
Distributed Detection in Millimeter Wave Massive
MIMO Wireless Sensor Networks

Apoorva Chawla‡, Rakesh Kumar Singh‡, Adarsh Patel¶, and Aditya K. Jagannatham‡
‡Department of Electrical Engineering, Indian Institute of Technology Kanpur, India 208016

¶School of Computing & Electrical Engineering, Indian Institute of Technology Mandi, India 175005
Email: {capoorva, singhrk, adityaj}@iitk.ac.in, {adarsh}@iitmandi.ac.in

Abstract—This paper considers a distributed detection frame-
work for millimeter wave (mmWave) massive multiple-input
multiple-output (MIMO) wireless sensor networks (WSNs). A
hybrid combining based low complexity fusion rule is derived
at the fusion center (FC) that also incorporates the local
probabilities of detection and false alarm of the individual sensor
nodes, thus making it suitable for practical scenarios. Closed-
form expressions for the probabilities of detection and false
alarm are evaluated to characterize the system performance.
Moreover, a deflection coefficient maximization based framework
is also developed to determine the signaling matrix that further
improves the detection performance of the proposed scheme.
Finally, simulation results are presented to demonstrate the
performance of the proposed detector and to corroborate the
analytical results.

I. INTRODUCTION

Millimeter wave (mmWave) communication, which ex-
ploits the spectrum in the 30 GHz to 300 GHz band, has
shown excellent potential toward enabling high data rates
in next-generation 5G communication systems [1]. However,
mmWave communication faces several challenges, such as
higher path losses, severe signal blockage and increased hard-
ware complexity when compared to conventional systems op-
erating at carrier frequencies below 6 GHz [2]. In this context,
massive multiple-input multiple-output (MIMO) technology,
which can provide both antenna directivity and array gains,
can be employed to compensate for the increased propagation
losses experienced at mmWave frequencies. Therefore, the
integration of mmWave and massive MIMO technologies
provides a promising pathway to facilitate the deployment of
large number of sensors in the next-generation wireless sensor
networks (WSNs), which have been extensively utilized for
sensing and surveillance applications.

Conventional fully digital baseband signal processing
schemes that require an individual radio frequency (RF) chain
for each receive are impractical for the mmWave massive
MIMO systems because of the high hardware complexity,
power consumption and cost that such an architecture entails.
Therefore, hybrid combining techniques, which need a sig-
nificantly lower number of RF chains in comparison to the
number of transmit/ receive antennas, have been shown to be
well suited for mmWave MIMO systems [3]. In this context,

the authors in [4] have analyzed the spectral efficiencies of
both centralized and distributed mmWave massive MIMO
systems with hybrid precoding. A few works in the existing
literature [5]–[7] have proposed fusion rules based on linear
filtering at the fusion center (FC) for massive MIMO WSNs.

However, none of the works have proposed hybrid combin-
ing based fusion rules for mmWave massive MIMO WSNs.
Therefore, this work considers a coherent multiple access
channel (MAC)-based WSN, where several nodes simulta-
neously communicate with the FC equipped with a massive
antenna array in the mmWave band. Each sensor node trans-
mits a decision vector over one or more signaling intervals to
convey its local decision to the FC. A low complexity fusion
rule based on hybrid combining is determined for distributed
detection in the mmWave massive MIMO WSN, incorporating
also the probabilities of detection (PD,k) and false alarm
(PF,k) of the local sensor decisions. Closed-form expressions
are derived for the system level probabilities of detection
and false alarm at the FC to analytically characterize the
performance of the proposed detectors. Moreover, a deflection
coefficient maximization based optimization framework is
developed to obtain the optimal signaling matrix, which can
further enhance the detection performance of the proposed
scheme. Finally, simulation results are presented to demon-
strate the detection performance of the proposed scheme.

