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Abstract—Successive cancellation list decoding of polar codes
provides very good performance for short to moderate block
lengths. However, the list size required to approach the per-
formance of maximum-likelihood decoding is still not well un-
derstood theoretically. This work identifies information-theoretic
quantities that are closely related to this required list size. It
also provides a natural approximation for these quantities that
can be computed efficiently even for very long codes. Simulation
results are provided for the binary erasure channel as well as
the binary-input additive white Gaussian noise channel.

I. INTRODUCTION

Polar codes constitute the first deterministic construction
of capacity-achieving codes for binary memoryless symmetric
(BMS) channels with an efficient decoder [1]. While proven to
achieve capacity under successive cancellation (SC) decoding,
their initial performance results were not competitive with low-
density parity-check and Turbo codes in practice. This changed
with the advent of SC list (SCL) decoding and the addition of
cyclic redundancy-check (CRC) outer codes [2]. Due to their
competitive performance for short block lengths [3], they have
been adopted by the 5G standard. Now, there is a significant
research effort into improving their performance. For example,
many authors have optimized polar codes and their variants for
the SCL decoder [4]–[10].

An important property of the SCL decoder is that its perfor-
mance matches that of maximum-likelihood (ML) decoding
if the list size increases without bound. In this work, we
consider the theoretical question: “What list size is sufficient
to achieve ML decoding performance for a given channel
quality?”. While it is possible to simulate the SCL with a
large list size and compare the results with the simulation-
based ML lower bound, that approach becomes infeasible for
long codes and doesn’t provide much insight into the question.
Such an insight has potential to suggest a constructive way to
design polar codes for SCL decoding while the current works
rely mostly on heuristics, e.g., see [5]–[7], [9]. Our results
identify information-theoretic quantities associated with the
required list size and also provide a natural approximation
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that can be computed efficiently even for very long codes.
Using these quantities, our analysis suggests new code design
criteria for polar code variants. Simulations are provided for
the binary erasure channel (BEC) and the binary-input additive
white Gaussian noise channel (biAWGNC).

II. BACKGROUND

Random variables (RVs) are denoted by upper case letters,
e.g., X , and their realizations by the lower case counterparts,
e.g., x. Vectors are denoted by xji = (xi, xi+1, . . . , xj). If
j < i, then it is void. We use [N ] for the set {1, 2, . . . N}.
Subvectors with indices in A ⊆ [N ] are denoted by xA =
(xi1 , . . . , xi|A|) where i1 < · · · < i|A| is an enumeration of
the elements in A with |A| being the cardinality of the set A.
The length-N all-zero vector is denoted as 0N . Finally, bold
capital letters are used for matrices, e.g., X .

Consider a BMS channel, W : X → Y , with binary input
X ∈ {0, 1} and general output Y ∈ Y . The transition prob-
abilities are given by W (y|x) , Pr(Y = y|X = x) and we
assume w.l.o.g. that symmetry implies W (y|1) = W (−y|0).

A. Polar Codes and Successive Cancellation Decoding
The polar transform of length N = 2n is denoted by GN ,

G⊗n2 and equals to the n-fold Kronecker product of the 2× 2
Hadamard matrix, i.e.,

G2 ,

[
1 0
1 1

]
.

This is the key building block in Arıkan’s polar codes [1].
To define a polar code, one needs to partition the input

vector into bits that carry information and frozen bits whose
values are known by the receiver (e.g., fixed to 0). The set of
information and frozen indices are denoted, respectively, by
A ⊆ [N ] and F , [N ] \ A. Thus, the input vector uN1 can
be split into information bits uA and frozen bits uF . Then,
the codeword x = uGN is transmitted over the channel. This
construction also enables efficient SC decoding [1].

