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Warm-up
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A simple experiment

Take photos of a gray scale test ramp

Advice: use a short exposure time and high ISO value

A simple experiment
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A simple experiment

Shot #1

A simple experiment
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A simple experiment

Cross-section

A simple experiment
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6A simple experiment

Shot #2

A simple experiment
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A simple experiment

Shot #3

A simple experiment
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A simple experiment

Shot #4

A simple experiment
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9A simple experiment

Shot #5

A simple experiment
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10A simple experiment

TAKE MANY MORE SHOTS, AND THEN AVERAGE THEM ALL

1

N

X
+ + + ¢ ¢ ¢ + =

A simple experiment
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12A simple experiment

Scatterplot: average vs realization

pointwise
realization

pointwise average

A simple experiment
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13A simple experiment

SUBTRACT THE AVERAGE OF ALL SHOTS FROM ANY OF THE SHOTS

A simple experiment
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SUBTRACT THE AVERAGE OF ALL SHOTS FROM ANY OF THE SHOTS
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15A simple experiment

FOR EACH PIXEL, COMPUTE
SAMPLE MEAN AND SAMPLE STANDARD DEVIATION

W.R.T. THE VARIOUS SHOTS

¾

¹

NOISE IS STRONGER WHERE THE AVERAGE IMAGE IS BRIGHTER:
STANDARD-DEVIATION IS A FUNCTION OF MEAN

SIGNAL-DEPENDENT NOISE

A simple experiment
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16A simple experiment

analysis of raw data from cameraphone CMOS sensor (F&al.SensJ2007)

A simple experiment (Nokia 6600)
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A simple experiment (Samsung S8)

Capture #5 Capture #10

Capture #15 Capture #20

Examples from set of 30 raw images captured under identical settings
with a Samsung S5K2L2 CMOS ISOCELL sensor at ISO 1250.
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A simple experiment

Capture #15 Capture #30
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Sample mean and sample standard deviation
We denote by z̃(m) (x) the pixel value at coordinate x in the m-th
captured frame, modeled as a realization of a random variable z̃ (x).

E {z̃ (x)} ≈ 1

M

M∑
m=1

z̃(m) (x) = ̂E {z̃ (x)}

std {z̃ (x)} ≈

√√√√ 1

M − 1

M∑
m=1

(
z̃(m) (x)− 1

M

M∑
l=1

z̃(l) (x)

)2

= ̂std {z̃ (x)}

̂E {z̃ (x)} ∼ N
(

E {z̃ (x)} , 1

M
var {z̃ (x)}

)
,

̂std {z̃ (x)} ∼ N
(

std {z̃ (x)} , 2 + κ

4M
var {z̃ (x)}

)
,

κ denotes the excess kurtosis of z̃ (x).
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A simple experiment

Pixelwise sample mean Pixelwise sample st.dev.
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Sample histograms of z̃ (x)

00.0250.075

̂E{z̃(x)} ≈ 0.025

0.2 0.3 0.4

̂E{z̃(x)} ≈ 0.3

0.6 0.7 0.8

̂E{z̃(x)} ≈ 0.7

0.85 0.95 1

̂E{z̃(x)} ≈ 0.95

σ2 = 0.0002
κ = 0.71

σ2 = 0.0014
κ = 0.12

σ2 = 0.0029
κ = 0.014

σ2 = 0.0024
κ = 0.032

Below each histogram we report its variance σ2 and excess kurtosis κ.
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Cross section

0.2

0.4

0.6

0.8

1

Cross section

Left: detail from the dataset with highlighted cross section. Right:
cross section (red line) plotted against the pixelwise sample mean

(blue line).
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Mean-St.Dev. Scatterplot
̂

st
d
{z̃

(x
)}

̂E {z̃ (x)}

Scatterplot of the pairs
(

̂E {z̃ (x)}, ̂std {z̃ (x)}
)
drawn as red dots.

The dispersion visible in the scatterplot is described by the
distributions of the estimated pairs.
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Noise Modeling 101, and Beyond
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Additive White Gaussian Noise (AWGN) model

z(x) = y(x) + σξ(x) x ∈ X

y : X → Y ⊆ R unknown original image (deterministic)

σξ(x) i.i.d. zero-mean random error

z : X → Z ⊆ R observed noisy image (random)

x ∈ X ⊆ Z coordinate in the image domain

σ ∈ R+ standard deviation of σξ(x)

ξ(x) standard normal random variable

E {ξ(x)} = 0 var {ξ(x)} = 1

E {z (x)} = y (x) expectation of z

std {z(x)} = σstd {ξ(x)} = σ standard deviation of z

!!! Often z, ξ are used to denote both the
random variables/processes and their realizations.
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Additive White Gaussian Noise (AWGN) model

z

=

y

+

σξ
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Additive White Gaussian Noise (AWGN) model

white:

var {F (σξ)} = constant (noise power spectrum is �at)

This nomenclature is perhaps misleading.

What we demand is σξ(x) to be independent and identically distributed.

identically distributed:

Pr [σξ(x1) < c] = Pr [σξ(x2) < c] ∀c ∈ R

independent:

Pr [σξ(x1) < c] Pr [σξ(x2) < d] = Pr [(σξ(x1) < c) ∩ (σξ(x2) < d)] ∀c, d ∈ R
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Additive White Gaussian Noise (AWGN) model

independence implies whiteness:

F (σξ) (ω) =
∑
x∈X

e−2πiωxσξ(x)

var {F (σξ) (ω)} =
∑
x∈X

∣∣e−2πiωx∣∣2 var {σξ(x)} =

=
∑
x∈X

var {σξ(x)} ( = σ2 |X| because id. distr.)

We can have Gaussian white noise that is not i.i.d.!!

How? It su�ces to have independent but not identically distributed errors.
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Various examples of Gaussian white noise

i.i.d. ramp Cameraman

They are all three Gaussian and white, but only
the i.i.d. one is what is typically assumed as AWGN.

:-(
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Colored noise

Noise is colored when the noise power spectrum is markedly not �at.

The band with larger variance determines the �color�.

white red blue horizontal

Typically modeled by kernel convolution operator against white noise:

F (v ~ ξ) = F (v)F (ξ)

var {F (v ~ ξ)} = |F (v)|2 var {F (ξ)}
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24Homoskedasticity vs. Heteroskedasticity

The noise ´ is homoskedastic if di¤erent noise samples have same variance:

var f´ (x0)g = var f´ (x00)g 8x0; x00 2 X

otherwise it is heteroskedastic and di¤erent noise samples can have di¤erent variance:

var f´ (x0)g 6= var f´ (x00)g for some x0; x00 2 X:

homoskedastic (but not ident.distr.) heteroskedastic

Homoskedasticity vs. Heteroskedasticity
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25Standard-deviation map
Let z (x) = y (x) + ´ (x), x 2 X, with ´ heteroskedastic noise.

Whenever the variance var f´g is deterministic, it makes sense to break ´ into two
factors:

´ = std f´g »

std f´g : X ! R+ standard-deviation map (deterministic)

» : X ! R homoskedastic noise (random)

std f»g (x) = 1 8x 2 X

´

=

std f´g

£

»

Standard-deviation map
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26Signal-dependent noise

The ´ noise is signal-dependent when the distribution of ´ (x) has some parameter that
depends on y (x) :

Pr [´ (x) < c] = F (c; y (x)) ; 8x 2 X and 8c 2 R
with F functionally independent of x:

The most signi�cant situation arises when the variance of ´ depends on y,
i.e. when the standard-deviation map becomes a function of y:

z(x) = y(x) + ¾(y(x)) »(x) ; x 2 X;

¾ : R ! R+ standard-deviation function or curve (deterministic),

»(x) random variable E f»(x)g = 0 var f»(x)g = 1.

Here » is homoskedastic noise with unitary variance.
The distribution of » (x) may depend on y (x), but what most matters is its variance.

Signal-dependent noise
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27Multiplicative noise

Multiplicative noise is special case of signal-depedent noise where the mean is the direct
scaling parameter of the noise distribution.

z(x) = y(x) ¢ ´mult (x) ; x 2 X;

´mult i.i.d. noise, E f´mult (x)g = 1; std f´mult (x)g = c.

Rewrite in additive signal-dependent form:

z(x) = y(x) + y(x) (´mult (x) ¡ 1) =

= y(x) + y(x) »0(x) =

= y(x) + ¾ (y(x)) »(x) ;

where ¾ : R ! R+, ¾ : y 7¡! c jyj
and »(x) = sign fy (x)g c¡1»0(x) = sign fy (x)g c¡1 (´mult (x) ¡ 1) :

We have E f»(x)g = 0; var f»(x)g = 1.

