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Abstract—Singing voice conversion (SVC) is a task of convert-
ing the perception of the source speaker’s identity to the target
speaker without changing lyrics and rhythm. Recent approaches
in traditional voice conversion involve the use of the generative
models, such as Variational Autoencoders (VAE), and Generative
Adversarial Networks (GANs). However, in the case of SVC,
GANs are not explored much. The only system that has been
proposed in the literature uses traditional GAN on the parallel
data. The parallel data collection for real scenarios (with the same
background music) is not feasible. Moreover, in the presence of
background music, SVC is one of the most challenging tasks
as it involves the source separation of vocals from the inputs,
which will have some noise. Therefore, in this paper, we propose
transfer learning, and fine-tuning-based Cycle consistent GAN
(CycleGAN) model for non-parallel SVC, where music source
separation is done using Deep Attractor Network (DANet). We
designed seven different possible systems to identify the best
possible combination of transfer learning and fine-tuning. Here,
we use a more challenging database, MUSDB18, as our primary
dataset, and we also use the NUS-48E database to pre-train
CycleGAN. We perform extensive analysis via objective and
subjective measures and report that with a 4.14 MOS score out
of 5 for naturalness, the CycleGAN model pre-trained on NUS-
48E corpus performs the best compared to the other systems
described in the paper.

Keywords: Singing Voice Conversion, Deep Attractor Net-
work, Transfer Learning, CycleGAN.

I. INTRODUCTION

Music is a form of art, which is derived from an organized
structure of sounds, varying in frequency, however, played
together in a symphony. In addition, speech is the most
powerful and natural form of communication between humans.
Moreover, via singing voice, one can express more skillfully. A
singer can express more varieties of expressions using rhythm,
notes, temporal dynamics, and, more importantly, linguistic
content. Moreover, by changing the voice characteristics (such
as voice timbre, vibrato, intonation, etc.), singers can also
express themselves in many different emotions [1]. However,
due to the physiological constraints during speech production,
it is very difficult to change someone’s voice with large
variations [2]. The singing voice was studied deeply with
acoustic and signal processing perspectives, and it led to one
of the first few singing synthesizers, which were made using
spectral and physical methods [3], [4].

Singing Voice Conversion (SVC) is the task of transforming
the source singer’s voice to sound like the voice of the target
singer without changing the linguistic content, and the rhythm
[1]. Current solutions do not pay much attention to SVC with
background music despite the fact that SVC in the presence
of background music has many applications, such as dubbing
of the songs, singing voice synthesis, etc. Therefore, in this
paper, we focus on SVC in the presence of background music.
Here, background music can be composed of drums, piano, or
any other instruments.
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Fig. 1: Proposed singing style transfer framework.

In this paper, we approach the problem of SVC with
background music via a two-step process. As shown in Fig.
1, the first step is to extract the vocals (i.e., linguistic content)
from the songs using music separation, and the second involves
voice conversion. Finally, we merge the converted singing
voice with accompaniment extracted from the music separa-
tion. We focus on non-parallel data due to the unavailability
of the parallel data.

With the advent of deep learning, state-of-the-art meth-
ods are continuously refined and tested for different speech
technology problems. Blind Source Separation (BSS) used
to separate various sources present in the audio mixture. In
BSS, to separate different sources, the aim is to estimate a
Time-Frequency (T-F) mask of each source given the T-F
representation of the audio mixture. There have been many
different deep learning-based approaches proposed for BSS
recently, such as Deep Clustering (DPCL) [5], [6], Permutation
Invariant Training (PIT) [7], and Deep Attractor Network
(DANet) [8], [9], etc. DPCL was proposed for the more
challenging task of speaker-independent speech separation.
DANet uses a similar underlying concept as DPCL and mod-
ifies it to make an end-to-end BSS system. In [10], DANet
has also been used for music separation, wherein they have
tested model for separating same-class sources (i.e., separating
different accompaniments), and between-class sources (i.e.,978-1-7281-8895-9/20/$31.00 © 2020 IEEE



