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• By 2021: 82% of Internet Traffic (3 ZB = 3*109

TB) will be video [CISCO]
• Q4 2016: mobile video surpassed desktop 

videos in terms of online viewing time [IAB]

MOBILE VIDEO STREAMING IS GETTING SO POPULAR
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RESEARCH GOAL

Improve Quality of Experience (QoE) and 
Resource Efficiency for Video Streaming

Less Stall Higher Quality Less Energy/Data Usage
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OUTLINE
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• Video Streaming Algorithms
– Single Path
– Multiple Paths
– Giant Client

• 360-degree Video Streaming

• Video Streaming over Cloud
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• Each chunk is encoded into multiple bit-rates

• The user can fetch each chunk at one of these rates. 

ADAPTIVE BIT-RATE VIDEO
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• H.264/MPEG-4 AVC (Advanced Video Coding), Standardized 2003. 
One out of L chunks must be selected. 

• SVC (Scalable Video Coding), Standardized in 2007 as a extension to 
H.264. Has one base layer and multiple enhancement layers. 

TWO TYPICAL FORMS OF ENCODING
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BENEFIT OF PREDICTION

• LTE data collection over 30 different weekdays



• What quality should each of the video chunk be fetched at?

• Objective: Maximize the Quality of Experience of the end users. 

• Some key metrics:
– Stall Duration (Rebuffering)
– Average quality
– Quality Variations

VIDEO STREAMING PROBLEM FORMULATION
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Huang et a l., S igcom m 2014

• Decide the quality 
of next chunk 
based on the 
buffer occupancy

• Higher video rate 
with higher buffer 
occupancy

• Gap: Buffer 
occupancy 
accounts for buffer 
and thus implicitly 
bandwidth, but not 
explicitly. Slow in 
learning 
bandwidth change.

BUFFER BASED ALGORITHM (BBA)
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Yin et a l., S igcom m 2015

• An optimization approach for 
deciding the quality levels

• Weighted combination of different 
QoE metrics is chosen
– Stall Duration
– Average Quality
– Quality variation between chunks

• The optimization problem has 
discrete constraints (quality levels 
are discrete)

MODEL PREDICTIVE CONTROL (MPC)
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Yin et a l., S igcom m 2015

• Weighted combination of different 
QoE metrics is chosen
– Stall Duration
– Average Quality
– Quality variation between chunks

• The optimization problem has 
discrete constraints (quality levels 
are discrete)

• A lookup table for nearby points is 
constructed, and used in real-time. 

MODEL PREDICTIVE CONTROL (MPC)
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• As a first step, we assume SVC encoding, and will generalize it later.

• We also assume a skip-based formulation, where chunks if not received by deadline 
are skipped. The results will be extended to the stall-based version too.  

• Notations
– C chunks
– N+1 layers – 0, 1, …, N
– Length of chunk, L
– Startup delay, s
– Size of Layer n, Yn

– zn(i,j) – Amount of layer n of chunk i fetched in time j
– Quality level at which chunk at layer n can be fetched Zn ! {0, Yn}
– Bandwidth limitation at every time j, B(j)
– Buffer capacity in time, Bm

OUR PROPOSED FORMULATION
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• Constraints:

OUR PROPOSED FORMULATION
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• What could be a good metric (objective)?

• The increase in QoE with chunk quality has diminishing returns

• Minimizing Skips = Maximizing number of chunks for which base layer is fetched. 

OUR PROPOSED FORMULATION
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• What could be a good metric (objective)?

• The increase in QoE with chunk quality has diminishing returns

• Minimizing Skips = Maximizing number of chunks for which base layer is fetched.

• So, one approach seems like (!<<1)

(Number of chunks in BL) + ! (Number of chunks in EL1) + !2 (Number of chunks in EL2)+…

• This prefers going higher layers when there is no possibility where more lower layers 
can be obtained, thus matching the diminishing returns objective. 

OUR PROPOSED FORMULATION
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(Number of chunks in BL) + ! (Number of chunks in EL1) + !2 (Number of chunks in EL2)+…

WHICH STRATEGY IS BETTER?
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(Number of chunks in BL) + ! (Number of chunks in EL1) + !2 (Number of chunks in EL2)+…

• Policy 2

WHICH STRATEGY IS BETTER?
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(Number of chunks in BL) + ! (Number of chunks in EL1) + !2 (Number of chunks in EL2)+…

• The objective does not account for quality variations. 

