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Abstract—We consider the design of neural network based
joint source channel coding (JSCC) schemes for transmitting an
independent and identically distributed (i.i.d.) Gaussian source
over additive white Gaussian noise (AWGN) channels with
bandwidth mismatch when the source dimension is small. Unlike
existing deep learning based works on this topic, we do not
resort to domain expertise to constrain the model; rather, we
propose to employ fine tuning techniques to optimize the model.
We show that our proposed techniques can provide performance
that is comparable to that of the state-of-the-art when the
source dimension is small. Furthermore, the proposed model can
spontaneously learn encoding functions that are similar to those
designed by conventional schemes. Finally, we empirically show
that the learned JSCC scheme is robust to mismatch between
the assumed and actual channel signal to noise ratios.

I. INTRODUCTION

We consider the classical joint source-channel coding
(JSCC) problem of transmitting an independent and identically
distributed (i.i.d.) memoryless Gaussian source, u € R* in
n = Bk-uses of a power-constrained additive white Gaussian
noise (AWGN) channel. While separately optimizing the source
encoder and the channel encoder is optimal for asymptotic
lengths and in the absence of any complexity constraints, it
is well known that JSCC can outperform separation-based
coding schemes for small block lengths, and in the presence
of complexity constraints. Further, JSCC schemes can also
provide a more graceful degradation in the presence of channel
signal-to-noise ratio (CSNR) mismatch. Hence, they may be
more robust than separation-based coding schemes [1], [2].

For 3 = 1, Goblick proved that uncoded analog transmission
(simply scaling the source) is optimal in terms of mean-
squared-error (MSE) distortion [3]. However, in many practical
applications, it is common that the bandwidth (BW) of source
and the BW of the channel are mismatched, ie., k& # n
(or, B # 1). Past decades have seen many works attempting
to design analog joint source-channel coding schemes for
mismatched BW transmission. Several works have designed of
JSCC schemes in the asymptotic (in length) regime [4]. Our
focus in this paper is when k£ and n are very small (delay-
sensitive regime). For small values of k£ and n, in [5], Hekland
et al. have designed JSCC schemes using Archimedes’ spiral
which is based on Shannon-Kotel’nikov mappings. In [1], Hu
et al. proposed the construction of another group of space-
filling curves which are suitable for transmitting both i.i.d.
Gaussian and Laplacian sources with mismatched BW over the
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AWGN channel, and designed the corresponding maximum-
likelihood (ML) and minimum-mean-squared-error (MMSE)
decoding algorithms. In [6], a necessary condition for the
optimality of the encoder and decoder in the presence of BW
mismatch was derived, and a steepest gradient descent based
algorithm was provided for designing a JSCC scheme for
BW compression. JSCC schemes based on chaotic dynamical
systems were designed for transmitting uniform sources with
BW expansion over noisy channel in [7], [8]. Tent map code
and mirrored Baker’s code were proposed in [7] and [8],
respectively, for the uniform source for the BW expansion
case. In [8], Liu et al. further extended the results to i.i.d.
Gaussian sources.

Motivated by the success of deep learning in image pro-
cessing, natural language processing and other areas, machine
learning based JSCC scheme have been designed in [9], [10],
[11], [12]. In [9], convolutional network-based JSCC schemes
are designed for transmitting images over AWGN and slow
fading channels and it is shown that this scheme is more
robust to channel mismatch than advanced separation-based
schemes. Most closely related to our work are the works
in [10], [11], [12]. In [10], a neural network is constructed
with the hyperspherical coordinates of the source taken as
the input. The encoder network has two branches which is
inspired by the fact that a spiral curve based encoder for
k = 2,n = 1 splits the source space into two parts. By
assuming the general Gaussianity of the received signal and
normality of the reconstructed signal in [11], proof of a
variational upper bound for the regularized MSE cost was
given, and comparable performance with a traditional scheme
was attained. In [12], the result was further improved with
revised hyperspherical coordinates, and by using a more flexible
Lagrangian regularizer.

