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Abstract—We consider the task of scheduling updates from
multiple sources to a central monitoring station via a shared
communication channel. Each source harvests energy from
nature to measure a time-varying quantity and report these
measurements to the monitoring station. Prior work in this
area focuses on the setting where energy arrivals are assumed to
be independent across time. Motivated by the time-correlation
in energy generated by many renewable energy sources, we
use a Markov process to model the energy arrivals. The goal
is to minimize the time average of the weighted sum of the
ages-of-information of the sources. We use Whittle’s relaxation
and propose a modification of the Whittle Index to design a
scheduling policy. We show that our policy outperforms other
natural policies via simulations.

I. INTRODUCTION

Age-of-Information (AoI) [1] is a metric that quantifies the
freshness of information available at the intended destination.
It is defined as the time elapsed since the destination received
the latest update from the source. This metric has been used
in a variety of applications including scheduling, channel
state estimation, caching, and energy harvesting. Refer to [2]
for a comprehensive survey of AoI-based works.

In this work, we focus on the task of scheduling up-
dates from multiple sources to a monitoring station via a
shared communication channel in order to minimize the
time-average of the weighted sum of the AoIs. Each source
measures a time-varying quantity. The sources rely on energy
harvested from nature to collect measurements and send them
to the monitoring station. Each source is equipped with a
finite battery to store energy for future use.

AoI-aware scheduling for energy harvesting nodes has
been studied in [3]–[9]. These works focus on the setting
where energy arrivals are independent across time. However,
energy arrivals from renewable sources like the wind are
time-correlated [10], [11]. Motivated by this, we focus on
the setting where energy arrivals are correlated across time,
more specifically, we use a Markov process to model energy
arrivals. Such models are known to be good fits for energy
arrivals from renewable sources and have been used in [10],
[11]. Another closely related work is [12] where channel
realizations are Markovian while the sources always have
enough energy to transmit.

We use the Whittle’s relaxation [13] of the scheduling
problem. The key analytical challenge is to show that the
problem is indexable and then compute the Whittle Index to
design a schedule. The key contributions of our work can be
summarized as follows.

We first show that the scheduling problem is indexable un-
der Markovian energy arrivals. Next, we identify the technical
challenges in computing the Whittle Index for our problem.
Given these challenges, we propose a modification of the
Whittle Index and use it to design a scheduling policy. Via
simulations, we show that the proposed policy outperforms
natural scheduling policies like greedy scheduling.

II. SETTING

A. Network Model

We consider a system with n sources and a monitoring
station. Each source relies on energy harvested from nature
to collect measurements and send updates to the monitoring
station. Each source is equipped with a battery of unit size.
Each source consumes one unit of energy to measure and
send an update to the monitoring station. Updates are sent
via an error-free link. We consider slotted time such that at
most one source can send updates to the monitoring station
in each time-slot.

B. Energy Arrival Process

Let Λi(t) ∈ {0, 1} be the energy arrival at Source i in
time-slot t. We consider two energy arrival models.

Assumption 1: (i.i.d. arrivals) For 1 ≤ i ≤ n and t ∈ Z+,

Λi(t) =

{
1 w.p. pi
0 otherwise.

Assumption 2: (Markovian arrivals – Gilbert-Elliot model)
For 1 ≤ i ≤ n and t ∈ Z+,

Λi(t+ 1) =


1 w.p. pi if Λi(t) = 1

0 w.p. (1− pi) if Λi(t) = 1

1 w.p. (1− qi) if Λi(t) = 0

0 w.p. qi if Λi(t) = 0.

C. Sequence of Events in a Time-slot

In each time-slot, at most one source is scheduled for
communication. This source collects a fresh measurement
and sends it to the monitoring station. This is followed by
potential energy arrivals to the n sources. This energy is
stored in the sources’ batteries subject to capacity constraints.

Let Bi(t) denote the energy stored in the battery of Source
i at the beginning of time-slot t and D(t) denote the index
of the source scheduled for communication in time-slot t.
Let D(t) = 0 if none of the n sources are scheduled for
communication in time-slot t. Since the process of collecting978-1-7281-8895-9/20/$31.00 c© 2020 IEEE



a measurement and sending an update to the monitoring
station requires one unit of energy, Bi(t) evolves as follows:

Bi(t+ 1) = max{Λi(t),
(
Bi(t)− 1{D(t)=i}

)+}.
D. Performance Metric and Goal

We are interested in the age-of-information of the sources
at the monitoring station. It is the amount of time elapsed
since the monitoring station received the latest update from
a source.