OTHER CONSIDERATION?
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(Number of chunks in BL) + ! (Number of chunks in EL1) + !2 (Number of chunks in EL2)+…

• The objective does not account for quality variations. 

• Approach: Favor later chunks. 

OTHER CONSIDERATION?
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• For every layer a, all higher layers achieve less objective than fetching a chunk at 
layer a

• This allows for layer prioritization. 

• Can independent decision at layers be chosen with such constraints?

CONDITION ON !
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• For every layer a, all higher layers achieve less objective than fetching a chunk at 
layer a

• This allows for layer prioritization. 

• Can independent decision at layers be chosen with such constraints? No
– This is because when the chunk is fetched impacts the available bandwidth for future
– The chunks at all times have to satisfy buffer capacity constraints

CONDITION ON !
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• The problem has discrete constraints, since each layer of each chunk is wither 
fetched fully or not at all

• Also, there is a non-convex buffer constraint

IS THE PROBLEM NP-HARD?
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• Many problems are. 
– Knapsack Problem
– Cutting Stock Problem
– Bin Packing Problem
– Travelling Salesman Problem 
– -- and many more. 

– All these are discrete optimizations, and NP hard. 

ARE DISCRETE OPTIMIZATION PROBLEMS HARD?
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• In contrast, some problems are not
– Shortest Path Trees
– Flows and Circulations
– Spanning Trees
– Matching Problem
– Matroid Problem

ARE DISCRETE OPTIMIZATION PROBLEMS HARD?
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• The problem can be seen as bin-extension to the Knapsack problem

RELATION TO KNAPSACK PROBLEM
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BIN-EXTENDED KNAPSACK PROBLEM
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• Knapsack problem is NP hard, so is this extension. 

• However, we consider a special case

• We will see that the problem is polynomial-time solvable in this special case (indeed, 
linear time solvable in N and C). 

RELATION TO KNAPSACK PROBLEM
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• Example Setup:
– 10 chunks, 1 s each
– Startup delay = 3s
– Maximum Buffer size = 4s
– 1 BL, 1 EL

PROPOSED ALGORITHM
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OPTIMALITY

• Step 1: Without loss of generality, can consider in-order fetching. 

• Step 2: Fetching algorithm maximizes number of fetched chunks at BL.
– There are skips only due to two reasons – bandwidth insufficient or  buffer violations. In 

both cases, it can be shown that the skips cannot be decreased as compared to the 
proposed algorithm

• Step 3: Forward algorithm maximizes the available bandwidth for higher layers 
among all decisions with same decisions at lower layers

• Recursively using the results give the optimality of the proposed algorithm

• Complexity: O(NC) – linear in number of layers and number of chunks. 
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ONLINE ALGORITHM

• The predicted bandwidth may only be available for short time ahead

• Bandwidth prediction is inaccurate 

• We Compute the scheduling decision only for the next W chunks ahead.

• Repeat after downloading every chunk to adjust to prediction errors and compute 
quality decisions for more chunks ahead. 

• Our formulation works with any prediction technique. For evaluation, we consider 
harmonic mean and crowd-sourcing based predictions

38



The new objective function is: 

Subject to all skip version constraints plus the following constraint

No Base Layer Skips

Stall duration up to the ith chunk

NO-SKIP BASED STREAMING FORMULATION
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The rest is equivalent to skip version, backwar-forward scan starting from the BL
No-skip is a special case of skip in which chunk deadlines are chosen such that there are no skipsno skips

1

NO-SKIP BASED STREAMING FORMULATION
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• Simulation and TCP/IP-based emulation 
testbed in C++. 