In this work, we design JSCC schemes for both the BW
compression (5 < 1) and BW expansion (8 > 1) for i.i.d.
Gaussian sources using deep learning methods. In contrast to
[10], [11], [12], we resort to very little prior information about
the source or channel, or human expertise in designing the
JSCC scheme. Based on recurrent neural networks (RNN), we
show that a simple channel autoencoder (AE) structure can
achieve performance comparable to the state-of-the-art (SOTA)
at low to moderately high CSNR for both BW compression
and expansion. In addition, the spontaneously learned encoder
transformation resembles those that have been traditionally
used. For £k = 1,n = 2 (also called 1:2) BW expansion task,



the corresponding transformation shares a high resemblance
with a spiral curve, which corresponds to a mapping with a
dichotomy in source space. For 2:4 BW expansion, the network
is able to learn an encoding function that is similar to that of
a chaotic dynamical system. The main contributions of this
work are three-fold:

o We propose a simple RNN based channel AE, and rely on
fine tuning techniques to achieve performance comparable
to the SOTA.

o We provide an interpretation for why the learned network
is successful for BW compression for 2 : 1 and 3 : 1.

o« We demonstrate the similarity between the encoding
function learned by the neural encoder and that of a
chaotic dynamical system based encoding function, and
we empirically demonstrate the robustness of our proposed
scheme to CSNR mismatch.

II. PROBLEM FORMULATION

In this section, we focus on the basic settings of the problem
we explore, as shown in Fig. 1. We assume that the source
to be transmitted is a k-dimensional random variable u € R,
following an i.i.d. Gaussian distribution, i.e., u € N(0,0°I).
The source is encoded by an encoder function fy(-) : R¥ — R™,
parameterized by ¢ and the transmitted channel codeword is
x = fy(u). The channel codeword satisfies a power constraint
given by L1E[||x[|]?] < Pr, and without loss generality it is
assumed Pr = 1. The user observes the noisy signal y =
X + n, where the channel noise is assumed to be additive
white Gaussian noise i.e., n ~ N(0,02I). The observation is
processed by the decoder gy (-) : R” — R¥ parameterized by
1, and the output is denoted as @t = g, (y). The goal is to
minimize the MSE distortion between u and G given by

D(u, ) = E[Ju— a5

The Shannon lower bound on the distortion as a function of
n, k is given by

0.2
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We define the channel signal to noise ratio (CSNR) as
CSNR := 10log; (%) (in dB), and signal-to-distortion ratio
(SDR) as SDR := 10log,, (% ) (in dB).

D(u,@) > Dy =

III. MODEL AND TRAINING TECHNIQUES

In this section, we introduce our deep learning based model
and specific training techniques, without resorting to generative
models or restriction on the transmitted signals. In later sections,
we show that our model can induce comparable performance
to the SOTA.

A. Model structure

1) Autoencoder: An Autoencoder (AE) is a popular type of
deep learning model for the task of dimension reduction, feature

extraction, image restoration, and neural machine translation.

The vanilla AE consists of an encoder and a decoder, and the
output size of the AE is the same as that of the input. It is

straightforward for us to relate the encoder and decoder in an
AE as the encoder and decoder in a JSCC scheme. The only
difference is that the latter includes a noisy channel between
the encoder and decoder. Hence, this model is referred to as
channel AE. For the AWGN channel, we can simply set the
channel as a non-trainable layer, and thus it will not influence
the training of the model. To satisfy the power constraint, we
add a non-trainable normalization layer at the end, i.e., we
set X, ; = %, where L, denote the last layer of
the encoder and Litlll’lsymbol respectively. Then the objective
function to be minimized is

1
7 Bun |[[a =gy (fo(u) + n)|f3|.
2) Recurrent Neural Network: We find that long-short-term-
memory (LSTM) cells [13] are effective for short block lengths,
and also have the potential for being expandable to a longer
sequence. In the rest of work, we build stacked bidirectional
LSTM for both the encoder and decoder so as to increase the
depth of the network. We denote h. and hy as the numbers of
hidden units for LSTMs in the encoder and decoder. It is then
followed by a feed-forward (FF) dense layer to obtain values
for each component in the sequence.

Task source reshape RNN output | FF output | reshape
compress k (n,1/P8) (n, he) (n,1) n
expand k (k,1) (k, he) (k,B) n

TABLE I: Size of the output of each part in the neural encoder.

We design RNN-based neural encoders for BW compression
and expansion tasks using the parameters shown in Table I if
B is an integer. Otherwise, we can first pass the source through
an additional simple dense layer to get hy feature vectors of
length k, where hg is least common multiple of & and n. The
neural decoder has a structure that mirrors the encoder.

3) Loss Function: MSE is a common measure for restoration
evaluation, and also is widely used as the cost function for
regression. Hence we directly set the MSE as the cost function
without any regularizer.

4) Network Architecture: For RNN-based channel AE, we
use 2 layers of stacked bidirectional LSTM with h, = 16
hidden units in the encoder, and 2 layers of stacked bidirectional
LSTM with hy = 48 hidden units in the decoder for small &
and n. And we use batch normalization between layers.

B. Training Techniques

In our experiments, we found that the batch size, the learning
rate schedule, and weight decay play an important role.