Definition 1 (Age-of-Information (AoI)): Let Xi(t) denote
the AoI of Source i at the monitoring station at the beginning
of time-slot t and Ui(t) = max{τ : 1 ≤ τ ≤ t −
1 and D(τ) = i} denote the index of the time-slot in which
the monitoring station received the latest update from Source
i. Then, Xi(t) = t− Ui(t).

In each time slot, a central scheduler determines which
source sends an update to the monitoring station. A schedul-
ing algorithm, θ is a time-sequence of such scheduling deci-
sions. Given wi, i.e., the weight of Source i, for 1 ≤ i ≤ n,
the objective is to design a scheduler θ to minimize the time
average of the weighted sum of AoIs, i.e.,

lim sup
T→∞

1

T
Eθ

[
T∑
t=1

n∑
i=1

wiXi(t)

]
. (1)

Note that Eθ denotes the expected value of the weighted sum
of AoIs when the scheduling algorithm θ is employed.

III. PRELIMINARIES

As an intermediate step towards designing a scheduling
algorithm to minimize the time-average of the weighted
sum of AoIs (1), we construct a new scheduling problem
decoupled across the n sources into n sub-problems using
Whittle’s relaxation of the RMAB problem [13]. In this new
construction, each source pays a cost of c units to send an
update to the monitoring station. In the rest of this discussion,
we drop the source index for convenience.

1) States and Actions: We define the state of a source
in time-slot t by s(t) = (X(t), B(t),Λ(t)). Let the action
of the source in time-slot t be denoted by a(t) ∈ {0, 1},
where a(t) = 1 indicates that the source is scheduled for
communication in time-slot t and a(t) = 0 means that it
remains idle.

2) Cost: The cost incurred by a source in a time-slot,
denoted by C

(
s(t), a(t)

)
, has two components. One is the

cost incurred due to the AoI of the source. The other is a
communication cost of c units, which the source pays when
it sends an update to the monitoring station. Formally,

C
(
s(t), a(t)

)
= w

(
X(t) + 1−X(t)a(t)B(t)

)
+ ca(t).

Definition 2: (Cost-Optimal Policy) A policy µ is cost-
optimal if it minimizes the average cost defined as follows

lim sup
T→∞

1

T
Eµ

[
T∑
t=1

C
(
s(t), a(t)

)]
. (2)

We consider the sub-problem with one source and the
monitoring station and calculate the Whittle index [13] for

that source by considering a cost of c for scheduling an
update from the source.

Definition 3: (Indexability [13]) Given cost c, let S(c)
be the set of states for which the optimal action for the
states is to idle. The subproblem is indexable if the set S(c)
monotonically increases from the empty set to the entire state
space, as c increases from −∞ to ∞.

Definition 4: (Whittle Index [13]) The Whittle index is
defined as the cost c that makes both actions for state s
equally desirable.

IV. MAIN RESULTS AND DISCUSSION

In this section, we state and discuss our key results. Proofs
of our results are discussed in Section V. We first present our
results for the setting where energy arrivals are i.i.d. across
time-slots (Assumption 1).

A. i.i.d. Energy Arrivals

Our first result focuses on the sub-problem defined in
Section III for i.i.d. energy arrivals.

Theorem 5: Under Assumption 1 with Λ(t) ∼
Bernoulli(p), the sub-problem defined in Section III is in-
dexable and the Whittle Index for state (x, b, λ) is given by

I(x, b, λ) =

{
0 if b = 0;
A
B if b = 1,

(3)

where A = w(((1 − p)x + 1)p2x2 + (1 − (1 − p)x)p2x −
2(1− p)x) and B = p2(2− 2(1− p)x).

We now propose a scheduling policy called Whittle–iid.
In each time-slot, this policy schedules the source with the
highest Whittle Index.

Algorithm 1: WHITTLE-IID SCHEDULING

Input: Number of sources n, (xi, bi, λi), pi, ∀i.
1 procedure In each time-slot, calculate Whittle index

I(xi, bi, λi),∀i using (3).
2 Schedule Source i∗ for communication, where

i∗ = arg max
i∈{1,2,··· ,n}

I(xi, bi, λi).

3 end procedure

B. Markovian Energy Arrivals

We now present our results for Markovian energy arrivals
(Assumption 2).

Theorem 6: Under Assumption 2, the sub-problem defined
in Section III is indexable.