• For Performance measure, we compare 
our skip version with 3 Baselines 

• Baseline 1: Conservative Algo, Fetch BL of all chunks 
before moving to E1 and so on. (Horizontal) 

• Baseline 2: Optimistic Algo, Fetch all layers of current 
chunk and if there is still BW, fetch all possible layers of 
next chunk. (Vertical) 

• Baseline 3: In between, Fetch all layers of current chunk 
and if there is still BW, fetch BL of later chunks 

• We compare No-Skip version with 
• Netflix BBA-0, 
• Naive port of Microsoft Streamer to SVC (NMS). 
• Slope based algorithm 

EVALUATIONS FOR SVC
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EVALUATION RESULTS FOR SVC - SKIP
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EVALUATION RESULTS FOR SVC - STALL
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• Real implementation in dash.js open source video platform.
• Comparison with FastMPC, Festive, BBA, RB, and dash.js

reference 
• We use real video ”Envivo”, chunk duration is 4s.

AbrController

AVC-DAP

BBA, RB, FESTIVE

FastMPC

Rule-Based
Decision Logic

getPlaybackQuality

ThroughputPredictor

Original dash.js FastMPC additions

Our additions

EVALUATION FOR AVC
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SUMMARY
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• Novel formulation for video streaming

• Novel algorithms for video streaming

• Low complexity, and improved performance as compared to the 
baselines

• Some discrete optimization problems can be solved with low 
complexity.  



OUTLINE
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• Video Streaming Algorithms
– Single Path
– Multiple Paths
– Giant Client

• 360-degree Video Streaming

• Video Streaming over Cloud



MULTIPATH STREAMING

• Use multiple interfaces (e.g WiFi and LTE)  to download video chunks 

49



MULTIPATH STREAMING

• MPTCP may or may not be allowed for using two 
links

• A vast amount of commercial content providers do 
not support MPTCP because it requires OS kernel 
update at both the client and server side. 

• MPTCP uses special TCP extensions that are often 
blocked by middle-boxes of the commercial 
content providers (e.g MPTCP over Port 80/443 is 
blocked by most U.S. cellular carriers).

• Implementing MPTCP with link preference further 
requires message exchange between the rate 
adaptation logic at the application layer and 
MPTCP in order to disable/enable parallel TCP 
connections.  
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Note that a chunk can be Split into the two links
since splitting a chunk among links is Possible with MPTCP 

Stall duration

PROBLEM FORMULATION WITH AVC USING MPTCP



Example 1: MPTCP-AVC
In this example we consider a video  consists of 10 chunks, 1s each
Startup delay =1 s
The video is encoded into two quality levels

- 0-th Quality level, Bit rate is 1Mb/s, so chunk size is 2Mb
- 1-st Quality level, Bitrate 3Mb/s, so chunk size is 3Mb,
Therefore, the size difference between the two quality levels is 1Mb 

0-th Quality level Size difference between
The two quality levels

1-st Quality level

EXAMPLE
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Total stall duration is 1 second
Deadline(i)=(i-1)L+s+d(i), s=1, and d(i)=1 for all I
i.e deadline(1)=2
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CONSIDERING PREFERENCES: EXCHANGE ALGORITHM
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MULTIPATH STREAMING

• MPTCP may or may not be allowed for using two 
links

• A vast amount of commercial content providers do 
not support MPTCP because it requires OS kernel 
update at both the client and server side. 

• MPTCP uses special TCP extensions that are often 
blocked by middle-boxes of the commercial 
content providers (e.g MPTCP over Port 80/443 is 
blocked by most U.S. cellular carriers).

• Implementing MPTCP with link preference further 
requires message exchange between the rate 
adaptation logic at the application layer and 
MPTCP in order to disable/enable parallel TCP 
connections.  
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WITHOUT MPTCP

• Without MPTCP, we use SVC since each layer can be obtained from 
different link. 

• Forward scan: Finds stalls using greedy approach

• Other steps, similar to before, where we assume that LTE can only be 
used upto a layer and prefer WiFi to LTE. 
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EVALUATIONS
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EVALUATION RESULTS FOR SVC
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EVALUATION RESULTS FOR AVC
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EVALUATION RESULTS FOR AVC
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SUMMARY
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• Novel formulation for multi-path video streaming

• Considers link preference in the design of multi-path streaming 
algorithms

• Novel algorithms with low complexity and improved performance as 
compared to the baselines



OUTLINE
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• Video Streaming Algorithms
– Single Path
– Multiple Paths
– Giant Client

• 360-degree Video Streaming

• Video Streaming over Cloud



COOPERATIVE VIDEO STREAMING

• Group of users are gathered in a low 
speed internet place. 