II. SYSTEM MODEL

Consider a mmWave massive MIMO WSN wherein K sen-
sors are sensing a specific signal of interest. This framework
can be modeled as a distributed binary hypothesis testing prob-
lem, where the null hypothesis H0 and the alternate hypothesis
H1 indicate the absence and presence of the signal of interest,
respectively. The WSN comprises of K single-antenna sensors
which are simultaneously communicating with the FC over a
flat fading coherent MAC. The FC is equipped with a massive
antenna array of M antennas and NRF radio frequency (RF)
chains, such that M ≫ K and NRF = K. Each RF chain
can access all the M receive antennas at the FC. Depending
on the local decision, the kth sensor, 1 ≤ k ≤ K, transmits
a decision vector xk = [xk(1), xk(2), . . . , xk(N)]T ∈ CN×1

over N signaling intervals and it can be either xk = uk or
xk = −uk , indicating the presence or absence of the signal
of interest, respectively. The probabilities of detection PD,k

and false alarm PF,k of the kth sensor are defined as978-1-7281-8895-9/20/$31.00 c⃝ 2020 IEEE



PD,k = Pr (xk = uk|H1) ,

PF,k = Pr (xk = uk|H0) .
(1)

The received signal y(n) ∈ CM×1 at the FC during the nth
signaling instant can be expressed as

y(n) =
√
puGx(n) +w(n), (2)

where G ∈ CM×K represents the mmWave channel
matrix between the FC and the K sensors, x(n) =
[x1(n), x2(n), . . . , xK(n)] ∈ CK×1 denotes the composite
transmitted signal vector comprising of symbols from all the
K sensors and pu is the average transmit power of each sensor.
The vector w(n) ∈ CM×1 denotes the complex Gaussian
noise at the nth signaling interval with distribution as w(n) ∼
CN

(
0, σ2

wIM
)
. The channel vector gk ∈ CM×1 between the

kth sensor and the FC is represented by gk =
√
βkhk, where

hk and
√
βk denote the small-scale fading vector and large-

scale fading coefficient between the kth sensor and the FC,
respectively. The large-scale fading coefficient

√
βk accounts

for the pathloss and log-normal shadowing effects, which is
assumed to be constant over multiple coherence intervals and
independent across m, 1 ≤ m ≤ M . Employing the extended
Saleh-Valenzuela (SV) model for mmWave channel modeling
[4], [8], the small-scale fading vector hk can be characterized
as

hk =

√
M

Lk

Lk∑
l=1

αl
kar

(
θlk
)
, (3)

where αl
k ∼ CN (0, 1) and θlk ∈ [0, 2π] represent the complex

gain and angle of arrival corresponding to the lth path and the
kth sensor, respectively. The parameter Lk denotes the number
of propagation paths observed by the kth sensor and it follows
the discrete uniform distribution, i.e., Lk ∼ DU [1, Lm] with
Lm as the maximum number of propagation paths. For a
uniform linear array (ULA) configuration at the FC, the
vector ar

(
θlk
)
∈ CM×1 that corresponds to the receive array

response vector of the kth sensor can be expressed as

ar
(
θlk
)
=

1√
M

[
1, ejv sin(θl

k), . . . , ejv(M−1) sin(θl
k)
]T

, (4)

where v = 2π
λ d, d is the spacing between the antenna elements

and λ is the carrier wavelength. Therefore, the channel matrix
G can be modeled as

G = HD1/2, (5)

where H ∈ CM×K is the small-scale fading matrix obtained
using (3) and the diagonal matrix D is the large-scale fading
matrix with βk, 1 ≤ k ≤ K, along its principal diagonal.
Utilizing (2), the received signal Y ∈ CM×N at the FC
corresponding to the N composite transmitted vectors x(n),
can be expressed as

Y =
√
puGX+W, (6)

where X = [x(1), . . . ,x(N)] ∈ CK×N denotes the transmit-
ted signal matrix and W = [w(1), . . . ,w(N)] ∈ CM×N is
the noise matrix with its elements as i.i.d. random variables,
i.e., wi,j ∼ CN (0, σ2

w). The hybrid combining based fusion
rule for the perfect CSI scenario is described next.

III. FUSION RULE AND HYBRID COMBINER

This section presents the fusion rule for the perfect CSI
scenario at the FC. Based on the Neyman-Pearson (NP)
criterion, the log likelihood ratio (LLR) test for the mmWave
massive MIMO WSN system model in (6) can be formulated
as

T (Y) = ln
[
p (Y|H1)

p (Y|H0)

]
H1

≷
H0

γ, (7)

where γ is the detection threshold and p (Y|H1), p (Y|H0)
represent the PDFs of Y under the hypotheses H1 and H0,
respectively. The LLR test obtained after substituting the
relevant PDFs in (7), can be expressed as

T (Y)=
N∑

n=1

ln

[∑
x(n) exp

(
−∥y(n)−√

puGx(n)∥2

σ2
w

)
Pr(x(n)|H1)∑

x(n) exp
(
−∥y(n)−√

puGx(n)∥2

σ2
w

)
Pr(x(n)|H0)

]
.

