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An Evolving Digital Landscape



Mobile Device Market Penetration

There are now more subscribed wireless devices than
humans on Earth
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Clarity of Vision — Reaching the Limit
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Visual Resolution
Peak visual resolution of 20/20
human is
1
Visual Acuity _ 20/20
~ 0.0167 degrees

min. of arc

Sharp drops limit viewing angle to
420 degrees

Amplitude of Accommodation

Diopters capture eye adaptability in
reciprocal of focal length, Crystalline
limits minimum range



Visual Acuity and Display Technology

Screen Distance

The distance at which the super retina HD
display matches this resolution is

Distance = = - L - cot ——
- 2 458 120
= 1.876 in.
5.8 inch
2436 x 1125 Mobile VR Headsets

458 ppi

Apple Super Retina HD

©0Oculus Rift



Content-Rich Applications

Video and Mobile Statistics

» 63% of all US online traffic comes from
smartphones and tablets - sine temple

» More than 70% of YouTube viewing
happens on mobile devices - comscore

» 65% of all digital media time is spent on
mObI|e deVIceS — Business2Community

©Real



Options to Stay the Course

Spend More Time on Mobile Devices
Average time spent on mobile phone in US is 3h45m per day

— eMarketer

Wait for Eye Evolution

xﬁ&kXKWW

Diversify User Population

©Dreamworks
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Summary of Quality of Experience

Current Wireless Landscape

» Growth and Market Penetration: Near saturation

» Number of connected wireless devices exceeds world population
»> Almost every human who wants mobile phone has one (or more)

» Screen Quality: At limit of eye acuity

> Screens are near boundary of visual resolution
» Viewing distance is constrained by amplitude of accommodation

» Content-Rich Apps: Video watching & gaming are prevalent

» On average, a person spends 4 hours on mobile device per day
» More videos are watch on phones than elsewhere

Wireless Research and the Future

What’s Next?




The Rise of the Machine
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Internet of Things
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The Rise of the Machine



Contrasting Machines and Human Behaviors

T < > September 2019 QO @ wew- @ e @
Typical Human Calendar 2 3 % =z 3z & =l
» YouTube video earns 1 view - ]
when watched for > 30 sec - I —
> 47% of visitors expect website . BT
to load in < 2 sec ) -
» Callers notice roundtrip voice - B B

delays of > 250 ms

Machine Scheduler : v e
» OS timeslice ~ 10 ms - ==

> LTE schedule =~ 1 ms =
. . . . replacement termination
(transmission time interval)

. s
e Scheduler
)

Virtual

» Microcontroller interrupt
latency is < 10 us

©ScotXW



Information and Inference

IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 51, NO. 2, FEBRUARY 2003

Decentralized Detection in Sensor Networks

Jean-Frangois Chamberland, Student Member, IEEE, and Venugopal V. Veeravalli, Senior Member, IEEE

Ab I a binary

this paper, we i

detection problem in which a network of wireless sensors provides
relevant information about the state of nature to a fusion center.
Each sensor transmits its data over a multiple access channel.
Upon reception of the information, the fusion center attempts
to accurately reconstruct the state of nature. We consider llle

and we study the structure of an optimal sensor configuration.
For the problem of detecting deterministic signals adrhlne
Gaussian noise, we show that having a set of ide ary
sensors is asymptotically optimal, as the number of nhsenalmns
per sensor goes to infinity. Thus, the gain offered by having more
sensors exceeds the benefits of getting detailed information from
each sensor. A thorough analysis of the Gaussian case is presented
along with some extensions to other observation distributions.

Index T Bay
sensor network, wireless sensors.

detection,

Payload Design Guideline

407
problem have been studied in the past. Notably, the class of de-
centralized detection problems where each sensor must select

one of D possible messages has received much attention. In this
setting, which was originally introduced by Tenney and Sandell
[1], the goal is to find what message should be sent by which
sensor and when. See Tsitsiklis [2] and the references contained
therein for an elaborate treatment of the decentralized detection
problem. More recently, the problem of decentralized detection
with correlated observations has also been addressed (see, e.g..
[3] and [4]).

In essence, having each sensor select one of D) possible mes-
sages upper bounds the amount of information available at the
fusion center. Indeed, the quantity of information relayed to the
fusion center by a network of L sensors, each sending one of
D possible messages, does not exceed L[log, D] bits per unit
time. In the standard decentralized problem formulation, the
number of sensors L and the number of distinct messages D are

» Most of information for inference is contained in first few bits!



Information and Inference

A Telemetering System by Code Modulation
—A- 2 Modulation*

H. INOSEf, MEMBER, 1RE, Y. YASUDAY, axp J. MURAKAMI}

Summary—A communication system by code modulation is

ibed which i an ion process in the original
delta modulation system and is named delta-sigma modulation
after its dulati i It has an ad over delta
in dc level ission and stability of performance,

although both require i an equal i and i

of circuitry. An experimental telemetering system employing delta-
sigma modulation is also described.

Payload Design Guideline

the input signal before it enters the modulator so as to
generate output pulses carrying the information corre-
sponding to the amplitude of the input signal. The delta-
sigma modulation (A-ZM) system is a realization of this
principle.

TuE PRINCIPLE OF THE A-ZM SYSTEM

» Signals are tracked well using small, yet frequent updates

» A-> modulation



Losing the Connection

Emerging M2M Traffic Characteristics
» Device density — Massive versus small

» Connectivity profile — Sporadic versus sustained

» Packet payloads — Minuscule versus moderate-to-long

Anticipated traffic characteristics invalidate the
acquisition-estimation-scheduling paradigm!

Cost

A Reward

Cost

A Reward



Revival of Uncoordinated Access

A New Reality
» Must address sporadic nature of machine-driven communications

» Transfer of small payloads without ability to amortize cost of
acquiring channel and buffer states over long connections

» Preclude use of opportunistic scheduling
» Evinced by departure from scheduling-based solutions

Communication and Identity

When number of devices is massive, with only subset of them active,
problem of allocating resources (e.g., codebook, subcarriers, signature
sequences) to every user as to manage interference becomes very complex

Uncoordinated, Unsourced MAC




Coding and Compressed Sensing
with Approximate Message Passing
Part |l - Problem Formulation and Benchmarks
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Outline of Part Il

» Problem formulation for uncoordinated multiple access
» What information theoretic benchmarks are relevant?

» Very brief review of coding for the Gaussian multiple access channel

2/24



Traditional Gaussian multiple access channel (GMAC)

» K users, each user has a B-bit message
» n channel uses
» Classical information theory - fix K and let n, B — oo

w, € F;

z, € R
| L G X
y=> z,+z
j=1 R

Woy Zs Wy, Wa, ..., Wg
B C2 — -+ Decoderf——

Wk T g
EEEE

P = Pr{() (w £ 0)))
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Traditional Gaussian multiple access channel (GMAC)

» K users, each user has a B-bit message
» n channel uses
» Classical information theory - fix K and let n, B — oo

z, € R" x
[ T P S
Wy Zs & Wy, Wa, ..., WK
B C2 —'— Decoderf——
e = «
Po=Pe{U (wi # 09)}

Assumptions
» User identity is conveyed separately
» Resources are allocated based on identity

» Codebooks are different but assumed to be known at the decoder

4/24



Capacity of the Traditional GMAC

P2 .
Achievable rates

P1

Achieving points on the GMAC region

» K is fixed and n — oo

» Relies on joint typicality of Xi, Xo,..., Xk, Y
» For any subset of RVs, A.E.P holds
>

Number of subsets is exponential in K

5/24



Many-Access Channels with Random User Activity

Model

» Total # users £, grows with block length n

» Each user is active independently with probability «, € [0, 1]

> Average # active users K, = a,£, is unbounded and grows as O(n)
» /, does not grow exponentially with n
>

Need to identify the set of active users and decode their messages

B
w,; € IFy

z; € R" X
e >
Yy = z;+z
j=1 ~ ~ N
Wo . Wy, Wa,y - - -, Wk
[ ] Co =2 -+ Decoder——
m = ¥
P, =Pr{{ (w; # w;))}
i=1
(@)

Chen, Chen, Guo. Capacity of Gaussian many-access channels. Transactions on information theory, vol. 63, No. 6, June 2017
6/24



Many-Access Channels with Random User Activity

Model
» Total # users £, grows with block length n
» Each user is active independently with probability «, € [0, 1]
> Average # active users K, = a,¢, is unbounded and grows as O(n)

» /., does not grow exponentially with n

Main Result
» Symmetric message length capacity

- n KoP\  loHa(an) :
C(n) = max oK. log (1 + 2 > T K, ,0 | bits/user

(1) (2)

» (1): Symmetric capacity of K,-user MAC with known user activities
» (2): Capacity penalty due to uncertainty in resolving user activities

Chen, Chen, Guo. Capacity of Gaussian many-access channels. Transactions on information theory, vol. 63, No. 6, June 2017

7/24



Uncoordinated Multiple Access Channel (MAC)

W, € Fs z, € R
ot = K
m]—] ¢ oS
Wo © o
[ [ £ L2 -+ Decoderf——
MKO L E(y) = {11]17 cee 'UAJK}
-

Pt I:il Pr (w; ¢ £(y))

LoRa-Inspired Parameters

> K active users out of Kio total users, K € [25 : 300]
» Each user has B-bit message, B is small &~ 100
» NN channel uses available, N ~ 30,000

M. Berioli, G. Cocco, G. Liva and A. Munari, Modern Random Access Protocols. Foundations and Trends in Networking, 2016

F. Clazzer, A. Munari, G. Liva, F. Lazaro, C. Stefanovic, P. Popovski, From 5G to 6G: Has the Time for Modern Random Access
Come?, arXiv 2019

8/24



Uncoordinated Unsourced MAC [Polyanskiy’ 17]

» K active users out of K total users K € [25 : 300],
> Kiot is very large

» Each user has a B-bit message. B is small ~ 100

>

n channel uses available n =~ 30,000

w, € Fy

Zy
--—-— s
w !
Wy .
| 2 [EE E L2 —'— Decoderf——
(@]
e £y) = oo, ioxc}
5 = % 1:221 Pr (wi ¢ E(g))

Uncoordinated/Unsourced: All devices employ same encoder
Decoding done upto permutation of messages
Finite block length regime

vvyVvyy

Error metric : Per-user error probability (PUPE) 0/24



Neighbor discovery

Problem statement

> |dentify network interface addresses (NIAs) of nodes within one hop
» Address space is {0,1,---,2%8 — 1} (K;or = 2%8 potentially)

w, € Fy z, €C”
—1 & — yli] = 45, hyjli — 73] + 2]
. © X
— & = -+ Decoderf——
QKO X E(Q/) = {’lfjl .es ’LZJK}
@je—— & [— e
P, =Pr { U (w; # u%)}

o
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Gaussian Random Codes & Performance Bounds

A perspective on massive random-access

Yury Polyanskiy

Abs This paper di: the ary
problem of providing multiple-access (MAC) to a mas-
sive number of uncoordinated users. First, we define a
random-access code for K,-user Ga n MAC to be a
collection of norm-constrained vectors such that the noisy
sum of any K, of them can be decoded with a given (suit-
ably defined) pi ility of error. An i ility bound
for such codes is proposed and compared against popular
practical solutions: ALOHA, coded slotted ALOHA,
CDMA, and treating interference as noise. It is found out
that as the number of users increases existing solutions
become vastly energy-inefficient.

