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Abstract—Non-linguistic speech cues aid expression of var-
ious emotions in human communication. In this work, we
demonstrate the application of deep long short-term memory
(LSTM) recurrent neural networks for frame-wise detection and
classification of laughter and filler vocalizations in speech data.
Further, we propose a novel approach to perform classification
by incorporating cluster information as an additional feature
wherein the clusters in the dataset are extracted via a k-means
clustering algorithm. Extensive simulation results demonstrate
that the proposed approach achieves significant improvement
over the conventional LSTM-based classification methods. Also,
the performance of deep LSTM models obtained by stacking
LSTMs, is studied. Lastly, for classification of the temporally
correlated speech data considered in this work, a comparison
with popular machine learning-based techniques validates the
superiority of the proposed LSTM-based scheme.

I. INTRODUCTION AND BACKGROUND WORK

Human communication, comprising of both verbal and non-
verbal components, plays an integral role in social correspon-
dence. Interestingly, more than 60% of human communication
is conveyed via various non-linguistic cues namely facial ex-
pressions, voice modulation, gesture, eye contact etc., thereby
placing more emphasis on the manner of delivery than the
words [1]. In order to better interpret the emotions associated
with human behaviour, non-verbal cues such as laughter,
fillers, pauses etc. play an extremely critical role. Thus, com-
putational paralinguistics, the paradigm of computer-based
analyses of non-verbal cues, has become an active area of
research in the recent years [2], [3].

Towards this end, several prior works have focused on the
detection and classification of laughter, fillers and garbage in
human speech. The initial work in [4] employed the classical
hidden Markov model (HMM) for detection of the non-
verbal sounds in television broadcasts. Next, the authors in [5]
incorporated HMM as well as other statistical tools to develop
an automatic and segmented approach for segregation of audio
recordings into four categories of intervals: laughter, filler,
speech and silence. The work in [6] employed Mel-frequency
cepstrum coefficients (MFCC) along with other features for
classification of laughter and filler pauses via Gaussian mix-
ture models (GMMs). An advancement in [7] combined the
benefits of both GMM and support vector machines (SVMs)
for garbage, laughter and filler classification based on the

GMM scores. However, the major disadvantage associated
with the HMM and GMM-based classification methods is
that these schemes fail to leverage the inherent temporal
correlation associated with the speech data owing to their
conditional independence assumption between the different
operating modules.

In this regard, Gupta et al. in [8] used probability factor
for event detection and MFCCs for feature extraction, trained
on models such as HMM, SVM and deep neural network
(DNN), with two hidden layers and an output layer. The output
layer comprised of three nodes with a sigmoid activation
function representing each class i.e. laughter, filler or garbage.
DNNs and convolutional neural networks were used in [9]
on conversational telephony speech and UT-Opinion corpus
based on a simple feature set which combines the Mel-filter
bank energies and pitch information. The works in [10],
[11] employed deep long short-term memory (LSTM) and
bidirectional LSTM frameworks for classification of human
speech.

Thus, motivated by the success of DNNs in the field
of automatic speech recognition (ASR), the present work
considers the Interspeech 2013 Computational Paralinguistics
Social Signals Sub-Challenge dataset [12] to develop a novel
approach for frame-wise classification of audio recordings into
laughter and filler. The key contributions of this paper are
summarized as follows.

• Motivated by the improved performance of recurrent neu-
ral networks, this work effectively employs deep LSTM
networks for detection and classification of laughter and
filler vocalizations in speech data.

• In conjunction to employing MFCC for feature extrac-
tion, this work proposes a novel paradigm of including
cluster as a feature for performing the classification task.
Towards this end, the k-means clustering algorithm is also
developed.

• Extensive numerical experiments are conducted to
demonstrate that the proposed approach achieves signif-
icant improvement over conventional LSTM-based clas-
sification methods. Some interesting insights regarding
the accuracy of deep LSTM networks with and without
clustering as a feature are also discussed.

• Lastly, an exhaustive comparison with other machine
learning techniques validates the superiority of the pro-
posed LSTM-based scheme.978-1-7281-8895-9/20/$31.00 c© 2020 IEEE



Fig. 1. Recurrent Neural Network Architecture

The content of the paper is organized as follows. Section II
presents a brief introduction about recurrent neural networks
and long short-term memory architecture employed in this
work. Section III discusses the database and feature set for the
classification problem and also describes the novel approach
for considering cluster as a feature. The k-means clustering
algorithm is discussed herein. The experiment, results and
ensuing discussions are presented in section IV followed by
the concluding remarks in section V.

Notation: The following notation has been used in the
paper. The notations ‖h‖2 and h(r) represent the l2-norm
of the vector h and the estimate of h in the r−th iteration
respectively.