separating vocal vs. accompaniment). More details of DANet
are specified in Section II-A. In the field of voice conversion,
methods, such as Variational Autoencoders (VAEs), and Deep
Bidirectional Long Short Term Memory (DBLSTM), have
been proposed for non-parallel VC [11], [12]. A recently
proposed method that outperforms the aforementioned is Gen-
erative Adversarial Network (GAN) [13]. GANs have shown
remarkable success in parallel and non-parallel tasks, such as
CycleGAN-VC, CycleGAN-VC2, and AdaGAN are state-of-
the-art methods proposed for one-to-one non-parallel mapping
[14]–[16]. Additionally, StarGAN-VC, and StarGAN-VC2 are
proposed for many-to-many VC tasks [17], [18]. However,
developing a non-parallel SVC is quite a challenging task
compared to the parallel VC. Attempts have been made to
develop many non-parallel SVC tasks. For example, the system
with CNN-based encoder with Wavenet-based decoder, and
RNN with DBLSTM structure have been recently proposed
for the same [19], [20]. That being said, GAN-based methods
have not been tested and validated for non-parallel SVC tasks.
To the best of authors’ knowledge, the only proposed system
for SVC uses a traditional GAN-based approach [2], however,
it only considers parallel data.

In this paper, we propose a system for SVC with background
music, which extracts vocals from the songs via a DANet, and
a style transfer system for non-parallel data with CycleGAN.
Considering the limited non-parallel data available, we focus
on the transfer learning and fine-tuning-based approach in this
paper. To the best of authors’ knowledge, this is the first
study where transfer learning is being extensively tested for
the SVC task. We pre-train DANet on the MUSDB18 [21]
database, and CycleGAN via many different scenarios, which
also includes pre-training, and fine-tuning on different datasets
(either MUSDB18 [21], or NUS-48E [22]). After importing
both the pre-trained model, we fine-tune CycleGAN according
to our primary database, MUSDB18. This way, we generated
a total of seven different possible scenarios, which involve
transfer learning, and fine-tuning of the CycleGAN. We use
various subjective and objective measures to validate each
system. The key contributions of this paper are as follows:
• We extensively study the non-parallel SVC task using Cy-

cleGAN in the presence of different background music.
• We propose a novel approach of transfer learning and

fine-tuning and analyze its effect on the SVC task.
• We perform SVC on the MUSDB18 database, which con-

tains the reverberations of the singer’s vocals, different
pitches, and rhythms in a single song making it a difficult
(in terms of complexity) database to work.

II. PROPOSED FRAMEWORK

A. Deep Attractor Network (DANet) for Source Separation

Let us denote X as a mixture speech signal contains P
number of sources, x1, x2, ..., xP . Let si ∈ RF×T , and mi ∈
RF×T be a T-F representation, and ideal T-F mask of source
i, where i = 1, 2, ..., P , respectively. Let S ∈ RF×T be a T-F
representation of mixture speech signal, which is the sum of
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Fig. 2: DANet-based source separation. After [8].

all P sources present in the mixture audio. Here, T represents
the duration of utterance, and F represents the number of
frequency channels. DANet tries to learn embedding for each
T-F bin in D-dimensional space such that T-F bins from the
same source are nearer to each other, and vice-versa [8]. T-F
representation of mixture audio signal S serves as input to the
network, which generates an embedding matrix, E ∈ RD×FT ,
which contains D-dimensional embeddings for each T-F bin.
Then, an attractor ai ∈ R1×D, which represents the centroid
of source i in the embedding space is formed by calculating
the weighted average of embeddings given the oracle mask,
mi ∈ R1×FT of source i, i.e.,

ai =
miE

>∑
f,tmi

. (1)

The estimation of a mask is treated as a clustering problem.
Firstly, compute the similarity of embedding of each T-F
bin with the attractor of each source in embedding space.
Then, estimate the mask by transforming this similarity to
the probability distribution function (PDF). For source, i,
estimated mask m̂i ∈ R1×FT is given by:

m̂i = Softmax(aiE). (2)

The loss function is a standard mean squared error (MSE),
which directly optimizes the T-F representation of each source
present in the mixture and it is given by [8]:

Ldanet =
1

P

∑
‖S � (m− m̂)‖22. (3)

B. Conventional CycleGAN

Let x ∈ RN , and y ∈ RN be the cepstral features of source
speaker (X), and target speaker (Y) speech, respectively, where
N is the dimension of a feature vector. In CycleGAN, two
generators are used: GX→Y , and GY→X , where GX→Y maps
the cepstral features x to Y , whereas mapping GY→X does the
opposite (i.e., y to X). In addition, we have two discriminators
DX and DY , whose role is to predict whether its input
is from the distribution X , and Y or not, respectively. In
CycleGAN, there are three types of losses, cycle-consistent
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Fig. 3: Schematic representation of the CycleGAN-based
singing style transfer system. After [14].

loss, adversarial loss, and identity loss, which is described
next.

Adversarial loss: To make converted speech indistinguish-
able from the original target speech, we use adversarial loss.
Here, we use least square error loss instead of traditional
binary cross-entropy loss, which is defined as:

Ladv(GX→Y ,DY ) = Ey∼PY (y)[(DY (y)− 1)2]

+ Ex∼PX(x)[(DY (GX→Y (x)))2].
(4)

Cycle-consistent loss: The main idea behind this loss is to
map the distribution between original and reconstructed data.
In addition, this loss tries to preserve contextual information
across different speech. This loss allows us to do non-parallel
voice conversion. The loss is defined as:

Lcyc(GX→Y , GY→X)

= Ex∼PX(x)[‖GY→X(GX→Y (x))− x‖1]

+ Ey∼PY (y)[‖GX→Y (GY→X(y))− y‖1].

(5)

Identity-mapping loss: To encourage preservation of input
linguistic content (as suggested in [23]), identity loss is used:

Lid(GX→Y , GY→X) = Ex∼PX(x)[‖GY→X(x)− x‖1]

+ Ey∼PY (y)[‖GX→Y (y)− y‖1].
(6)

The total loss function is defined as:
Lfull = Ladv(GX→Y , DY ) + Ladv(GY→X , DX)

+ λcycLcyc(GX→Y , GY→X) + λidLid(GX→Y , GY→X),
(7)

where the values of λcyc, and λid are 10 and 5, respectively.

C. Transfer Learning and Fine-Tuning of CycleGAN

Limited parallel data and synthesized data are a general
problem in any machine learning architectures. To overcome
these limitations, we have trained different CycleGAN models
using transfer learning and fine-tuning based approach, as
shown in Table I. For example, scenario 1, 2, and 4 are
trained on the vocals of the MUSDB18 dataset (ground truth),

vocals separated using DANet, vocals of the NUS48E dataset,
respectively. Further, to take advantage of transfer learning, we
fine-tuned our previously learned parameters of scenarios 1, 2,
and 4. For example, in scenario 6, we pre-trained CycleGAN
on vocals of the NUS48E dataset and fine-tuned with vocals
of the MUSDB18 dataset (ground truth). For each scenario,
we have trained 4 different models, in particular, for inter-
gender (male-to-female, and female-to-male), and intra-gender
(male-to-male, and female-to-female) speech conversion task
for analysis.

TABLE I: Different system configuration based on transfer learning
and fine-tuning

Pretrained Fine-tuned
Systems MUSDB18 NUS-48E DANet MUSDB18 DANet

Scenario 1 3 - - - -
Scenario 2 - - 3 - -
Scenario 3 3 - - - 3
Scenario 4 - 3 - - -
Scenario 5 - 3 - - 3
Scenario 6 - 3 - 3 -
Scenario 7 - 3 - 3 3