MAC [11], [12]). Already 30 years ago R. Gal-
lager [13] called for “a coding technology that is appli-
cable for a large set of transmitters of which a small,
but variable, subset simultaneously use the channel.”
It appears (to this author) that this call has not been
completely answered still. One reason for this could be
that the models in each of three categories are different
and thus solutions are not directly comparable. Our
first goal, thus, is to define a notion of random-access
code that would appeal to all three communities. This
we do next.

Theorem: Fix P’ < P. There exists an (M, n, €) random-access code for
the K-user GMAC satisfying power-constraint P and

€< Ele £ min(pe, G¢) + po-

Constants pg, p:, and g; are given in Polyanskiy's paper

Y. Polyanskiy. A Perspective on Massive Random-Access. ISIT, 2017
11/24



Random Coding (RC) Achievability Bound

Encoder
M N0, P, P < P

> Power constraint: If [|sy,||3 > nP, user j transmits 0

» Generate M = 2B codewords s;,s,, - ,Sos

12/24



Random Coding (RC) Achievability Bound

Encoder

» Generate M = 2B codewords s1,s5,:- - , Sy ik N(,P),P <P
> Power constraint: If [|sy,||3 > nP, user j transmits 0

Decoder
> Decoder outputs set S of size K minimizing |y — Yiessils

B A
» Must search through (2K) possibilities for S assuming no collisions

13/24



Random Coding (RC) Achievability Bound

Encoder

» Generate M = 2B codewords s1,s5,:- - , Sy ik N(,P),P <P
> Power constraint: If [|sy,||3 > nP, user j transmits 0

Decoder

> Decoder outputs set S of size K minimizing |y — Yiessils

B A
» Must search through (2K) possibilities for S assuming no collisions

Achievability benchmark

» Per-user probability of error (PUPE) of this scheme is an
achievability bound for UMAC

» RC achievability obtained by optimizing over P’

14 /24



Finite Block Length Bound; B = 100, n = 30000

12
~ 10 |- |
m
z
s °f .
S
w6 |
o
e
B Ll |
o
(]
- di panen
pasussnanes prusnns gremene ‘--“ |

0
25 50 100 150 200 250 300

Number of active users K

Key insight from the bound

For fixed n,
» Small K - bound is dominated by FBL penalty due to finite B
» Large K - bound is dominated by multi-access interference

15/24



Coding for the Traditional GMAC

P2

Achievable sum rate

i -<1Io 1+E
i:1pl 7 o?

P1

Achieving points on the GMAC region
» Corner points can be achieved using successive interference cancellation
» Any point can be achieved through rate-splitting
» These require coordination among users

» Equal rate point is harder to achieve without coordination

16 /24



Coding Schemes for the Equal Rate Point

» Time/Frequency/Code Division Multiple Access (T/F/CDMA)
» Ping et al. - Interleave division multiple access (IDMA)

» Yedla, Pfister, N. ' 11 - Spatially coupled LDPC

» Truhachev, Schlegel - Spatially coupled MA

» Sasoglu et al.'13 - Polar codes for MAC

All these schemes require coordination between users to pick parameters

17/24



TDMA/FDMA/CDMA

» TDMA/FDMA

> Requires coordinated allocation of time/frequency slots
» Without coordination, there will be collisions

18/24



TDMA/FDMA/CDMA

» TDMA/FDMA

» Requires coordinated allocation of time/frequency slots
> Without coordination, there will be collisions

» Orthogonal CDMA
> Users need to be ‘assigned’ spreading sequences
Kiot > K - spreading sequence length will be too large
Kot = 10000, n = 30000 and B = 100
Not enough dimensions for coding

vvyy

19/24



Interleave Division Multiple Access - Ping et al." 06

» Each user encodes with the same code & picks a different interleaver
> Message passing decoding and demodulation

» Close to capacity performance for small number of users

Transmitter for user-1 LE+00

—e—Scheme |
- Scheme Il

LE0I X ey

Multiple " w8
Access \ 8 % 6 16

Channel 1E-02

K=1 \ o i \
1LE-03 - T

BER

——————————————— — LE-04
r e e (7)) : \ \ \
fensc @)} tened OV | prementary | 1E-05
Sigmal Y , 9 s 0 05 1 15 2 25
: | : Estimator E¢N, (a8)
RGN [Ty VAR T T el I
di, | Decoder |7 il N )
(DEC) | Fig. 7. Performance of IDMA systems based on the turbo-Hadamard code
Y __ =1 1 [31] and turbo code over AWGN channels. N; = 1, Tt = 30, Nigg, = 4095

for Scheme I and Ny, = 4096 for Scheme 11
» The interleavers have to be different and known to the receiver

» Performance is not very good for large number of users

20 /24



SC-LDPC for GMAC - Yedla, Pfister, N '11

» Spatially coupled LDPC codes with different interleavers

» Empirically shown to be universal for MAC

P(I)A A A /M\ ‘‘‘‘ A\[bl

*‘I) ....
f21
l T ----- 76
fi2
YA S S T SR
\, permutation : [ ag
G T T O S 1

2.

21 1

9 L

19 'BP-ACPR. LDPC(4.8)
18

17 | —

16
N /
14
13 A»
BP-ACPR,
121 LDPC(4,8,64,5) yal
1 . —
1 MAC-ACPR
boundary for rate
0.9 1/2 BP-ACPR, LDPC(3,6,64,5)

09809 T 111213 141516171819 2 2122
X

» Interleavers need to be chosen in a coordinated manner

» Interleavers need to be known at the receiver

» Not a good solution for short block lengths

21/24



Polar Codes for MAC - Sasoglu'13

us3 (2] X3
o Ry 0 Ry 0 R
g X3 0 0 0 1
(000) (o11) (1on
Ry Ry
1 1
(@)

- O~ S S,

u3 [} X3 (111 (112)
Fig. 1. Capacity regions of the five extremal MACs.
u X

» Polar codes can be optimized for MAC

» Frozen bits have to be chosen in a coordinated fashion

22/24



Takeaways

Main points from this part
» Traditional GMAC channel model is not suitable for modeling loT
» Many access channel models number of users growing with n
» Finite Block Length achievability bounds serve as a good benchmark
» Existing coding schemes for GMAC need to be modified

23 /24



Part |

A Quest for Low-Complexity:
Coded Compressed Sensing



Abstract CS Challenge

Problem setting

» Noisy compressed sensing

y=~As+z

where s is K sparse
» s has non-negative integer entries
» A.shape = 30,000 x 2128
> z is additive Gaussian noise

Performance evaluation
» Number of mistakes in support recovery normalized by K
> Related to the per user probability of error in MAC setting
» Performance target on order of 1-5%



Multiple Perspectives for Individual Messages

N N EEEE

Information bits (101010000) |
(T T I T I T T TT T}

Message index (21) l

[T |

Columns are possible signals

> Binary message or information content

» Integer value of message
» Index representation in vector form

< awi]



Unified CS/UMAC perspective

Observation y

CETT T T T 1

l Message indices

OO T [T T [T T

integer entries

Non-negative,




|dea: Compressive Sensing Applied to Fragments

\

/
HE [(EE [(IW Potton [
|

! l

Dim 2'®  Dim 2 Dim 2% Dim 216

| | | | —
| | | | | | L1
| ] ] | [
| | | | —

» Issue: unordered lists of fragments!



Idea: Divide and Conquer Information Bits

(I T T |
l Encoding

[ H N HE B N

/ / \ \ Partition

N (e ([ [

Lol bl

Distinct compressive sensing instances

» Split problem into sub-components suitable for CS framework
» Get lists of sub-packets, one list for every slot

> Stitch pieces of one packet together using error correction



Coded Compressive Sensing — Device Perspective

w bits + p parity bits
[ | | [ - |
Allocating parity bits l

L T T T - THEEE  Coupled

1
SIS ]

Slot 1 Slot 2 Slot 3 Slot L

» Collection of L CS matrices and 1-sparse vectors

» Each CS generated signal is sent in specific time slot

V. Amalladinne, A. Vem, D. Soma, K. R. Narayanan, JFC. Coupled Compressive Sensing Scheme for Unsourced Multiple Access.
ICASSP 2018



Coded Compressive Sensing — Multiple Access

B R R . i
[ ][| [ N0 ]

—
| |
—
| |
| S—
—

1 CW e [
1 CW e [
1 CCE e [T
1 CCE e [T
1 CW e [

List 1 List 2 List 3 List L

» [ instances of CS problem, each solved with non-negative LS
> Produces L lists of K decoded sub-packets (with parity)

» Must piece sub-packets together using tree decoder



Coded Compressive Sensing — Stitching Process

— CEm
Cm
— /. Cmm
N o =
O [

List 1 List 2 List 3

Tree decoding principles

» Every parity is linear
combination of bits in
preceding blocks

» Late parity bits offer better
performance

» Early parity bits decrease
decoding complexity

» Correct fragment is on list




Coded Compressive Sensing — Understanding Parity Bits

ST G

I T 1

w bits p bits

» Consider binary information vector w of length k
» Systematically encoded using generator matrix G, with p = wG
» Suppose alternate vector w; is selected at random from {0, 1}

Lemma
Probability that randomly selected information vector w, produces same
parity sub-component is given by

Pr(p — pr) = 9= rank(G)

Proof: {p =p,} = {wG = w,G} = {w + w, € nullspace(G)}



Coded Compressive Sensing — General Parity Bits

(v [ w@ [p@] we) [pe)] we) [s@)
% % % P3 % wy P4

1 Il | |
r T T 1

w1 w2 P2 w3

» True vector (wj (1), w;(2),w;(3), w;(4))
» Consider alternate vector with information sub-block
(wi, (1), w;,(2),w;(3), w;, (4)) pieced from lists
» To survive stage 4, candidate vector must fulfill parity equations

