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Variational formulation of inverse problems

m Linear forward model

y=Hs+n

Integral operator

Problem: recover s from noisy measurements y

m Reconstruction as an optimization problem

Srec = argsrélﬂi@ |y — Hs||§ + )\HLSHg , p=12

. M
data consistency  regularization



Linear inverse problems (20th century theory)

m Dealing with ill-posed problems: Tikhonov regularization

R(s) = ||Ls||3: regularization (or smoothness) functional

L: regularization operator (i.e., Gradient)

minR(s) subjectto ||y — Hs|3 < o2
= Andrey N. Tikhonov (1906-1993)

m Equivalent variational problem

s* = argmin |ly — Hs||? + A|Ls2
——— ——

data consistency  regularization

Formal linear solution: s = (H'H + A\LL)"'H'y =R, -y

Interpretation: “filtered” backprojection

Learning as a (linear) inverse problem

but an infinite-dimensional one ...

Given the data points (,,, ¥n) € RV find f : RY = R st f(z,) ®ynform=1,...,M

m Introduce smoothness or regularization constraint (Poggio-Girosi 1990)
R(f) = |fll5, = ILfI3, :/ |Lf(z)|*da: regularization functional
RN

M
mingey R(f) subjectto Z lym — f(@m)|” < 02

m=1

m Regularized least-squares fit (theory of RKHS)

P , i e — £+ A2 = kernel estimator
RKHS = argmin Ym — f(Tm +
TeR \ =1 " (Wahba 1990; Schélkopf 2001)
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Part I: Continuous-domain theory of sparsity

L, splines gTV optimality of splines for inverse problems
(Fisher-Jerome 1975) (U.-Fageot-Ward, SIAM Review 2017)



Splines are analog, but intrinsically sparse

L{-}: differential operator (translation-invariant)

¢: Dirac distribution

Definition
The function s : R? — R (possibly of slow growth) is a nonuniform L-spline with knots {x;.}rcs

&  Ls=) ad(-—x;) =w : spline’sinnovation
kes

d

K L=%

ag 1
Lk 9'6’k+1
Spline theory: (Schultz-Varga, 1967)
Spline synthesis: example
d
L=D= 1 Null space: Np =span{p1}, pi(z)=1

pp(x) = D71{6}(x) = 1, (x): Heaviside function

 s(z) =bipi(x) + Z aply(z — xk)
k

L Ih

b
T , ! ,




Spline synthesis: generalization

L: spline-admissible operator (LSI)
Finite-dimensional null space: N, = spam{pn}ffi1

Green’s function of L: pp,(z) = L™ {6} (x)

Spline’s innovation: ws(x) = Z ard(x — xy)
k

No

= S(ZC) = Z ak:pL(w - wk‘) + Z bnpn(w)

k n=1 \
A

Requires specification of boundary conditions

Tk

Proper continuous counterpart of ¢;(Z%)

S(R%): Schwartz’s space of smooth and rapidly decaying test functions on R?

S’(R%): Schwartz’s space of tempered distributions

m Space of real-valued bounded Radon measures on R

M(]Rd) _ (CO(Rd))’ _ {w € S’(Rd) Nw|lm = ES(RS%) | :l(w,go) < oo},

where w : ¢ — (w, @) = Jpa e(r)w(r)dr

m Basic inclusions
2 Ve LiRY : I flm=Ifle, @y = Li(R?) C M(R?)

s 0(- — ) € M(R?) with ||6(- — o) || am = 1 for any xy € R?
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Representer theorem for gTV regularization

= L: spline-admissible operator with null space N, = span{p, } -

0
n=1

= 9TV semi-norm: ||L{s}|| s = supjy . <1 (L{s},¥) MLR?) = {f € 'R : |Lf|lm < oo}
= Measurement functionals h,, : My, (R%) — R  (weaks*-continuous)

fEM (R4)

(P1) min (Z i — (s )2 +A||Lf||M>

Convex loss function: F: RM x RM — R v My —=RM with v(f) = (b1, f),..., (har, f))

(PT) arg min (F(y,v(f)) + AILflam)

Representer theorem for gTV-regularization
The extreme points of (P1’) are non-uniform L-spline of the form

Kknots NO
fspline(w) = Z aka(w - wk) + Z bnpn(w)
k=1 n=1

with pr, such that L{pL} =0, Kinots < M — Ny, and ||LfsplineHM = ||a||gl.