Let yN1 be the observations of the bits xN1 through N copies
of the BMS channel W . The SC decoder takes the following
steps sequentially from i = 1 to i = N . If i ∈ F , it sets ûi
to its frozen value. If i ∈ A, it computes the soft estimate
pi(û

i−1) , Pr(Ui = 1|Y N
1 = yn1 , U

i−1 = ûi−1), and makes
a hard decision accordingly as

ûi =

{
0 if pi(ûi−1) < 1

2

1 otherwise.
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To understand the SC decoder, we focus now on the effec-
tive channels seen by each of the input bits in uN1 [1]. The SC
decoder uses the entire yN1 vector and all past decisions ûi−11 to
generate the soft estimate pi(ûi−1) and the hard decision ûi for
ui. Let W (i)

N denote the effective (virtual) channel seen by ui
during the SC decoding [1]. If all past bits ui−11 are provided
by a genie, then this channel is easier to analyze. Under that
assumption, the effective channel W (i)

N : Ui → (Y N
1 , U i−1

1 ) is
defined by its transition probabilities

W
(i)
N

(
yN1 , u

i−1
1 |ui

)
,

∑
uN
i+1∈{0,1}N−i

1

2N−1
WN (yN1 |uN1 GN )

where WN (yN1 |xN1 ) ,
∏N

i=1W (yi|xi).

B. Dynamic Frozen Bits

An important observation in [4] is that the SC decoder still
works (with a slight modification) if, for some i ∈ F , the bit
ui is a function of a set of preceding information bits. A frozen
bit whose value depends on past inputs is called dynamic.

A polar code with dynamic frozen bits is defined by its
information indices A and a matrix that defines each frozen bit
as a linear combination of preceding information bits. There
are now a number of approaches for choosing these parameters
[4], [5] and heuristic design methods [6]. In this work, after
specifying A, we define each frozen bit to be a uniform
random linear combination of information bits preceding it.

C. Successive Cancellation List Decoding

SCL decoding of Reed–Muller (RM) codes (and related
subcodes) was introduced in [11]. These ideas were extended
to optimized constructions of generalized concatenated codes
in [12]. But, these approaches became popular only after [2]
applied them to polar codes combined with an outer CRC code
to increase the minimum distance.

The basic idea of SCL decoding is to recursively compute
the value of Qi(ũ

i
1, y

N
1 ) ∝ Pr

(
U i
1 = ũi1, Y

N
1 = yN1

)
for

i = 1, . . . , N via the SC message passing rules for partial
information sequences ũi1 ∈ Ui ⊆ {0, 1}

i. Dropping yN1 for
the ease of notation, we refer to the quantity Qi(ũ

i
1) as the

myopic likelihood of the sequence ũi1 as it does not use the
receiver’s knowledge of frozen bits after ui.

Let Ui−1 ⊆ {0, 1}i−1 be a subset satisfying |Ui−1| = L
and assume that Qi−1(ũi−11 ) is known for some ũi−11 ∈ Ui−1.
Then, for ũi ∈ {0, 1}, one can write

Qi(ũ
i
1) ∝ Pr

(
U i
1 = ũi1, Y

N
1 = yN1

)
∝ Qi−1(ũi−11 ) Pr

(
Ui = ũi|Y N

1 = yN1 , U
i−1
1 = ũi−11

)
, (1)

where the right-most term can be computed efficiently by the
standard SC decoder starting from Q0(ũ01) , 1. This results in
Qi(ũ

i
1) values for 2L partial sequences. Then, one prunes the

list down to L sequences by keeping only most likely paths
according to (1) for an SCL decoder with maximum list size
L. Note that if ui is frozen, then the decoder simply extends all
paths with correct frozen bit. After the N -th decoding stage,
the estimate ûN1 is chosen as the candidate maximizing the
function QN (ũN1 ).

D. Successive Cancellation Inactivation Decoding

SC inactivation (SCI) decoding is a simplified version of
SCL decoding for the BEC proposed in [13]. During SCL
decoding, when an information bit is decoded to an erasure, it
is replaced by both possible values (assuming the list size is
large enough) and decoding proceeds separately under these
two hypotheses. But, for linear codes on erasure channels, any
uncertainty in the information bits takes the form of an affine
subspace. For this reason, one can store a basis instead of
listing all codewords, reducing the complexity significantly.