Multiplicative noise
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28Poisson distributions

Poisson distributions are discrete integer-valued distributions with non-negative
real-valued parameter (mean) µ ¸ 0

z » P (µ) Pr [z = ³jµ] = e¡µ µ
³

³!
; ³ 2 N:

¹ (µ) = E fzjµg = µ

¾2 (µ) = var fzjµg = µ = ¹ (µ)

mean and variance coincide and are equal to the parameter µ

Matlab code: z = poissrnd(theta)

signal-to-noise ratio (SNR):
¹ (µ)

¾ (µ)
=

p
µ ¡!
µ!0

0
¹ (µ)

¾ (µ)
¡!

µ!+1
+1

Poisson distributions
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Poisson distributions

0 10 20 30 40 50

0

20

0

0.1

0.2

0.3

0.4
θ = 1

θ = 3

θ = 10

θ = 20
θ = 30

ζ
θ

p
m
f[
z

(x
)

=
ζ
|θ

]

Distributions with mean θ = 1, 3, 10, 20, 30.
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29Poisson distributions

¾ (µ)

¹ (µ) = µ

Discrete Poisson P (µ) (blue) and continuous normal approximation N (µ; µ) (red)

Poisson distributions

38 / 190



30Normal approximation of Poisson

z » P (µ) means the probability of z Pr [z = ³jµ] = e¡µ µ
³

³!
; ³ 2 N

z » N
¡
¹;¾2

¢
means the probability density of z is }

¡
³j¹;¾2

¢
=

1

¾
p

2¼
e

¡
(³ ¡ ¹)2

2¾2 ; ³ 2 R:

P (µ) ¡!
µ!+1

N (µ; µ)

Matlab code: z = z + sqrt(theta).*randn(size(theta))

Normal approximation of Poisson
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31Normal approximation of Poisson

�p.d.f.� (top) and c.d.f. (bottom) for P (µ) and N (µ; µ), µ = 2; 10; 20; 40.

Normal approximation of Poisson
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Noise-free image y

y
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Noisy Poisson image - peak 256

z ∼ P(y) when peak of y is 256
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Noisy Poisson image - peak 64

z ∼ P(y) when peak of y is 64
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Noisy Poisson image - peak 8

z ∼ P(y) when peak of y is 8
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Noisy Poisson image - peak 1

z ∼ P(y) when peak of y is 1
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Noisy Poisson image - peak 0.1

z ∼ P(y) when peak of y is 0.1
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32Scaled Poisson distributions

Scaled Poisson distributions with scale parameter Â > 0 and mean µ ¸ 0

zÂ » P (µÂ) Pr [z = ³jµ] = e¡µÂ (µÂ)³Â

(³Â)!
; ³Â 2 N; µ 2 [0;+1):

Discrete taking values that are nonnegative integer multiples of
1

Â
.

¹ (µ) = E fzjµg = µ

¾2 (µ) = var fzjµg =
µ

Â

mean is equal to the parameter µ and coincides with the variance times Â.

The scale parameter Â controls the relative strength of the noise: SNR
¹ (µ)

¾ (µ)
=

p
Âµ.

Matlab code: z = poissrnd(chi*theta)/chi

Normal approximation for large µ: z » N (µ; µ=Â)

Matlab code: z = z + sqrt(theta/chi).*randn(size(theta))

Scaled Poisson distributions
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33Scaled Poisson distributions

small Â is detremental when µ varies on a narrow range of values

Scaled Poisson distributions
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34Poissonian noise

Let y : X ! Y µ R+ original image (deterministic, possibly unknown)

Â > 0 scaling factor

z (x)Â » P (Ây (x)) ; 8x 2 X:

E fz (x)Âg = ÂE fz (x)g = Ây (x) =) E fz (x)g = y (x) ;

var fz (x)Âg = Â2 var fz (x)g = Ây (x) =) var fz (x)g =
y (x)

Â
:

This can be rewritten in the usual form as

z (x) = y (x) +

r
y (x)

Â
»(x) ; 8x 2 X;

where E f»(x)g = 0 and var f»(x)g = 1.

The term
q

y(x)
Â »(x) is the so-called Poissonian noise.

Poissonian noise
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35Scaled Poisson observations

Â = 1000

Scaled Poisson observations
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36Scaled Poisson observations

Â = 300

Scaled Poisson observations
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37Scaled Poisson observations

Â = 100

Scaled Poisson observations
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38Scaled Poisson observations

Â = 50

Scaled Poisson observations
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39Scaled Poisson observations

Â = 10

Scaled Poisson observations
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40Scaled Poisson observations

Â = 1

Scaled Poisson observations
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41One-parameter families of distributions

A one-parameter family of distributions DDDDDDDDD = fDµg is a collection of distributions, each of
which is identi�ed bit the value of a univariate parameter µ 2 £ µ R.

Let z 2 Z µ R be a random variable distributed according to a one-parameter family of
distributions DDDDDDDDD = fDµg :

For each individual µ 2 £: Dµ is a distribution, zjµ » Dµ; zjµ 2 Zµ µ Z

¹ (µ) = E fzjµg conditional expectation of z expressed as function of µ.
¾ (µ) = std fzjµg conditional standard deviation of z expressed as function of µ.

Poisson example:
£ = [0;+1) ½ R
Dµ is one Poisson distribution with parameter µ 2 £
Zµ = f0; 1; 2; : : : g = N
¹ (µ) = µ
¾ (µ) = µ

One-parameter families of distributions
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42One-parameter families of distributions: examples
Dµ ¹ (µ) ¾ (µ)

Poisson
Pr [z = ³jµ] = e¡µ µ³

³! , ³ 2 N; µ 2 [0;+1) µ
p
µ

Scaled Poisson (scale Â > 0)
Pr [z = ³jµ] = e¡µÂ (µÂ)³Â

(³Â)! , ³Â 2 N; µ 2 [0;+1) µ
q

µ
Â

Binomial (n trials)

Pr [z = ³jµ] =
¡n
³

¢
µ³ (1 ¡ µ)n¡³ , ³ 2 N; µ 2 [0; 1] nµ

p
nµ (1 ¡ µ) =

q
¹(µ)(n¡¹(µ))

n

Scaled binomial (n trials, scale n)

Pr
h
z = ³

n jµ
i

=
¡n
³

¢
µ³ (1 ¡ µ)n¡³ , ³ 2 N; µ 2 [0; 1] µ

q
µ(1¡µ)

n

Negative binomial (exponent k)

Pr [z = ³jµ] =
¡(³+k)
³!¡(k)

³
µ

µ+k

´³ ³ k+µ
k

´¡k
, ³ 2 N; µ 2 [0;+1) µ

q
µ(µ+k)

k

Scaled negative binomial (exponent k, scale Â > 0)
Pr
h
z = ³

Â jµ
i

=
¡(³+k)
³!¡(k)

³
µ

µ+k

´³ ³
k+µ
k

´¡k
, ³ 2 N; µ 2 [0;+1) µ

Â

q
µ(µ+k)

Â2k
=
q

¹(µ)(¹(µ)Â+k)
Âk

Multiplicative normal (scale Â > 0)

pdf [zjµ] (³) = Â

µ
p

2¼
e

¡ (³¡µ)2Â2

2µ2 µ µ
Â

Doubly censored normal with standard-deviation s (µ)

pdf [zjµ] (³) = ©
³

¡y
¾(y)

´
±0(³) + 1

¾(y)Á
³
³¡y
¾(y)

´
Â[0;1] +

³
1 ¡ ©

³
1¡y
¾(y)

´́
±0(1 ¡ ³)

One-parameter families of distributions: examples
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43Multiplicative Gaussian noise pdf [zjµ] (³) (Â = 1)Multiplicative Gaussian noise pdf [z|θ] (ζ) (χ = 1)
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44Multiplicative Gaussian noise pdf [zjµ] (³) (Â = 10)Multiplicative Gaussian noise pdf [z|θ] (ζ)
(χ = 10)
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45Poisson-Gaussian noise

Each observed pixel intensity value z (x), x 2 X, is composed of a scaled Poisson and an
additive Gaussian component:

z (x) = ®p (x) + n (x) ;

where p (x) » P (y (x)), y (x) is the unknown noise-free pixel intensity, ® > 0 is a gain or
scaling parameter, and n (¢) » N

¡
0; ¾2

¢
.

Poisson-Gaussian noise is de�ned as
´ (x) = z (x) ¡ ®y (x) :

Signal-dependent standard deviation:
std fz (x) jy (x)g =

p
®2y (x) + ¾2:

Poisson-Gaussian noise
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46Rician-distributed data

Let z » R (º; ¾) be the realization of a random variable with Rician p.d.f. with
parameters º ¸ 0 and ¾ > 0,

p (zjº; ¾) =
z

¾2
e¡ z2+º2

2¾2 I0
³zº
¾2

´
; z ¸ 0; (1)

where In denotes the modi�ed Bessel function of order n.