(U.-Fageot-Ward, SIAM Review 2017)
11

Example: 1D inverse problem with TV regularization

— _ )2 (2)
Sspline = A1g __ Arﬁf;(R (Z Y s)|7 + ATV (s ))
m Total 2nd-variation: TV®)(s) = sup; <1 (D?s, ¢) = D2 m
2
L=D?= % pp2(x) = (z)4: ReLU Npz = span{l, 2}
x
m Generic form of the solution 1

K
Sspline () = b1 + box + Y a(z — 1) 4

no penalty Tk

with K < M and free parameters by, b and (ag, Ti) 5,
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Other spline-admissible operators

m L=D" (pure derivatives) (Schoenberg 1946)

= polynomial splines of degree (n — 1)

mL=D"+a, D" !'+...4+agl (ordinary differential operator) (Dahmen-Micchelli 1987)

= exponential splines

m Fractional derivatives: L =D” PN (jw)? (U.-Blu 2000)

= fractional splines

m Fractional Laplacian: (—A)? PN wl|” (Duchon 1977)
= polyharmonic splines
m Elliptical differential operators; e.g, L = (—A + al)” (Ward-U. 2014)

= Sobolev splines

13

Recovery with sparsity constraints: discretization
m Constrained optimization formulation

Auxiliary innovation variable: u = Ls

(1 .
Suare = o i, 5lly — Hisl + Al ) subcttou = L
S

m Augmented Lagrangian method

Quadratic penalty term: 4||Ls — u]|3

Lagrange multipler vector: «

1
Lals.u,e) =3y - Hs|l2 + A |[u]u] + a7 (Ls — u) + %HLS —ul?
(Ramani-Fessler, IEEE TMI 2011)
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Discretization: compatible with CS paradigm

1
Ssparse = arg Min <2||y — Hs|f; + A||u||1) subjectto u = Ls
S

1 1%
La(s,u,a) = 3 ly — Hs||3 + A ]+ a”(Ls —u) + §IILS —ulf3

ADMM algorithm
Fork=0,...,K

(>

Linear step
skt = (HTH + ;J,LTL)7l (zo +2F11)
with  zF1 = L7 (pu* — of)

ak+1 — ak 4 u(LSIH—l _ uk)

Proximal step = pointwise non-linearity

uF ! = prox | (Ls**! + iak“; %)

Example: ISMRM reconstruction challenge

Ly regularization (Laplacian) TV regularization

M. Guerquin-Kern, M. Haberlin, K.P. Pruessmann, M. Unser, IEEE Trans. Medical Imaging, 2011.
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OUTLINE

= Introduction v/
= Continuous-domain theory of sparsity ¢

= From compressed sensing to deep neural networks
Unrolling forward/backward iterations: FBPConv

= Deep neural networks vs. deep splines
Continuous piecewise linear (CPWL) functions / splines
New representer theorem for deep neural networks

Discretization: compatible with CS paradigm

1
Ssparse = arg min <Hy —Hs|2 + )\||u|]1> subject to u = Ls
seRK \ 2
1
Lals.u.0) = 5 Iy — Hsl2 + AY [ulu] + a7 (Ls — w) + £ |Ls - u?
n

ADMM algorithm

Fork=0,..., K Linear step

st — (HTH + pL7L) " (2 + ")

with 28+ = L7 (puf — ok)

Proximal step = pointwise non-linearity

K+l _ B+l o 1 k+l. A
uft —pr0x|,|(Ls+ +ﬁa+,;)
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Identification of convolution operators

Normal matrix: A = HTH  (symmetric)

Generic linear solver: s = (A + A\L’L) 'H”y =R, -y

m Recognizing structured matrices

= L: convolution matrix = L7 L: symmetric convolution matrix

= L, A: convolution matrices = (A + ALTL) : symmetric convolution matrix

= Applicable to

- deconvolution microscopy (Wiener filter)
- parallel rays computer tomography (FBP)
- MRI, including non-uniform sampling of k-space

m Justification for use of convolution neural nets (CNN) (see Theorem 1, Jin et al., IEEE TIP 2017)