• They are interested in watching a TV 
show on a common screen

• Willing to cooperate, but:
– Users may have different data plan limits
– Devices are running into different 

energy levels

• Maximum contribution of every user 
should not be violated
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COOPERATIVE VIDEO STREAMING

• Multipath TCP cannot be used due to 
different users from potentially 
different carriers involved

• The approach for multipath can be 
used here for fetching chunks from 
servers.
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EVALUATION
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SUMMARY
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• Natural extension of the work to cooperative streaming

• Cooperation helps fetching content from multiple users



OUTLINE
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• Video Streaming Algorithms
– Single Path
– Multiple Paths
– Giant Client

• 360-degree Video Streaming

• Video Streaming over Cloud



360-DEGREE VIDEO STREAMING

• A key application of Virtual Reality (VR)

• Provide users with panoramic views

Z X

Y

Roll

Pitch

Yaw
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Omni-directional Camera

Projected view in the viewport 

Viewing direction (lat/lon) &
Field-of-view (FoV) size

Project

Raw Panoramic Frame
-90˚

90˚
-180˚ 180˚Longitude

Latitude

HOW ARE 360 VIDEOS CAPTURED & PLAYED?
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Equirectangular (YouTube)

CubeMap (Facebook)

PROJECTION ALGORITHM
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360 videos inherit almost everything from regular videos
• Same encoding scheme
• Same rate adaptation algorithm
• Same client/server infrastructure
• Viewport agnostic from networking perspective: client 

downloads the entire raw panoramic frame regardless of 
user’s viewport

360/VR videos Regular video
streaming techniques

Projection

360-DEGREE VS REGULAR VIDEO STREAMING
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Tremendous bandwidth waste
• User only consumes ~15% of the downloaded contents

Under the same perceived quality, 360  videos are 4~6 
times larger than regular videos.

• Roller coaster, 1’57’’, 4K, 250MB+

360/VR videos Regular video
streaming techniques

Projection

360-DEGREE VS REGULAR VIDEO STREAMING
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Samsung Gear VR, $80Google Cardboard, $10Bare Smartphone

High-level idea: FoV-aware streaming!
• Predict user’s head movement and only fetch portions that the 

user is about to see 
Target commodity mobile devices & low-end VR headsets

Significantly reduce bandwidth utilization, or improve 
perceived quality

360-DEGREE VIDEO STREAMING
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360-DEGREE VIDEO STREAMING

0 1 2 3 4 5 6 7
0
1
2
3

Predicted 
Viewport 

• A chunk is divided into tiles

• Efficient prediction of FoV can be obtained for 
some time-ahead

• Statistics of viewing each tile can be known

• How to account for FoV to obtain new streaming 
algorithm?
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360-DEGREE VIDEO STREAMING

0 1 2 3 4 5 6 7
0
1
2
3

Predicted 
Viewport 

• What are the metrics?
– Minimum rate in FoV
– Average Rate in FoV
– Stalls
– Quality variations in FoV

• What if prediction is wrong – how about stalls?

• We propose minimum quality for all tiles, so that 
we do not have to stall due to incorrect 
prediction

80



360-DEGREE VIDEO STREAMING

0 1 2 3 4 5 6 7
0
1
2
3

Predicted 
Viewport 

• What are the metrics?
– Minimum rate in FoV
– Average Rate in FoV
– Stalls
– Quality variations in FoV

• One metric: Choose 99th percentile area, and 
fetch higher quality in that, BL in rest

• Flexible: What quality for this bigger area?

• Akin to VBR – and efficient streaming strategies 
have been proposed. 
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RESULTS

• Improves Playback rate and reduce stalls and quality variations as compared to 
approaches getting all tiles at same quality. 
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SUMMARY

83

• 360-degree adds a challenge of FoV prediction

• Exploiting the FoV prediction with tile-based streaming

• A new formulation is provided, and algorithms are proposed



OUTLINE
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• Video Streaming Algorithms
– Single Path
– Multiple Paths
– Giant Client

• 360-degree Video Streaming

• Video Streaming over Cloud
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• Video streaming applications represents 62% of the Internet traffic in US

• More than 50% of over-the-top video traffic is now delivered through CDNs

• What are the key challenges?