Equivalently, z =
q

(crº + ¾´r)
2 + (ciº + ¾´i)

2;

where cr and ci are arbitrary constants such that 0 · cr; ci · 1 = c2r + c2i , and
´r ; ´i » N (0; 1).

Observation model for magnitude magnetic resonance (MR) images/volumes:

z (x) » R (º (x) ; ¾), x 2 X ½ Zd, d = 2; 3 (pixel or voxel coordinates).

º : X ! R+ is the unknown original (noise-free) signal

z : X ! R+ is the raw magnitude MR data.

Rician-distributed data
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z

º

The one-parameter family of Rician p.d.f.�s R (º; 1) for º 2 [0; 5] :

The parameter ¾ is assumed as �xed. Thus, z is treated as distributed according to a
one-parameter family of Rician distributions, parametrized with respect to º: R (¢; ¾).
Assuming ¾ = 1 is not a serious restriction: z » R (º; ¾) i¤ ¸z » R (¸º; ¸¾) 8¸ > 0:
Thanks to this scaling we can carry out all analysis for ¾ = 1, and then apply it to other
cases ¾ > 0 upon simple linear rescaling of data and parameters.
Given f : R+ ! R, we have that var ff (z) jº; ¾g = var ff¸ (w) j¸º; ¸¾g, where
z » R (º; ¾), w = ¸z » R (¸º; ¸¾) and f¸ (w) = f (w=¸) 8w 2 R+.
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48Mean and variance of Rician data

The mean and variance of z » R (º; ¾) are, respectively,

¹ = E fzjº; ¾g = ¾

r
¼

2
L

µ
¡ º2

2¾2

¶
; (2)

s2 = var fzjº; ¾g = 2¾2 + º2 ¡ ¼¾2

2
L2

µ
¡ º2

2¾2

¶
; (3)

where L (x) = ex=2
£
(1 ¡ x) I0

¡
¡x

2

¢
¡ xI1

¡
¡x

2

¢¤
.

For large values of º we have

E fzjº; ¾g ¼ º +
¾2

2º
; var fzjº; ¾g ¼ ¾2 ¡ ¾4

2º2
. (4)

Two crucial issues follow from (2) and (3):
(3) implies that the noise variance is not uniform over the data.
the expectation (2) di¤ers essentially from the parameter of interest, namely º.

The former problem is addressed by the (forward) variance-stabilizing transformation
applied to the data before prior to �ltering, wheareas the latter is addressed by the
inverse transformation applied upon �ltering, which is designed so to directly provide an
estimate of º out of the �ltered transformed data.

Mean and variance of Rician data
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49Mean of Rician data

E fzjº; 1g ¡ º

º

Mean of Rician data
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50Standard-deviation of Rician data

stdfzjº; 1g

º

Standard deviation of Rician data
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51Rayleigh pdf [zjµ] (³)Rayleigh pdf [z|θ] (ζ)
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52Doubly censored normal (clipping from below and above)

Underlying normal p.d.f. (uncensored) drawn in red

Doubly censored normal

(clipping from below and above)
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53Doubly censored normal as
a model for clipped noisy data

original added AWGN and then clipped

(F&al.TIP2008, F.SigPro2009)

Doubly censored normal as
a model for clipped noisy data

0

0.5

1
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54Raw data as clipped signal-dependent observations

~z(x) = max f0;min fz(x) ; 1gg ; x 2 X ½ Z2;

z(x) = y(x) + ¾(y(x)) »(x)

y : X ! Y µ R unknown original image (deterministic)

¾(y(x)) »(x) zero-mean random error

¾ : R ! R+ standard-deviation function (deterministic)

»(x) random variable E f»(x)g = 0 var f»(x)g = 1

y (x) = E fz (x)g expectation

¾(y(x)) = std fz(x)g standard deviation

Raw data as clipped signal-dependent observations

69 / 190



55Raw data as clipped signal-dependent observations

z(x) = y(x) + ¾(y(x)) »(x)

~z(x) = max f0;min fz(x) ; 1gg ; x 2 X ½ Z2;

~z(x) = ~y(x) + ~¾(~y(x)) ~»(x)

~y(x) = Ef~z(x) j~y(x)g expectation

~¾ : [0; 1] ! R+ standard-deviation function (of expectation)

~¾(~y(x)) = std f~z(x) j~y(x)g standard deviation

Raw data as clipped signal-dependent observations
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56Modeling raw-data signal-dependence before clipping

The random error before clipping is composed of two mutually independent parts:

¾ (y (x)) » (x) = ´p (y (x)) + ´g (x)

´p Poissonian signal-dependent component (photonic)

´g Gaussian signal-independent component (everything else)

¡
y (x) + ´p (y (x))

¢
Â » P (Ây (x)) ; Â > 0

´g (x) » N (0; b) , b > 0

¾2(y(x)) = ay(x) + b; a = Â¡1

Variance is an a¢ne function of mean.

Higher-order models (e.g., quadratic functions) are also possible and allow to better
capture nonlinearities in sensor response.

Modeling raw-data signal-dependence before clipping
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57Heteroskedastic normal approximation

~z(x) = max f0;min fz(x) ; 1gg ; x 2 X ½ Z2;

z(x) = y(x) + ¾(y(x)) »(x)

¾ (y (x)) » (x) =
p
ay(x) + b» (x) , » (x) » N (0; 1)

Heteroskedastic normal approximation
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58(Generalized) Probability distributions

Before clipping : }z(³ jy) = 1
¾(y)

Á
³
³¡y
¾(y)

´

After clipping : }~z(³ jy) = 1
¾(y)Á

³
³¡y
¾(y)

´
Â[0;1] + ©

³
¡y
¾(y)

´
±0(³) +

³
1 ¡ ©

³
1¡y
¾(y)

´́
±0(1 ¡ ³)

Á and © are p.d.f. and c.d.f. of N (0; 1)

±0 is Dirac delta function Â[0;1] is characteristic (=indicator) function of interval [0; 1]

(Generalized) Probability distributions
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59Expectations and variances

E f~zjyg = ~y = ©
³

y
¾(y)

´
y ¡ ©

³
y¡1
¾(y)

´
(y ¡ 1) + ¾(y)Á

³
y

¾(y)

´
¡ ¾(y)Á

³
y¡1
¾(y)

´
;

varf~zjyg = ~¾2(~y) = ©
³

y
¾(y)

´ ¡
y2 ¡ 2~yy + ¾2(y)

¢
+

+ ~y2 ¡ ©
³
y¡1
¾(y)

´¡
y2 ¡ 2~yy + 2~y + ¾2(y) ¡ 1

¢
+

+ ¾(y)Á
³
y¡1
¾(y)

´
(2~y ¡ y ¡ 1) ¡ ¾(y)Á

³
y

¾(y)

´
(2~y ¡ y) :

These equations are �universal�, in the sense that the are valid for any variance function
¾2 (y), including non-a¢ne ones.

(F.SigPro2009)

Expectations and variances
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60Expectations and variances

y = E fzjyg ; ¾(y) = stdfzjyg ; ~y = E f~zjyg ; ~¾(~y) = stdf~zjyg :

(F.SigPro2009)

Standard-deviation function ¾ (y) =
p

0:01y + 0:042 (solid line) and the corresponding
standard-deviation curve ~¾ (~y) (dashed line).
The gray segments illustrate the mapping ¾ (y) 7¡! ~¾ (~y).
The small black triangles N indicate points (~y; ~¾ (~y)) which correspond to y = 0 and y = 1.

Expectations and variances
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a = 0:022; 0:062; 0:102

b = 0:042

a = 0:042

b = 0:022; 0:062; 0:102
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The model does indeed �t the data
(Samsung S8)

Scatterplot of the pairs
(

̂E {z̃ (x)}, ̂std {z̃ (x)}
)
drawn as red dots, and estimated

clipped (black dashed line) and non-clipped (black continuous line) noise standard
deviation curves. The small black triangles N indicate points (ỹ, σ̃ (ỹ)) which

correspond to y = 0 and y = 1.
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Declipping example

left: original (range [-0.2, 1.2]) center+right: noisy and clipped (range [0, 1])



Denoising clipped data (range [0, 1])

Declipping example



Denoising and declipping.

Declipping example



Denoising and declipping.

Declipping example



Cross-sections of observations and estimates.

Declipping example



Principles scatterplot �tting (1/2)

Goal: estimate the standard-deviation function (e.g., a, b).

Approach: build a scatterplot (mean, st.dev), �t a curve.

Bivariate conditional PDF model for scatterpoints:

pdf [(ŷi, σ̂i) |ỹi = ỹ] = pdf [ŷi|ỹi = ỹ]pdf [σ̂i|ỹi = ỹ] .