Thus, the SCI decoder follows the same decoding schedule
as the SCL decoder but instead replaces an erased information
bit by an unknown variable, i.e., the bit is inactivated [14]–
[16]. Later, some inactivated bits may be resolved using linear
equations derived from decoding frozen bits. This can be done
at each stage of the decoding process or delayed until the end.
When dummy variables are eliminated without delaying to the
end of decoding, we refer to this as a consolidation event. In
this work, our focus is on the SCI decoder with consolidations.

For the BEC, all partial information sequences ui1 ∈ {0, 1}i
with Qi(u

i
1) > 0 have the same probability. Hence, for a given

ui−11 , we have pi(ui−11 ) ∈
{

0, 12 , 1
}

. If pi(ui−11 ) ∈ {0, 1}, then
ui is known perfectly at the receiver. However, if pi(ui−11 ) = 1

2
and ui is not frozen, then ûi can be seen as an erasure. Then,
the SCI decoder inactivates ui by introducing a dummy vari-
able ũi and storing the decision as ûi = ũi. It then continues
decoding using SC decoding for the BEC except that the
message values are allowed to be a function of all inactivated
variables. In the end, the inactivated bits are typically resolved
using linear equations derived from decoding frozen bits.

The SCI decoder can inactivate multiple bits when required.
If the maximum number of inactivations is not bounded, then
this algorithm implements ML decoding [13].

III. ANALYSIS OF THE LIST DECODERS

An important property of list decoding is that, if the correct
codeword is on the list at the end of decoding, then the error
probability is upper bounded by that of the ML decoder. We
focus on understanding how large the list should be at each
stage so that the correct codeword is likely to be on it.

A. An Information-Theoretic Perspective

Consider a length-N polar code with SCL decoding after
the first m input bits have been processed. Since SC decoding
does not make use of future frozen bits, the idea is to
focus on the subset of length-m input patterns that have
significant conditional entropy given the channel observation.
A straightforward but important insight is that, after observing
Y N
1 , the uncertainty in Um

1 is quantified by the entropy

H
(
Um
1 |Y N

1

)
=

m∑
i=1

H
(
Ui|U i−1

1 , Y N
1

)
(2)

where UN
1 is assumed to be uniform over {0, 1}N . This is

exactly true if the first m bits are all information bits, i.e., if
[m] ⊆ A. If [m] contains also frozen indices, however, then
the situation is more complicated.



LetA(m) , A∩[m] and F (m) , F∩[m] be the sets contain-
ing information and frozen indices within the first m input bits,
respectively. Now, consider an experiment where the frozen
bits UF(m) are uniform and independent of Um−1

1 . Obviously,
using (2) naively with the assumption that UF(m) is not known
to the receiver would cause an overestimate of H

(
Um
1 |Y N

1

)
by an amount of at least

∑
i∈F(m) H

(
Ui|U i−1

1 , Y N
1

)
. In

addition to this, the frozen bits UF(m) may reveal additional
information about the previous information bits.

To understand more about the uncertainty within the first
m input bits during SCL decoding, we define the quantities
dm , H

(
UA(m) |Y N

1 , UF(m)

)
and ∆m , dm−dm−1. Observe

that, if Um is an information bit, then we have

∆m =H
(
UA(m) |Y N

1 , UF(m)

)
−H

(
UA(m−1) |Y N

1 , UF(m−1)

)
= H

(
UA(m) |Y N

1 , UF(m−1)

)
−H

(
UA(m−1) |Y N

1 , UF(m−1)

)
= H

(
UA(m) , UF(m−1) |Y N

1

)
−H

(
UA(m−1) , UF(m−1) |Y N

1

)
= H

(
Um−1
1 |Y N

1

)
+H

(
Um|Y N

1 , Um−1
1

)
−H

(
Um−1
1 |Y N

1

)
= H(Um;Y N

1 |Um−1). (3)

Notice that (3) is exactly what one would expect from the
naive analysis given by (2).

