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Abstract—We introduce a new setting in information theory
where a receiver tries to exactly recover a source signal from
a dishonest sender who sends messages with an intention to
maximize its utility. The sender can send messages to the receiver
over a noiseless channel whose input space is the entire signal
space, but due to its dishonesty, not all signals can be recovered.
We formulate the problem as a game between the sender and
the receiver, where the receiver chooses a strategy such that it
can recover the maximum number of source signals. We show
that, despite the strategic nature of the sender, the receiver can
recover an exponentially large number of signals. We show that
this maximum rate of strategic communication is lower bounded
by the independence number of a suitably defined graph on the
alphabet and upper bounded by the Shannon capacity of this
graph. This allows us to exactly characterize the rate of strategic
communication for perfect graphs.

I. INTRODUCTION

We introduce a new setting in information theory with a
sender and a receiver, where the receiver is trying to exactly
recover a sequence of source symbols privately known to a
sender. The sender can convey information about the signal by
sending a message to the receiver via a noiseless channel of
unit rate. The sender, however, is trying to maximize its utility
and may have an incentive to misreport its information. The
receiver now has to decode the true signal from the message
sent by the sender. We ask the following question: given that
the sender is a dishonest reporter, what is the maximum number
of signals that can be recovered by the receiver?

This unconventional setting between a sender and a receiver
is important in networked control systems such as IoT and smart
grids. These systems comprise of multiple entities like sensors,
controllers and smart devices, that are remotely connected via
communication channels. In a typical scenario, a sender such
as a fusion center collects information observed by the sensors
and transmits it via a communication channel to a controller.
The controller then takes appropriate action to achieve a certain
objective. However, such networked systems are vulnerable
to adversarial attacks which may cause the sender to act
maliciously and misrepresent its information. These networked
systems form the backbone of critical systems and their failure
could be catastrophic. Thus, it is of utmost importance to study
this problem and determine the strategies of the receiver which
ensure communication with the sender.

This setting is unlike the information-theoretic problems of
communication where the sender and receiver have a common
aim of communication. In our setting, the sender can mislead
the receiver for its personal gains. The receiver, thus, has to

strategize to extract truthful information from the sender. We
show that, barring the case when the sender is a pathological
liar, i.e., it speaks anything but the truth, the receiver can recover
an exponentially large number of signals.

We formulate the communication problem as a game between
the sender and the receiver, where the sender acts to maximize
its utility and the receiver aims to maximize the number of
signals it can recover exactly. We consider a block setting,
where the sender observes a sequence of source symbols, which
it can convey to the receiver by sending a message through a
noiseless channel. The receiver then has to decode this message
and recover the true information. We consider a leader-follower
setting for our problem, where the receiver is the leader and
declares its decoding strategy before the sender chooses its
mapping. We then define a strategic graph on the source
sequences, which is induced by the utility of the sender, and
where two source sequences are connected via an edge if they
can be confused by the receiver. We show that, in equilibrium,
the receiver effectively recovers the largest independent set of
the strategic graph. We define a notion of the strategic capacity
of the graph and the rate of strategic communication. Our
main result shows that the capacity is lower bounded by the
independence number of a base graph and upper bounded by
the Shannon capacity of the base graph.

The Shannon capacity is computed by considering the strong
product of the confusability graph induced by a noisy channel
[1]. We show that constructing a similar graph by taking n-
fold strong product of the base graph induced by the utility, we
only get a subgraph of the strategic graph. Thus, the Shannon
capacity of the strategic graph is an upper bound on the strategic
capacity. The capacities are equal in the case of perfect graphs
since the capacity of a perfect graph is the independence
number of the graph. To the best of our knowledge, the strategic
capacity we introduce is the first case of a quantity that lies
between the independence number and the Shannon capacity.

While the strategic communication problem is not a standard
communication problem, it does have traces of both channel
coding as well as source coding. The strategic nature of the
sender is akin to the ambiguity of the channel output and the
noiseless medium is analogous to the noise-free transmission
in source coding. The strategic capacity essentially captures the
idea that to communicate with a noisy sender, the receiver has
to perform a compression of the source.