However, the above test is numerically unstable and computa-
tionally complex because of the summation over 2K exponen-
tial terms [5]. For a practically amenable implementation, a
two step architecture is proposed to simplify the LLR test
T (Y). In the first step, the received signal at the FC is
processed by a hybrid combiner to recover the soft decisions
of the individual sensors. The hybrid combiner comprises of
an analog combiner FRF ∈ CM×K and a digital combiner
FBB ∈ CK×K . The analog combiner FRF is obtained by
concatenating the receive array response vectors of all the
sensors corresponding to their maximum path gains and is
given as

FRF =
[
ar

(
θl11

)
, , . . . ,ar

(
θlKK

)]
, (8)

where lk denotes the path having the maximum path gain αlk
k

and θlkk , 1 ≤ k ≤ K, represents the corresponding angle
of arrival of the kth sensor. The matrix FBB is obtained
by utilizing the equivalent baseband channel matrix and is
represented by FBB = FH

RFG. In the second step, the
processed sensor decisions are combined to obtain a final
decision. After hybrid combining, the system model in (6)
can be equivalently expressed as

Z = FH
BBF

H
RFY =

√
puF

H
BBF

H
RFGX+ FH

BBF
H
RFW, (9)

where Z = [z(1), . . . , z(N)] ∈ CK×N represents the output
matrix obtained after hybrid combining. From the asymptotic
orthogonality property of mmWave massive MIMO channels
[9], it follows that

aHr
(
θluk

)
ar

(
θlvs

)
=

{
1, k = s and u = v
0, k ̸= s or u ̸= v

, (10)

when M grows large and Lk ≪ M , ∀k. Using the results de-
scribed in (10), the hybrid combiner output vector zk ∈ CN×1

of the kth sensor, corresponding to the transmitted vector
xk = [xk(1), . . . , xk(N)]T ∈ CN×1, can be equivalently
expressed as

zk =
√
pu

Mβk

Lk
|αlk

k |2xk + w̃k, (11)

where w̃k =
√

Mβk

Lk
αlk∗
k

(
aHr

(
θlkk

)
W

)T ∈ CN×1 is
the equivalent noise vector with distribution as w̃k ∼



CN (0,Cw̃k
) and the covariance matrix Cw̃k

∈ CN×N is
defined as Cw̃k

= Mσ2
wdkIN , where dk , βk

Lk
E{|αlk

k |2}. The
output vector zk follows the complex Normal distribution, i.e.,
zk ∼ CN

(√
puMdkxk,Ck

)
and the covariance matrix Ck ∈

CN×N is defined as Ck =
puM

2β2
k

L2
k

xkx
H
k var{|αlk

k |2}+Cw̃k
.

Therefore, the LLR based test statistic T (Z) for distributed
detection in the mmWave massive MIMO WSN with perfect
CSI can be determined as

T (Z) = ln
[
p(Z|H1)

p(Z|H0)

]
= ln

[ K∏
k=1

p(zk|H1)

p(zk|H0)

]
. (12)

The above test can be simplified to the expression in
(13). After substituting the relevant quantities, i.e., local
sensor performance metrics from (1) and the conditional
PDFs of zk for xk ∈ {uk,−uk}, which are given as,
p (zk|xk=uk) ∼ CN

(√
puMdkuk,Ck

)
and p (zk|xk=−uk)

∼ CN
(
−√

puMdkuk,Ck

)
, respectively, with Ck =

puM
2β2

k

L2
k

uku
H
k var{|αlk

k |2} + Cw̃k
= MC̃k, the test statistic

in (13) can be simplified as

T (Z)=
K∑

k=1

ln

[
PD,k+(1−PD,k) exp

(
−4

√
pudkR(zHk C̃−1

k uk)
)

PF,k+(1−PF,k) exp
(
−4

√
pudkR(zHk C̃−1

k uk)
)],

where the symbol R (�) represents the real part. For low SNR
scenarios, the above test after employing the approximations
e−t ≈ (1− t) and ln (1 + t) ≈ t, for sufficiently small values
of t, reduces to

T (Z) =

K∑
k=1

akdkR(zHk C̃−1
k uk)

H1

≷
H0

γ′, (14)

where the constant ak is defined as ak , (PD,k − PF,k)
for the kth sensor. The low SNR approximation based test
statistic is suitable for practical scenarios because WSNs
are generally resource constrained especially in terms of
the transmit power. For identical local sensor performance
metrics, i.e., PD,k=Pd and PF,k=Pf , ∀k, the test statistic
in (14) reduces to TI(Z) =

∑K
k=1 dkR(zHk C̃−1

k uk). The
analytical performance of the fusion rule in (14) is described
below.