If Um is a frozen bit, then consider a model where it is not
known to the receiver at that time of transmission.1 Then, the
act of revealing Um to the receiver changes the conditional
uncertainty about UA(m−1) by

∆m = H
(
UA(m) |Y N

1 , UF(m)

)
−H

(
UA(m−1) |Y N

1 , UF(m−1)

)
=H

(
UA(m−1) |Y N

1 , UF(m−1) , Um

)
−H

(
UA(m−1) |Y N

1 , UF(m−1)

)
= −I

(
Um;UA(m−1) |Y N

1 , UF(m−1)

)
= H

(
Um|Y N

1 , Um−1
1

)
−H

(
Um|Y N

1 , UF(m−1)

)
≥ H

(
Um|Y N

1 , Um−1
1

)
− 1. (4)

This expression quantifies the effect of revealing the new
frozen bit as a reduction in the conditional entropy of the
information bits preceding it. A large reduction may occur
when the channel W (m)

N has low entropy (i.e., a low-entropy
effective channel is essentially frozen) and the reduction will
be small if the channel entropy is high (i.e., the input is
unpredictable from Y N

1 and Um−1
1 ).

For BMS channels, we can combine (3) and (4) to un-
derstand the dynamics of dm. This gives a proxy for the
uncertainty in the SCL decoding after m steps. Thus, we have∑

i∈A(m)

H
(
W

(i)
N

)
−

∑
i∈F(m)

(
1−H

(
W

(i)
N

))
≤ dm (5)

≤
∑

i∈A(m)

H
(
W

(i)
N

)
. (6)

We note that the lower bound neglects the possibility that
(dynamic) frozen bits (even if perfectly observed) may not
provide substantial information to reduce the entropy.

1This reflects how the SCL decoder operates, i.e., it does not use the
knowledge of any frozen bit Um until reaching the end of its decoding stage
m. Then, the soft estimate pm(um−1

1 ) provides an additional information to
separate the hypotheses (i.e, paths) although the hard estimate is chosen as
ûm = um independent of pm(um−1

1 ).

Theorem 1. Upon observing yN1 when uN1 is transmitted,
the set of partial sequences ũm1 more likely than the true
sequence um1 after m stages of SCL decoding is given by
S(m)

(
um1 , y

N
1

)
, {ũm1 : Qm(ũm1 ) ≥ Qm(um1 )}. On average,

the logarithm of its cardinality is upper bounded by dm, i.e,

E
[
log2 |S(m)|

]
≤ dm = H

(
UA(m) |Y N

1 , UF(m)

)
. (7)

Proof. Assume, w.l.o.g., that uN1 and yN1 are transmitted and
observed, respectively. Then, we have

log2 |S(m)| (a)
= log2

∑
ũm
1

1(Pr(ũA|yN
1 ,uF)≥Pr(uA|yN

1 ,uF))

(b)

≤ − log2 Pr
(
uA|yN1 , uF

)
where (a) follows from Qm(um1 ) ∝ Pr

(
U i
1 = ũi1, Y

N
1 = yN1

)
and Bayes’ rule and (b) from the fact that if there are
more than Pr

(
uA|yN1 , uF

)−1
sequences ũA with probability

Pr
(
uA|yN1 , uF

)
, then the total probability exceeds 1. As

the inequality is valid for any pair uN1 and yN1 , taking the
expectation over all um1 and yN1 yields the stated result.

Using (7) and (6) yields an upper bound easier to calculate

E
[
log2 |S(m)|

]
≤

∑
i∈A(m)

H
(
W

(i)
N

)
. (8)

Now, consider an SCL decoder whose list size is Lm during
the m-th decoding step. Then, the decoder should satisfy
Lm ≥ |S(m)| for the true um1 to be in the set S(m).

Remark 1. It is worth noting that the analysis in terms of
log2 Lm has two weaknesses. First, the entropy really only
characterizes typical events (e.g., ensuring that the correct
codeword stays on the list at least half of the time) whereas
coding focuses on much rarer events (e.g., block error rates
less than 10−2). Second, even if entropy is the right quantity,
the sequence dm is averaged over Y N

1 but the actual decoder
sees a random realization H

(
UA(m) |Y N

1 = yN1 , UF(m)

)
. Re-

gardless, we believe that these results provide an initial step
towards a theoretical analysis of the SCL decoder. In addition,
the numerical results illustrates the accuracy of the analysis.