Examples: product of univariate Gaussian PDFs (F.et al., 2008), a product of

Gaussian-Cauchy mixtures (Azzari&F., 2014).

Posterior likelihood function L with the prior density pdf [y]:

L (a, b) =

N∏
i=1

∫
pdf [(ŷi, σ̂i) |ỹi = ỹ] pdf [y] dy.

Non-informative non-negative prior for y (typical for raw data):

L (a, b) =

N∏
i=1

∫ ∞
0

pdf [(ŷi, σ̂i) |ỹi = ỹ] dy .

Estimation of curve parameters:
(
â, b̂
)

= argmaxa,bL (a, b) .
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Non-informative non-negative prior for y (typical for raw data):

L (a, b) =

N∏
i=1

∫ ∞
0
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Principles scatterplot �tting (2/2)

Classical scheme for building scatterplots from a single image

Employ some local or nonlocal low-pass (for mean) and high-pass
�ltering (for standard deviation);
E.g., split image into wavelet approximation and detail coe�cients.

Challenge: ignore edges or high-frequency texture

1. Partitioning of the codomain to pair mean and st.dev. estimates
(conditioning)

2. Use wavelet approximation coe�cients to estimate conditional

expectations

3. Use wavelet detail coe�cients to estimate conditional

standard-deviation.

It is crucial to use robust sample estimators, such as the Median
Absolute Deviation (MAD), Inter-Quantile Range (IQR), or NoiseNet
(Uss et al., 2018).
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105Noise estimation
removal of strong edges and wavelet decomposition

(F.&al.TIP2008)

Signal separation
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106Noise estimation: codomain partitioning (level sets)

two level sets for di¤erent intervals of the codomain partition

(F.&al.SensJ2007,F.&al.TIP2008)

Codomain partitioning (level sets)
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62Model does indeed �t the data

(F.&al.TIP2008)

Model does indeed �t the data
(Fuji�lm FinePix)
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The model does indeed �t the data
(Samsung S8)

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

Noise standard deviation (black curve) σ (y) estimated (Azzari&F.,
2014) from one image of the 30 images from the dataset. We show
also the estimate of the clipped standard deviation (dashed curve)
σ̃ (ŷ) and the scatterplot used for the �tting.

â = 4.315 · 10−3, b̂ = 5.814 · 10−5.
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109Noise estimation: easy examples
smooth targets with full codomain



Noise estimation: easy examples



111Importance of a good parametric model
complex targets with incomplete/sparse codomain



Importance of a good parametric model



63Limit cases and patologies

¾(y) = ®y, ® = 1; 1
2 ¾(y) =

p
5y ¡ 4

¾(y) = 1
4e

y ¾(y) = 4y2 ¡ 2y + 1
4

(F.SigPro2009)

Limit cases and patologies

The semicircular envelope corresponds to {0, 1} binary distributions,

which have mean ỹ and standard deviation
√
ỹ (1− ỹ).
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Variance Stabilizing Transforms (VST)

85 / 190



65Motivation

Signal-dependent errors are particularly undesirable because

² basic data analysis and processing methods (such as those studied in earlier courses),
² standard statistical procedures implemented in computing environments (Matlab, R,

Mathematica, etc.),
² o¤-the-shelf algorithms,

are typically designed and implemented for identically distributed errors.

Variance stabilization attempts to make the variance of the errors to be the same.

Variance Stabilization: Motivation
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66Variance-stabilization problem

Find a function f : Z ! R such that the transformed variable f (z)
has constant standard deviation, say, equal to 1, std ff (z) jµg = 1.

such f is a variance-stabilizing transformation (VST)

f should be independent of µ

Bene�ts:

² the (conditional) standard deviation does not depend anymore on the distribution pa-
rameter;

² heteroskedastic z turns into a homoskedastic f (z).

Variance-stabilization problem

87 / 190



67Variance stabilization: heuristicsVariance Stabilization: Heuristics
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74Variance stabilization: heuristicsVariance Stabilization: Heuristics
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75Variance stabilization: heuristics
Classic heuristic stabilizer as inde�nite integral form

f (z) =

Z z 1

¾ (µ)
d¹ (µ) : (5)

Idea: consider a local �rst-order expansion of f at ¹ (µ)
(i.e., assume ¾ (µ) locally constant),

f (z) ' f (¹ (µ)) + (z ¡ ¹ (µ))
@f

@z
(¹ (µ)) ;

We have

std ff (z) jµg ' @f

@z
(¹ (µ))¾ (µ) ;

then impose std ff (z) jµg = 1 and obtain the inde�nite integral (5).

Known and used already in the 1930�s (e.g., Tippett 1934, Bartlett 1936), often rediscovered
in signal processing (e.g., Prucnal&Saleh 1981, Arsenault&Denis 1981, Kasturi et al. 1983,
Hirakawa&Parks 2006).

Very rough, but useful as a �rst guess: nearly all classical stabilizers can be seen as a slight
modi�cation of (5).

Variance Stabilization: Heuristics
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76Exact variance stabilization is typically
impossible to achieve

Positive result: multiplicative noise
f (z) = log jzj

Negative result: Bernoulli
Binary samples z 2 f0; 1g of the Bernoulli distribution with parameter µ = E fzjµg

cannot be stabilized to the same constant variance for di¤erent values of µ:

E fg (z) jµg = µg (1) + (1 ¡ µ) g (0)

var fg (z) jµg = E
n
(g (z) ¡ E fg (z) jµg)2 jµ

o
= (g (0) ¡ g (1))2 µ (1 ¡ µ).

Exact stabilization is not possible for Poisson, Binomial, and most other families used in
applications.

In practice, we deal with either approximate or asymptotic stabilization.

Exact variance stabilization is
typically impossible to achieve
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77Classical variance stabilization for Poisson

std ff (z) jµg

E fzjµg = µ

f (z) =
R z 1

¾(µ)
d¹ (µ) =

R z 1p
µ
d¹ (µ) = 2

p
z:

Bartlett 1936: 2
q
z + 1

2

Anscombe 1948: 2
q
z + 3

8 (Anscombe attributes it to A.H.L. Johnson)

Freeman&Tukey 1950:
p
z +

p
z + 1

In the same way stabilizers were derived for the Binomial and Negative Binomial distrib-
ution families (�angular� transformations based on the arcsin and hyperbolic arcsin).

Classical variance stabilization for Poisson
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78Variance stabilization for Poisson and related

Murtagh, Starck, and Bijaoui, 1995: Generalized Anscombe transformation (GAT) for
Poisson-Gaussian noise.

GAT is a family of VSTs parametrized by the Poisson gain ® and the Gaussian std ¾:

f®;¾(z) =

(
2
®

q
®z + 3

8®
2 + ¾2; z ¸ ¡ 3

8®¡ ¾2

®

0; z < ¡ 3
8
®¡ ¾2

®

:

Asymptotically accurate stabilization for large y: var ff®;¾(z) j yg = 1 + O(y¡2)
Poor stabilization for small y.

Fryzlewicz, Nason, et al. 2004-2008: wavelet-Fisz transforms that return spectra having
approximately constant variance.

Zhang, Fadili, and Starck, 2008: Generalization of Anscombe for �ltered (i.e. for linear
combinations of) Poisson-Gaussian variates.

All these results enjoy some form of asymptotic optimality, but good stabilization for small
µ is never achieved.

Variance stabilization for Poisson and related
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79Generalized Anscombe transformation

(a) GAT for ¾ = 0:357 (® = 1) (b) Stabilized standard deviation.
obtained with the GAT in (a)

Generalized Anscombe transformation
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80Variance stabilization: three milestone works

² Curtiss 1943: general asymptotic theorems are proved (and later Bar-Lev&Enis 1990:
alternative formulation)
� gave theoretical support to empirical stabilizers that were already used (and also to

others yet to appear).

² Efron 1981: existence of transformations for exact variance stabilization and/or perfect
normalization.
� formalizes su¢cient conditions for existence of exact stabilizers (�general transfor-

mation families� framework), and provides their analytical expressions.
� results are nonparametric and nonasymptotic.
� di¢cult to use in practice (assumes too much smoothness and invertibility of para-

metrized mappings).

² Tibshirani 1986: AVAS procedure for regression
� approximate variance stabilizing transformations are iteratively computed by recur-

sive application of the integral stabilizer (iterative re�nement of the stabilizer)
� developed for data-driven application, hints about potential use for random vari-

ables.
� nonparametric and nonasymptotic.

Variance stabilization: three milestone works
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81Exact stabilization for general
transformation families (Efron 1981)

Exact stabilization is possible at least for some special classes of distribution families.

General scaled transformation family:
z = g¡1 (p (µ) + q (µ)w) ;

where w » N (0; 1) and g; p and q are smooth functions.