The problem of communication where the sender and re-
ceiver have misaligned objectives has been studied in various
forms in [2], [3], [4], [5]. The Shannon graph capacity problem
has been extensively studied [6]. However, determining the978-1-7281-8895-9/20/$31.00 c© 2020 IEEE



capacity for graphs as small as a 7-cycle graph is open [7].

II. PROBLEM FORMULATION

Let the string seen by the sender consist of symbols lying
in a finite alphabet X . We take X = {0, 1, . . . , q − 1} with
q = |X |. A generic graph is denoted as G = (V,E) where
V is the set of vertices and E is the set of edges. When two
vertices x and y are connected via an edge, we denote it either
as (x, y) ∈ E or as x ∼ y. The size of the largest independent
set of a graph G is denoted as α(G). We denote I (G) as the
collection of all independent sets of the graph G.

Consider a setting with a sender and a receiver, where
the sender observes a sequence of source signals Xn =
(X1, . . . , Xn) ∈ Xn, where Xi are generated randomly ac-
cording to some distribution. The receiver wishes to perfectly
recover this sequence from the sender. As the receiver aims
for perfect recovery, we do not assume any specific distri-
bution for Xi. The sender can convey information about its
source by transmitting a message as sn(Xn) = Y n, where
sn : Xn → Xn. The message is noiselessly relayed to the
receiver who decodes the message as gn(Y n) = X̂n, where
gn : Xn → Xn ∪ ∆. Here ∆ is an error symbol that gives a
utility of −∞ to the sender and hence is never preferred by the
sender. Let

D(gn, sn) := {xn ∈ Xn : gn ◦ sn(xn) = xn} (1)

be the set of perfectly recovered sequences when the receiver
plays gn and the sender plays sn. The receiver aims to maximize
the size of this set by choosing a strategy gn. The sender, on
the other hand, chooses a strategy sn to maximize the utility
un : Xn ∪∆×Xn → R given as

un(x̂n, xn) =
1

n

n∑
i=1

u(x̂i, xi),

where u : (X ∪∆)×X → R. Here xn is the sequence observed
by the sender and x̂n is the sequence recovered by the receiver.
Note that ∆ is such that un(∆, xn) =

∑n
i=1 u(∆, xi)/n for all

xn ∈ Xn and for all n. Further, u(∆, x) = −∞ for all x ∈ X .
We study this setting as a game between the sender and the

receiver. In particular, we consider a leader-follower game, also
called a Stackelberg game, where the receiver is the leader and
the sender is the follower. We consider this formulation apt for
our setting due to the following reasons. In a Stackelberg game,
the leader plays its strategy before the follower and hence has
an advantage in the game. Since we study a problem where the
receiver tries to “extract” information from the sender, we can
assume that the receiver is aware of the strategic nature of the
sender and plays its strategy before the sender. For instance, in
a smart grid, the regulator is aware of the incentives available
to the consumers for misreporting the demand and usage data.
Its objective is to appropriately regulate the load by extracting
the true demand and usage data from the consumers.

The game proceeds as follows. The receiver, being the leader,
plays its strategy before the sender. For a given strategy of the
receiver, the sender chooses the best response that maximizes
its utility. The receiver anticipates this response of the sender
and accordingly chooses an optimal strategy that maximizes
its objective. This leads to the equilibrium concept called the

Stackelberg equilibrium solution. Formally, the optimal strategy
of the receiver is given as

ĝn ∈ arg max
gn

min
sn∈B(gn)

|D(gn, sn)|, (2)

where the best response of the sender, B(gn), is given as

B(gn) =
{
sn : un(gn ◦ sn(xn), xn) ≥ un(gn ◦ s′n(xn), xn)

∀ xn ∈ Xn,∀ s′n
}
. (3)

Thus, the best response of the sender for a strategy gn of the
receiver is a collection of strategies, sn, such that, for any
observed sequence xn, the sequence recovered by the receiver,
gn ◦ sn(xn), gives the highest utility compared to any other
recovered sequence gn ◦ s′n(x).