Remark 2. These results also have some significance for code
design. To achieve good performance with an SCL decoder
whose list size is Lm during the m-th decoding step, a
reasonable first-order design criterion is that log2 Lm ≥ dm.
This observation implies, in principle, that frozen bits should
be allocated to prevent dm from exceeding log2 Lm.

B. The Binary Erasure Channel

For the BEC, the SCI decoder provides a concrete example
of this information-theoretic perspective. In this case, the set of
valid information sequences after m decoding steps is an affine
subspace of {0, 1}K . For a fixed realization yN1 , the subspace
dimension is dm(yN1 ) = H

(
UA(m) |Y N

1 = yN1 , UF(m)

)
. Let

Dm = dm(Y N
1 ) denote corresponding RV. Our goal is to

understand the evolution of this random sequence.
Let ε(m)

N , Pr
(
pi(u

i−1
1 ) = 1

2

)
, where the implied random-

ness is due to the received vector. Consider the decoding of



information and frozen bits given the observed vector and
preceding frozen bits. When an information bit um is decoded,
one of following events occurs:
• The information bit is decoded as an erasure and the

subspace dimension increases by one, i.e., dm(yN1 ) =
dm−1(yN1 ) + 1. Averaged over all yN1 , the probability of
this event equals ε(m)

N .
• The information bit is decoded as an affine function of

the previous information bits and the subspace dimension
is unchanged, i.e., dm(yN1 ) = dm−1(yN1 ). Averaged over
all yN1 , the probability of this event equals 1− ε(m)

N .
If a frozen um is decoded, one of following events occurs:
• The decoder returns an erasure for the frozen bit. In

this case, revealing the true value of the frozen bit
allows decoding to continue, but no new information
is provided about preceding information bits. Thus, we
have dm(yN1 ) = dm−1(yN1 ). Averaged over all yN1 , the
probability of this event equals 1− ε(m)

N .
• The frozen bit is decoded as an affine function of the

previous information bits. Averaged over all yN1 , the
probability of this event equals 1 − ε

(m)
N . In this case,

revealing the true value of the frozen bit gives a linear
equation for a subset of the preceding information bits.
If the linear equation is informative, then the subspace
dimension decreases by one via a consolidation event,
i.e., we have dm(yN1 ) = dm−1(yN1 ) − 1. Otherwise, the
dimension is unchanged, i.e., dm(yN1 ) = dm−1(yN1 ).

At first glance, these rules might appear to tell the whole
story. But, the erasure rate ε

(m)
N is averaged over all yN1

whereas predicting the value of Dm requires knowing the
conditional probability of erasure events given all past obser-
vations. More importantly, to understand consolidation events,
one needs to compute the probability that the obtained equa-
tion is informative.

Since we do not have expressions for these quantities,2 we
use two simplifying approximations. First, we approximate
the probability of decoding an erasure for a frozen bit as
independent of all past events. Second, we approximate the
probability that an informative equation obtained from consoli-
dation by 1−2−Dm−1 , independent of past events. This value
comes from modeling the obtained equation and the subset
using a uniform random model. Under these assumptions,
the random sequence D1, . . . , DN can be approximated by
an inhomogeneous Markov chain with transition probabilities
P

(m)
i,j ≈ Pr (Dm = j |Dm−1 = i) where

P
(m)
i,j =


ε
(m)
N if m ∈ A, j = i+ 1

1− ε(m)
N if m ∈ A, j = i

ε
(m)
N +

(
1− ε(m)

N

)
2−Dm−1 if m ∈ F , j = i(

1− ε(m)
N

) (
1− 2−Dm−1

)
if m ∈ F , j = i− 1.

(9)
Based on this Markov chain approximation, one can

make a further approximation by computing the expectation

2Even if we had them exactly, they may be too complicated to be useful.
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Dm , E [Dm] and approximating E
[
2−Dm

]
≈ 2−Dm . By

setting D0 , 0, this gives the simple recursive approximation

Dm ≈

Dm−1 + ε
(m)
N if m ∈ A[

Dm−1−
(

1−2−Dm−1

)(
1−ε(m)

N

)]+
if m ∈ F

(10)
where [·]+ , max{0, ·}.