While Theorem 6 proves indexability for Markovian en-
ergy arrivals, computing the Whittle Index for this case is an
open problem. One way to compute the Whittle Index, also
used in [14], is to show that a cost-optimal policy (Definition
2) is a stationary deterministic policy of the threshold-type.
Then, using the fact that the cost is convex in this threshold,
the Whittle Index is computed by solving for that value
of the cost c at which idling and sending an update given
the current AoI of the source is equally desirable. In this
case, since there are multiple thresholds corresponding to the



various battery/energy arrival states, this technique to find the
Whittle Index is not effective. To address this limitation, we
use a proxy for the Whittle Index [15] and use it to design
a scheduling policy.

Definition 7: (Modified Whittle Index [15]) For a given
tolerance parameter ε > 0, the Modified Whittle Index is
the value of c for which the approximate value functions
corresponding to the two actions (idle/update) are at most ε
apart.

Another challenge is that the number of states in the
decision problem described in Section III is countably in-
finite. Therefore for tractability, we truncate age by a large
value k to get a finite state MDP. In the truncated system,
X(t) = min{X(t), k}. Let S(k) denote the set of states in
the truncated MDP. By [16], for finite state-action unichain
MDPs, a cost-optimal policy is stationary. The relative value
iteration algorithm (RVIA) [16] for the truncated MDP is
described in Algorithm 2.

Algorithm 2: RVIA FOR THE k-TRUNCATED MDP

Input: s = (x, b, λ) ∈ S(k) , action a ∈ {0, 1}, p, q,
c, tolerance ε, i0 ∈ S(k) as a reference state.

1 Initialize: V (k)
1 (s) = 0,∀s ∈ S(k)

2 foreach s ∈ S(k) do
3 while true do
4 V

(k)
n+1(s) =

min
a∈{0,1}

C(s, a) + E[V (k)
n (s′)]− V (k)

n (i0);

5 if |V (k)
n+1(s)− V (k)

n (s)| < ε then
6 V (k)(s) = V

(k)
n+1(s).

7 break;

8 n=n+1;

By Theorem 8.6 in [17], we know that for a finite MDP, if
all stationary policies are unichain, i.e., the Markov chain cor-
responding to every deterministic stationary policy consists of
a single recurrent class plus a possibly empty set of transient
states, then the policy iteration converges in a finite number
of iterations to the average optimal stationary policy, and it
satisfies the corresponding average cost optimality equation.

Next, we argue that the truncated MDP is unichain. From
[17], we know that for every truncated MDP, there is only
one recurrent class. Since the state (k, 1, 1) is reachable from
all other states, the truncated MDP in unichain for any value
of k. Using Theorem 2.2 in [18], we show that the sequence
of approximate MDPs indexed by k converges to the original
MDP in this setting.

We now present an algorithm to compute the Modified
Whittle Index for the truncated MDP. For a given s =
(x, b, λ) ∈ N × [0, 1]2 start at t = 1 with an initial cost
to play c0 and run the value iteration algorithm to compute
the value functions V (k)(s, a = 1) and V (k)(s, a = 0). The
cost c0 is updated as follows: ct+1 = ct + α(V (k)((s, a =
1), ct)−V (k)((s, a = 0), ct))where α is a learning parameter.
The algorithm terminates when |V (k)(s, a = 1)−V (k)(s, a =
0)| < ε, where ε is the tolerance limit. See Algorithm 3 for

a formal definition. Note that we use two timescales, one for
updating the cost and the other for updating value functions.
The value of the learning parameter α is chosen such that
the cost ct is updated at a slower timescale compared to the
value iteration algorithm that computes V (k)((s, a = 1), ct)
and V (k)((s, a = 0), ct). This is a two-timescale stochastic
approximation and is based on similar schemes studied
in [15], [19]. The convergence of two-timescale stochastic
approximations is discussed in Chapter 6 of [19]. If αt is
replaced with a tiny constant value α, there is convergence
with high probability as shown in [19].

Algorithm 3: MODIFIED WHITTLE INDEX COMPU-
TATION (k-TRUNCATED MDP)
Input: State s = (x, b, λ), action a ∈ {0, 1}, initial

cost c0, step size α, tolerance ε.
Output: Whittle’s index I(s)

1 procedure For every s ∈ N × {0, 1}2;
2 ct ← c0
3 while |V (k)(s, a = 1)− V (k)(s, a = 0)| > ε do
4 ct+1 = ct + α(V (k)((s, a = 1), ct)− V (k)((s, a =

0), ct));
5 t = t+ 1;
6 Compute V (k)((s, a = 1), ct),

V (k)((s, a = 0), ct);
7 return I(s)← ct.
8 end procedure

Algorithm 4: MODIFIED WHITTLE-MARKOV
SCHEDULING

Input: Number of sources n, (xi, bi, λi), pi, qi,∀i.
1 procedure In each time-slot, compute Modified

Whittle Index I(xi, bi, λi),∀i using Algorithm 3.
2 Schedule Source i∗ for communication, where

i∗ = arg max
i∈{1,2,··· ,n}

I(xi, bi, λi).