In (2), the receiver minimizes over the set B(gn). We
incorporate this minimization because, in general, the best
response of the sender may not be unique and the receiver does
not have control over the choice of the sender’s best response.
Thus, we assume that the receiver chooses its strategy according
to the worst case scenario and hence adopts a pessimistic
viewpoint. Alternatively, an optimistic receiver would maximize
over B(gn). We do not consider the optimistic formulation.

We assume the following structure for the utility u.
Assumption 2.1: Let u be such that

|u(i, i)− u(j, i)| = |u(k, k)− u(l, k)|
∀ i, j, k, l ∈ X , j 6= i, k 6= l.

Thus all deviations from the truth contribute in equal magnitude
to the benefit or loss of the sender.

We now define few notions of graphs on the space of
sequences Xn. First we define a graph induced by the utility.

Definition 2.1 (Strategic graph): A strategic graph, denoted
as Gn = (Xn, E), is a graph where (xn, yn) ∈ E if

un(xn, xn) ≤ un(yn, xn) or un(yn, yn) ≤ un(xn, yn).

For n = 1, the graph induced on the alphabet X is G1 and is
denoted as G. We also call this graph as the base graph.
Thus, two sequences have an edge in the graph Gn if the
sender has an incentive to report one sequence as the other. We
now define the strong product operation which will be used to
construct sequence of graphs from the base graph.

Definition 2.2 (Strong product): Let G1 = (V1, E1) and G2 =
(V2, E2) be two graphs. Then the strong product of the graphs
G1, G2 is given by a graph G = (V,E) where V = V1 × V2.
Further, two vertices (x, x′), (y, y′) ∈ V , with x, y ∈ V1 and
x′, y′ ∈ V2, are connected by an edge if and only if one of the
following holds
• x = y and x′ ∼ y′
• x ∼ y and x′ = y′

• x ∼ y and x′ ∼ y′
The strong product operation is denoted as � and the product
graph G is written as G = G1 �G2.
Using this operation, we construct the following graphs from
the base graph G.

Definition 2.3 (Product graph): A product graph denoted as
G�

n is a graph constructed by taking n-fold strong product of
the graph G, i.e.,

G�
n = G�G� . . .�G.



For completeness, we define the notion of the subgraph.
Definition 2.4 (Subgraph): A graph G1 = (V1, E1) is a

subgraph of G = (V,E) if V1 ⊆ V and E1 ⊆ E.
Definition 2.5 (Cycle graph): A graph G with {0, 1, . . . , q−

1} as the vertex set is called a q-cycle graph if two vertices i, j
are connected with an edge if and only if j = (i+ 1)mod q.

We define the rate of strategic communication as follows.
Definition 2.6 (Rate of Strategic Communication): For any

strategy gn, the rate of strategic communication is defined as

R(gn) = min
sn∈B(gn)

|D(gn, sn)|1/n.

The perfectly decoded set D(gn, sn) is given by (1). We now
define the maximum rate of strategic communication.

Definition 2.7 (Maximum Rate of Strategic Communication):
Let ĝn be a sequence of equilibrium strategies and let R(ĝn)
be the corresponding rate of strategic communication. The
maximum rate of strategic communication, denoted by R, is
given as

R = lim sup
n
R(ĝn).

III. GAME BETWEEN THE SENDER AND RECEIVER

A. Recovery of independent set in Stackelberg equilibrium

In this section, we begin the analysis of the game between
the sender and receiver defined in the previous section. We
determine the connection between the Stackelberg game given
by (3), (2) and the independent sets of the graph Gn. We
first show that, in the game, the receiver can only recover an
independent set of the graph. For that, we define

S (gn) = arg min
sn∈B(gn)

|D(gn, sn)|,

where gn is any strategy of the receiver.
Lemma 3.1: Let n ∈ N and let Gn be the strategic graph.

Consider a strategy gn for the receiver. Then, for all strategies
sn ∈ S (gn), D(gn, sn) is an independent set in Gn.
Proof : For strategies gn such that minsn∈S (gn) |D(gn, sn)| ≤
1, the claim trivially holds. Let gn be such that |D(gn, sn)| ≥
2 ∀ sn ∈ S (gn). We prove the claim by contradiction.