Theorem 1. The probabilities of detection (PD) and false
alarm (PFA) of the test statistic in (14), for distributed
detection in the mmWave massive MIMO WSN are given as

PD = Q

(
γ′ − µT |H1

σT |H1

)
, (15)

PFA = Q

(
γ′ − µT |H0

σT |H0

)
, (16)

where µT |H0
, µT |H1

, σ2
T |H0

and σ2
T |H1

denote the mean and
variance of the null and alternative hypotheses, respectively
and are given as

µT |H0
=

K∑
k=1

√
puMakckd

2
k∥uk∥2C̃−1

k

, (17)

µT |H1
=

K∑
k=1

√
puMakbkd

2
k∥uk∥2C̃−1

k

, (18)

σ2
T |H0

=
K∑

k=1

Md2ka
2
k

(
Mpuξk +

σ2
w

2
dk(u

H
k C̃−2

k uk)

)
, (19)

σ2
T |H1

=

K∑
k=1

Md2ka
2
k

(
Mpuζk +

σ2
w

2
dk(u

H
k C̃−2

k uk)

)
, (20)

with bk = (2PD,k − 1), ck = (2PF,k − 1),
ξk =

(
β2
k

L2
k
E{|αlk

k |4} − d2kc
2
k

)(
uH
k C̃−1

k uk

)2
and

ζk =
(

β2
k

L2
k
E{|αlk

k |4} − d2kb
2
k

)(
uH
k C̃−1

k uk

)2
.

Proof: See Appendix A.

IV. SIGNALING MATRIX

This section develops the optimization framework to obtain
the transmit signal matrix X = [x1,x2, . . . ,xK ]T ∈ CK×N ,
to further enhance the performance of the proposed detec-
tor for a mmWave massive MIMO WSN. The equivalent
vector x ∈ CKN×1, obtained by stacking the transmit
vectors x1,x2, . . . ,xK , be defined as x = vec

(
XT

)
=

[xT
1 ,x

T
2 , . . . ,x

T
K ]T where xk ∈ {uk,−uk}, ∀K. The transmit

signal matrix, which maximizes the detection performance,
can be obtained by maximizing the deflection coefficient
d2 (u) for u = vec

(
UT

)
[10], defined as

d2 (u) =

(
µT |H1

− µT |H0

)2
σ2
T |H0

. (21)

Substituting the expressions for µT |H0
, µT |H1

, σ2
T |H0

from
Theorem 1 in (21), the deflection coefficient d2 (u) can be
derived as

d2(u) =

(∑K
k=1

√
puMd2kak(bk − ck)∥uk∥2C̃−1

k

)2

∑K
k=1 Md2ka

2
k

(
Mpuξk +

σ2
w

2 dk(uH
k C̃−2

k uk)
)

≈ (uHΓNu)2

(uHΨNu)2 + uHΘNu
, (22)

where ΓN ∈ CKN×KN , ΨN ∈ CKN×KN and ΘN ∈
CKN×KN represent the block diagonal matrices such that
their principal diagonal matrices are defined as [ΓN ]k,k =
Γk,kC̃

−1
k , [ΨN ]k,k = Ψk,kC̃

−1
k and [ΘN ]k,k = Θk,kC̃

−2
k ,

respectively. The matrices Γ ∈ CK×K , Ψ ∈ CK×K and
Θ ∈ CK×K are diagonal matrices and their principal diagonal
elements are defined as

[Γ]k,k =
√
puMd2kak (bk − ck) , [Θ]k,k =

σ2
w

2
Md3ka

2
k,

[Ψ]k,k =
√
puMdkak

√
β2
k

L2
k

E{|αlk
k |4} − c2kd

2
k. (23)