MOTIVATION
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• Network Optimization: Determination of Caching, Bandwidths, and Server 
access for Optimized User QoE

• Computation Optimization: Multiple MapReduce Jobs for Video Processing and 
Data Analytics, optimized completions.

• Video Streaming Algorithms: Adaptive bit-rate algorithms for optimized user 
QoE

RESEARCH PROBLEMS
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SETUP

• Part of each video is 
cached at cache 
servers. 

• The content from 
cache is downloaded 
from one of ej
streams and  that 
from the central 
cloud though dj

• Each video request 
chooses one of the 
distributed server, 
and correspondingly 
one of dj and one of 
ej streams. 
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SETUP

• Part of each video is cached at cache servers. 

1

Cache Server j  [!",$= 3]

2

1 2 3

Video content for file i
3 4 !$

!$: &'()*+ ,-
.*/(*01.
-,+ 234*, 3
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DECISION VARIABLES

• Choice of Distributed 
Server

• Amount of each 
video in cache

• Choice of ej streams

• Choice of dj streams

• Bandwidth allocation 
among the different 
streams
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OBJECTIVE

• Wish to Minimize 
Stalls  

• One of the key metric 
is to minimize the 
probability that the 
stalls are above a 
threshold. 

• Metric is called Stall 
Duration Tail 
Probability
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CHALLENGES

• Computation of objective is hard

• The key reason is that the choice of server, and the streams is a decision 
process, and the embedded computation of Markov Chain is 
challenging. 

• Approach: Have the choice be independent of the queue state. 
[Proposed earlier for erasure-coded cloud storage by Aggarwal et al., 
Sigmetrics 2014, TON 2016.]

• Probabilistic Scheduling: Make the choice randomly with certain 
probabilities. However, the probabilities become design variables. 

• Approach can give an upper bound for the objective
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CHALLENGES

• Stall duration does not only depend on download of a chunk

• We need to compute download time of all chunks and stalls between 
chunks. 

• Makes the metric harder to compute since download times are 
stochastic and the stall times are non-convex function of download 
times.

• Approach: Use efficient bounds. 
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STEPS FOR COMPUTATION

• For a file request for video i, assume 
that the servers, streams, and the 
cache contents at the server are 
known. 

• Step 1: Download Time for Chunks 
from the Cache Servers: 

• Download time of first chunk only 
depends on the waiting time for 
previous videos, and the service time 
of 1st chunk. 

• Download time of later chunks can be 
found by adding service times. 
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STEPS FOR COMPUTATION

• For a file request for video i, assume 
that the servers, streams, and the 
cache contents at the server are 
known. 

• Step 2: Download Time for Chunks 
from the Cloud Storage: 

• This is challenging due to two queues. 
The chunk first has to come on top 
pipe, be downloaded, and then be 
enqueued in the bottom pipe. 



STEPS FOR COMPUTATION

• Step 2: Download Time for Chunks 
from the Cloud Storage: 

• This is challenging due to two queues. 
The chunk first has to come on top 
pipe, be downloaded, and then be 
enqueued in the bottom pipe. 

Datacenter Cache Server
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STEPS FOR COMPUTATION

• Step 3: Play Time for Chunks from the 
Cloud Storage: 

• Knowing download time of all chunks, 
the play times can be calculated. 

• Thus, the statistics of Play times can 
be calculated. 

!!

"#
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STEPS FOR COMPUTATION

• Step 4: Stall Duration: 

• Stall duration can be calculated from 
the play time of the last chunk. 

• Ideally, last chunk must be played at 
Startup Delay + (C-1) Chunk Duration

• The delay between the actual play 
time and the ideal time is the stall 
duration. 
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STEPS FOR COMPUTATION

• Step 5: Stall Duration Tail Probability: 

• Knowing the moment generating 
function of the stall duration, bounds 
on tail probability can be calculated, 
over the statistics of the probabilistic 
scheduling. 
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OPTIMIZATION 

• We wish to optimize the stall duration tail probability, weighted for different 
video requests, to determine the choice of bandwidth allocation, caching, 
and the probabilistic scheduling.  