First, according to [14] [15] [16], batch size, jointly with
learning rate, determines the ‘noise scale’ in gradient de-
scent. Within reasonable range, larger batch size together
with increased learning rate is beneficial for decreasing the
number of necessary parameter updates to achieve the same
performance, without deteriorating the generalization capability.
Notice that when the channel is noiseless, the reconstruction is
not perfect. The suboptimal training process could contribute to
the distortion which becomes a limiting factor at high CSNRs.
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Fig. 1: System model for single transmitter and single receiver over AWGN channel.

It is important to minimize this distortion by choosing large
batch sizes. In addition, in our problem, the codeword sequence
in a small batch usually has a smaller size than the number of
parameters in the neural network, and thus it is inadequate to
generalize the model well. Finally, the power constraint in the
encoder relies on the statistics of the whole batch of data, which
means a more accurate approximation of the second moment
can be obtained with a larger batch size. In experiments, we
randomly generate mini batches of 5 x 10* samples every
update for low to medium CSNRs.

Secondly, warm restart schedule [17] prevents deeper layers
from creating training instability [18], by letting the learning
rate bounce back to a larger value periodically. Cosine annealing
is a learning rate decay schedule, where the learning rate
attenuates from a large initial value to any designated small
value following a cosine curve. Combining them together, we
schedule the learning rate as warm restart with cosine annealing
as,

M= Nt + 05(0hs = T
for any epoch ¢ satisfying ZZ L) <t < Z;‘:O T, Here,
nﬁl)m and m(n)ax are the minimal and maximal learning rate
during the i-th restart cycle. 7. and T,y =t — Z;;E T
stand for the length of this restart cycle, and the number
of epochs that have lapsed since the recent restart cycle,
respectively. Such a schedule has shown to be effective in
many tasks, achieving almost better anytime performance [17].
Furthermore, we set the values of nm)al to decay exponentially
every restart cycle, and we let T( 2 grow exponentially every
cycle, so that it can explore the minima with fine resolution
in the later stages. We set n,ﬁ%r = 0.01 with decay factor 0.9,
and TO(O) = 4 with growing factor 1.5 for compression task at
CSNR = 20 dB.

V(1 + cos 7Ty JTSV)

Third, weight decay is advantageous to improving gener-
alization during training. In [19], a method is provided to
decouple the learning rate and weight decay so as to search
these hyperparameters more efficiently. In experiments, we set
weight decay w, = 5 x 10™* for high CSNRs and a marginal
performance improvement can be obtained by this choice.

In the following experiments, we use Adam optimizer [20],
and for every 100 updates (as one epoch) we evaluate the
validation loss, until the loss converges or up to 2.5 x 10%
epochs, depending on which comes ealier. We keep track of
the set of weights with best validation performance, and use
them for testing.

IV. EXPERIMENTAL RESULTS
A. Bandwidth Compression

In Fig. 2, we plot the SDR of different schemes as a function
of CSNR. It can be seen that our model performs as well as
the SOTA at low CSNR [6]. Also its performance is similar
to that of the spiral-curve based encoder and MMSE decoder
in [1], and the results in [12] for mid-to-high CSNRs. The
performance of our scheme is slightly worse than other schemes
at high CSNRs.
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Fig. 2: Performance comparison between different schemes for
2:1 BW compression.

We plot the learned transformation in Fig. 3 for the 2:1
BW compression task. The two source samples uy and u; are
plotted along the X and Y axes, respectively, and the color
represents the value of the transmitted scalar z. We can see
that even with the simple channel AE structure and without
explicitly using any additional information, the model can
spontaneously learn an encoding function that is close to the
spiral curve of [1]. Specifically, the learned encoder exhibits
a dichotomy similar to those in earlier schemes designed by
hand [1] [5], iterative learning [6], or deep learning [12]. This
demonstrates that even without explicitly using additional prior
information about the source or explicitly using information
about the distribution of y, our model is capable of learning
a good encoding scheme. We can also interpret the neural
encoder from the point of view of vector quantization. If we
draw a line passing through the origin in the figure in the left
panel of Fig. 3, we can see that the neural network partitions
the line into several sections and picks a set of close values
to represent the source values in each section, similar to what
can be expected in a good quantization scheme. It can also
be seen that lines close in angle share a high similarity in the
quantized values. Accordingly, the learned encoder for 3:1 BW
compression can be interpreted from a similar perspective. As
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Fig. 3: 2:1 BW compression at CSNR=20 dB. Left: the learned
encoder; Right: the encoder in [1].

shown in Fig. 4, if we take planar slices of input space, it
can be seen that the network partitions each sliced plane into
several areas, and within each area source vectors are mapped
to a set of close values. The success of the neural network
model lies in correctly learning such a scheme that mimics the
performance of a good vector quantizer.