The direct maximization of the deflection coefficient in (22) is
difficult as the expression in (22) is non-convex. For a tractable
solution, the optimization objective can be modified as

max.
uH

(
ΓNuuHΓN

)
u

uH (ΨNuuHΨN +ΘN )u
= max.

uHΞu

uHΩu
, (24)



T (Z)=
K∑

k=1

ln
[
p(zk|xk = uk)Pr(xk = uk|H1) + p(zk|xk = −uk)Pr(xk = −uk|H1)

p(zk|xk = uk)Pr(xk = uk|H0) + p(zk|xk = −uk)Pr(xk = −uk|H0)

]
(13)

(a) (b) (c)

Fig. 1. Receiver operating characteristic (ROC) plot for comparing (a) theoretical and simulated performance of the detector in (14) with K = 12 sensors,
M = 250 antennas, N ∈ {2, 4} and SNR pu = −18 dB. (b) proposed detector in (14) for M ∈ {100, 200} antennas, K = 12 sensors, N ∈ {1, 3} and
at SNR pu = −18 dB. (c) Max-Log and LLR detectors with the proposed detector (14) for M = 250 antennas, K = 12 sensors, N = 1 and at SNR
pu = −18 dB.

where Ξ = ΓNuuHΓN , Ω = ΨNuuHΨN + ΘN . The
objective function in (24) can be further simplified, similar
to the two-way partitioning problem, [11] as

max.
uHΞu

uHΩ1/2Ω1/2u
= max.

sHΩ−1/2ΞΩ−1/2s

sHs

= max.
sHQs

sHs
, (25)

where Q = Ω−1/2ΞΩ−1/2 and s = Ω1/2u. Let u be
initialized as u(0) = vec

((
U(0)

)T)
, where the matrix U(0)

represents a semi-unitary matrix at the 0th iteration. The
iterative optimization problem during the ith iteration to
derive the signaling matrix that further enhances the detection
performance of the proposed detector for a mmWave massive
MIMO WSN is discussed next.

Theorem 2. The signaling matrix U(i) during the ith iteration
for distributed detection in mmWave massive MIMO WSN is

given as U(i) =
(

vec−1
((

Ω(i−1)
)−1/2

s(i)
))T

, where s(i)

is the solution of the optimization problem below

max.
s(i)

s(i)HQ(i−1)s(i)

s(i)Hs(i)
, (26)

where Q(i−1) =
(
Ω(i−1)

)−1/2
Ξ(i−1)

(
Ω(i−1)

)−1/2
and s(i)

=
(
Ω(i−1)

)1/2
u(i). The matrices Ξ(i−1),Ω(i−1) are obtained

by substituting u(i−1) in lieu of u in (24).

The solution u(i) is obtained [6] by solving the optimization
problem in (26) and is given as u(i) = κ

(
Ω(i−1)

)−1/2
ν(i−1),

where ν(i−1) denotes the eigenvector corresponding to the
maximum eigenvalue of the matrix Q(i−1) and κ is the total
power of u(i).

Fig. 2. ROC plot for comparing detector T (Z) with orthogonal and
optimized signaling matrix obtained in Section IV, for a WSN with K = 12
sensors, N = 2, M = 250 and SNR pu = −18 dB.

V. SIMULATION RESULTS

This section demonstrates the detection performance of the
proposed detector in (14) for the mmWave massive MIMO
WSN and its comparison with other detectors, namely, the
Max-Log and the LLR, with the help of simulation results.
A total of K = 12 single-antenna sensors are assumed to
be randomly placed in an annular region around the FC
with minimum and maximum distances as rc = 1 m and
r = 100 m, respectively. The local probabilities of detection
(PD,k) and false alarm (PF,k) are assumed to be uniformly
distributed in the intervals [0.95,0.40] and [0.01,0.12], re-
spectively [6]. The large-scale fading coefficients are defined
as βk = νk/ (rk/rc)

δ [12], ∀k, where rk is the distance
of the kth sensor from the FC, νk is a log-normal random
variable, i.e, 10 log10 νk ∼ N

(
µ, σ2

)
and δ denotes the path-

loss exponent. The parameters are chosen as µ = 4 dB, σ =
2 dB, δ = 2, carrier frequency fc = 28 GHz, inter-antenna
spacing d at the FC = λ