Connection with deep neural networks

Unrolled lterative Shrinkage Thresholding Algorithm (ISTA) (Gregor-LeCun 2010)

LISTA : learning-based ISTA
p
v v v
to+ [ =t O} [

ISTA with sparsifying transformation @
~

l 1 ¢ l 1 e ¢
o ) o -+ o -

FBPConvNet structures (b)
( \ J/ h

s\ J b b
Xu»i'ﬁéié»+---+31{i>ﬁ+}v_v_~§é> "

N

I
a © ak
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Recent advent of Deep ConvNets

(Jin et al. 2016; Adler-Oktem 2017; Chen et al. 2017; ...)

m CT reconstruction based on Deep ConvNets

= Input: Sparse view FBP reconstruction

= Training: Set of 500 high-quality full-view CT reconstructions

= Architecture: U-Net with skip connection

Skip connection

64 64 64 < # of channels 12864 64 1 1
U-net
N NN NN EECcH
spatial dimension :512x 512
64' 128128 256128 Tua
il I
256 x 256

T

128 256 256 512 256 256) > 3x3conv.+BN
I» »I N N + RelU
128x 128 ¥ 2x2max pooling
+ skip connection

64x64

256" 512 512 1024 512 512]
]

- | _ M |

5121 1024 [ 1024
3232\ - — —

(Jin et al., [EEE TIP 2017)

X-ray computer Dose reduction by 7: 143 views
tomography data
FBP TV
Ground truth SNR 24.06 SNR 29.64

Reconstructed from
from 1000 views

W MAYO CLINIC

and concatenation
* 3x3up-conv2.

+ BN +RelLU
- 1x1conv.
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X-ray computer Dose reduction by 7: 143 views
tomography data

FBP TV FBPConvNet
Ground truth SNR 24.06 SNR 29.64 SNR 35.38

Reconstructed from

from 1000 views (Jin et al, IEEE Trans. Im Proc., 2017) $IEEE
@ MAYO CLINIC 2019 Best Paper Award
X-ray computer Dose reduction by 20: 50 views
tomography data
FBP TV FBPConvNet
Ground truth SNR 13.43 SNR 24.89 SNR 28.53

Reconstructed from
from 1000 views

W MAYO CLINIC

(Jin-McCann-Froustey-Unser, IEEE Trans. Im Proc., 2017)



OUTLINE

= Introduction v/
= Continuous-domain theory of sparsity ¢
= From compressed sensing to deep neural networks v/

= Deep neural networks vs. deep splines

Background
Continuous piecewise linear (CPWL) functions / splines
New representer theorem for deep neural networks

Deep neural networks and splines
ReLU(z;b) = (z — b)+

m Preferred choice of activation function: ReLU /

m RelLU works nicely with dropout / £1-regularization (Glorot ICAIS 2011)
m Networks with hidden ReLU are easier to train

m State-of-the-art performance (LeCun-Bengio-Hinton Nature 2015)

m Deep nets as Continuous PieceWise-Linear maps
m RelLU = CPWL (Montufar NIPS 2014)

m CPWL = Deep ReLU network (Strang SIAM News 2018)

m Deep RelU nets = hierarchical splines

m RelU is a piecewise-linear spline (Poggio-Rosasco 2015)
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Feedforward deep neural network

m Layers: ¢=1,...,L

layers

= Deep structure descriptor: (Ng, N1, -+, Np)

= Neuron or node index: (n,£), n=1,--- , N,
= Activation function: 0 : R - R (RelLU) O
O
= Linear step: RVe-1 — RV o O
forxe fo(x) =W+ by ’
neuron A’é'
= Nonlinear step: R™V¢ — RNe 0
op: x> op(x) = (0’(331), e U(.TNg)) e = (e )

nodes

Learned

_—
_—

fieep(®@) = (L0 froor_10---0030 fy0 alofl) (x)