• The problem is non-convex, has integer constraints. 

• We use an alternating minimization based algorithm over different variable 
groups, and solve each variable group using iNner cOnVex Approximation 
(NOVA) algorithm. 

• This guarantees convergence to a local optima. 
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EVALUATIONS

• Comparisons:
– Projected Equal Server-PSs Scheduling, Optimized Auxiliary variables, Caching, and 

Bandwidth Weights (PEA)
– Projected Equal Bandwidth, Optimized Access Servers and PS scheduling 

Probabilities, Auxiliary variables and cache placement (PEB)
– Projected Equal Caching, Optimized Scheduling Probabilities, Auxiliary variables and 

Bandwidth Allocation Weights (PEC)
– Fixed-t: Fixed Auxiliary Variables. 
– Projected Proportional Service-Rate, Optimized Auxiliary variables, Bandwidth 

Weights, and Cache Placement (PSP)
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EVALUATIONS

• Comparisons:
– Projected Equal Server-PSs 

Scheduling, Optimized Auxiliary 
variables, Caching, and Bandwidth 
Weights (PEA)

– Projected Equal Bandwidth, 
Optimized Access Servers and PS 
scheduling Probabilities, Auxiliary 
variables and cache placement (PEB)

– Projected Equal Caching, Optimized 
Scheduling Probabilities, Auxiliary 
variables and Bandwidth Allocation 
Weights (PEC)

– Fixed-t: Fixed Auxiliary Variables. 
– Projected Proportional Service-Rate, 

Optimized Auxiliary variables, 
Bandwidth Wights, and Cache 
Placement (PSP) Better than Baselines
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EVALUATIONS

Benefit increases with load

• Comparisons:
– Projected Equal Server-PSs 

Scheduling, Optimized Auxiliary 
variables, Caching, and Bandwidth 
Weights (PEA)

– Projected Equal Bandwidth, 
Optimized Access Servers and PS 
scheduling Probabilities, Auxiliary 
variables and cache placement (PEB)

– Projected Equal Caching, Optimized 
Scheduling Probabilities, Auxiliary 
variables and Bandwidth Allocation 
Weights (PEC)

– Fixed-t: Fixed Auxiliary Variables. 
– Projected Proportional Service-Rate, 

Optimized Auxiliary variables, 
Bandwidth Wights, and Cache 
Placement (PSP)
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REAL IMPLEMENTATION

• The proposed algorithm was implemented on real servers.  
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REAL IMPLEMENTATION

• The proposed algorithm was implemented on real servers.  
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HOW ABOUT EDGE CACHE?

• Edge Router also has limited cache

• What is good caching policy at the edge router?
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HOW ABOUT EDGE CACHE?

• Edge Router also has limited cache

• What is good caching policy at the edge router?

• LRU (Least Recently Used): Place last requested file in cache, remove the 
least recently used file. 

• Edge cache can allow for multicast since the same content can be sen to 
another user even while being downloaded.  
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HOW ABOUT EDGE CACHE?

• Edge Router also has limited cache

• What is good caching policy at the edge router?

• LRU (Least Recently Used): Place last requested file in cache, remove the 
least recently used file. 

• Edge cache can allow for multicast since the same content can be sen to 
another user even while being downloaded.  

• LRU does not account for file priority, and is known to be bad for asymmetric 
file sizes. Thus, we consider TTL (time-to-live) where each file is removed 
after certain time (parameter) if not accessed. 
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CHANGES WITH TTL

• We consider TTL (time-to-live) where 
each file is removed after certain time 
(parameter) if not accessed.

• The cache has limited size, so 
parameters can be found to keep 
probability of cache over-size very 
small. Online adaptation can be done to 
manage such low probability violation.

• With this edge cache strategy and 
multicast, stall duration statistics can be 
calculated. The rest of the procedure is 
similar as described earlier. 
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IMPLEMENTATION RESULTS



SUMMARY

111

• CDN based video delivery system is considered

• Stall duration statistics are analyzed 

• An optimized system is developed with knobs of scheduling, 
resource allocation, and caching



Thank You!
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