Suppose for some strategy sn ∈ S (gn), the set D(gn, sn)
is not an independent set in Gn. Then, there exist distinct
sequences x̄n, x̂n ∈ D(gn, sn) such that un(x̄n, x̄n) ≤
un(x̂n, x̄n). Using this, we define a strategy s̄n as

s̄n(xn) =

{
sn(xn) ∀ xn 6= x̄n

sn(x̂n) for xn = x̄n.

Thus, s̄n is also a best response since

un(gn ◦ s̄n(xn), xn) = un(gn ◦ sn(xn), xn) ∀ xn 6= x̄n

and for xn = x̄n, we get un(gn ◦ s̄n(x̄n), x̄n)

= un(gn ◦ sn(x̂n), x̄n) = un(x̂n, x̄n) (4)
≥ un(x̄n, x̄n) = un(gn ◦ sn(x̄n), x̄n).

Here (4) follows since gn◦sn(x̂n) = x̂n. Further, gn◦s̄n(x̄n) =
x̂n 6= x̄n = gn ◦ sn(x̄n). Thus, the sequence x̄n ∈ D(gn, sn)
is not recovered by the pair (gn, s̄n) and hence x̄n does not
lie in D(gn, s̄n). Thus, D(gn, s̄n) ⊂ D(gn, sn) which gives
|D(gn, s̄n)| < |D(gn, sn)|. However, this is a contradiction
since sn ∈ S (gn). Thus for all sn ∈ S (gn), the set D(gn, sn)

is an independent set in Gn.
In the next theorem, we show that the receiver can recover any
given independent set of the graph.

Lemma 3.2: Let n ∈ N and let Gn be the strategic graph.
Consider In ∈ I (Gn) and define a strategy gn as

gn(xn) =

{
xn if xn ∈ In
∆ if xn /∈ In.

(5)

Then, the best response of sender, B(gn), is such that

D(gn, sn) = In ∀ sn ∈ B(gn).

Proof : Since ∆ is never preferred by the sender, we can assume
without loss of generality, that for all sn ∈ B(gn) and for all
xn, gn ◦ sn(xn) ∈ In and hence D(gn, sn) ⊆ In. We will now
show In ⊆ D(gn, sn) for all sn ∈ B(gn).

Consider an xn ∈ In. For any sn ∈ B(gn), the utility of the
sender is un(gn ◦ sn(xn), xn) = un(x′n, xn) for some x′n ∈
In. Since, In is an independent set, we have un(x′n, xn) <
un(xn, xn) for all x′n ∈ In, x′n 6= xn. Thus we have, un(gn ◦
sn(xn), xn) ≤ un(xn, xn) ∀ xn ∈ In, with equality if and
only if gn ◦ sn(xn) = xn. Clearly, the optimal choice of sn
for the sender, is such that sn(xn) = xn for all xn ∈ In.
In particular, all the best responses sn ∈ B(gn) are such that
sn(xn) = xn for all xn ∈ In. Thus, for all sn ∈ B(gn),
In ⊆ D(gn, sn).
Using the above results, we show that in an equilibrium, the
receiver recovers the largest independent set of the graph.

Theorem 3.3: Let n ∈ N and let Gn be the strategic graph.
For all Stackelberg equilibrium strategies ĝn of the receiver,

R(ĝn) = α(Gn)1/n.

Proof : From Lemma 3.1, we have that for all strategies gn,
D(gn, sn) is an independent set in the graph Gn for all sn ∈
B(gn). Further, from Lemma 3.2, we have that for all In ∈
I (Gn), there exists gn such that D(gn, sn) = In for all sn ∈
B(gn). Thus, we have

max
gn

R(gn) = max
In∈I (Gn)

|In|1/n = α(Gn)1/n.

Using this theorem, we can quantify the maximum rate of
strategic communication.

Theorem 3.4: Let {Gn}n≥1 be the sequence of strategic
graphs. The maximum rate of strategic communication is

R = lim sup
n

(α(Gn))1/n.

Proof : From Theorem 3.3, we have a sequence of equilibrium
strategies, {ĝn}n≥1, that give R(ĝn) = |α(Gn)|1/n. The result
follows by using Definition 2.7.