3 end procedure

V. PROOFS

A. i.i.d. Energy Arrivals

The proof for this setting follows the same steps as in [14].
We omit the details for this case due to space constraints.

B. Markovian Energy Arrivals

The first step towards proving Theorem 6 is to show that
a cost-optimal policy (Definition 2) for the decoupled sub-
problem discussed in Section III is a stationary deterministic
policy.

Lemma 1: For the decoupled sub-problem discussed in
Section III, under Assumption 2, there exists a stationary
and deterministic policy that is cost-optimal, independent of
initial state s(0).
Proof: By Theorem 12 in [14], a deterministic stationary
policy is cost-optimal if the following two conditions hold.



1) There exists a deterministic stationary policy of the
MDP such that the associated average cost is finite.

2) There exists a non-negative L such that the relative cost
function hβ(s) = Vβ(s) − Vβ(0) ≥ −L for all s and
β, where 0 is a reference state.

We now prove the first condition. Let f be the stationary
deterministic policy of choosing to update the monitoring sta-
tion in every time-slot when the source battery has sufficient
energy. The state (X(t),Λ(t)) under this policy f forms a
discrete time Markov chain (DTMC) as shown in Figure 1.
The steady state distribution π = [π10, π11, π20, π21, . . .] of
the DTMC is given by

1, 1 2, 1 3, 1

1, 0 2, 0 3, 0

. . .

. . .

q q

1− q 1− q

p

p

p

1− p

1− p

1− p

Fig. 1: The AoI X(t) under the policy f forms a DTMC.

π10 =
(1− p)(1− q)

2− p− q
;π11 =

p(1− q)
2− p− q

;

πxo = qx−1π10,∀x ∈ {2, 3, . . .};
πx1 = qx−2(1− q)π10,∀x ∈ {2, 3, . . .}.

The average AoI is given by
∞∑
i=1

i(πi0 + πi1) =
(1− p)(2− q) + (1− q)2

(2− p− q)(1− q)
.

On the other hand, the average updating cost is c(1−q)
2−p−q .

Hence, the average cost per time slot under this policy is

(1− p)(2− q) + (1− q)2

(2− p− q)(1− q)
+

c(1− q)
2− p− q

,

which is finite and yields the desired result.
Next, we prove the second condition. The value function

equation Vβ(x, b, λ) is given by

Vβ(x, b, λ) = min{Vβ
(
(x, b, λ),a = 0

)
, Vβ
(
(x, b, λ), a = 1

)
},

We show that Vβ(x, b, λ) is a non-decreasing function of
AoI x for a given β, b, λ. We omit the details due to space
constraints. From Proposition 5 in [20], if the first condition
of Theorem 1 is satisfied, then for a given state (x, b, λ)
and discount factor β, the quantity Vβ(x, b, λ) is finite.
Therefore, k = Vβ(1, 0, 0) − Vβ(1, 1, 1) is finite. It follows
that Vβ(x, b, λ) − Vβ(1, 1, 1) ≥ k;∀(x, b, λ),∀β. Choose
Vβ(1, 1, 1) as a reference state and choose a non-negative L
appropriately based on k such that Vβ(x, b, λ)−Vβ(1, 1, 1) ≥
−L;∀x,∀b,∀λ, ∀β, thus proving the result.

Next we show that a specific stationary deterministic
policy, namely a threshold-type policy is cost-optimal.

Lemma 2: If c ≥ 0, then for the decoupled sub-problem
discussed in Section III, under Assumption 2, there exists a
policy of the threshold type that is cost-optimal.
Proof: From the value function equations, we can see that the
optimal action for state (x, 0, 0) is to idle if c ≥ 0. From [14],
if the first condition in the proof of Lemma 1 holds, then for
any state s the minimum expected total discounted cost Vβ(s)
satisfies Vβ(s) = mina∈{0,1} C(s, a)+βE[Vβ(s′)], where the
expectation is taken over all possible next state s′ reachable
from state s.

