a<Gt—b(St)) om(Ai]5, 6:)

(A, |5, 07) e.g., b(s) = v(s,w)




Actor-critic architecture
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Actor-Critic methods

REINFORCE with baseline:

VQTF(At‘St, Ht)
W(At‘st, 975)

0,1 =6, + oz(Gt _ b(St))

Actor-Critic method:

VQ’/T(At‘St,Ht)
7T(At|st, Ht)

01 = 0: + Oé(Gt:tH — @(Staw))

X Vor(A,|S,, 6
o Ht + Ck(Rt+1 -+ ’}/’lA)(SIH_l,W) — U(St,W)) 97T( t’ L t)

7T(At|St, Ht)
VQTF(At ‘St, Ht)

—0; +«ad .
t t W(At\St,Ht)




Model-based methods

@ Model: anything the agent can use to predict how the
environment will respond to its actions

@ A distribution model aims to estimate the one-step
dynamics of the environment. That is, it aims to estimate
p(s’,rls,a)foralls,a,s’ r

@ Any planning method can be used to find a policy given
the estimated model, such as, dynamic programming, tree
search, etc.

@ Sample model, a.k.a. a simulation model
e produces sample experiences for given s, a

— sampled according to the probabilities



Paths to a policy

Model
learning

Direct

Environmental )
planning
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Model-free RL



Paths to a policy

Model
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Direct
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Model-based RL



Paths to a policy

Direct

Environmental _ .
planning

interaction

Direct RL o
methods ] Value
vanction

Pyna



Overview Tutorial

Part 1: Reinforcement Learning Theory

Part 2: Deep Reinforcement Learning

Part 3: Open Problems



deep RL methods

1. DQN

2. Prioritized Sweeping
3 A0

4. AlphaGo Zero






Deep Q-networks (DQN)

@ Nature paper published in February 2015.

@ The algorithm achieved above-human performance on a
large number of Atari 2600 games

@ Combines standard RL techniques with convolutional
neural networks



Arcade Learning Environment (ALE)

@ A software framework for testing Al algorithms by providing
an interface to Atari 2600 games, introduced in June 2013

@ Motivation behind ALE was to provide an uniform evaluation
platform for building general agents

@ For evaluation, a fixed set of 49 (later: 57) games is considered




Performance DQN
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from: Human-level control through deep reinforcement learning, V. Mnih, et al., 2015



Main contribution

@ DQN was not the first method that combines RL with
neural networks (c.f. TD-Gammon, 1992).

@ DQN was also not the first method that achieved good
performance on the ALE set (c.1. linear methods)

@ However, DQN was the first method that successfully
combined modern deep neural networks with RL, resulting
in a huge jump in performance on the ALE set



DQN Algorithm Breakdown

@ Standard Q-learning method with two main modifications

@ Modification 1: large experience replay buffer to mitigate
the effect of correlated samples and catastrophic forgetting

@ Modification 2: two networks to stability learning:

@ a target network: used for update targets, updated at
low frequency

@ an online network: used for action selection, updated at
high frequency



Prioritized Experience Replay



Pririorized Experience Replay

@ DQN draws experience samples from the replay memory
uniformly at random

@ Prioritized experience replay aims to replay important
experience samples more often

from: Prioritized Experience Replay, T. Schaul et al., 2016



How to determine importance of a sample

@ The TD-error 1s a good proxy:
o0t = Ri+m e Q(St, a) — Q(St-1,At-1)

@ Greedy sample selection based on only TD error has issues:
- samples that initially have low TD error never get selected
- in the presence of noisy rewards, TD-error i1s not a good
indicator of importance

@ Prioritized experience replay uses a mix between pure greedy
prioritization and uniform random sampling



Performance across ALE set
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A3C

@ Asynchronous Advantage Actor-Critic

@ Multiple parallel learners that—asynchronously — update
the same value function/policy

@ Because there are multiple parallel learners, samples are
de-correlated even without experience replay

@ Without experience replay buffer, multi-step updates can
be used.