0

(wi, (1) = w;, (1)) [G12]
(w, (1) = wi, (1), w; (2) = w(2)) Ellj

0

Gia
(wiy (1) = wiy (1), wi, (2) — wi, (2), i (3) — wi,(3)) {Gu] =0
Gz 4



Coded Compressive Sensing — General Parity Bits

(v [ w@ [p@] we) [pe)] we) [s@)
t } t } wa t o

I I
I T

w1 w2 P2 w3 P3

|
1

» When indices are not repeated in (w; (1), w;(2), w;(3), w;,(4)),
probability is governed by

Gi2 Giz Gig
rank 0 G2,3 G2,4
0 0 Giu

» But, when indices are repeated, sub-blocks may disappear

Giolgpziy  Gi3lynziy  Graly,ziy
rank 0 G273].{,'375,'2} G2,4l{,-475,-2}
0 0 G3»41{i475f3}



Candidate Paths and Bell Numbers

Slot 1 Slot 2 Slot 3 Slot 4

- OO O
s OO 5
ir @O S O o
ar O o0

Probability that wrong path is
consistent with parities is

Pr(p _ pr) — 27rank(G)

G2 Giz Gig
G=| 0 Gz Gos

0 0 Gaga

([ ww [ w [m@] we) [pE)] we [

When Levels Do NOT Repeat



Candidate Paths and Bell Numbers

Slot1  Slot2 Slot3  Slot 4 Probability that wrong path is

Level 4 O ________ O ________ O ________ O consistent with parities is
Pr(p _ pr) — 27rank(G)

Level 3 (O O O O

Level 2 O ........................ |:0 Gis 0 ]
G =

0 Gys O

Levell C —C }----( )-eoeeee 0 0 G3,4

([ wmw [ wo [p@] w6 [kE)] we [m@)

When Levels Repeat




Bell Numbers and j-patterns

1,1,1,1
1,2,1,1
1,2,2,1
1,1,3,1

Integer Sequences
» K. paths

level 1

» Reduce complexity 1,2,3,1
through equivalence ~ 1212)
. . o 1,2,2,2) L'
» Online Encyclopedia of 3 1232 &
Integer Sequences (OEIS) o o YR
A000110 3 1,2,3,3)
| g 1 1,1,1,4)
Bell numbers grow rapidly . e
» Hard to compute K 1,2,2,4)
ted b f 2 1,1,3,4)
expected number o o

surviving paths ~ =--mmmeemoommmmeoooeoeoot oo

Need Approximation




Allocating Parity Bits (approximation)

» py: # parity bits in sub-block £ €2, ... L,
» Py: # erroneous paths that survive stage £ € 2,..., L,

» Complexity Ciree: # nodes on which parity check constraints verified

Expressions for E[P] and Ciyee
> Py Pe—1 ~ B((Pe—1 + 1)K —1,p0), pr=2"P, g =1—ps

E[P¢] = E[E[P¢|Pe-1]]
= E[((Pe—1 + 1)K — 1)p(]
= peKE[Pe—1] + pe(K — 1)

14 /4
=Y K(k-1)]]n
r=1 j=r

> Ctree - K+Zle_;21 (PZ + ]-)K]
» E[Cirec] can be computed using the expression for E[Py]



Optimization of Parity Lengths

» py: # parity bits in sub-block £ € 2,... L,
» P;: # erroneous paths that survive stage £ € 2,... L,

Relaxed geometric programming optimization

minimize  E[Cireo]
(p2;---5pL)

subject to  Pr(Pp > 1) < &tyee Erroneous paths

L
sz =M-B Total # parity bits
£=2

pe€{0,...,N/L} V£€e€2 ...,L Integer constraints

» Solved using standard convex solver, e.g., CVX



Choice of Parity Lengths

» K=200 L=11, N/L=15

H Ctree ‘ E[Cirecl ‘ Parity Lengths po,..., pL
0.006 Infeasible Infeasible
0.0061930 | 3.2357 x 10™* | 0,0,0,0, 15, 15, 15, 15, 15, 15
0.0061931 | 3357300 0,3,8,8,8,8,10,15,15,15
0.0061932 | 1737000 0,4,8,8,8,8,9,15,15,15
0.0061933 | 926990 0,5,8,8,8,8,8,15,15,15
0.0061935 | 467060 1,8,8,8,8,8,8,11,15,15
0.0062 79634 1,8,8,8,8,8,8,11,15,15
0.007 7357.8 6,8,8,8,8,8,8,8,13,15
0.008 6152.7 7,8,8,8,8,8,8,8,12,15
0.02 5022.9 6,8,8,9,9,9,9,9,9,14
0.04 4158 7,8,8,9,9,9,9,9,9,13
0.6378 3066.3 9,9,9,9,9,9,9,9,9,9




Choice of Parity Lengths

> K =200, L=11, N/L=15

Parity Lengths po, ..., pL

|

0,0,0,0,15,15,15, 15, 15, 15

0,3,8,8,8,8,10,15,15, 15

0,4,8,8,8,8,9,15,15, 15

0,5,8,8,8,8,8,15,15, 15

1,8,8,8,8,8,8,11,15,15

1,8,8,8,8,8,8,11,15,15

6,8,8,8,8,8,8,8,13,15

7.8,8,8,8,8,8,8,12,15

6,8,8,9,9,9,9,9,9, 14

7,8,8,9,9,9,9,9,9,13

9,9,9,9,9,9,9,9,9,9




Performance of CCS and Previous Schemes
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Leveraging CCS Framework

CHIRRUP: a practical algorithm for unsourced multiple access

Robert Calderbank, Andrew Thompson
(Submitted on 2 Nov 2018)

Unsourced multiple access abstracts grantless simultaneous communication of a large number of devices (messages) each of which transmits (is
transmitted) infrequently. It provides a model for machine-to-machine communication in the Internet of Things (IoT), including the special case of
radio-frequency identification (RFID), as well as neighbor discovery in ad hoc wireless networks. This paper presents a fast algorithm for unsourced
multiple access that scales to 2! devices (arbitrary 100 bit messages). The primary building block is multiuser detection of binary chirps which are
simply codewords in the second order Reed Muller code. The chirp detection algorithm originally presented by Howard et al. is enhanced and
integrated into a peeling decoder designed for a patching and slotting framework. In terms of both energy per bit and number of transmitted
messages, the proposed algorithm is within a factor of 2 of state of the art approaches. A significant advantage of our algorithm is its computational
efficiency. We prove that the worst-case complexity of the basic chirp reconstruction algorithm is O[nK (log, .+ K)], where n is the codeword
length and K is the number of active users, and we report computing times for our algorithm. Our performance and computing time results
represent a benchmark against which other practical algorithms can be measured.

Subjects: Signal Processing (eess.SP)
Citeas: arXiv:1811.00879 [eess.SP]
(or arXiv:1811.00879v1 [eess.SP] for this version)

Submission history
From: Andrew Thompson [view email]
[v1] Fri, 2 Nov 2018 14:25:46 UTC (470 KB)

Which authors of this paper are endorsers? | Disable Mathjax (What is Math/ax?)

» Hadamard matrix based compressing scheme + CSS

» Ultra-low complexity decoding algorithm

S. D. Howard, A. R. Calderbank, S. J. Searle. A Fast Reconstruction Algorithm for Deterministic Compressive Sensing using
Second Order Reed-Muller Codes. CISS 2008



Example: CHIRRUP

» Sensing matrix based on 2nd-order Reed-Muller functions,

b
or(a) = C jairars
. o
R is binary symmetric matrix with zeros on diagonal, wt represent
weight, and /i = /—1
» Every column of form

or.5([0]2)
| or,b([1]2)

XR,b = :
| or,b([2™ — 1]2)

[]2 is integer expressed in radix of 2
> Information encoded into R and b

» Fast recovery: Inner-products, Hardmard project onto Walsh basis,
get R row column at a time, dechirp, Hadamard project to b



Leveraging CCS Framework

Non-Bayesian Activity Detection, Large-Scale Fading Coefficient Estimation, and Unsourced
Random Access with a Massive MIMO Receiver

Fengler, Saeid i , Peter Jung, Giuseppe Caire

In this paper, we study the problem of user activity detection and large-scale fading coefficient estimation in a random access wireless uplink with a massive MIMO base
station with a large number M of antennas and a large number of wireless single-antenna devices (users). We consider a block fading channel model where the M~
dimensional channel vector of each user remains constant over a coherence block containing L signal dimensions in time-frequency. In the considered setting, the
number of potential users Ky is much larger than L but at each time slot only K, << Ky of them are active. Previous results, based on compressed sensing, require
that K, < L, which is a bottleneck in massive deployment scenarios such as Internet-of~Things and unsourced random access. In this work we show that such limitation
can be overcome when the number of base station antennas M is sufficiently large. We also provide two algorithms. One is based on Non-Negative Least-Squares, for
which the above scaling result can be rigorously proved. The other consists of a | plexity iterative ise minimi of the likelihood function of the
underlying problem. Finally, we use the proposed approximated ML algorithm as the decoder for the inner code in a concatenated coding scheme for unsourced random
access, where all users make use of the same codebook, and the massive MIMO base station must come up with the list of transmitted messages irrespectively of the
identity of the transmitters. We show that reliable communication is possible at any E,/Ny provided that a sufficiently large number of base station antennas is used, and
that a sum spectral efficiency in the order of O(Llog(L)) is achievable.

Comments: 50 pages, 8 figures, submitted to IEEE Trans. Inf. Theory
Subjects:  Information Theory (cs.IT)
Citeas:  arXiv:1910.11266 [es.T]

(0r arXiv:1910.11266v1 [cs.IT] for this version)

Bibliographic data
[Enable Bibex (What is Bibex?)]

From: Alexander Fengler [view email]
[v1] Thu, 24 Oct 2019 16:32:30 UTC (661 KB)

Which authors of this paper are endorsers? | Disable Mathjax (What is Mathjax?)

» Activity detection in random access
» Massive MIMO Receiver



mm
l

Coded Compressed Sensing — Summary

——
../
—

L
e i
=



Pertinent References

» V. Amalladinne, J.-F. Chamberland, and K. R. Narayanan. A coded compressed sensing
scheme for uncoordinated multiple access. Accepted for publication in the IEEE
Transactions on Information Theory, 2020.

> V. K. Amalladinne, A. Vem, D. K. Soma, K. R. Narayanan, and J.-F. Chamberland. A
coupled compressive sensing scheme for unsourced multiple access. In International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), Calgary, Canada, April
2018. IEEE.

» R. Calderbank and A. Thompson. CHIRRUP: A practical algorithm for unsourced multiple
access. Information and Inference: A Journal of the IMA, 2018.