We now prove that an β-optimal policy is the threshold
type. Suppose an β-optimal action for state (x, 1, 0) is to
update, i.e., Vβ((x, 1, 0), 1)− Vβ((x, 1, 0), 0) ≤ 0. Then, the
β-optimal action for state (x+1, 1, 0) is also to update since

Vβ((x+ 1, 1, 0), 1)− Vβ((x+ 1, 1, 0), 0)

=
(
1 + c+ β(qVβ(1, 0, 0) + (1− q)Vβ(1, 1, 1))

)
−
(
x+ 2 + β

(
qVβ(x+ 2, 1, 0) + (1− q)Vβ(x+ 2, 1, 1))

)
≤
(
1 + c+ β(qVβ(1, 0, 0) + (1− q)Vβ(1, 1, 1))

)
−
(
x+ 1 + β

(
qVβ(x+ 1, 1, 0) + (1− q)Vβ(x+ 1, 1, 1))

)
=Vβ((x, 1, 0), 1)− Vβ((x, 1, 0), 0) ≤ 0,

where the above result is from the non-decreasing function
of Vβ(x, b = 1, λ = 0) in x for fixed values of b, λ.

Similarly, suppose the β-optimal action for state (x, 1, 1) is
to update, i.e., Vβ((x, 1, 1), 0)−Vβ((x, 1, 1), 0) ≤ 0. Then, it
can be shown that the β-optimal action for state (x+ 1, 1, 1)
is also to update, we omit the details due to space constraints.

Hence, a β–optimal policy is a threshold type policy with
two thresholds corresponds to states (x, 1, 0) and (x, 1, 1).
Finally, we consider the limit β → 1 and obtain the limit
point of the β-optimal policies as a cost-optimal policy [20].
We thus conclude that a cost-optimal policy is also of the
threshold type.

Proof of Theorem 6: Let S1(c), S2(c) and S3(c) be
the sets of states of the form (x, 0, 0), (x, 1, 0) and (x, 1, 0)
respectively, for which the optimal action is to idle. Let
S(c) = S1(c)∪S2(c)∪S3(c). Recall that, the optimal action
for state (x, 0, 0) is to idle if c ≥ 0. So corresponding set
S1(c) = {(x, 0, 0) : x = 1, 2, . . .}. For state (x, 1, 0),

Vβ
(
(x, 1, 0), a = 0

) a=0

≶
a=1

Vβ
(
(x, 1, 0), a = 1

)
,

i.e., x+ 1 + β
(
qVβ(x+ 1, 1, 0) + (1− q)Vβ(x+ 1, 1, 1)

)
a=0

≶
a=1

1 + c+ β
(
qVβ(1, 0, 0) + (1− q)Vβ(1, 1, 1)

)
.

We know that Vβ(x, b, λ) is non-decreasing in x for a given
b, λ, β. Note that ∀c ≥ 0, ∃x0 such that x + β

(
qVβ(x +

1, 1, 0) + (1 − q)Vβ(x + 1, 1, 1)
)
> c + β

(
qVβ(1, 0, 0) +

(1 − q)Vβ(1, 1, 1)
)
,∀x > x0. Therefore, the optimal action

is to idle till x0. As c increases, x0 increases, so the set
S2(c) = {(x, 1, 0) : x = 1, 2, . . . , x0} monotonically
increases. Similarly we can show that for state (x, 1, 1),∃x1
such that S3(c) = {(x, 1, 1) : x = 1, 2, . . . , x1} which
increases monotonically with c. Therefore, the set S(c)
monotonically increases to the entire state space as c → ∞
and the sub-problem is indexable by Definition 3.



VI. SIMULATION RESULTS

In this section, we compare the performance of Modified
Whittle-Markov policy (Algorithm 4) with Whittle-iid (Al-
gorithm 1) and the greedy policy which schedules the source
with maximum weighted age in each time-slot. We refer to
the greedy policy as Myopic. Since the energy arrival process
is Markovian, for the Whittle-iid policy, we use the steady-
state probability of an energy arrival in a time-slot as the
energy arrival parameter.
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Fig. 2: Average cost as a function of connection probability
for independent arrivals across sources.
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Fig. 3: Average cost as a function of connection probability
for correlated arrivals.
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Fig. 4: Average cost as a function of connection probability.

We fix ε = 0.1, α = 0.05 for the Modified Whittle-
Markov policy. In Figures 2 and 3, we simulate a system of
four sources and vary the parameters of the energy arrival
process. The weights of the sources are [1, 2, 3, 4]. Here
pi = qi = p = q for all i. In Figure 2, the energy arrival
processes are independent across the four sources and in

Figure 3 the energy arrival process is identical (sample-path
wise) across sources. The Modified Whittle-Markov policy
outperforms the Whittle-iid policy and Myopic policy in both
cases. In Figure 4, we simulate a system of two sources. Here
p1, q1 = 0.7 and we vary the value of p2 = q2. The weights
of the source are [1, 4]. The Modified Whittle-Markov policy
outperforms the Whittle-iid policy and Myopic policy.
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