General transformation family has q (µ) ´ q.

Let z follow a general transformation family, pdf [zjµ] be the conditional p.d.f. of z, and
# (µ) = med fzjµg be the conditional median of z given µ. The exact VST f can be
computed as:

f (z) =

Z z pdf [zjµ] (#)

Á (0)
d# (integration w.r.t. median),

where Á is the p.d.f. of the standard normal N (0; 1).

Exact stabilization for general
transformation families (Efron 1981)
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82Optimization of VSTs: Motivation

² It is typically impossible to achieve simultaneously good stabilization for all parameter
values (see Freeman & Tukey): thus, when a stabilizer appears to be better than another
for some values of the parameter, it is likely that for other values it is actually worse.
In this sense, there might be no �best stabilizer�.

² There is no universal objective criterion for assessing the goodness of a stabilizer. Simply
demanding std ff (z) jµg to be as close as possible to 1 is vague and ambiguous.

² Common stabilizing transformations are often based on coarse asymptotics, developed
between the 1930�s and 1950�s without leveraging any numerical optimization.

(F.2009)

Optimization of VSTs: Motivation
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83Variance stabilization as a minimization problem

Let
ef (µ) = ¾f (µ) ¡ c

be the local error because of inexact stabilization (where locality is intended by the condi-
tioning on µ) and de�ne a global cost functional as

F (f) =

Z
jef (µ)j dµ: (6)

We may formulate the variance stabilization problem as the solution of
argmin

f
F (f) (7)

Variance stabilization is exact only when F (f) = 0 for some f .

Minimization needs to be constrained to some particular class of functions, such as strictly
monotone, Lipschitz, smooth functions, etc.

Variance Stabilization as a minimization problem
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84Variance stabilization as a minimization problem

We have seen that it makes little sense to aim at exact variance stabilization simultaneously
for all parameter values.

We consider a separable weighted cost functional (stabilization functional) of the form

F (f) =

Z
£

wµ (µ)we (ef (µ)) dµ; (8)

where the weight functions wµ and we provide di¤erent weighting for the di¤erent values
of µ and di¤erent stabilization errors ef (µ), respectively.

In particular, we design special weights we that favor approximate stabilization while ig-
noring very large stabilization errors.

Variance Stabilization as a minimization problem
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92Optimization by direct search
ou ; ol = 1:5, r0

u ; r
0
l = 0:2, r00

u ; r
00
l = 0:5, °u ; °l = 0:8

variance-stabilizer f and the mapping E fzjµg 7! E ff (z) jµg
stabilization functional F (f) = 0.096

Optimization by direct search (F.2009)

106 / 190



93Optimization by direct search: relaxing monotonicity
ou ; ol = 1:5, r0

u ; r
0
l = 0:2, r00

u ; r
00
l = 0:5, °u ; °l = 0:8

variance-stabilizer f and the mapping E fzjµg 7! E ff (z) jµg
stabilization functional F (f) = 0.079

Optimization by direct search:
relaxing monotonicity
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94Optimization by direct search
ou ; ol = 1:5, r0

u ; r
0
l = 0:2, r00

u ; r
00
l = 0:5, °u ; °l = 0:8

stdff (z) jµg

E fzjµg = µ

Stabilization accuracy for Poisson data
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95Optimization by direct search
ou ; ol = 1:5, r0

u ; r
0
l = 0:2, r00

u ; r
00
l = 0:5, °u ; °l = 0:8

stdff (z) jµg

E fzjµg = µ

Stabilization accuracy for Poisson data
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150Noise estimation

a = 0.003978 b =0.0004787

(F.&al.2008)

Optimization of VST for raw data (F.2009)
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151Variance stabilization

fk std ffk (~z) j~yg

(F.2009)

Optimization of VST for raw data (F.2009)
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152Variance stabilization

std ff0 (~z) j~yg vs std ff2000 (~z) j~yg

(F.2009)

Optimization of VST for raw data (F.2009)
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97Regularized VSTs for the Rician family of distribution

f(z)

z

std ff(z) jµg

µ

¸asympt = 1, ¸smooth = 10¡2, ¸inverse = 10¡1
2 .

(F.ISBI2011)

Optimization of VST for Rician data (F.2009)
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98Regularized VSTs for the Rician family of distribution

f(z)

z

std ff(z) jµg

µ

¸asympt = 1, ¸smooth = 10¡4, ¸inverse = 0.

(F.ISBI2011)

Optimization of VST for Rician data (F.2009)
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99Regularized VSTs for the Rician family of distribution

f(z)

z

std ff(z) jµg

µ

¸asympt = 1, ¸smooth = 10¡6, ¸inverse = 10¡5
2 .

(F.ISBI2011)

Optimization of VST for Rician data (F.2009)
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100Regularized VSTs for the Rician family of distribution

f(z)

z

std ff(z) jµg

µ

¸asympt = 1, ¸smooth = 10¡8, ¸inverse = 0.

(F.ISBI2011)

Optimization of VST for Rician data (F.2009)

116 / 190



101Optimization of rational polynomial VST

To e¤ectively regularize the optimization, we can also seek the solution within a speci�c
class of functions.

Poisson-Gaussian VST optimization
Find stabilizer by optimizing the coe¢cients of polynomials P (z) and Q(z) in

f1;¾(z) = 2

vuutPN
i=0 piz

iPM
i=0 qiz

i
= 2

s
P (z)

Q(z)
; (9)

Constrain polynomials such that the VST necessarily approaches the GAT asymptotically.
In this way, the optimized VST always attains good asymptotic stabilization:

P (z)

Q(z)
¡ z ¡ 3

8
¡ ¾2 ! 0 as z ! +1 (10)

at a rate of O(z¡1). For N = 3 we have

f1;¾(z) = 2

s
p3z3 + p2z2 + p1z + p0

p3z2 + [p2 ¡ p3 (3=8 + ¾2)] z + 1
; (11)

which depends solely on fpig3
i=0.

(MF.TIP2014)

Optimization of rational polynomial VST

117 / 190



102Optimization of rational polynomial VST for
Poisson-Gaussian noise

(MF.TIP2014)

Optimization of rational polynomial VST
for Poisson-Gaussian noise
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1133.2. Signal-depedent noise estimation using VST

Goal: estimate the standard-deviation function.

Idea: Di¤erent standard-deviation functions are typically stabilized by di¤erent VSTs:
�nding a VST that stabilizes the data can be equivalent to �nding the standard-deviation
function.

Challenges:
� stabilization is typically inaccurate even when the standard-deviation function is

known;
� detecting noise-parameter mismatch

The generic algorithm iterates the following steps:

1. Apply VST f¾̂ based on current estimate ¾̂ of st.dev. function ¾:

2. Assess stabilization of f¾̂ (z) :
If unable to improve stabilization further, the current ¾̂ is the �nal estimate;
else, modify ¾̂ and go to 1.

Signal-dependent noise estimation via VST
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114Rice: Noise-level mismatch

std ff¸(z) jº; 1g

º

(F.ISBI2011)

Standard deviation of the transformed data std ff¸ (z) jº; 1g, for di¤erent values of ¸, as
indicated by the italic numbers superimposed on the curves. Stabilizer f on page 98.

The stabilizer f¸ is asymptotically a¢ne for large z, with derivative approaching 1
¸ . Thus,

std ff¸¾ (z) j¾º; ¾g = std ff¸ (z) jº; 1g ¡!
º!+1

1

¸
. (12)

In other words, for large º, the stabilized standard deviation is approximately equal to the
reciprocal of the under- or over-estimation factor.

Rice: Noise-level mismatch
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115Rice: Noise-level estimation

General iterative scheme based on variance stabilization aimed at estimating the value of
the ¾ parameter from a single realization z.

Let E denote an estimator of the standard deviation ¾ of the homoskedastic noise
corrupting a signal. Popular examples for estimating ¾ of AWGN in natural images are
the median or mean absolute deviation of the high-pass �ltered signal:

EMedianAD fzg = med fjH fzgjg =©¡1 (3=4) ;

EMeanAD fzg = mean fjH fzgjg
p
¼=2;

where H fzg = z ~ whi, and whi is a high-pass convolutional kernel having zero mean and
unit L2-norm, Z

whi = 0;

Z
jwhij2 = 1,

such as, e.g., a wavelet function.