» A. Fengler, S. Haghighatshoar, P. Jung, and G. Caire. Non-Bayesian activity detection,
large-scale fading coefficient estimation, and unsourced random access with a massive
MIMO receiver. arXiv preprint arXiv:1910.11266, 2019.
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Coded Compressed Sensing:
Some Recent Advances



Abstract CS Challenge — Recap

Problem setting

» Noisy compressed sensing

y=As+z

where s is K sparse
> s has non-negative integer entries
» A.shape =~ 30,000 x 2128
> z is additive Gaussian noise
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Enhanced Coded Compressed Sensing

An enhanced decoding algorithm for coded compressed sensing
Vamsi K. Amalladinne, Jean-Francois Chamberland, Krishna R. Narayanan

Coded compressed sensing is an algorithmic framework tailored to sparse recovery in very large dimensional spaces. This framework is originally envisioned for the
unsourced multiple access channel, a wireless paradigm attuned to mach Coded sensing uses a divide-and-conquer approach to
break the sparse recovery task into sub-components whose dimensions are amenable to conventional compressed sensing solvers. The recovered fragments are then
stitched together using a low complexity decoder. This article introduces an enhanced decoding algorithm for coded compressed sensing where fragment recovery and
the stitching process are executed in tandem, passing information between them. This novel scheme leads to gains in performance and a significant reduction in
computational complexity. This algorithmic opportunity stems from the realization that the parity structure inherent to coded compressed sensing can be used to
dynamically restrict the search space of the subsequent recovery algorithm.

Comments: Submitted to ICASSP2020
Subjects:  Information Theory (€s.T); Signal Processing (eess.SP)
Citeas:  arXiv:1910.09704 [cs.iT]

(or arXiv:1910.09704v1 [cs.IT] for this version)

Bibliographic data
[Enable Bibex (What is Bibex?)]

Submission history
From: Vamsi Amalladinne [view email]
[v1] Tue, 22 Oct 2019 00:17:37 UTC (65 KB)

Leverage algorithmic opportunity
» Extending CCS framework by integrating tree code
» Decisions at early stages inform later parts

» Algorithmic performance improvements



Coded Compressive Sensing with Column Pruning

Slot 1 Slot 2 Slot 3
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List 1 List 2 List 3 ==~

» Active partial paths determine possible parity patterns
» Admissible indices for next slot determined by possible parities

» Inadmissible columns can be pruned before CS algorithm



Coded Compressive Sensing — Dimensionality Reduction

Ly — 0

L T I e p
T I e &
L T I il &
L T W m—> 5
T I e 5
T I e ’
L T I e
List of active paths Admissible patterns

» Every surviving path produces parity pattern
» Only fragments with these pattern can appear in subsequent slot
» On average, there are K(1 4+ E[Py]) possibilities parity patterns



Coded Compressive Sensing with Column Pruning

Possible indices

|

i
i
gt et

Original sensing matrix

Pruned matrix

» For K small, width of sensing matrix is greatly reduced
» Actual sensing matrix is determined dynamically at run time

» Complexity of CS algorithm becomes much smaller



Dynamic Dimensions of Sensing Matrices

[ wo Iw(z) Ip(z)I w(3) Ip(s)Iw Ip(4)]

I I
I T |

wy pa

> P(gi) is # erroneous paths that survive stage ¢ for root i

» Total number of active paths at stage /¢
Count(f) = K (1 + Pé”) ~ K + KE[P(]

» Assuming path counts have concentrated, the number of active
parity patterns become

~ pe _ _ ~5—pe\Count(¥)
Pl 2 x (1= (1—27)coum)

# of patterns

survival probability

> Expected column reduction ratio is (1 — (1 — 27”Z)C°“”t(€)) < 1 for
typical (p1,...,p.) and small K



Expected Column Reduction Ratio

Column Reduction Ratio

Slot 1 @ Slot 1 (sim)
--=--Slot 2 + Slot 2 (sim)
P Slots 3-9 O Slots 3-9 (sim) 7 [
———— Slot 10 x Slot 10 (sim)
————— Slot 11 A Slot 11 (sim)
1 ==========_=_§_=_=_=3—=-=—=—=%=%=
e R L SO
e prrrT 000°
’,r’ ++++ OOOO Lo
045:/'++++ 1o —_____-—“'
| o,o-op-qg'o——
o00-¢
5 "y X X pa X K 2
40 60 80 100 120 140

Number of Messages K

» Parity allocation parameters, with wy + p; = 15,

(p17 pP2,..., PlO) = (67 8787 87 87 87 8787 137 15)

» Pruning is more pronounced at later stages

> Effective width of sensing matrix is greatly reduced

[ ]



Additional Implications of Dynamic Pruning

1. When previous stages list actual sub-blocks, sensing
matrix for next stage is trimmed down correctly

» Reduces search space for CS solver and improves
performance

2. If erroneous partial path survives, then pruned
sensing matrix retains all the columns with parity
patterns that match erroneous path, but discards
other columns

» Steers CS solver towards list that includes
sub-blocks consistent with erroneous path
P Increases propensity for error propagation

3. If valid sub-block is absent from CS list, then
corresponding parity pattern may disappear
» When this occurs, received vector for subsequent
slot is no longer of the form y(¢) = As(¢) + z(¢)
because of missing columns
» Results in noise amplification for other messages



Consequences of Dynamic Pruning

Overall Performance Improvements

Immediate considerations — reparametrization
» Can one increase number of bits per slot?
» How should we allocate information and parity bits within slots?
» What about channel uses?

New compressed sensing challenge

» How can one design good deterministic sensing matrices tailored to
stochastic pruning?



Dynamic Pruning Leads to Reparametrization

(v [ w@ [p@] we) [pe)] we [s@)
- m % % — pa

1 Il
I T

| |
T 1

w1 w; w3 p3
Dynamic pruning l More flexibility
(w0 [ v (@ ] we [ @)
f U t } t i
wi w2 P2 w3 P3

Originally, width of matrices constrained by CS decoder complexity

Recovery now takes place over dynamically pruned matrices

>
>
» Opportunity to assign information and parity bits differently
» Perhaps reduce slot count and circumvent FBL limitations

>

Reallocate channel uses based on sampling complexity

N
K log (K) where N is (random) matrix width



Preliminary Performance Enhanced CCS

Required Ey, /No (dB)

-------- Random Coding -1
= === CCS, Standard
= CCS, Enhanced
———— CCS, Reparamertrized

25 50 75 100 125 150 175
Number of Messages K

Normalized Execution Times

1.4

1.2

= === CCS, Standard
—— CCS, Enhanced
——— CCS, Reparamertrized

25 50 75 100 125
Number of Messages K

» Perforrmance improves significantly with enhanced CCS decoding,

especially for smaller K values

» Computational complexity is reduced drastically

» Reparametrization offer additional gains in performance, even for

preliminary exploration



Sensing Matrix Design for Stochastic Pruning
Sub-Block with 2 Parities

Wl W W
G R
ﬂﬁ:re. 2o

O

» For 2 parities, there are (g) = 6 possible pruned matrices

» Columns within parity group well separated

» Columns from distinct groups less likely to appear together

What Are Good Designs?




Asynchronous Coded Compressed Sensing

Asynchronous Neighbor Discovery Using Coupled Compressive Sensing

Vamsi K. Amalladinne, Krishna R. Narayanan, Jean-Francois Chamberland, Dongning Guo

(Submitted on 2 Nov 2018)
The neighbor discovery paradigm finds wide application in Internet of Things networks, where the number of active devices is orders of
magnitude smaller than the total device population. Designing low-complexity schemes for asynchronous neighbor discovery has recently
gained significant attention from the research community. Concurrently, a divide-and-conquer framework, referred to as coupled
compressive sensing, has been introduced for the synchronous massive random access channel. This work adapts this novel algorithm to the
problem of asynchronous neighbor discovery with unknown transmission delays. Simulation results suggest that the proposed scheme
requires much fewer transmissions to achieve a performance level akin to that of state-of-the-art techniques.

Subjects: Signal Processing (eess.SP); Information Theory (cs.IT)
Citeas:  arXiv:1811.00687 [eess.SP]
(or arXiv:1811.00687v1 [eess.SP] for this version)

Building robust sensing matrices
» Extending CCS framework with low sample complexity
» Addressing issues pertaining to asynchrony
» Context of neighbor discovery



Dealing with Jitter and Asynchrony
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Asynchronous signals
> y = As 4 z with ||s]jo = K
> A.shape is (n+ 7) x m unknown due to random delays

» Max delay 7 known to the decoder



Expanded Codebook through Sensing Matrix
A

Expanded codebook A
(n+T)x m(T + 1) matrix
Accounts for all possible delays
K out of m(T + 1) sparse

et
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» Increases computational load of CS solvers
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Extending CCS Framework

SPARCs for Unsourced Random Access

Alexander Fengler, Peter Jung, Giuseppe Caire
(Submitted on 18 Jan 2019)

This paper studies the optimal achievable performance of compressed sensing based unsourced random-access communication over the real ANGN
channel. "Unsourced"” means, that every user employs the same codebook. This paradigm, recently introduced by Polyanskiy, is a natural
consequence of a very large number of potential users of which only a finite number is active in each time slot. The idea behind compressed sensing
based schemes is that each user encodes his message into a sparse binary vector and compresses it into a real or complex valued vector using a
random linear mapping. When each user employs the same matrix this creates an effective binary inner multiple-access channel. To reduce the
complexity to an acceptable level the messages have to be split into blocks. An outer code is used to assign the symbols to individual messages. This
division into sparse blocks is analogous to the construction of sparse regression codes (SPARCs), a novel type of channel codes, and we can use
concepts from SPARCs to design efficient random-access codes. We analyze the asymptotically optimal performance of the inner code using the
recently rigorized replica symmetric formula for the free energy which is achievable with the approximate message passing (AMP) decoder with
spatial coupling. An upper bound on the achievable rates of the outer code is derived by classical Shannon theory. Together this establishes a
framework to analyse the trade-off between SNR, ity and i rates in the ic infinite limit. Finite

simulations show that the combination of AMP decoding, with suitable approximations, together with an outer code recently proposed by
Amalladinne et. al. outperforms state of the art methods in terms of required energy-per-bit at lower decoding complexity.