III. EXPERIMENTAL RESULTS

A. Database and Feature Extraction

We make use of two databases for our experiments, namely,
NUS-48E corpus, and MUSDB18. The NUS-48E corpus was
first proposed in [22] and used to evaluate SINGAN architec-
ture [2]. It consists of 48 English songs by 12 professional
singers containing six female and six male singers. These
songs include only vocals and have no additional instrumental
music or noise. The MUSDB18 is composed of 150 tracks,
of which 100 are used for training and 50 for testing [21].
The total duration of the dataset is 10 hours. The signals
are stereophonic, encoded at 44.1 kHz, and are in a multi-
track format comprising 5 stereo streams (drum, bass, other
instruments, vocal, and the mixture of vocal and instruments).
Since we do speaker-specific training, and the number of songs
for one speaker in MUSDB18 is in the range of 1 to rarely 4,
and for NUS, 4 songs for each speaker; makes us feel the need
to augment the data. We split the song into smaller segments
of 5s with an overlap of 1s, also discarding the segments of
complete noise or silence. The audio files are then converted to
mono, 16-bits per sample, and 16 kHz sampling frequency to
extract cepstral, fv and f0 features using AHOCODER [24].

B. Architectural Details

1) DANet: We have used 3 bi-directional long short-term
memory (Bi-LSTM) [25] layers, each with 600 hidden units
with a dropout probability of 0.5. We set the embedding
dimension to 20 as in [10], which results in 2580 hidden
units in a fully-connected layer. ADAM algorithm is used for
optimization with an initial learning rate of 0.001. The learning
rate is halved if there is no decrease in validation loss for 3
epochs. To prevent a network from vanishing or exploiting
gradient, the L2 norm of gradient is clipped at 3. The model
is trained for 80 epochs.



The Log-magnitude spectrogram is used as an input feature
to the network. The input feature is computed using a short-
time Fourier transform (STFT) with a window of 256 samples,
75 % overlap, and the square root of the Hanning window. It
is split into 250 frames of non-overlapping segments, and feed
as input to the network. Weiner filter-like mask (WFM) is used
as an ideal mask [26], i.e.,

WFMi =
|si|2∑c
i=1 |si|2

. (8)

During testing, we have used K-means clustering algorithm to
form an attractor for each source present in the speech mixture.

2) CycleGAN: Generators GX→Y , and GY→X follow the
same configuration. In GX→Y , and GY→X , contain 40, 512,
and 40 neurons in the input layer, hidden layers, and output
layer, respectively. All the layers are followed by Rectified
Linear Unit (ReLU) activation function. All the discriminators
follow the same configuration for both the architecture. DX ,
and DY have 40, 512, and 1 neurons in the input layer, hidden
layers, and output layer, respectively. Moreover, we use a batch
size of 1000, as suggested in [27]. In all the discriminators,
input layer, and all the hidden layers are followed by ReLU
activation function, and output layer followed by sigmoid
activation function.

C. Objective Evaluation

We have used three different objective measures to eval-
uate the efficiency of the DANet for music separation,
namely, signal-to-distortion ratio (SDR), signal-to-artifacts ra-
tio (SAR), and signal-to-interference ratio (SIR) [28]. Results
are shown in Table II. Here, we are able to reproduce the
results of the accomplishment described in the original paper
[10]. However, results of vocals have been decreased as instead
of 100 lengths of sequence while training, we have used 250
length sequence to increase the training speed (used in [10]).
Therefore, results are not the best, however, this allows us to
perform a more detailed analysis of CycleGAN fine-tuning as
it’s input features will have some amount of noise. Hence,
we are able to measure the robustness of different CycleGAN
systems.

TABLE II: Results of music separation for two-source condition

SDR SIR SAR
Vocal 0.57 4.24 5.19

Accomplishment 9.03 21.83 9.45

TABLE III: Pitch analysis via NRMSE for different systems

Systems FF FM MF MM
Scenario 1 0.2255 0.1943 0.2528 0.2414
Scenario 2 0.2190 0.2052 0.2654 0.2362
Scenario 3 0.2090 0.2122 0.2556 0.2325
Scenario 4 0.2019 0.2047 0.2261 0.1915
Scenario 5 0.2194 0.2091 0.2644 0.2447
Scenario 6 0.2253 0.2009 0.2521 0.2155
Scenario 7 0.2150 0.2079 0.2628 0.2277

The note frequencies that the singer sings at and the voice
converted singer sings at allows us to evaluate the singing
quality of the singer [29]. To evaluate different CycleGAN
systems objectively, we compute the Normalized Root Mean
Squared Error (NRMSE) by the formula:

NRMSE =

√∑n
i=1 |yi−ŷi|2

n

ȳ
, (9)

where yi indicates the note in ith MIDI message of the original
singer, ŷi indicates the note in ith MIDI message of the
converted singer, n indicates the total length of notes in the
note sequence, ȳ indicates the maximum of mean note of the
original singer, and the converted singer.