(F.ISBI2011)

Rice: Noise-level estimation
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116Rice: Iterative scheme for estimating ¾

The proposed scheme is expressed by the following recursive system:½
¾̂0 = Efzg ;
¾̂k+1 = Eff¾̂k (z)g ¾̂k; k ¸ 0:

(13)

The idea of this recursion originates from (12). The estimate ¾̂k is used to de�ne a
variance-stabilizing transformation for z. If the estimated value ¾̂k is correct, then the
transformation f¾̂k successfully stabilizes the data and when E is applied to the stabilized
data it should return a value Eff¾̂k (z)g close to 1. If the estimated value ¾̂k is not
correct (e.g., an under-estimate of ¾), then the stabilization is not accurate, being
roughly the inverse of the mis-estimation ratio, E ff¾̂k (z)g ¼ ¾

¾̂k
. Hence, we correct the

current estimate ¾̂k by multiplying it with E ff¾̂k (z)g. Observe that if Eff¾̂ (z)g = 1 for
some value ¾̂, then this ¾̂ is a �xed point for (13) and we want the sequence ¾̂k to
converge to such ¾̂. The system (13) is initialized by the estimator E applied on the
non-stabilized data z.

Under very general conditions, the iterative scheme (13) is guaranteed to converge with
exponential rate to an accurate and stable estimate ¾̂ of the true value ¾.

(F.ISBI2011)

Rice: Iterative scheme for estimating σ
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117Standard deviation contours in
Poisson-Gaussian noise

Let z®;¾ be a Poisson-Gaussian image with (true) parameters ®;¾.

Let B be an image block, with pB (y) being the probability density of y over this block.

Let ®̂; ¾̂ be (possibly erroneous) estimates of ®;¾.

Consider the VST f®̂;¾̂ (such as GAT or an optimized VST).

Denote the average standard deviation of f®̂;¾̂ (z®;¾) over B as

FB (®̂; ¾̂) := EB ff®̂;¾̂ (z®;¾)g =

Z
std ff®̂;¾̂ (z®;¾) jyg pB (y) dy:

FB (®̂; ¾̂) is a bivariate function of the parameter estimates ®̂; ¾̂:

Under some simplifying assumptions, the unitary standard-deviation contours
FB(®̂; ¾̂) = 1 are smooth curves in a neighbourhood of the true parameter values (®; ¾).

We apply the results by devising a VST-based algorithm for estimating ® and ¾.

(M.&F.TIP2014)

Standard-deviation contours in
Poisson-Gaussian noise
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118(®̂; ¾̂) plane and the true parameters (®; ¾)

(M.&F.TIP2014)

(α̂, σ̂) plane and the true parameters (α, σ)
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119(®̂; ¾̂) plane and FB (®̂; ¾̂)¡ 1

(M.&F.TIP2014)

(α̂, σ̂) plane and FB (α̂, σ̂)− 1
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120Unitary contour of FB (®̂; ¾̂)

(M.&F.TIP2014)

Unitary contour of FB (α̂, σ̂)
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121FB (®̂; ¾̂)¡ 1 for di¤erent blocks B

(M.&F.TIP2014)

FB (α̂, σ̂)− 1 for di�erent blocks B

127 / 190



122FB (®̂; ¾̂)¡ 1 for di¤erent blocks B

(M.&F.TIP2014)

FB (α̂, σ̂)− 1 for di�erent blocks B
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123Intersecting contours FB (®̂; ¾̂) = 1

(M.&F.TIP2014)

Intersecting contours FB (α̂, σ̂) = 1
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124Standard deviation contours: Example (GAT)

(a) peak 120, ® = 1, ¾ = 5 (b) GAT contours

Ten standard deviation contours FB (®̂; ¾̂) = 1 computed from ten randomly selected
32 £ 32 blocks B of the 512 £ 512 image (a).

Standard deviation contours: Example (GAT)
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125Standard deviation contours: Propositions

² We assume two ideal hypotheses:

1. We can achieve exact stabilization with the correct noise parameters µ:
std ff®;¾ (z®;¾) jyg = 1 8y ¸ 0: (14)

2. For any VST f®̂;¾̂ and any choice of parameters (®̂; ¾̂) and ®; ¾, the approximation
std ff®̂;¾̂ (z®;¾) jyg ¼ std fz®;¾ jyg f 0

®̂;¾̂ (E fz®;¾ jyg) (15)

holds exactly.

Proposition 1. The mean standard deviation of the stabilized image block f®̂;¾̂ (z®;¾)
can now be written as

EB ff®̂;¾̂ (z®;¾)g =

Z
std fz®;¾jyg
std fz®̂;¾̂jyg

pB (y) dy: (16)

Proposition 2. Given the assumptions in Proposition 1, FB (®̂; ¾̂) has a well-behaving
(locally smooth and simple) unitary contour near the true parameter values ®, ¾.

(M.&F.TIP2014)

Standard deviation contours: Propositions
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126Standard deviation contours: Example (GAT)

(a) peak 120, ® = 1, ¾ = 5 (b) GAT contours

Ten standard deviation contours FB (®̂; ¾̂) = 1 computed from ten randomly selected
32 £ 32 blocks B of the 512 £ 512 image (a).

Standard deviation contours: Example (GAT)
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127Standard deviation contours: Example (GAT)

(a) peak 120, ® = 1, ¾ = 5 (b) GAT contours

Ten standard deviation contours FB (®̂; ¾̂) = 1 computed from ten randomly selected
32 £ 32 blocks B of the 1193 £ 795 image (a).

Standard deviation contours: Example (GAT)
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128Standard deviation contours: Example (Opt.VST)

(a) peak 120, ® = 1, ¾ = 5 (b) GAT contours

Ten standard deviation contours FB (®̂; ¾̂) = 1 computed from ten randomly selected
32 £ 32 blocks B of the 1193 £ 795 image (a).

Standard deviation contours: Example (Opt.VST)
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129Application to parameter estimation

² The contours FB (®̂; ¾̂) = 1 corresponding to di¤erent stabilized blocks B are locally
smooth in the (®̂; ¾̂) plane.

² Typically di¤erent blocks yield di¤erently oriented curves intersecting each other.

² The intersection has coordinates (®, ¾), i.e. the true parameters.

² A cost functional measuring the lack of stabilization is minimized at the intersection.

(M.&F.TIP2014)

Application to parameter estimation
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130Parameter estimation algorithm

1. Initialize the estimates ®̂ and ¾̂.

2. Choose M random blocks Bm, m = 1; : : : ;M from the noisy image z®;¾.

3. Apply a VST f®̂;¾̂ (z®;¾) to each block.

4. Compute an estimate FBm (®̂; ¾̂) = EBm ff®̂;¾̂ (z®;¾)g for the standard deviation of each
stabilized block, using any AWGN standard deviation estimator E.

5. Optimize ®̂ and ¾̂ so to minimize the di¤erence between FBm (®̂; ¾̂)2 and 1 (target
variance) over the M blocks.

² We implement the proposed approach in Matlab, using the optimized VSTs (or GAT
for comparison), and minimizing the cost functional

C(®̂; ¾̂) = mean
m=1;:::;M

¯̄
¯FBm (®̂; ¾̂)2 ¡ 1

¯̄
¯ :

² E is sample standard deviation of wavelet detail coe¢cients.

² We estimate FBm (®̂; ¾̂) from M = 2000 randomly selected 32 £ 32 image blocks.

(M.&F.TIP2014)

Parameter estimation algorithm
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131Experiments

Root Histogram-Weighted Normalized MSE
(RHWNMSE)

:

sZ
R+

p (»)

³p
®2»+¾2¡

p
®̂2»+¾̂2

´2

®2»+¾2 d»

Table: Average RHWNMSE (§ std) over 10 noise realizations for Piano image:
Peak ® ¾ Opt. VST GAT Scatterplot

2 0.5 0.2 0.042 § 0.002 0.286 § 0.008 0.024 § 0.009
2 2.5 0.2 0.007 § 0.005 0.676 § 0.007 0.056 § 0.016
10 0.5 1.0 0.006 § 0.003 0.021 § 0.002 0.011 § 0.007
10 2.5 1.0 0.005 § 0.004 0.013 § 0.005 0.016 § 0.008
30 0.5 3.0 0.006 § 0.003 0.006 § 0.003 0.016 § 0.007
30 2.5 3.0 0.005 § 0.003 0.008 § 0.002 0.014 § 0.006

² Combined with the optimized VSTs, the algorithm yields results that are competitive
with the results obtained with scatterplot method (Foi et al., 2008).

² The optimized VSTs plays an important role in the estimation performance for the
low-intensity cases.
� The GAT is inherently unable to accurately stabilize regions with low mean inten-

sity; this violates our assumption that std ffµ (zµ) jyg = 1 8y ¸ 0.
� Optimized VSTs provide highly accurate stabilization also for low intensities.

Experiments
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VST-based Denoising and
the Exact Unbiased Inverse
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Three steps: stabilization, denoising, and

inversion

VSTs are often exploited for the removal of signal-dependent noise
through the following three-step procedure:

1. Noise variance is stabilized by applying a VST f to the data;
this produces a signal in which the noise can be treated as
additive with unitary variance.