Comments: 16 pages, 7 Figures
Subjects:  Information Theory (cs.IT)
Cite as arXiv:1901.06234 [cs.IT]
(or arXiv:1901.06234v1 [csT] for this version)

» Connection between CCS indexing and sparse regression codes
» Circumvent slotting under CCS and dispersion effects
» Introduce denoiser tailored to CCS



CCS Reuvisited
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Columns are possible signals

» Bit sequence split into L fragments
» Each bit 4 parity block converted to index in [0,2™/L — 1]

» Stack sub-codewords into (n/L) x 2™/t sensing matrices



CCS Unified CS Analogy

Sampling matrix

O W I T e 1T
I
|eusis panladay

L-sparse message vector

» Initial non-linear indexing step
» Index vector is block sparse

» Connection to sparse regression codes

C. Rush, A. Greig, R. Venkataramanan. Capacity-Achieving Sparse Superposition Codes via Approximate Message Passing
Decoding. 1EEE IT Trans 2017



CCS-AMP

o

[euSIs paAladay

Sampling matrix

L-sparse message vector

» Complexity management comes from dimensionality reduction
» Use full sensing matrix on sparse regression codes
» Decode inner code with low-complexity AMP

» Decode outer code with tree decoding

A. Fengler, P. Jung, and G. Caire. SPARCs and AMP for Unsourced Random Access. ISIT 2019



Approximate Message Passing Algorithm

Governing Equations
» AMP algorithm iterates through

2t =y — ADn, (r®) + % div D, (r®)
N———

Onsager correction

(671 = AT 4 Dy, (+10))
——

Denoiser

Initial conditions z(¥) = 0 and 7, (r®) =0

» Application falls within framework for non-separable functions

R. Berthier, A. Montanari, and P.-M. Nguyen. State Evolution for Approximate Message Passing with Non-Separable Functions.
arXiv 2017



Marginal Posterior Mean Estimate (PME)

Proposed Denoiser (Fengler, Jung, and Caire)

» State estimate based on Gaussian model

ZOR (g,r,7) = H\/_s—’_TC_r]
qexp(_ﬂ)
(1- Q)EXP( )-‘rqexp( %@)

with prior g = K/m fixed
> 1, (r®) is aggregate of PME values

> 7, is obtained from state evolution or 72 = ||z()||2/n

Performance is quite good!




Pertinent References

» V. K. Amalladinne, J.-F. Chamberland, and K. R. Narayanan. An enhanced decoding
algorithm for coded compressed sensing. In International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), 2020.

» V. K. Amalladinne, K. R. Narayanan, J.-F. Chamberland, and D. Guo. Asynchronous
neighbor discovery using coupled compressive sensing. In International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), 2019.

> A. Fengler, P. Jung, and G. Caire. SPARCs and AMP for unsourced random access. In
International Symposium on Information Theory (ISIT), 2019.

P> R. Venkataramanan, S. Tatikonda, and A. Barron. Sparse regression codes. Foundations
and Trends in Communications and Information Theory, vol. 15, no. 1-2, pp. 1-195, 2019.

» C. Rush, A. Greig, and R. Venkataramanan. Capacity-achieving sparse superposition codes

via approximate message passing decoding. IEEE Transactions on Information Theory, vol.
63, no. 3, pp. 1476-1500, 2017.
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Connecting Coding and
Compressed Sensing via
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Coded Compressive Sensing — Device Perspective

w bits + p parity bits
[ | | [ - |
Allocating parity bits L

L T T M - Tl Coupled

\ messages
(T

Slot 1 Slot 2 Slot 3 Slot L

» Divide and conquer produces slots

» Parity bits determined by tree code



Coded Compressive Sensing — Multiple Access
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» [ instances of compressed sensing
» Produces L lists of K decoded sub-packets

» Must piece sub-packets together using tree decoder



Coded Compressive Sensing — Stitching Process

C 1~
C— 1 T e (T
List 1 List 2 List 3 List L

Original Tree Decoding
» Random parity bits
» Control girth of tree
» Decoded from root to leafs




Coded Compressed Sensing — Uniform View

Sampling matrix

L-sparse message vector

> Slots produce block diagonal (unified) matrix
P> Message is one-sparse per section
> Width of A is smaller: 2™/L instead of 2™

[euSis panieday



|dea 1: CCS-AMP

[euSis paniaday

Sampling matrix

L-sparse message vector

» Complexity reduction due to narrower A
» Use full sensing matrix A
» Decode inner code with low-complexity AMP

A. Fengler, P. Jung, and G. Caire. SPARCs and AMP for Unsourced Random Access. ISIT 2019



Idea 2: Dimensionality Reduction
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> Incorporate tree code structure into CS recovery task
» Structure from outer code can be integrated into denoiser

» Column pruning acts as side information from neighbors



Combining Idea 1 and Idea 2
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Issues in Combining ldeas 1 and 2

~J

column pruning

-
-

column pruning

HHEH

column pruning

U
i

Sea

List 1 List 2 List3 ==~

No columns to prune!

Decisions not in sequence!




Approximate Message Passing Algorithm

Governing Equations
» AMP algorithm iterates through

2t =y — ADn, (r®) + %div D, (r®))
—_—

Onsager correction

(1) = AT 4 D, (110
——

Denoiser

Initial conditions z(¥) = 0 and 7, (r®) =0

» Application falls within framework for non-separable functions

Task

» Define denoiser and derive correction term

R. Berthier, A. Montanari, and P.-M. Nguyen. State Evolution for Approximate Message Passing with Non-Separable Functions.
arXiv 2017



Marginal Posterior Mean Estimate (PME)

Proposed Denoiser (Fengler, Jung, and Caire)

» State estimate based on Gaussian model
OR(q,r,7) = H\/ s+7'§—r}
qexp <(r2\f) >

(1—q)exp( 272> —|—qexp< 02\:57)2)

with (essentially) uninformative prior g = K/m fixed

> 7, (r(t)) is aggregate of PME values

> 7, is obtained from state evolution or 72 = ||2(!)||?/n

A. Fengler, P. Jung, and G. Caire. SPARCs and AMP for Unsourced Random Access. ISIT 2019



Redesigning Outer Code

Properties of Original Tree Code
» Aimed at stitching message fragments together
» Works on short lists of K fragments

» Parities allocated to control growth and complexity

enejelalale

oS
CICICRC

Challenges to Integrate into AMP
1. Must compute beliefs for all possible 2" fragments
2. Must provide pertinent information to AMP

3. Should maintain ability to stitch outer code



Factor Graph Interpretation of Tree Code
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Factor Graph Interpretation of Tree Code

[U(1)Gua] [¥(2)G2,3] v(3)

» Multiple devices on same graph
» Parity factor mix concentrated values

» Suggests triadic tree structure



Redesigning Outer Code

Solutions to Integrate into AMP

» Parity bits are generated over Abelian group amenable to
Hadamard transform (original) or FFT (modified)

» Discrimination power proportional to # parities

New Design Strategy
1. Information sections with parity bits interspersed in-between

2. Parity over two blocks (triadic dependencies)



Message Passing Rules

( v(1) I v(2) I v(4) I v(5) I v(7) I v(8) Iv(lo)Iv(n))
v(3) v(6) v(9) v(12)

» Marginal beliefs on message from generic device

> Message from check node a, to variable node s € N(ap):
Napas(k) = Zkap:kp:k ga,, (kap) HsjeN(ap)\s l”sjaap(kj)
> Message from variable node s; to check node a € N(s):

I"LSg*}a(k) X Af(k) HapeN(s[)\a ll’apﬁs;g(k)



Approximate Message Passing Algorithm

Updated Equations
AMP two-step algorithm

2t =y — ADn, () + % div D, (r®)

—_————
Correction
(541 = AT 4 D, (140
——
Denoiser

Initial conditions z(® = 0 and o (r(0)> =

» Denoiser is BP estimate from factor graph
» Message passing uses fresh effective observation r
» Fewer rounds than shortest cycle on factor graph

» Close to PME, but incorporating beliefs from tree code



Preliminary Performance Enhanced CCS

Required E,/No (dB)
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» Performance improves significantly with enhanced CCS-AMP
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» Computational complexity is approximately maintained

I
200

» Reparametrization may offer additional gains in performance?

250



CCS and AMP

Summary
» New connection between CCS and AMP
» Natural application of BP on factor graph as denoiser

» Tree code design depends on sparsity

1. Degree distributions (small graph)
2. Message size (birthday problem)
3. Final step is tree decoding

» Many theoretical and practical challenges/opportunities exist

+7 \N

Coding plays increasingly central role in large-scale CS
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Takeaways

Main points from this part
» Traditional GMAC channel model is not suitable for modeling loT
» Many access channel models number of users growing with n
» Finite Block Length achievability bounds serve as a good benchmark
» Existing coding schemes for GMAC need to be modified

Rest of the talk
» Designing schemes to get close to the FBL benchmark
» Connections between Unsourced MAC and Compressed sensing

24/24
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Fundamental Limits and Practical Schemes
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What Part IV is about

» Review of Slotted ALOHA with interference cancellation
» Extension to the Unsourced Gaussian MAC
» Sparse IDMA for Unsourced multiple access

2/ 24
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Uncoordinated MAC Frame Structure

» K active devices out of many, many devices

Frame Length

| Beacon | Inference | Slot 1 | Slot 2 | 000 | Slot J — 1 | Slot J | Feedback

» Beacon employed for coarse synchronization

Slot Count Reporting

| Population Estimation

» Same devices transmit within frame
» Focus is on what happens within the Frame Length
» Each device may or may not use slots within the frame

3/ 24
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Coded Slotted ALOHA!

start end

Y

Leveraging Prior Work on Uncoordinated Access

» K uncoordinated devices, each with one packet to send
» Time is slotted; transmissions occur within slots
» No power constraint and no Gaussian noise - focus on interference

» Successive interference cancellation

LE Paolini, G Liva, M Chiani. Coded slotted ALOHA: A graph-based method for u
access. |IEEE Trans on Info Theory, 2015 a/ 24
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Decoder — Peeling Algorithm

Joint decoding via successive interference cancellation

slot1 , slot2 , slot3 , slot4 , slot5h

\{

device 1 device 2 device 3 device 4

Instance of Random Access

5/ 24
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Decoder — Peeling Algorithm

Joint decoding via successive interference cancellation

slot1 | slot2 . slot3 | slot4 . slot5

\}

device 1 device 2 device 3 device 4

Step 1
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Decoder — Peeling Algorithm

Joint decoding via successive interference cancellation

slot1 | slot2 . slot3 | slot4 . slot5

device 1 device 2 device 3 device 4

Step 1
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Decoder — Peeling Algorithm

Joint decoding via successive interference cancellation

slot1 | slot2 . slot3 | slot4 . slot5

H

\}

device 1 device 2 device 3 device 4

Step 2
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Decoder — Peeling Algorithm

Joint decoding via successive interference cancellation

slot1 | slot2 . slot3 | slot4 . slot5

device 1 device 2 device 3 device 4

Step 2
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Decoder — Peeling Algorithm

Joint decoding via successive interference cancellation

slot1 | slot2 . slot3 | slot4 . slot5

\}

device 1 device 2 device 3 device 4

Step 3
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Decoder — Peeling Algorithm

Joint decoding via successive interference cancellation

slot1 | slot2 . slot3 | slot4 . slot5

device 1 device 2 device 3 device 4

Step 3
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Decoder — Peeling Algorithm

Joint decoding via successive interference cancellation

slot1 | slot2 . slot3 | slot4 . slot5

\}

device 1 device 2 device 3 device 4

Step 4

5/ 24
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Unsourced MAC - SIC UGMAC Scheme

)
58—
2 &
g3
5 & >
el (9]
g 8
S5
g g
BN
~ ‘_E —o>
~—
Key Features
» Schedule selected based on message bits
» Devices can transmit in multiple sub-blocks
» Scheme facilitates peeling decoder
A. Vem, K. Narayanan, J. Cheng, JFC. A User-Independ ive Interference Cancellation Based Coding
H for the U { Random Access Gaussian Channel. IEEE Trans on Comm, 2019 6/ 24
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What Really Happens within Slot?