AlphaZero



Background

@ After IBM’s Deep Blue defeated the world champion in
Chess, Garry Kasparov in 1997, researchers started focusing
on the ancient game Go

@ Go is much harder than Chess, among others due to its
gigantic state-space size and large branching factor




AlphaGo Zero

@

@

In January 2016, DeepMind published Nature paper on
AlphaGo, a method that was able to beat defeat 18-time
world champion, Lee Sedol

AlphaGo was pre-trained on a large database of human Go
games; deep RL was used to further improve performance

In October 2017, DeepMind published a second Nature
paper, introducing AlphaGo Zero

AlphaGo Zero did no longer rely on a database of human Go
games, but was trained fully from scratch using RL

AlphaGo Zero also no longer makes use of some hand-
engineered features, but only uses stone-positions as input



Key Component: Monte-Carlo Tree Search

@ Heuristic search algorithm that uses many random rollout to
the end of the game to determine how good a particular
move 18

@ by focussing rollouts on moves that Va \
appear to be more successful, the @[j Q)\'@
efficiency is improved significantly Sl AN

@ From the current state, a tree 1s build up \
that stores intermediate evaluations and @) (
guides which moves is evaluated next



AlphaGo Zero

@ AlphaGo Zero uses MCTS, but instead of using random
rollouts, it relies on deep value network

@ Because no random roll-outs are performed it is much more
computationally efficient



Results
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Main Conclusions

@ AlphaGo Zero unambiguously shows the power of making
value predictions using (very) deep neural networks

@ The results also highlight the power of learning through self-
play

@ Self-play is believed to be so effective, because it 1s a natural
form of curriculum learning

curriculum learning: providing a learning agent with
increasingly challenging tasks in order to speed up
learning of complex behaviour




Some limitations

@ The environment dynamics (i.e., the rules of the game) are
not learned, but provided

@ Hence, the problem AlphaGo Zero considers 1s very different
from the standard RL setting

@ Because AlphaGo Zero relies on MCTS, it cannot be easily
be adapted to domains where the environment dynamics are
unknown (like ALE for example)
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Remaining Challenges / Open Issues

. Partial Observability

Long Decision Horizons

. Exploration
. Fast learning / adaptation

. Limitations of Reward Function



Partial Observability



Partial Observability

@ Typically, the environment state is not directly observed

@ Instead, a feature vector is observed that is correlated with
the state, but does not fully disambiguate between different
states

@ It the state ambiguity 1s significant, it becomes hard to
make accurate predictions about the return, and hence
determine a good policy.



Partial Observability: Example 1

Is Pong partial observable?

reward:
+1 if controllable agents scores point
-1 if opponent scores
whichever player reaches 21 points first wins



Partial Observability: Example 1

How about now?

reward:

* +1 if controllable agents scores point

* -1 if opponent scores

« whichever player reaches 21 points first wins



Partial Observability: Example 2




Long Decision Horizon




Decision Horizon

@ The decision horizon determines how far an agent has to
look into the future to determine the optimal action

@ How far the agent looks into the future is controlled by the
discount factor

@ Often, even when the aim is to optimize the reward over
many time steps, the decision horizon is much smaller and
hence a smaller discount factor can be used




Long Decision Horizon




Long Decision Horizon

Long decision horizons are hard, because:

@ It requires information to be propagated back in time over
a long distance

@ Can result in more challenging function approximation



Long Decision Horizon

What features are relevant for making accurate predictions:
@ small discount factor:

« values: between -1 and 1

« relevant features: peddle-positions, ball position + direction
@ large discount factor

+ values: between -21 and 21

« relevant features: peddle-positions, ball position + direction,

SCOTE . 1







Exploration

@ Rewards drive policy improvement

@ When the chance of observing a reward under a random
policy 1s low, it becomes hard to make policy improvements

@ This can happen, for example, when rewards are sparse




Fast learning / adaptation



telligent,

ut the one most
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ange.

~Charles Darwin, 1809




Current methods require huge amount of data

average training time per game:

DQN

DDQN
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from: Rainbow: Combining Improvements in Deep Reinforcement Learning. M Hessel, et al. 2017

100% median human-normalized score:
15 million frames ~ 27 human-play days*

Full training period:
200 million frames ~ 370 human-play days*

* assuming:
- framerate: 60 frames/s
- skip-frame: 4
- human plays 10 hours per day



Adaptation to Small Task Changes is Hard

Training set:

Test set:

from: Learning invariances for Policy Generalization. R. Tachet des Combes et al., 2018



L.imitations of Reward Function




Limitations Reward Function

@ The reward function specifies how we want our agents to
behave

@ However, not all behavioural goals can be easily captured
by a reward function, for example, having a meaningful
conversation

@ Furthermore, in a complex world, even specifying a
seemingly well-defined task like ‘get a cup of coffee’ can
be challenging



How far are we?




After 3 decades of RL research...

casy hard

.... but progress is non-linear
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Thank you!