Continuous-PieceWise Linear (CPWL) functions

m 1D: Non-uniform spline de degree 1 LT

Tk+1

Partition: R = |1, Py with Py, = [7, Tet1), T0 = —00 < Ty < -+ < Tg < Ti41 = +00.
The function fipiine : R — R is a piecewise-linear spline with knots 7y, . .. , 7k if

m (4) : fspline is continuous R — R

m (i) s forz € Py : fopline(®) = fr(x) £ apx + by, with (ag,by) ERL E=0,...,K

K

u fsplinc(w) = l~)0 + le + Z&k(x — Tk)+ with Bo,i)l c R, (flk) € RK,
k=1

A 4

27
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CPWL functions in high dimensions

m Multidimensional generalization
Partition of domain into a finite number of non-overlapping convex polytopes; i.e.,
RN = Ui, Py with u(Py, N Py,) = 0 for all ky # ko
The function fepwr : RN — Ris continuous piecewise-linear with partition Py, ..., Pk
s (i) : fcpwr is continuous RY — R

] (’LZ) forx € Py : fCPWL(:E) = fk(ili) £ a{w—i—bk with a; € RN,bk eRk=1,....K

The vector-valued function fcpwr, = (f1,. .., far) : RY — RM is a CPWL
if each component function f,,, : RV — R is CPWL.

Algebra of CPWL functions

e any linear combination of (vector-valued) CPWL functions RY — R’
is CPWL, and,

e the composition f5 o f; of any two CPWL functions with compatible
domain and range—i.e., f, : R — R™ and f; : RN — RM_js
CPWL RNo — RM>,

Sketch of proof. The continuity property is preserved through composition.
The composition of two affine transforms is an affine transform, including the
scenari where the domain is partitioned.

e The max (resp. min) pooling of two (or more) CPWL functions is CPWL.

29
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Implication for deep ReLU neural networks

2.25pl

Y

617%
:§

fieep(x) = (00 froop_10---0020 fy0o010 fy)(x)

m Each scalar neuron activation, o,, ¢(x) = ReLU(z), is CPWL.
m Each layer function o o f,(x) = (Wsx + by)+ is CPWL
= The whole feedforward network fqeep : RY0 — RV is CPWL

m This holds true as well for deep architectures that involve Max pooling
for dimension reduction

m The CPWL also remains valid for more complicated neuronal responses
as long as they are CPWL; that is, linear splines.

CPWL functions: further properties

)
Kivy

m The CPWL model has universal approximation properties
(as one increases the number of regions)

m Any CPWL function RY — R can be implement via a deep RelU net-
work with no more than log, (N + 1) + 1 layers

(Arora ICLR 2018)

Y

ine_

A
4
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Refinement: free-form activation functions

m Layers: ¢=1,...,L
= Deep structure descriptor: (No, Ny, -+, Np,)
= Neuron or node index: (n,¢), n=1,---, N,

= Activation function: 0 : R - R (RelLU)

= Linear step: RNe-1 — RN
frixz— f(x) =W+ by

= Nonlinear step: RV — RV

o og(x) = (0n0(21),...,0n,0(2N,))

facep(®) = (0L 0 froor10:--0020 fy0010 fy) ()

Joint learning / training ?

Constraining activation functions

m Regularization functional

= Should not penalize simple solutions (e.g., identity or linear scaling)

layers

nodes

Znp = UH.L(WZYZZZA <k bn,z)

= Should impose diffentiability (for DNN to be trainable via backpropagation)

= Should favor simplest CPWL solutions; i.e., with “sparse 2nd derivatives”

m Second total-variationof 0 : R — R

TV® (o) £ D% = SUD e 5 (R): ]l <1(D?T, ©)

m Native space for (M(R), D?)

BV (R) = {f : R — R: [D2f| 1 < o0}



Representer theorem for deep neural networks

Theorem (TV(Q)—optimality of deep spline networks) (U. JMLR 2019)
= neural network f : RN — RV~ with deep structure (Ny, Ny, ..., Np)
xz—f(x)=(ocpolLoo_10--0ly00104)(x)
= normalized linear transformations £, : RVe-1 — RN¢, 2 s U,z with weights
U, = [ulj cee uNM]T € RNexNe-1 gych that Hum[H =1

= free-form activations oy = (01¢,...,0n,,¢) : RY — RN with 014,...,on, ¢ € BV®(R)

Given a series data points (€, y,,,) m = 1,..., M, we then define the training problem