IV. SIMULATION RESULTS

In the following, the simulation results are provided for
some constructions with dynamic frozen bits. In particular,
we consider a modified RM code (called a d-RM code) [13],
where each frozen bit after the first information bit is set to a
random linear combination of preceding information bits.

Recently, Arıkan introduced polarization-adjusted convolu-
tional (PAC) codes [10], which can be represented as a polar
code with dynamic frozen bits [17], [18]. However, the rate-
profiling choice of a PAC code is directly reflected in the
frozen index set of its polar code representation [17]. Thus,
if A of an RM code is chosen as the rate-profiling, then the
frozen index set of the PAC code becomes the same as that of a
d-RM code. They differ in the dynamic frozen bit constraints.

A. The Binary Erasure Channel

In order to understand the accuracy of the analysis and
approximations presented above, we have simulated the SCI
decoder with consolidation. The results of these simulations
are realizations of the random process D1, . . . , DN .

One weakness of these bounds is that the channel variation
(e.g., in the number of erasures) significantly increases the
variation in DN

1 . Thus, in order to highlight the similarity
between the theory and simulation, we use a fixed-weight
BEC that chooses a random pattern with exactly round(Nε)
erasures. To motivate this, we note that density evolution natu-
rally captures the typical behavior of the analyzed system [19].
Fig. 1 shows simulation results for realizations of DN

1 and
compares these with their average and the theoretical predic-
tions (9) and (10). These results show that, for a (512, 256)
d-RM code, the simulation mean is quite close to the analysis.
The 15 random simulation traces also lie largely within the
90% confidence range of the Markov chain analysis.

B. The Binary-Input Additive White Gaussian Channel

Fig. 2 shows simulation results for a (128, 64) d-RM code
and a novel design (based on suggestions in Remark 2) under
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SCL decoding with L = 214 and Eb/N0 = 0.5 together with
the upper and lower bounds (6) and (5) on dm. The proposed
code takes the set A of the (128, 64) RM code and obtains a
new set as A′ = (A \ {30, 40}) ∪ {1, 57}, i.e., u{30,40} are
frozen and u{1,57} are unfrozen, where each frozen bit is still
set to a random linear combination of preceding information
bit(s). This helps especially for the considered list size L = 32.
The reason is illustrated by the lower bounds on dm in Fig. 2.
In addition to having a smaller peak value, this peak occurs
for the proposed design later than for the d-RM code. This
helps for the proposed code to keep the correct path in the list
towards the end for small list sizes, e.g., L = 32. If the list
size is further decreased, then having u1 as information bit can
cause a degradation. Notice that there is no visible degradation
in the ML performance. Fig. 2 validates the bounds (5), (6)
and (8).3 Also, (8) is tight for the entire range and (5) closely
tracks the simulation for m ≤ 50.

Fig. 3 compares the performance of the d-RM and proposed
codes. When an SCL decoder with L = 128 is considered,
both codes perform within 0.15 dB of the random coding union
(RCU) bound [20, Thm. 16] at a block error rate of 10−5.
When a smaller list size, e.g., L = 32, is adopted, the proposed
code outperforms the d-RM code especially at higher SNR
values. This validates the analysis illustrated in Fig. 2. The
metaconverse (MC) bound [20, Thm. 28] is also provided.

3To provide a robust estimate of E[log2 |S(m)|], the threshold for inclusion
is reduced to αQm(um1 ) where α < 1 is a constant, e.g., α = 0.94 in Fig. 2.

V. CONCLUSION

In this paper, we consider the theoretical question “What
list size is sufficient to achieve maximum-likelihood (ML)
decoding performance under an SCL decoder?”. Our results
identify information-theoretic quantities associated with the
required list size and also lead to a natural approximation that
can be computed efficiently even for very long codes.

Simulation results show that this approximation captures the
dynamics of the required list size at each stage of decoding
on the BEC. For general BMS channels, e.g., biAWGNC, the
analysis identified the key quantity dm as a proxy for the
uncertainty in the SCL decoding. Insight from the analysis
resulted in the proposed code with improved performance
under SCL decoding with list size of 32.
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