B. Strategic capacity

The above analysis shows that the maximum number of
strings that the receiver can recover perfectly in a Stackelberg
equilibrium is α(Gn). How large can this quantity be? And
how does it scale with n? To answer this we define the notion
of a strategic capacity of the graph G. First, we recall a related
notion, the definition of the Shannon capacity as given in [8].



Definition 3.1 (Shannon capacity): The Shannon capacity of
the graph G is given as

Θ(G) = lim
n
α(G�

n )1/n,

where G�
n is given by Definition 2.3.

Definition 3.2 (Strategic capacity): The strategic capacity of
the graph G is given as

Ξ(G) = lim
n
α(Gn)1/n,

where Gn is given by Definition 2.1
We now show that this limit exists. First, we state the

following lemma.
Lemma 3.5 (Fekete’s Lemma [9]): For a sequence

{an}n≥1, an ∈ R with am+n ≥ am + an, the limit of the
sequence {an/n}n≥1 exists and is given as supn an/n.
We show the following lemma which will be used to prove
existence of the strategic capacity.

Lemma 3.6: Let n ∈ N and let Gn be the strategic graph.
Then, for all m,n ∈ N,

α(Gm+n) ≥ α(Gm)α(Gn).

The proof of this lemma is in the Appendix. Using this lemma
we now show that the limit defined in Definition 3.2 exists.

Lemma 3.7: Let {Gn}n≥1 be the sequence of strategic
graphs. The limit given in Definition 3.2 exists.
Proof : From Lemma 3.6, we have α(Gm+n) ≥ α(Gm)α(Gn)
for all m,n. Define βn = log(α(Gn)). Thus, we get βm+n ≥
βm+βm. Thus, from Fekete’s Lemma, the limit of the sequence
{βn/n}n≥1 exists and is given as limn βn/n = supn βn/n.
From the continuity and monotonicity of exp(.), we get

lim
n

exp (βn/n) = sup
n

exp (βn/n) .

Substituting βn = log(α(Gn)), we get the required result.

IV. THE STRATEGIC CAPACITY OF A GRAPH

In this section, we derive upper and lower bounds on the
strategic capacity of the graph. First, we have the following
lemma.

Lemma 4.1: Let n ∈ N. Let G be the strategic graph and
let G�

n be the corresponding product graph. For all xn, yn in
G�

n such that xn ∼ yn, if un(xn, xn) = un(yn, xn), then
un(yn, yn) ≤ un(xn, yn).
The proof of this lemma is in the Appendix. Using this lemma,
we now show that the product graph G�

n is a subgraph of the
strategic graph Gn.

Theorem 4.2: Let n ∈ N. Let G�
n be a product graph and Gn

be the strategic graph having a common base graph G. Then,
G�

n ⊆ Gn.
Proof : We prove the result by induction.

Base case: For n = 1 both the graphs are same. Hence, the
statement is trivially true.

Induction hypothesis: Assume G�
k ⊆ Gk ∀ k ≤ n− 1.

Now let xn and yn be two vertices in G�
n where xn ∼ yn.

We write xn = (xn−1, x), yn = (yn−1, y) where xn−1, yn−1 ∈
Xn−1 and x, y ∈ X . From the definition of G�

n , we get the
following cases.

Case 1: xn−1 = yn−1, x ∼ y
In this case we have

un(xn, xn)− un(yn, xn) =
1

n
(u(x, x)− u(y, x)).

Similarly, un(yn, yn) − un(xn, yn) = (u(y, y) − u(x, y))/n.
Since x ∼ y, we have that either u(x, x) ≤ u(y, x) or
u(y, y) ≤ u(x, y). Hence, either un(xn, xn) < un(yn, xn) or
un(yn, yn) < un(xn, yn). Thus, xn ∼ yn in Gn.

Case 2: xn−1 ∼ yn−1, x = y
In this case we have un(xn, xn)− un(yn, xn)

=
n− 1

n
(un−1(xn−1, xn−1)− un−1(yn−1, xn−1))

and un(yn, yn)− un(xn, yn)

=
n− 1

n
(un−1(yn−1, yn−1)− un−1(xn−1, yn−1)).