2. Noise is removed using a conventional denoising algorithm �
denoted by Φ � for additive homoskedastic noise (e.g., additive
white Gaussian noise).

3. An inverse transformation is applied to the denoised signal,
obtaining the estimate of the signal of interest.

Denoising algorithms attempt to estimate the expectation, thus,
D = Φ (f (z)) can be treated as an approximation of E{f(z)|θ}.
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Exact unbiased inverse (M.&F.TIP2011)

Since f is necessarily a nonlinear mapping, we may have

E{f(z)|θ} 6= f(E{z|θ}),

and, thus,
f−1(E{f(z)|θ}) 6= E{z|θ},

which means that the inverse transformation applied after denoising
(Step 3.) should not coincide with the algebraic inverse of f , as this
would introduce bias in the estimation of E{z|θ} from the observed z.

The problem of bias in variance-stabilized denoising is solved by the
exact unbiased inverse that is de�ned by the mapping

If : E{f(z)|θ} 7−→ E{z|θ} = µ.

This de�nition assumes that the mapping E{z|θ} 7→ E{f(z)|θ} is
invertible. In particular, we require this mapping to be strictly
increasing, or, equivalently, that E{f(z)|θ} is strictly increasing with
θ. This condition supplants the traditional requirement of invertibility
of f , which instead we may allow to be nonmonotone.

If (D) is a ML estimate of θ under modest hypotheses.

140 / 190



Exact unbiased inverse (M.&F.TIP2011)

Since f is necessarily a nonlinear mapping, we may have

E{f(z)|θ} 6= f(E{z|θ}),

and, thus,
f−1(E{f(z)|θ}) 6= E{z|θ},

which means that the inverse transformation applied after denoising
(Step 3.) should not coincide with the algebraic inverse of f , as this
would introduce bias in the estimation of E{z|θ} from the observed z.
The problem of bias in variance-stabilized denoising is solved by the
exact unbiased inverse that is de�ned by the mapping

If : E{f(z)|θ} 7−→ E{z|θ} = µ.

This de�nition assumes that the mapping E{z|θ} 7→ E{f(z)|θ} is
invertible. In particular, we require this mapping to be strictly
increasing, or, equivalently, that E{f(z)|θ} is strictly increasing with
θ. This condition supplants the traditional requirement of invertibility
of f , which instead we may allow to be nonmonotone.

If (D) is a ML estimate of θ under modest hypotheses.

140 / 190



Exact unbiased inverse (M.&F.TIP2011)

Since f is necessarily a nonlinear mapping, we may have

E{f(z)|θ} 6= f(E{z|θ}),

and, thus,
f−1(E{f(z)|θ}) 6= E{z|θ},

which means that the inverse transformation applied after denoising
(Step 3.) should not coincide with the algebraic inverse of f , as this
would introduce bias in the estimation of E{z|θ} from the observed z.
The problem of bias in variance-stabilized denoising is solved by the
exact unbiased inverse that is de�ned by the mapping

If : E{f(z)|θ} 7−→ E{z|θ} = µ.

This de�nition assumes that the mapping E{z|θ} 7→ E{f(z)|θ} is
invertible. In particular, we require this mapping to be strictly
increasing, or, equivalently, that E{f(z)|θ} is strictly increasing with
θ. This condition supplants the traditional requirement of invertibility
of f , which instead we may allow to be nonmonotone.

If (D) is a ML estimate of θ under modest hypotheses.
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Inversion for Poisson stabilized by Anscombe
Let z be Poisson distributed data.

Applying the Anscombe transform yields f(z) = 2
√
z + 3

8 .

After �ltering of f (z) we obtain D = Φ (f (z)), which we treat as an
approximation of E{f(z)|θ}.

Algebraic inverse: IA(D) = f−1(D) =
(
D
2

)2 − 3
8

Asymptotically unbiased inverse: IB(D) =
(
D
2

)2 − 1
8 .

Typically used in applications.

Exact unbiased inverse: IC : E{f(z) | y} 7−→ E{z | y}.

We have discrete Poisson probabilities P (z | y), so

E{f(z) | y} =

+∞∑
z=0

f(z)P (z | y) = 2

+∞∑
z=0

(√
z +

3

8
· y

ze−y

z!

)
.

The de�nition of IC is implicit, but we can have a closed form
approximation as

IC (D) ∼=
1

4
D2 +

1

4

√
3

2
D−1 − 11

8
D−2 +

5

8

√
3

2
D−3 − 1
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136Inversion for Poisson stabilized by Anscombe
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(M.&F.TIP2011)

Inversion for Poisson stabilized by Anscombe
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137Inversion for Poisson stabilized by Anscombe

original noisy

Ansc.+BM3D+Asy.Unb.Inv. Ansc.+BM3D+Ex.Unb.Inv. Cross section

Inversion for Poisson stabilized by Anscombe
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Exact unbiased inverse of Generalized Anscombe

Transform for Poisson-Gaussian noise
Without loss of generality, we can �x α = 1 and use scaling for α 6= 1.

The EUI of GAT is constructed analogous to the EUI of the
Anscombe transformation:

Iσ : E {fσ (z) | y, σ} 7−→ E {z | y, σ} .

E{fσ (z) | y, σ} =

∫ +∞

−∞
fσ (z) p (z | y, σ) dz =

=

∫ +∞

−∞
2

√
z +

3

8
+ σ2

+∞∑
k=0

(
yke−y

k!
√

2πσ2
e−

(z−k)2

2σ2

)
dz.

Closed form approximation:

Iσ(D) ∼=
1

4
D2 +

1

4

√
3

2
D−1 − 11

8
D−2 +

5

8

√
3

2
D−3 − 1

8
− σ2.
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140Consistency of GAT+EUI at �xed input PSNR
from pure Gaussian to pure Poisson

Consistency of GAT+EUI at �xed input PSNR
from pure Gaussian to pure Poisson
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Correlated Signal-Dependent Noise Model (1/2)

Model 1. Noise Scaling Post Correlation

z(x) = y(x) + σ(y(x)) η(x),

η = ν ~ g, ν (·) ∼ N (0, 1) , σ : y → R+,

where σ is a generic standard deviation function.

E {z} =y,

var {z} =var {σ(y) ν ~ g} = σ2(y) var {ν ~ g} =

σ2(y) ‖g‖22 = σ2(E {z}) ‖g‖22 .

PSD var {F [z]} ≈ |F [g]|2
∥∥σ2(y)

∥∥
1
.
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Correlated Signal-Dependent Noise Model (2/2)
Model 2. Noise Scaling Prior to Correlation

z′(x) = y(x) + σ(y(x)) ν(x),

z(x) = (z′ ~ g) (x).

E {z} ≈ E {z′} ‖g‖1 = y ‖g‖1 ,

var {z} ≈ var {z′} ‖g‖22 = σ2(y(x)) ‖g‖22 ,
where the approximations become accurate in large smooth areas of
the image where the intensity changes gradually.

var {z} ≈ σ2

(
E {z}
‖g‖1

)
‖g‖22

PSD var {F [z]} = |F [g]|2
∥∥σ2(y)

∥∥
1
≈ |F [g]|2

∥∥∥∥σ2

(
E {z}
‖g‖1

)∥∥∥∥
1

.

Thus, both Model 1 and Model 2 express the variance of z as a function of its
expectation, where the main di�erences consist merely in a scaling of the variables,
and this scaling is determined by the `1 and `2 norms of the convolution kernel g.
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Case studies

E�cient Denoising and Deblurring of Extremely
Low-Energy Images Using O�-the-Shelf Gaussian

Filters
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Noisy Poisson image - peak 1

z when peak of y is 1
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Noisy Poisson image - peak 0.1

z when peak of y is 0.1
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Signal-to-noise ratio

std {z|y}

E {z|y}
noise st.dev =

√
noise-free signal

I Noise is relatively stronger at lower intensities

I SNR→ 0 as the intensity decreases.
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Photon-Limited Imaging

y = 0.5 y = 1 y = 5

z z z
Discrete Poisson P (y) vs continuous normal N (y, y)

I We are interested in cases where
peak intensity = [0.1, 4], i.e. SNR < [0.3, 2]

I Only a couple of counts per pixel: photon-limited imaging
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Variance stabilization

I Nonlinear 1-D mapping to make the noise variance
invariant with respect to the noise-free signal:
Variance-Stabilizing Transformation (VST).

I conditional variance no longer depends on unknown
distribution parameter

I heteroskedastic data becomes homoskedastic

I Anscombe VST for Poisson data (1948):

a(z) = 2
√
z + 3/8.

I Noise becomes asymptotically standard normal N (0, 1).

I Constant noise variance → additive noise �lters.