Fig. 4: Compression of u € R3 into a scalar. The left, middle
and right figures represent X — Y, Y — Z, and X — Z plane
of the learned encoder at CSNR=20 dB.

B. Bandwidth Expansion

Conventional schemes for JSCC of an i.i.d. Gaussian source
with BW expansion include designing encoders based on the
inverse transformation of Archimedes’ spiral and spiral curve
[5], [1]. Based on chaotic dynamical system, mirrored Baker’s
codes have been designed in [8]. For our proposed model, the
encoder structure remains the same as in the BW compression

case, but the sizes of the layers are chosen as shown in Table 1.

In Fig. 5, we compare our model with the above works, as well
as with Shannon lower bound. Our model outperforms mirrored
Baker’s codes in the entire range of CSNRs considered. It also
outperforms Archimedes’ spiral curve for CSNRs between 0-25

dB, and performs similar to the spiral curve at CSNR of 30 dB.

The performance of the proposed scheme is also similar to that
in [1] at low and mid CSNR and is within 2 dB SDR at high
CSNR. Note that in [8], to apply mirrored Baker’s codes to
Gaussian sources, inputs are truncated to be bounded to [—1, 1]
but the truncation error is not considered. Thus, the mirrored
Baker’s code appears to slightly outperform the Shannon lower
bound in the low CSNR region.

In Fig. 6, we compare the robustness performance of our
proposed scheme to the Archimedes’ spiral optimized for one
specific CSNR in [5]. We train the model at a fixed CSNR,
and test it over a wide range of CSNRs. It can be seen that
our proposed scheme has better performance over almost the
whole CSNR range, and the performance degrades gracefully
at low CSNRs in particular.
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Fig. 5: Performance comparison of different schemes for BW
expansion 1:2.
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Fig. 6: Robustness comparison for 1:2 BW expansion.

We show the learned transformation trained at CSNR=30
dB in Fig. 7a for k = 1,n = 2. It can be seen that the
network learns a different space-filling curve than the inverse
transformation of the spiral curve. The close SDR performance
to the SOTA suggests that there are multiple schemes that
perform close to optimality for the BW expansion case.

Chaotic dynamical system based codes use a linear trans-
formation of the initial bits to derive later bits in the code
sequence. An example of length-2 tent map code is shown in
Fig. 7b. The first bit, which is exactly the original message, is
mapped to the second bit piece-wise linearly, looking like a
single saw. The number of ‘saws’ of the mapping between the
last bit and the initial bit grows exponentially as the code length
increases, and thus a tiny change in the original message will
be amplified at later code bits. This property facilitates effective
error-protection. A similar scheme is learned by the network
for BW expansion for larger k. For example, when k = 2, the
source is denoted as [ug, u1] and learned channel codeword is
denoted by [z, x1, 22, x3]. Fig. 8a shows how [z¢,x1, z2, 23]
change with u for 4 fixed values of u1, and Fig. 8b shows how
[0, 21, X2, 3] change with u; for 4 fixed values of ug. The
X -axis represents the value of each bit in the source sequence,
and the Y -axis represents the value of each bit in the channel
codeword. The top row in Fig. 8a indicates that xy and z; are
mainly determined by ug through approximately piece-wise
linear transformations. However, in top row in Fig. 8b, the
mappings from u; to g and x; are approximately horizontal



lines, which means wu; only has slight influence on them. The
mappings from the bits in source sequence to zs and z3 have
similar characteristics. Furthermore, there is high resemblance
between top row in Fig. 8a and bottom row in Fig. 8b. This
suggests that the network learns a 2-stage encoding scheme.
The 4 bits in the analog channel code are first divided into two
sets and the bits in each set are predominantly controlled by the
same source bit according to piece-wise linear transformations,
and such transformations are similar across the sets.
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Fig. 7: 1:2 BW expansion.
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Fig. 8: Relation between source and channel code bits of the
learned encoder for 2:4 BW expansion.

V. CONCLUSION

We introduced a simple channel AE model to design JSCC
schemes for transmission of i.i.d. Gaussian sources over AWGN
channels with bandwidth mismatch when the source dimension
is small. We show that proper fine tuning techniques can
improve the effectiveness of the model to achieve results
comparable with the SOTA without explicitly using prior
information about the source or channel. The learned encoding

function resembles that of some conventional SOTA schemes.
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