D. Subjective Evaluation

We have considered a total of 7 scenarios, as shown in Table
I, and each scenario is comprised of a total of 4 models, i.e.,
male-male, female-female, and cross-gender conversion. To
better determine the quality of results of our proposed models,
we consider the 5-point Mean Opinion Score (MOS) [30]. We
conducted two subjective tests on a total of 10 listeners (5
males and 5 females having age between 18 to 30 years, and
having no known hearing impairment). In the first test, 5 secs
segments of 14 converted song were chosen in a way that
two files were a result of each of our 7 scenarios to evaluate
the naturalness of the converted song. In the second test, we
randomly selected two files from each of our 28 models to
evaluate speaker similarity of the converted song.

TABLE IV: MOS analysis for naturalness for different systems

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7

MOS 3.68 2.55 2.82 4.14 3.45 2.73 2.64
STD 0.839 0.963 0.853 0.990 1.371 1.420 0.953

TABLE V: MOS analysis for speaker similarity for different systems

FF FM MF MM
Systems MOS STD MOS STD MOS STD MOS STD

Scenario 1 2.70 1.13 3.25 1.16 2.90 1.07 2.35 1.04
Scenario 2 3.15 1.23 3.00 1.08 1.65 1.04 2.80 1.06
Scenario 3 2.75 1.16 2.75 0.79 2.95 0.83 2.80 0.83
Scenario 4 3.60 1.10 2.00 1.08 1.85 0.99 2.60 0.94
Scenario 5 3.30 0.92 3.05 1.19 2.65 1.18 2.55 0.69
Scenario 6 2.90 0.91 2.70 0.92 2.10 0.91 2.35 0.93
Scenario 7 3.10 1.37 2.90 1.21 2.50 1.10 2.70 1.08

From Table IV, it can be observed that scenario 4 outper-
forms every other scenario in terms of naturalness, and the
same can also be observed in the objective analysis based
on NRMSE. However, in terms of speaker similarity overall
performance of scenario 1-3 is better than scenario 4. The
reason behind such contradictory results could be due to the
pre-training of scenario 4 is on NUS-48E, which only consists
of normal (in terms of less deviations in pitch and rhythms)
singing audios, however, pre-training of scenario 1 is on
MUSDB18 dataset which is more complex. Ideally, scenario
5-7 should give better results in terms of speaker similarity
as we have more speaker-specific data in NUS-48E compared



to the MUSDB18, however, Table V shows the contradictory
results, where scenario 2-3 performs relatively much better.
The main reason behind this could be due to the overfitting.
As we have very limited speaker-specific data in MUSDB18,
testing data is made of the same speaker-pair as training data.

IV. SUMMARY AND CONCLUSIONS

In this paper, we proposed a transfer learning and fine-
tuning based approach for non-parallel SVC in the presence
of background music. We do an extensive analysis of seven
different transfer learning scenarios using objective and sub-
jective measures. We tested our model for the MUSDB18
dataset. To the best of authors’ knowledge, the current methods
have applied voice conversion for songs composed of vocals
alone. For the first time in the literature, we introduce a
transfer learning-based approach using GANs on a music
dataset that contains background music and vocals. We achieve
this by using a two-step approach of separating the vocals by
DANet followed by voice conversion using CycleGAN along
with introducing an additional novelty by fine-tuning using
different permutations of NUS-48E, and MUSDB18 datasets.
In the future, we plan to fully convert the song sung by the
original speaker to the one sung by the target speaker, keeping
background music, lyrics, and rhythm still intact (since our
proposed model converts the speaker’s identity, and maintains
only the lyrics, and rhythm).
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