2 , maximum number of propagation



paths Lm = 10, noise variance σ2
w = 1, SNR pu = -18 dB

and number of antennas at the FC M = 250. Fig. 1a plots the
probability of detection (PD) versus probability of false alarm
(PFA) for varying N = {2, 4}. It is evident from the figure
that the analytical results obtained in Theorem 1 are in close
agreement with the simulated plots, validating our derived
results. Fig. 1b illustrates the effect of varying the signaling
intervals of the decision vector N = {1, 3} and the number
of antennas M = {100, 200} at the FC. It can be observed
that the detection performance improves as the number of
signaling intervals and antennas increases, thus confirming
the advantage of using massive MIMO technology. Fig. 1c
shows the comparison of the receiver operating characteristic
(ROC) of the proposed scheme with the detectors, namely, the
LLR and the Max-Log. It can be inferred from the figure that
the proposed detector has similar performance as that of the
Max-Log detector and the LLR test of Z, for the low SNR
regime. Finally, Fig. 2 explores the aspect of signaling matrix
optimization to further improve the detection performance. An
improved performance is observed by utilizing the deflection-
coefficient maximization based signaling matrix, obtained in
Section IV, for N = 2.

VI. CONCLUSION

This paper investigated the hybrid combining based de-
tection rule for distributed detection in a mmWave massive
MIMO WSN. The analysis incorporates the probability of
error of the local sensor decisions. Further, the closed-form
expressions of probabilities of detection PD and false alarm
PFA are determined to characterize the system performance.
Simulation results are demonstrated to compare the perfor-
mance of the proposed detector with the LLR and Max-
Log detectors. A deflection coefficient maximization based
optimization framework is also developed to obtain a signaling
matrix, which can enhance the detection performance. Simu-
lation results demonstrated the improved performance of the
proposed schemes in comparison to the existing ones.

APPENDIX A
PROOF OF THEOREM 1

The mean corresponding to the hypothesis H1 for the
detection rule in (14) is given as µT |H1

=
∑K

k=1 µ1, where
µ1 can be determined as

µ1 =akdkR
(
E{zHk C̃−1

k uk|H1}
)

=akdkR

(
√
puM

(
βk

Lk
E{|αlk

k |2}
)
E{xH

k |H1}C̃−1
k uk

)
=akdkR

(√
puMdk(u

H
k Pr(xk = uk|H1)

− uH
k Pr(xk = −uk|H1))C̃

−1
k uk

)
=akdkR

(√
puMdk(u

H
k PD,k − uH

k (1− PD,k))C̃
−1
k uk

)
=
√
puMakbkd

2
k(u

H
k C̃−1

k uk), (27)

which reduces to the expression in (18). On similar lines, the
mean for hypothesis H0 in (17) can be derived. The variance

of the test statistic T (Z) corresponding to hypothesis H1, can
be expressed as

σ2
T |H1

= E{T 2(Z)|H1} − (E{T (Z)|H1})2 , (28)

The first quantity in (28), i.e., ϵ = E{T 2(Z)|H1} =

E
{(∑K

k=1 akdkR{zHk C̃−1
k uk}

)2|H1

}
, can be simplified as

ϵ=E
{( K∑

k=1

akdkR
{(√

puM
βk

Lk
|αlk

k |2xH
k+w̃H

k

)
C̃−1

k uk

})2∣∣H1

}
which further reduces to

ϵ =
K∑

k=1

K∑
j=1,j ̸=k

puM
2akajd

2
jd

2
kbkbj∥uk∥2C̃−1

k

∥uj∥2C̃−1
j

+

K∑
k=1

puM
2a2kd

2
k

β2
k

L2
k

E{|αlk
k |4}∥uk∥2C̃−1

k

+
K∑

k=1

σ2
w

2
Ma2kd

3
k∥C̃−1

k uk∥2

and the terms E{|αik
k |2} and E{|αik

k |4} are defined as

E{|αik
k |2}=

∫ ∞

0

mLk(1−e−m)Lk−1e−mdm=

Lk∑
t=1

1

t

(
Lk

t

)
(−1)t−1

E{|αik
k |4}=

∫ ∞

0

m2Lk(1−e−m)Lk−1e−mdm=

Lk∑
t=1

2

t

(
Lk

t

)
(−1)t−1

The variance σ2
T |H1

in (20) can be obtained, using the above
expressions (18) and (28).
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