II. RECURRENT NEURAL NETWORKS AND LSTM

A. Recurrent Neural Networks

Recurrent neural networks (RNNs) are a class of neural
networks which process sequential data such that the out-
puts corresponding to the previous step are fed as inputs in
the current step. Let the given input sequence be denoted
by x = (x1, x2, ..., xT ) where each xt corresponds to the
t−th real valued data. The sequence of hidden vectors h =
(h1, h2, ..., hT ) and the output vectors y = (y1, y2, ..., yT )
for the time steps t = 1 to t = T are iteratively evaluated
employing the following equations [10]

ht = fact(Wxhxt +Whhht−1 + bh) (1)
yt = Whyht + by (2)

where W(·) represents the weight matrices, fact represents the
hidden layer activation function such as the sigmoid or tanh(·)
functions [13]. A block diagram representation of the RNN
architecture is demonstrated in Fig. 1. Unlike conventional
artificial neural networks, although RNNs successfully capture
the inherent temporal correlation which exists in sequential
data, yet they are associated with numerous shortcomings.
They are generally unstable and cannot be stacked into very
deep models. Further, they suffer from vanishing gradient and
exploding gradient problems. Since RNNs cannot keep track
of long-term dependencies of the memory units, the function-
alities of RNNs are limited for long-memory sequences. Thus,
in order to overcome the shortcomings associated with RNNs,
long short-term memory networks were developed [14]. A
brief description of LSTMs is given in the next subsection.

Fig. 2. LSTM Unit Architecture

B. Long Short-Term Memory

A LSTM layer comprises of recurrently connected memory
blocks. Each memory block consists of one or more recur-
rently connected memory cell units, three multiplicative units
and three gates mainly the input, forget and output gates
which regulates the flow of information inside the memory
block. Each cell memorizes the previous state’s values over
time intervals such that information inside and outside the cell
is regulated via these three gates. The input/output equations
corresponding to the gates in a LSTM are given as [14]

it = σ(wi[ht−1, xt] + bi) (3)
ft = σ(wf [ht−1, xt] + bf ) (4)
ot = σ(wo[ht−1, xt] + bo) (5)

where it, ft, ot represents the input, forget, output gates
respectively and σ denotes the standard sigmoid activation
function. The quantity w(·) represents the weight correspond-
ing to the respective gate neurons, xt denotes the input at the
t−th instant and b(·) is the bias vector associated with the
respective gates. The equations corresponding to the cell state
ct, candidate cell state c̃t and the final output ht corresponding
to the t−th instant are given as [14]

c̃t = tanh(wc[ht−1, xt] + bc) (6)
ct = ft ∗ ct−1 + it ∗ c̃t (7)
ht = ot ∗ tanh(ct) (8)

where ∗ represents the convolution operator. A diagrammatic
representation of the LSTM architecture is shown in Fig. 2.

III. DATABASE AND FEATURE SET

A. Database

The study in this work is carried out on the SSPNet
Vocalization Corpus (SVC) whose description is provided
in the Social Signals sub-challenge of the 2013 Interspeech
Computational Paralinguistics Challenge [12]. The primary
task is to perform frame-wise detection and localisation of
paralinguistic events into two classes: laughter and fillers



Algorithm 1 k−means Clustering for Social Signal Classifi-
cation
Input: No. of clusters k, Maximum number of iterations I ,
Stopping threshold ε
Initialization: MFCC feature vectors corresponding to ran-
domly chosen k data points initialised as the centroids
µ1,µ2, . . . ,µk of the k clusters
Set counter r = 0

while r < I or
∑k

i=1

∥∥∥µ(r)
i − µ

(r−1)
i

∥∥∥2 > ε do
Step 1: Evaluate the Euclidean distance between each
MFCC feature vector and the k centroid vectors.
Step 2: Assign the data point to a particular cluster whose
distance from the centroid vector is minimum.
Step 3: Recompute the centroid vectors corresponding to
the newly formed clusters in the previous step.
r ← r + 1

end while
Output: k clusters of the dataset

namely “ahm”, “eh”, etc. The audio data comprises of all types
vocalizations such as speech and silence as well. An in-depth
analysis of the SSPNet vocalization corpus showed that non-
verbal cues didn’t distribute uniformly over time, but appear in
bursts and more frequently by male subjects [15]. The corpus
comprises of 2763 audio clips of 11 seconds time-frame, each
consisting of atleast one laughter or filler event. It includes
63 females and 57 males, summing up to 120 subjects. More
details about the dataset is available at [12].

B. Feature Set

The dataset is segregated into training and testing cases to
perform classification of the human speech into two classes:
laughter and filler. In this work, Mel-frequency cepstrum
coefficients, the most commonly used features in speech recog-
nition are employed. MFCCs are derived from the cepstral rep-
resentation of an audio clip wherein a cepstrum corresponds to
the inverse Fourier transform of the logarithm of the estimated
spectrum of the signal. The main motivation of employing
MFCC in our work is that owing to the equal spacing of
the frequency bands in MFCCs, it closely approximates the
human auditory system’s response unlike the linearly-spaced
frequency bands in the normal cepstrum [16]. In addition to
MFCC, we propose to include cluster as a feature in this
work. The main motivation behind this is, clusters effectively
segregate a given set of data points into a number of groups
with similar traits. Further, arranging the data points into
clusters helps discover hidden patterns within the dataset.
The k−means clustering algorithm employed in this work is
summarized in Algorithm 1.