Implementation Notes

> Message is partitioned into two parts w = (w,, w,)

» Every device uses identical codebook built from LDPC-type codes
tailored to T-user real-adder channel

> w, dictate permutation on encoder and recovered through CS
» Non-negative ¢1-regularized LASSO

A. Vem, K. Narayanan, J. Cheng, JFC. A User-Independ ive Interference Cancellation Based Coding

Scheme for the Unsourced Random Access Gaussian Channel. IEEE Trans on Comm, 2019
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Unsourced MAC - SIC UGMAC Scheme for T =2

o+ X3+ % R+

Key Features

» Devices repeat codewords in multiple slots based on w,
» Schedule selected based on message bits
» Scheme facilitates peeling decoder
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Unsourced MAC - SIC UGMAC Scheme for T =2

>
wy = (W], w§)

o+ X3+ % R+

X3 + %4 + 23

i

Key Features

» Devices repeat codewords in multiple slots based on w,
» Schedule selected based on message bits
» Scheme facilitates peeling decoder
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Unsourced MAC - SIC UGMAC Scheme for T =2

>
wy = (W], w§)

o+ X3+ % R+

X3 + %4 + 23

i

Key Features

» Devices repeat codewords in multiple slots based on w,
» Schedule selected based on message bits
» Scheme facilitates peeling decoder
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Unsourced MAC - SIC UGMAC Scheme for T =2

o+ X3+ % R+

X3+ %4 +7a

Key Features

» Devices repeat codewords in multiple slots based on w,
» Schedule selected based on message bits
» Scheme facilitates peeling decoder
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Unsourced MAC - SIC UGMAC Scheme for T =2

3+ %+ %+ 21

X3+ %4 +7a

Key Features

» Devices repeat codewords in multiple slots based on w,
» Schedule selected based on message bits
» Scheme facilitates peeling decoder
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Unsourced MAC - SIC UGMAC Scheme for T =2

3+ %+ %+ 21

X3+ %4 +7a

Key Features

» Devices repeat codewords in multiple slots based on w,
» Schedule selected based on message bits
» Scheme facilitates peeling decoder

8/ 24
8/24



Unsourced MAC - SIC UGMAC Scheme for T =2

P

X3 +Xg + X + 71
2
7

X3+ %4 +7a

[ ]
-

Key Features

» Devices repeat codewords in multiple slots based on w,
» Schedule selected based on message bits
» Scheme facilitates peeling decoder

8/ 24
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Unsourced MAC - SIC UGMAC Scheme for T =2

N P .
iy = (4. )

X5 +Xe + 71

Key Features

» Devices repeat codewords in multiple slots based on w,
» Schedule selected based on message bits

» Scheme facilitates peeling decoder
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Unsourced MAC - SIC UGMAC Scheme for T =2

iy = (], w§) - _"‘1_)-
g = (W, Wg) - j_>-
P ':' :.:

Key Features

» Devices repeat codewords in multiple slots based on w,
» Schedule selected based on message bits

» Scheme facilitates peeling decoder

8/ 24
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Unsourced MAC - SIC UGMAC Scheme for T =2

Ay = (A, #5) 5

— -
g = (W5, w§) B

—
s = (45 45) N (I

— .
g = (WY wg) .

— -l 1=
i AP

g = (g, wg) N
— i

Successfully decoded

Key Features

» Devices repeat codewords in multiple slots based on w,
» Schedule selected based on message bits

» Scheme facilitates peeling decoder

8/ 24
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Required Ep\Np in dB

25

20

=== Random Coding-YP-17 I I
- T =1

- T=2

= T=4

A-T=5

-ex OP-17 L.
«=x4-fold ALOHA

50 100 150 200
Number of active users K
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Limitations of Sparsifying Collisions

Drawbacks of Slots

» Second order dispersion effects comes into play in FBL
» Energy expended solely to resolving collisions
> Gray slots are discarded during decoding process (60%)

slot1 , slot2  slot3 . slot4 . slotb

\{
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Limitations of Sparsifying Collisions

Drawbacks of Slots

» Second order dispersion effects comes into play in FBL
» Energy expended solely to resolving collisions
> Gray slots are discarded during decoding process (60%)

slot1 , slot2  slot3 . slot4 . slotb

Y

To fix this - Sparse IDMA

An IDMA like scheme which does not divide the number of channel uses
into slots

10/ 24
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Sparse IDMA - Encoding

E A, al, )

wp, = 1(wp) Wp 7 T,

v v y " T, (v
Icn Encodevl I Repeat I £ IZevoPaddmgI A I Permute I o)

> Divide the message into two parts: w, W,
> w, is transmitted using compressed sensing
» w, is transmitted using a channel code

> Based on w;, a repetition pattern and permutation pattern is chosen
for the channel coding part

N (o o @@=
> @ @ @ @
= @ @ @ o @
* @@ o @ @

s iz

18

User Trangmission

Time

11/ 24
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CS Decoder and the Joint Graph

CS Decoder

A
—@

@ ¢ (@ o
i |

—> Permute J Permute

» Decode the first part using non-negative least square
» Recover the permutation patterns from the first part

12/ 24
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CS Decoder and the Joint Graph

CS Decoder

» Decode the first part using non-negative least square
» Recover the permutation patterns from the first part

» Use the permutation patterns to decode the second part of the
message by using message passing decoder

f(wﬁ) =1

12/ 24
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Message Passing: MAC to Repetition

2
2<ys—tanh< '?“)) ) 26
1 _ m
ys—rr T m2_, 2 2
o‘2+<1—tanh ( = ))

m
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Message Passing: Repetition to Variable

14/ 24
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Message Passing: Variable to Check

15/ 24
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Message Passing: Check to Variable

1 1
m?_,, =2tanh™" (tanh (mVZ;“> tanh <mV32”°1)>

2 —1 mfzacz
mg,_,,, = 2tanh tanh S

16/ 24
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Message Passing:Variable to Repetition

17/ 24
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Message Passing: Repetition to MAC

1 _ 1
mr—)y; - mV3—>r m2 _ m2
ml _ ml r—ye vz —r
r—yz vz—r

18/ 24
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Protograph LDPC Code

» Single user codes are not optimal
» Protograph: small graph used to generate larger Tanner graph

» Actual Tanner graph: expanded or lifted version of protograph
1. Copy protograph z times and permute edges of same color

19/ 24
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Mutual Information (MI) over Iterations

> L (e): MI between the message from check node to variable node

along edge type e and codeword bit

» [i_,, : Average MI between the message from MAC nodes to

variable nodes and the associated codeword bits

» MAC node degree distribution ~ poi(q), where g = NMC’

20/ 24
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Mutual Information (MI) over Iterations

Variable to check node

2D. Guo, S. Shamai, and S. Verdu, “Mutual information and minimum

mean-square error in Gaussian channel" 20/ 24
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Mutual Information (MI) over Iterations

Variable to check node

> My = Moy + My
> N g?—)v 2 d N’ Urz—w 2
Me—y ~ ( 2 aac—w) and my—,.y ~ ( 2 )Ur—w)

» J(o): MI between message m and associated codeword bit, where

m~ N(%,02)

20/ 24
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Mutual Information (MI) over Iterations

Variable to check node

> my_c= mc—>¥ + mpy
> Mc—yy ~ N( 5 c—>v) and me—y ~ N( ’_W’O'%—W)
> J(o): MI between message m and associated codeword bit, where

m~ N(%,02)

lhse= = J(Wo2,, +02.)

= J(VU P+ U 0P

20/ 24
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Mutual Information (MI) over Iterations

MAC to variable node
X
X

Two user adder channel

2D. Guo, S. Shamai, and S. Verdu, “Mutual information and minimum

mean-square error in Gaussian channel" 20/ 24
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Mutual Information (MI) over Iterations

MAC to repetition node
Soft interference cancellation
> X, = Y — tanh (m1/2)
> X, = Xo + Z;, where Z ~ N(0,0?)

2D. Guo, S. Shamai, and S. Verdu, “Mutual information and minimum

mean-square error in Gaussian channel" 20/ 24
20/24



Mutual Information (MI) over Iterations

MAC to repetition node
Soft interference cancellation
> X, = Y — tanh (m1/2)
> X, = Xo + Z;, where Z ~ N(0,0?)

> my~N(752,02.), 0f = ¢(0m,): Expected MSE?
» J(o): MI between message m and associated codeword bit, where

m~N(%,02)

2D. Guo, S. Shamai, and S. Verdu, “Mutual information and minimum
mean-square error in Gaussian channel" 20/ 24
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Mutual Information (MI) over Iterations

MAC to repetition node
Soft interference cancellation
> X, = Y — tanh (m1/2)
> X, = Xo + Z;, where Z ~ N(0,0?)
> my~N(752,02.), 0f = ¢(0m,): Expected MSE?
» J(o): MI between message m and associated codeword bit, where
m~ N(%,0%)

> L= J(g%)

2D. Guo, S. Shamai, and S. Verdu, “Mutual information and minimum
mean-square error in Gaussian channel" 20/ 24
20/24



Mutual Information (MI) over Iterations

MAC to repetition node

Soft interference cancellation

> X, = Y — tanh (m1/2)

> X, = Xo + Z, where Z, ~ N(0,0?)

> m NJ\/'(UZ%,U,%,I), 02 = ¢(opm,): Expected MSE?