From the induction hypothesis, we have xn−1 ∼ yn−1 in Gn−1,
which gives xn ∼ yn in Gn.

Case 3: xn−1 ∼ yn−1, x ∼ y
Following the arguments from Case 2, we have that either

un−1(xn−1, xn−1) ≤ un−1(yn−1, xn−1) or
un−1(yn−1, yn−1) ≤ un−1(xn−1, yn−1). In this, we have the
following sub-cases.

Case i: Suppose un−1(xn−1, xn−1) < un−1(yn−1, xn−1)
Then from Assumption 2.1, we get un(xn, xn) ≤ un(yn, xn)

and thus, xn ∼ yn in Gn.
Case ii: Suppose un−1(xn−1, xn−1) = un−1(yn−1, xn−1)
Then, from Lemma 4.1, we have un−1(yn−1, yn−1) −

un−1(xn−1, yn−1) = 0. Now if u(x, x) ≤ u(y, x) then,
un(xn, xn) ≤ un(yn, xn). If not, then we use u(y, y) ≤ u(x, y)
to get un−1(yn−1, yn−1) ≤ un−1(xn−1, yn−1), thereby prov-
ing xn ∼ yn in Gn.

Case iii: Suppose un−1(xn−1, xn−1) > un−1(yn−1, xn−1)
From Lemma 4.1 and using xn−1 ∼ yn−1 in Gn−1, we

get un−1(yn−1, yn−1) − un−1(xn−1, yn−1) < 0 and hence
un(yn, yn) ≤ un(xn, yn), thereby xn ∼ yn in Gn.
Using these results, we now present the main result.

Theorem 4.3: Let G be the strategic graph. Then

α(G) ≤ Ξ(G) ≤ Θ(G).

Proof : From Lemma 3.6, we have α(Gn) ≥ α(G)n ∀ n.
Further, from Theorem 4.2, we have that G�

n ⊆ Gn. Thus, we
get α(Gn) ≤ α(G�

n ) and hence

α(G) ≤ α(Gn)1/n ≤ α(G�
n )1/n.

Taking the limit, we get α(G) ≤ Ξ(G) ≤ Θ(G).
The above result shows that the rate of strategic communication
achievable by Stackelberg equilibrium strategies for the receiver
is greater than unity for all graphs G except the complete graph.
We find this to be a nontrivial conclusion.

Corollary 4.4: For any perfect graph G,

Ξ(G) = α(G).

Proof : For a perfect graph Θ(G) = α(G) [8].

Corollary 4.5: For a q-cycle graph where q is even, we have

Ξ(G) =
q

2
.



Proof : Cyclic graph with even number of vertices are perfect
graphs. Thus, the independence number of the base graph is
α(G) = q/2. Using Corollary 4.4, we get the result.
Consider the following graph, in which the sender always
prefers the next symbol over the observed symbol.

Corollary 4.6: Let q be even and consider a shifting sender
where u(i, i) < u(j, i) if and only if j = (i+ 1)mod q, for all
i, j ∈ X . Then, we have Ξ(G) = q/2.
Proof : Since Assumption 2.1 holds, we have u(i, i) > u(j, i)
if j 6= (i+ 1)mod q. Thus, ∀ i, j ∈ {0, 1, . . . , q − 1}, i ∼ j if
and only if j = (i+ 1)mod q and hence this graph is a q-cycle
graph. Using Corollary 4.5, we get the result.
Since the sender is always shifting, it may appear that the
receiver cannot recover the true signal. However, this is not
the case as the induced graph is just a cycle graph.

V. EXAMPLES

Apart from the cases where the Shannon capacity is equal to
the independence number of the base graph, we do not compute
the strategic capacity explicitly. Determining the hardness of
computing the strategic capacity remains open and is still an
ongoing work. The following table mentions some of the graphs
with known Shannon capacity.