IV. EXPERIMENTS AND RESULTS

The LSTMs have been demonstrated to yield better perfor-
mances for long-memory sequences data such as audio/speech.
This work considers different hidden layer sizes and two
output nodes as target classes: laughter and filler. The first
experiment was performed on the original feature set of the

Fig. 3. Loss versus No. of Clusters k

TABLE I
LSTM MODEL COMPARISON WITHOUT CLUSTERING AS A FEATURE

LSTM Network Topology Training Accuracy Testing Accuracy
20-30-2 93.49% 87.06%
20-40-2 93.90% 86.17%
20-50-2 95.04% 88.18%
20-60-2 95.14% 86.50%
20-80-2 96.35% 86.17%

SSPNet vocalization corpus without considering cluster as a
feature. Table I summarizes the training and testing accuracies
with different LSTM network topologies. The best result in
terms of testing accuracy is obtained for the network with a
hidden layer size of 50.

The second experiment was performed on the SSPNet
dataset with clustering as a feature which resulted in the size
of the input layer to be increased from 20 to 21 since the
additional cluster feature information is included. The results
are summarized in Table II. To fix the number of clusters
k, we plot loss versus k where loss is defined as sum of
Euclidean distances of samples to their closest cluster center.
Fig. 3 depicts the loss versus number of clusters k plot and k
is set as 14 since the loss is almost constant after that value.
The maximum number of iterations is fixed as I = 10. On
comparing the accuracies of the LSTM-based classification
approaches in Tables I and II, it can be inferred that the
highest testing accuracy of 89.15% is obtained by considering
cluster as a feature while its analogous counterpart is 88.18%
in conventional LSTM without clustering.

Next, we investigate the effect of considering cluster as
a feature in deep LSTM networks. In order to create deep
LSTM networks, we connect the output corresponding to

TABLE II
LSTM MODEL COMPARISON WITH CLUSTERING AS A FEATURE

LSTM Network Topology Training Accuracy Testing Accuracy
21-30-2 93.66% 86.25%
21-40-2 94.87% 87.14%
21-50-2 95.55% 89.15%
21-60-2 95.07% 87.22%
21-80-2 96.35% 86.5%
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Fig. 4. Accuracy comparison between different classification models.

the first LSTM as an input to the second LSTM. Since the
output layers are softmax layers, they can be interpreted as
posterior probabilities of the laughter and filler classes. Thus,
the second LSTM network computes an improved form of
posterior probabilities. Tables III and IV respectively depict
the accuracies of deep LSTMs with and without cluster as
an additional feature. The italicized portion of the network
topology represents the first LSTM that was trained on the
original feature set while the output of the first LSTM is
employed to train the second one. For the case without
clustering as a feature, it is observed that some of the deep
LSTM models yield an improvement in the testing accuracies
in comparison to their regular LSTM counterparts. However,
interestingly, for the deep LSTMs considering cluster as a
feature, there is no improvement in the testing accuracies in
comparison to the regular LSTM networks.

The performance accuracy of the proposed LSTM-based
approach is benchmarked by comparison with popular clas-
sification models such as random forest, naive Bayes, logistic
regression, decision tree. For the purpose of a fair comparison
between the various schemes, we considered cluster as a
feature for the other classification methods as well. A graphical
representation of the accuracy comparisons with different clas-
sification models is depicted in Fig. 2 and Table. V provides
the accuracy of different classification models along with the
proposed LSTM technique in a tabular form. It can be seen that
the LSTM-based classification has the highest testing accuracy
of 89.1% while the decision tree-based scheme demonstrates
the lowest accuracy of 78.5%.

V. CONCLUSION

This work proposes a long short-term memory-based ap-
proach for frame-wise classification and localization of non-
verbal laughter and filler vocalizations of the SSPNet vocal-
ization corpus. Further, the novel idea of incorporating cluster

TABLE III
DEEP LSTM MODEL COMPARISON WITH CLUSTERING AS A FEATURE

Stacked LSTM Training Accuracy Testing Accuracy
Network Topology

21-30-2-21-2 92.66% 84.32%
21-40-2-21-2 93.8% 86.09%
21-50-2-21-2 94.83% 88.59%
21-60-2-21-2 94.25% 85.53%
21-80-2-21-2 95.18% 85.13%

TABLE IV
DEEP LSTM MODEL COMPARISON WITHOUT CLUSTERING AS A FEATURE

Stacked LSTM Training Accuracy Testing Accuracy
Network Topology

20-30-2-20-2 93.56% 86.66%
20-40-2-20-2 94.52% 87.54%
20-50-2-20-2 94.49% 87.46%
20-60-2-20-2 94.90% 86.74%
20-80-2-20-2 95.35% 85.77%

as a feature for the LSTM-based classification via a k−means
clustering algorithm demonstrated significant improvement in
both training and testing accuracies. Deep LSTM networks
were formed by stacking one LSTM over another and exhib-
ited improved performance for regular networks. However, for
deep LSTMs which considered cluster as an additional feature,
there was no perceivable improvement. Finally, a performance
comparison with popular machine learning-based classification
methods validated the superior performance of LSTM for
classification of non-verbal cues.
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