M N L N
rg min E(Yps £(@m)) +10Y  Re(Up) + A ™V, )| )
(U0), (0.0 €BVE (B)) <m1 (W (@) ; ;; !
= E: RN x RNt — R*: arbitrary convex error function

= Ry : RNexNeww 5 R+: convex cost

If solution of (1) exists, then it is achieved by a deep spline network with activations of the form

Kn,e

Tn. ¢ (fl;) == blm,,k = b2.n‘[~llj A E (I'k‘n,,k‘(m - Tk‘,,nj)#»v
k=1

Outcome of representer theorem

Each neuron (fixed index (n, £)) is characterized by
e its number 0 < K, , of knots (ideally, much smaller than M);
e the location {7, = Tk,n,g}f:"f of these knots (ReLU biases);

e the expansion coefficients by, ¢ = (b1,.¢,b2.n.¢) € R?,

@no = (Q1,n0s- - aKne) € RE.

These parameters (including the number of knots) are data-dependent and
adjusted automatically during training.

m Link with ¢; minimization techniques

K¢

TV@{o,,} = > aknel = llan.elh
k=1

with adaptive parameters K,y < M — 2,71 5,0, T, yne € Ry and by 0,020 05 @1 nes -+ 0,y e € R,
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Deep spline networks: Discussion ReLU(z:21) = (2 — 1)+

m Global optimality achieved with spline activations ‘ /
x
m Justification of popular schemes / Backward compatibility o
m Standard RelLU networks (K, (=1, b, =0) (Glorot ICAIS 2011)

(LeCun-Bengio-Hinton Nature 2015)

m Linear regression: A = oo = K, , =0

m State-of-the-art Parametric ReLU networks (Kne=1) (He et al. CVPR 2015)

1 ReLU + linear term (per neuron)
® Adaptive-piecewise linear (APL) networks (Kne=50r7, b,,=0) (Agostinellietal. 2015)

37

Comparison of linear interpolators

rg min D / d s.t / m my 17 feey A/j

arg  min ||D?fllm st f(@m) =Ym, m=1,.... M
FEBVE) (R)

(U. JMLR 2019; Lemma 2)
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Deep spline networks (Cont’d)

m Key features _
= Direct control of complexity (number of knots): adjustment of A — — -

= Ability to suppress unnecessary layers

m Generalizations

= Broad family of cost functionals

= Cases where a subset of network components is fixed

= Generalized forms of regularization: w(TV(2) (Jn,e))

m Challenges

= Adaptive knots: more difficult optimization problem = In need for more powerful training algorithms

= Optimal allocation of knots
¢1-minimization with knot deletion mechanism (even for single layer)

= Finding the tradeoff: more complex activations vs. deeper architectures

CONCLUSION: The return of the spline

= Continuous-domain formulation of compressed sensing
gTV regularization = global optimizer is a L-spline
Sparsifying effect: few adaptive knots
Discretization consistent with standard paradigm: minimization

= Foundations of machine learning

Traditional kernel methods are closely related to splines
(with one knot/kernel per data point)

Deep ReLU neural nets are high-dimensional piecewise-linear splines

Free-form activations with TV-regularization = Deep splines

= Favorable properties of splines
Simplicity (e.g., piecewise polynomial)
(higher-order) continuity: the difficult part in high dimensions
Adaptivity/sparsity: the fewest possible pieces = Occam’s razor
Efficiency: B-spline calculus
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Sketch of proof
(ZE Yo £(Tm)) +p Z (Ue) +)\i§TV()U,L4>

(Ue),(on ;eBV@)(R)) = =1

Optimal solution f= oo ZL 0Gy_10--:0 22 X8t ozl with optimized weights fJg and neuronal activations ¢, ¢.

Apply “optimal” network f to each data point x,,:
e Initialization (input): g,,, o = Tm.

e Fort=1,...,L

Zml = (zl,m,& ) zNg,m,Z) = ﬁ@ gm,i—l
@m,( = (G1,mts - INem,e) € RN
With G me = G0 (Znme) n=1,...,Ny. = f(zn) =YL

This fixes two terms of minimal criterion: S22 E(Ypn Upm, 1) and S Re(Up).

f achieves global optimum

& g, =arg  min ||D2f||M st f(zome) =Unme, m=1,..., M
! FEBV)(R)
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