Nodes α(G) Ξ(G) Θ(G)

n = 3 2 2 2

1 1 1

n = 4 2 2 2

2 2 2

n = 5 2 2 ≤ Ξ(G) ≤
√

5
√

5

VI. CONCLUSION

We initiated a new line of inquiry in information theory by
studying a strategic communication problem where the receiver
aims to achieve zero-error communication with a sender who
may have an incentive to misreport its signals. We formulated
the problem as a game between the sender and receiver and
showed that in spite of the sender being a distrustful agent,
the receiver can recover an exponential number of signals. We
defined a notion of strategic capacity and we proved that the
strategic capacity lies between the independence number of a
graph and the Shannon capacity of the graph.

APPENDIX

Proof of Lemma 3.6: Consider Im ∈ I (Gm) with |Im| =
α(Gm) and In ∈ I (Gn), with |In| = α(Gn). Clearly, Im ×
In ⊆ Xm+n. We show that Im × In ∈ I (Gm+n).

Consider xm+n, ym+n ∈ Xm+n such that xm+n =
(xm, xn), ym+n = (ym, yn), where xm, ym ∈ Im and
xn, yn ∈ In. Now,

um+n(xm+n, xm+n)− um+n(ym+n, xm+n)

=
m

m+ n
(um(xm, xm)− um(ym, xm))

+
n

m+ n
(un(xn, xn)− un(yn, xn)).

Since Im and In are independent sets, we have um(xm, xm) >
um(ym, xm) and un(xn, xn) > un(yn, xn). Thus, we
get um+n(xm+n, xm+n) > um+n(ym+n, xm+n) for all
xm+n, ym+n ∈ Im × In, xm+n 6= ym+n. Thus, Im × In ∈
I (Gm+n) and α(Gm+n) ≥ |Im||In| = α(Gm)α(Gn).
Proof of Lemma 4.1: Suppose un(xn, xn) = un(yn, xn). First,
we show that for all i, either xi = yi or xi ∼ yi.

Assume there exists an i such that xi 6= yi and xi � yi.
Consider the i length sequences xi = (x1, . . . , xi) and yi =
(y1, . . . , yi). Since xi 6= yi and xi � yi, from the definition of
strong product, we get xi � yi. From xi � yi, we get xn � yn

where xn = (xi, xi+1, . . . , xn) and yn = (yi, yi+1, . . . , yn)
are derived by taking the product of G�

i � G�
n−i. However,

this contradicts xn ∼ yn and hence for all i either xi = yi or
xi ∼ yi. Now consider the following difference

un(xn, xn)− un(yn, xn) =
∑

i:xi 6=yi

u(xi, xi)− u(yi, xi).

Since xi ∼ yi whenever xi 6= yi, we can write

un(xn, xn)− un(yn, xn) = (K1 − L1)|u(x1, x1)− u(y1, x1)|,

where K1 = |{i : u(xi, xi) > u(yi, xi)}| and L1 = |{i :
u(xi, xi) < u(yi, xi)}|. The factor |u(x1, x1) − u(y1, x1)| is
due to the Assumption 2.1. Similarly, we can write

un(yn, yn)− un(xn, yn) = (K2 − L2)|u(x1, x1)− u(y1, x1)|,

where K2 = |{i : u(yi, yi) > u(xi, yi)}| and
L2 = |{i : u(yi, yi) < u(xi, yi)}|. Since xi ∼ yi, we have
u(yi, yi) < u(xi, yi) whenever u(xi, xi) > u(yi, xi). Thus, we
get {i : u(xi, xi) > u(yi, xi)} ⊆ {i : u(yi, yi) < u(xi, yi)} and
hence K1 ≤ L2. Similarly, K2 ≤ L1. Further, we get K1 = L1

from un(xn, xn) = un(yn, xn). Thus, K2−L2 ≤ L1−K1 = 0
and hence un(yn, yn) ≤ un(xn, yn).

REFERENCES

[1] C. Shannon, “The zero error capacity of a noisy channel,” IRE Transactions
on Information Theory, vol. 2, no. 3, pp. 8–19, 1956.

[2] V. P. Crawford and J. Sobel, “Strategic information transmission,” Econo-
metrica: Journal of the Econometric Society, pp. 1431–1451, 1982.
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