» J(o): MI between message m and associated codeword bit, where
m~N(%,02)

> I+~>r = J(g%)

>

Lisr =2 ’Yk-/(\/ﬁm)

2D. Guo, S. Shamai, and S. Verdu, “Mutual information and minimum
mean-square error in Gaussian channel"

20/ 24
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Density Evolution and Threshold

Density Evolution

. _ e —1 1 i— . 1/
Compute If_,,, Ij_, 4, o (i), 1E53,(7) from 1175, T2 SL(7), 1E55,(H)

fort=1,2,---,0

4R. Storn and K. Price, “Differential evolution a simple and efficient heuristic for

global optimization over continuous spaces,” Journal of Global Optimization. 21/ 24
21/24



Density Evolution and Threshold

Density Evolution

o —1¢(; t—1 t—1 yt—1(; —1/(;
ComPUte Ii%vv l\f~>+7 I\f*}C(I)’ Ifﬁ\v(’) from I+—)v7 /v—)+/\f~>c ’)7 /ctav ’)

fort=1,2,---,0

Threshold

Threshold 0*= maximum o such that /,_,.(/) — 1 for each i € E

4R. Storn and K. Price, “Differential evolution a simple and efficient heuristic for

global optimization over continuous spaces,” Journal of Global Optimization. 21/ 24
21/24



Density Evolution and Threshold

Density Evolution
Compute I, I,y 1, (1), IE5Y(7) from 1520, X S (0), 1ES (1)

fort=1,2,---,0

Threshold

Threshold 0*= maximum o such that /,_,.(/) — 1 for each i € E

Optimization

Optimize the protograph and repetition factor to maximize the threshold
using differential evolution*

4R. Storn and K. Price, “Differential evolution a simple and efficient heuristic for

global optimization over continuous spaces,” Journal of Global Optimization. 21/ 24
21/24



Rate of the LDPC Code vs K

== Rate=0.125, v(x
=@ Rate=0.4, v(x

~— —~

UTEEL O A

o
“"‘
.

Required E,/Ny (dB)

1 | | | | |
25 50 100 150 200 250 300
Number of active users K,

» Optimal rate changes with K

22/ 24
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Performance Comparison

12
=+ Random Coding
..... 4-Fold ALOHA R
10 sic T=4 = -
—g— cCs

AMP+Tree Code
8 | ——m— Sparse IDMA

e Polar Codes

Required E,/No (dB)
o

0
25 50 100 150 200 250 300

Number of active users K

» B =100, N = 30000
» Only 3.2 dB away from Polyanksiy's achievability result

23/ 24
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Takeaways

» Slotted ALOHA - interference cancellation for handling interference

» Proposed an IDMA like scheme for using the dimensions better
» Sparse IDMA vs. IDMA

® Sparsity allows us to control interference
® Makes it easier to design LDPC like codes

» Low complexity scheme for large number of users

24/ 24
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Algorithms for Coded Random Access and
Inference in Large Dimensional Spaces — Bridging
Fundamental Limits and Practical Schemes
Part V - Polar coding and Spreading

J.-F. Chamberland and Krishna Narayanan
Vamsi Amalladinne, Avinash Vem, Asit Pradhan

Electrical and Computer Engineering
Texas A&M University

I1Sc, India
2020
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What Part V is about

> (Non-orthogonal) spreading sequences for controlling interference
» Spreading + Polar codes + list decoding

2/ 17
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Encoding

» Divide the message into two parts: wg, w,
» Based on w; a spreading sequence is chosen from the set S

3/ 17
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Encoding

w = (W, W, h(-)

wCG]Ff c e Fr
Polar Code BPSK

» Divide the message into two parts: wg, w,
» Based on w; a spreading sequence is chosen from the set S

» w, is encoded using a polar code

3/ 17
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Encoding

w. € IFBS . | A |
W:(ﬂbvﬂc) =s 2 h() Ls: |:51 - TR RIS
‘ . r Ce |
§j S Rns
w, € F c € Fy u x€R"
Polar Code BPSK  —> H®§J

» Divide the message into two parts: wg, w,

» Based on w; a spreading sequence is chosen from the set S
» w, is encoded using a polar code

> Coded bits are spread using the spreading sequence s;

3/ 17
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Encoding

vVvyVvYVYyyvyy

w, € F& ' | | |
w= (wow) 25 h() s = [51 S So8e
LT |
§j S Rns
w, € F c € Fy u x€R"
Polar Code BPSK — UWS;

Divide the message into two parts: wg, W,

Based on w; a spreading sequence is chosen from the set S

w, is encoded using a polar code

Coded bits are spread using the spreading sequence s;

2B is not too large

With non-trivial probability, multiple users will choose the same s;

3/ 17
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Transmitter from the Spreading Sequence Perspective

Sequence 1

Sequence 2 ——— +

Sequence 25

> M;: set of active users who choose s;

a/17
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Transmitter from the Spreading Sequence Perspective

Vi = E Uy

kEMl
Sequence 1
Vo = E Uy
keM,
Sequence 2 ———— +
VoBs = E Uy
B keM,s,
Sequence 2%

> M;: set of active users who choose s;

» Sum of the codewords associated with sequence TS Zke/\/lj Uy

a/17
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Transmitter from the Spreading Sequence Perspective

Vi = E Uy

kEMl

Sequence ] ——— v; ®s;
Vo = E Uy
kEMQ
Sequence 2— v, ® 5 +
VB = E Uy
B keM,s|
Sequence 2% —————— Vo5 & Sys

> M;: set of active users who choose s;

» Sum of the codewords associated with sequence TS Zke/\/lj Uy
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Transmitter from the Spreading Sequence Perspective

Vi = E Uy

kEMl

Sequence ] ——— v; ®s;
Vo = E Uy
kEMQ
Sequence 2— v, ® 5 +
VB = E Uy
B keM,s|
Sequence 2% —————— Vo5 & Sys

> M;: set of active users who choose s;
» Sum of the codewords associated with sequence s:: v, = ZkeMJ_ Uy

-J
> V=[] v - M;JT
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Transmitter from the Spreading Sequence Perspective

Vi = E Uy

kEMl
Sequence ] ——— v; ®s;
Vo = E Uy
kGMz
Sequence 2— v, ® 5 +
VB = E Uy
B kGMz&
Sequence 2% —————— Vo5 & Sys

> M;: set of active users who choose s;

» Sum of the codewords associated with sequence TS ZkeMj Uy

T
> Vi=[v{ v - V|
>¥:
y(1:n)y(ns+1:2ng)---y((i —ns+1:ing)---y(N—ng+1:n)
——
A VA yr Yo,
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Transmitter from the Spreading Sequence Perspective

Vi = E Uy

keM
Sequence ] ————— v; ®5;
V2 = 2{: Uk \( = S;\/ +—2!
Vv u N
keM Matrix representation of y
Sequence 2 — 7 Vo @ S +
VB = Z Uy
B keM,s|
Sequence 2% —————— Vo5 & Sys

> M;: set of active users who choose s;

» Sum of the codewords associated with sequence TS ZkeMj Uy

T
> Vi=[v{ v - V|
>¥:
y(1:n)y(ns+1:2ng)---y((i —ns+1:ing)---y(N—ng+1:n)
——
A VA yr Yo,
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Main Components of the Receiver

< C
Y ~ JscL | ()
P
Y S P. <, \/
Xy osic Y sso Pyl MMSE 2 JscL 25 ()
Pp
<
JSCL K ()

» Blind Spreading Sequence detector (SSD)
» Soft Output MMSE Multi-user Detector

> Joint successive cancellation list (JSCL) decoder of polar codes +

CRC

> Successive interference canceller (SIC)

5/ 17
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[llustration of Decoding: K =3

> User 1 picks sg, v5 = Uy

» Users 2 and 3 pick s;, v; = U, + U

y=y—-0 JscL
Yy
N e SSD MMSE JSCL
JSCL )
0
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[llustration of Decoding: K =3

> User 1 picks sg, v5 = Uy

» Users 2 and 3 pick s;, v; = U, + U

y=y-0 JSCL ()
{§172} \\\\\\\\\?%
y y
—  sIC SSD MMSE JscL ()
{§371}
So, 1
{50, 1} JscL ()
Iteration 1

> S'D = {§17§37§9}-

6/ 17
6/17



[llustration of Decoding: K =3

> User 1 picks sg, v5 = Uy

» Users 2 and 3 pick s;, v; = U, + U

§=y-0 P, A JIsc (2
{§17 2} % \
é SIC Y SSD MMSE =3 JSCL f(-)
{§37 1} EQ
So, 1
{s0. 1) JscL ()
Iteration 1

> S'D = {§17§37§9}-
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[llustration of Decoding: K =3

> User 1 picks sg, v5 = Uy

» Users 2 and 3 pick s;, v; = U, + U

y=y—0 ~
P, JscL ()
(.2) / V1 ® s;
P 0
é SIC X SSD MMSE =3 JSCL f(-) —
So, 1
{s0. 1) JscL ()
Iteration 1

> S'D - {§17§37§9}-
» Decoded users: 2,3.
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[llustration of Decoding: K =3

> User 1 picks sg, v5 = Uy

» Users 2 and 3 pick s;, v; = U, + U

P, JscL ()
{§17 2} / S ® =
P 0
é SIC X SSD MMSE =3 JSCL f(-) —
{s3.1} Py g
So, 1
{s0. 1) JscL ()
Vi ® 5
Iteration 1

> S'D - {§17§37§9}-
» Decoded users: 2,3.
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[llustration of Decoding: K =3

> User 1 picks sg, v5 = Uy

» Users 2 and 3 pick s;, v; = U, + U

I=y-(n®s) JscL )
fs21) \
Yy Yy

—  sIc SSD MMSE JscL ()
{5571}
Sqe, 1

{o15, 13 JscL ()

Iteration 1 Iteration 2

> S'D - {§17§37§9}-
» Decoded users: 2,3.

» Sp = {s3,55,515}-
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[llustration of Decoding: K =3

> User 1 picks sg, v5 = Uy

» Users 2 and 3 pick s;, v; = U, + U

g=y— (Ml ® 51) 53 JsCL )
é SIC Y SSD MMSE — JSCL f(-)
Sqe, 1
{o1s, 1} JscL ()
Iteration 1 Iteration 2

> S'D - {§17§37§9}-
» Decoded users: 2,3.

» Sp = {s3,55,515}-

6/ 17
6/17



[llustration of Decoding: K =3

> User 1 picks sg, v5 = Uy

» Users 2 and 3 pick s;, v; = U, + U

A

y=y— (v ®s1)

P3 JSCL () 0
fs5.1) % ®\ﬁ
Ve @5
é SIC ¥ SSD MMSE — JsCL f(-) S
Sk, 1 /
{o15, 13 JscL ()
Iteration 1 Iteration 2

> S'D - {§17§37§9}-
» Decoded users: 2,3.

» Sp = {s3,55,515}-
» Decoded users: 1.
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[llustration of Decoding: K =3

> User 1 picks sg, v5 = Uy

» Users 2 and 3 pick s;, v; = U, + U

P3 JscL f() 0
fs5.1) % ®\ﬁ
\ S

é SIC ¥ SSD MMSE — JsCL f(-) S

Sk, 1 /

{o15, 13 JscL ()

(vs @ s5)
Iteration 1 Iteration 2

> S'D - {§17§37§9}-
» Decoded users: 2,3.

» Sp = {s3,55,515}-
» Decoded users: 1.
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(Blind) Spreading Sequence Detector

y,S

Energy Estimator

Sorting

. . _ T 2
> For each s; € S compute the statistic ¢; = Z (y,- §j)

Ne

i=1
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(Blind) Spreading Sequence Detector

e 1> Sj
e €p; §jz
)
Energy Estimator Sorting Thresholding
€55,

. . _ T 2
> For each s; € S compute the statistic ¢; = Z (y,- §j)

» Sort sequences in descending order of their statistics

Ne

i=1
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(Blind) Spreading Sequence Detector

y,S

e 8.5 & 8j> [ Ml
€ €2 S), €j2>S) xlb'
Energy Estimator Sorting Thresholding
€55,

Ne

. . _ T 2
> For each s; € S compute the statistic ¢; = Z (y,- §j)

i=1

» Sort sequences in descending order of their statistics

> Based on ej compute estimate WJ\ of | M|
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(Blind) Spreading Sequence Detector

el ej17§j1 ej17§j17 |Mj1|
€ ej2:§j2 ej27§j21 A lj2|
y.S . . .
Energy Estimator _ Sorting : Thresholding : D
: —
€58, E ‘A4j|:iK’+
— jeD

Ne
- 2
> For each s; € S compute the statistic ¢; = Z (y,T§j)
i=1
Sort sequences in descending order of their statistics
Based on e; compute estimate | M| of [ M;]
Output first |D| sequences from the sorted list

Define M := diag(| M|, | Mo, . .., |M\|D|\)

vvyVvVvyy
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MMSE Estimator

» The received signal is hypothesized as

Y=SpVp+Z
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MMSE Estimator

» The received signal is hypothesized as

Y=SpVp+Z

» Pass Y through a MMSE filter to obtain an estimate Y,

Vi
- Vo ~
V=|"|=MSL(SpSH+ /) 1Y
- Linear MMSE filter
Vip|
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MMSE Estimator

» The received signal is hypothesized as

Y=SpVp+Z

» Pass Y through a MMSE filter to obtain an estimate Y,

Vi
- Vo ~
V=|"|=MSL(SpSH+ /) 1Y
- Linear MMSE filter
VD

» The error covariance matrix is given by
T = lp| — MSL(SpSh + In,) 'MSp
> We convert v; and ¥j; into LLRs to be fed to Polar decoder

8/ 17
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JSCL Decoding of Polar Codes

» Recall that multiple users can pick the same spreading sequence

» m-user GMAC over [, is equivalent to single user AWGN over F7'.
z ~ N(0,0°) z ~ N(0,

User 107 l%
User 2B o AL dm DS e o

LA —
User m c(m, ) 7(+)
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JSCL Decoding of Polar Codes

» Recall that multiple users can pick the same spreading sequence

» m-user GMAC over [, is equivalent to single user AWGN over F7'.
) z ~ N(0,0°) z ~ N(0,

c(1,i
User 14“\1 (L
User 2 <(2.1) @ o y(7) o~ (i) e(m.i) ZT(c(k, i) J
User m c(m. ) 7(+)

>g(:,i):[g(1,i) c(2,i) - g(m,i)]

> Pr(c(:, i) = gly(i)) o< exp (~ VO HE) for g ¢ By

9/ 17
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Example: JSC Decoding of Polar Codes

>» m=2n.=2

d(1,1) € Fy @(2, 1) ey

d(1,2) clFy d(272) € Fy

1
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Example: JSC Decoding of Polar Codes

>» m=2n.=2
4
Py,1) = Pr(d(2,1)|y(1)) = {Pr(00]y(1)), Pr(01]y(1)), Pr (10y(1)), Pr (11]y(1))

>
Py,0) = Pr(d(2,2)]y(2)) = {Pr(00]y(2)), Pr(01]y(2)), Pr (10y(2)) , Pr (11]y(2))

Paen
(&)

Pi2,2)

1
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Example: JSC Decoding of Polar Codes

>» m=2n.=2
>
Py,1) = Pr(d(2,1)|y(1)) = {Pr(00]y(1)), Pr(01]y(1)), Pr (10y(1)), Pr (11]y(1))

Py,0) = Pr(d(2,2)]y(2)) = {Pr(00]y(2)), Pr(01]y(2)), Pr (10y(2)) , Pr (11]y(2))

Pa2,1) ® Pyea,2) @ Pa2,1)

Pi2,2)

> Py = Pae1) ® Py

1
10/17



Example: JSC Decoding of Polar Codes

>» m=2n.=2
>
Py,1) = Pr(d(2,1)|y(1)) = {Pr(00]y(1)), Pr(01]y(1)), Pr (10y(1)), Pr (11]y(1))

Py22) = Pr(d(2,2)ly(2)) = {Pr(00]y(2)) , Pr (01]y(2)), Pr (10]y(2)), Pr (11]y(2))

3(1 1) @ Pa@a)

Pi2,2)

> Py = Pae1) ® Py
> Based on P, ;) make a hard decision g(l, 1) on d(1,1)
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Example: JSC Decoding of Polar Codes

>» m=2n.=2
>
Py,1) = Pr(d(2,1)|y(1)) = {Pr(00]y(1)), Pr(01]y(1)), Pr (10y(1)), Pr (11]y(1))

Py22) = Pr(d(2,2)ly(2)) = {Pr(00]y(2)) , Pr (01]y(2)), Pr (10]y(2)), Pr (11]y(2))

d11 @Edzl)

P(ll)@d2l)®Pd22 Pa.2)

> Py = Pae1) ® Py
> Based on P, ;) make a hard decision g(l, 1) on d(1,1)
Pd(l 2) — Pd(1 1)+d(2,1) © Ed(272)

10/ 17
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Successive Interference Cancellation

> If the decoding is successful, remove v; from y

¥:¥_¥j®§j
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Choice of Parameters

Parameters to choose

» Spreading sequence length
» Rate of the code

» Number of spreading sequences in the master list

12/ 17
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Density Evolution Using Meta-Converse (MC) Bound

> 3 = I|D\ — MS%(S'DS% + Ins)ill\/hsD

> F(Pe;) — v; ® 51, with probability 1 — Pe;
! 0, with probability Pe;
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SNR versus Length of Spreading Sequences

—— K =275
-8 K =200
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e  AMP+Tree Code, (Fengler, et al. '19)

i
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[ee]

i Sparse IDMA, (Pradhan, et al. '19)
== IRSA + Polar Coding, (Marlhakov, et al. ’19)
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Required Ep/Np (dB)

0
25 75 125 175 225 275

Number of active users K

15/ 17
15 /17



Comparison
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e SIC T=4, (Vem, et al. '17)

=== CCS (Amalladinne et al.)

s AMP+Tree Code, (Fengler, et al. '19)

i Sparse IDMA, (Pradhan, et al. '19)

we== IRSA + Polar Coding, (Marshakov, et al. '19)
= Polar+Spreading (Pradhan, et al. '20)

==@== Enhanced AMP+Tree (Amalladinne et al. '20)
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Simulation Results

Required Ey/No (dB)

» List size - 32

> m-4

[ T T T

----- Random Coding
== Proposed Scheme (single-user decoding)
== Proposed Scheme (multi-user decoding)

4

0

.
.
.

AT L L L L

l l l l
2 25 50 100 150 200 250

Number of active users K

» CRC length - 16 bits
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Take Aways

» Proposed a receiver with complexity O(K3) (can be reduced)

v

Blind sequence detection + classical SIC+MMSE receivers

v

Near finite length bound achieving codes are required
(CRC+Polar+List)

All these are standard components of a 5G system

vy

Scaling with the number of users should be improved
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Part VI - Designing Sensing Matries for Heavy
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Outline of Part 6

» In Part 3, we introduced a compressed sensing view of unsourced
multiple access (UMAC)

» In Parts 4&5, we designed codes for the Unsourced MAC
» Here, we take an unsourced MAC view of compressed sensing

» We will design sensing matrices based on UMAC codes
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Heavy hitters in data stream computing
Problem - consider a router in a large network
» Count the number of packets from source i to destination j
» Data vector x is huge, N = 264
» Heavy hitters - only K of them are significant
» Sketch: y = Ax is of much lower dimension
>

Recovery of x from y should happen in sub-linear time

U2319%S

Sketching matrix, n x 28
K-sparse histogram vector

I I A

S92IpuUIl 19%2ed
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U2319%S

Sketching matrix, n x 28
K-sparse histogram vector

S921IpuUIl 19%2ed

I I

Challenge: Very large dimension - K out of N = 28 sparse

» Computational complexity of commodity CS solvers: O(258)
» Sub-linear time algortihms with structured matrices
» Chaining pursuit (Gilbert et al' 07) - O(KB)
» Sparse FFT based algorithm (Chen and Guo'l7) - - O(KB)
> Peeling (Li, Ramchandran '16) - O(KB), K =2°6,0 <5 < 1
> UMAC codes - better sample complexity at higher computational
complexity 47



UMAC Codes for Heavy Hitters

bits

§
i

BPSK

LS vy KN e BN
%2

User 2 Encoder BPSK 209

k2 i e o ]

Channel Code Modulation Spreading

Setch

BPSK

O T T

Pacret (ndex

» Encode the IP address using UMAC code (Polar+Spreading)
» Sketch <— received signal in UMAC

» Recovering heavy hitters «<— decoding users
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UMAC Codes for Heavy Hitters

bits

§
i

LS vy KN e BN
%2

User 2 Encoder BPSK 209

k2 i e o ]

Channel Code Modulation Spreading

BPSK

Setch

BPSK

O T T

Pacret (ndex

» Encode the IP address using UMAC code (Polar+Spreading)
» Sketch <— received signal in UMAC

» Recovering heavy hitters «<— decoding users

» Different no. of packets +— Fading
>

Codewords of non-heavy hitters «— noise
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Simulation Results, K = 25, P(HH) = 0.4

Best K-term Approximation
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