I Fast and simple.
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Poisson Denoising Evolution

from a VST perspective

Poisson Denoising via Anscombe VST (1948)

1: Apply VST → Anscombe
2: Denoising with AWGN �lter
3: Asymptotically unbiased Inverse VST

I Vast literature and applications based on it:
the workhorse of Poisson data processing

Problem: E{a(z) | y} = a(y) + bias(y)
Asymptotically unbiased inverse accurate only for y & 5.

=⇒ Need for ad-hoc �ltering solutions for low-count Poisson data.
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Poisson Denoising Evolution

from a VST perspective

Mäkitalo & Foi (2009)

1: Apply VST
2: Denoising with AWGN �lter
3: Exact Unbiased Inverse VST

I Introduces an exact inverse for the whole input range

E{a(z) | y} 7−→ E{z | y} = y

I Outperformed all earlier approaches.

Problem: For low counts (e.g., peak�1, or SNR�0dB), Poisson
VST are invariably inaccurate.
=⇒ Further need for ad-hoc �ltering solutions for Poisson data
at extremely low counts.
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Poisson Denoising Evolution

from a VST perspective

e.g., Salmon et al. (2014), Giryes et al. (2014), and many others

1: Binning

2: Apply VST
3: Denoising with AWGN �lter
4: Exact Unbiased Inverse VST
5: Debinning

I Binning: replace h× h blocks of pixels with their sum.

I Binned data stays Poisson =⇒ does not interfere with VST.

Problem Binning corresponds to a non-adaptive smoothing:
=⇒ Binning+VST at extremely low counts inferior to SoA.
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Proposed Algorithm

Iterative Poisson Image Denoising via VST Azzari & Foi (2016)

1: for K times do
2: Combination of z with previous estimate (initialize as z)
3: Binning - decreasing bin size
4: Apply VST
5: Denoising with AWGN �lter
6: Exact Unbiased Inverse VST
7: Debinning

8: end for

9: return the last estimate

Azzari & Foi, IEEE Signal Processing Letters (8) 2016
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Proposed Algorithm

Iterative Poisson Image Denoising via VST Azzari & Foi (2016)

1: for K times do
2: Combination of z with previous estimate (initialize as z)
3: Binning - decreasing bin size
4: Apply VST → Anscombe
5: Denoising with AWGN �lter → BM3D
6: Exact Unbiased Inverse VST
7: Debinning

8: end for

9: return the last estimate

Super-fast and state-of-the-art quality at low and even
extremely low counts.
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Increase of SNR

I We de�ne the convex combination

z̄i = λiz + (1− λi) ŷi−1 0<λi≤1

where ŷi−1 is the estimate of y at the (i−1)-th iteration.

I The mean and variance of λ−2i z̄i are

E
{
λ−2i z̄i

∣∣y} = var
{
λ−2i z̄i

∣∣y} = λ−2i y.

I λ−2i z̄i is not Poisson, but is nonetheless stabilized by
Anscombe, due to a classical result (Bar-Lev&Enis, 1990).

I We develop Exact Unbiased Inverse E
{
a
(
λ−2i z̄i

)∣∣y} 7→ y

I Can be interpreted as a form of boosting/twicing through VST.
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E�ect of convex combination

on the data distributions

Poisson distributions have signi�cant overlap,
stabilization is poor
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E�ect of convex combination

on the data distributions

After combination distributions are more disjoint
=⇒ VST works better
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Experiments and Results

I Algorithm compared to state-of-the-art methods on a
dataset of natural images.

I Superior overall performance in terms of PSNR and SSIM

I Proposed VST algorithm with BM3D is signi�cantly less
expensive than any of the other competitive methods.
I At most 4 iterations.

I Very competitive results also when using other (including
simpler) AWGN �lters.
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Some results

Method Peak Cam2562 Man5122 Bridge2562 Peppers2562 Time2562

NLSPCA 0.2 17.87 19.18 17.56 17.21 90s/12s
SPDA 17.80 19.73 17.81 17.25 5h/27min
P4IP 18.58 � 17.54 17.44 fewmins/∼30s
VST+BM3D 18.69 19.82 17.70 17.19 0.69s/0.12s
Proposed 18.40 19.94 18.13 17.54 0.83s

NLSPCA 1 20.25 21.46 19.02 19.50 86s/16s
SPDA 20.15 21.15 19.30 19.97 5h/25min
P4IP 20.54 � 19.31 20.07 few mins
VST+BM3D 20.69 22.07 19.59 20.22 0.78s/0.10s
Proposed 21.07 22.30 19.86 20.44 0.82s

RED = Methods using �xed 3×3 binning
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Image y Noisy z (−3.43 0.01) NLSPCA (17.55 0.24)

SPDA (17.68 0.25) VST+BM3D (17.72 0.24) Proposed (18.00 0.26)

Denoising of Bridge at peak 0.2 (PSNR (dB) SSIM)
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Image y Noisy z (3.49dB) NLSPCA (19.18dB)

SPDA (19.36dB) VST+BM3D (19.43dB) Proposed (19.81dB)

Denoising of Bridge at peak 1 (PSNR (dB) SSIM)
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BM3D (19.81dB 0.362) SAPCA (19.83dB 0.364) SADCT (19.81dB 0.351)

NLM (19.44dB 0.317) FOVNLM (19.59dB 0.334) SAFIR (19.60dB 0.338)

BLSGSM (19.57dB 0.347) KSVD (19.72dB 0.341) NLMPO (19.66dB 0.339)

Adopting di�erent AWGN �lters (PSNR (dB) SSIM)
164 / 190



Poisson Deblurring:

Problem Formulation

Let us consider a Poisson image z(x) as independent realizations
of a Poisson random variable with mean and variance g(x) ≥ 0,
where g = y ~ v:

z(x) ∼ P(g(x)) , P(z(x) |g(x)) =

{
g(x)z(x)e−g(x)

z(x)! z ∈ N∪{0}
0 elsewhere.

E {z|y} = var {z|y} = y ~ v = g.

Goal: Estimate y from the observed z and PSF v (Poisson
deblurring)
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Extending the Iterative VST Poisson

Denoising Approach to Deblurring
I Use of direct denoising for deconvolution is well explored

for AWGN case: ForWaRD (Neelamani et al. 2004), BM3D
(Dabov et al. 2008).

I adopt linear regularized deconvolution

zRI = F−1(T RIZ) = tRI ~ z , T RI =
V ∗

|V |2 + E2
,

where F Fourier transform, Z=F(z), V =F(v),
V ∗ complex conjugate, E2≥0 regularization term.

I convolution with tRI modi�es independent noise into
spatially correlated noise (colored noise)

I denoise zRI under colored Gaussian noise model

I Extension of Poisson VST denoising requires:

I speci�c `2 normalization of linear regularized inverse �lters
I model noise power spectrum under VST
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I Extension of Poisson VST denoising requires:

I speci�c `2 normalization of linear regularized inverse �lters
I model noise power spectrum under VST
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Poisson blurred observations

167 / 190



Poisson blurred observations
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Regularized inverse kernel
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Regularized deconvolution:

noise ampli�cation and correlation
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Approximately linear

signal-dependent noise variance
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Approximately linear

signal-dependent noise variance

I For even symmetric PSF, discrepancies between mean and
variance are due only to even terms of order 2 or larger in
the Taylor expansion of y ~ v.

I E�ective stabilization of variance, particularly where y ~ v
is smooth and for symmetric PSFs.
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Stabilization of variance

and bias

173 / 190



Stabilized variance is

approximately unitary
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Colored Noise Power Spectrum

We model the noise power spectrum after stabilization as

Ψ̃RI = ΨRI‖ΨRI‖−11 |Ω|
2 .

Ψ̃RI corresponds to unitary spatial domain variance.
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Colored Noise Power Spectrum
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Colored Noise Power Spectrum

and Denoising

We denoise the stabilized regularized inverse data with a �lter Φ
for colored noise:

Di = Φ
[
¯̄zRIi , Ψ̃

RI

]
.

For transform-domain �lters such as BM3D, Ψ̃RI determines the
internal shrinkage thresholds for each transform coe�cient.
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Poisson deblurring results

(PSNR, dB, average over 10 noise realizations)

Method Peak Cameraman Moon Fluocells

Proposed 255 24.54 27.75 31.66

PURE-LET 24.46 27.66 31.42
PoissonHessReg 23.04 27.00 30.59
SPIRAL-TAP-TI 24.06 25.61 30.46
PoissonDeconv 22.78 25.03 30.96
Proposed 25.5 23.03 26.06 29.03

PURE-LET 22.85 25.69 28.88
PoissonHessReg 21.38 25.15 27.60
SPIRAL-TAP-TI 22.22 24.93 28.05
PoissonDeconv 21.57 24.62 27.19
Proposed 2.55 21.15 24.24 26.11

PURE-LET 20.65 23.91 25.81
PoissonHessReg 18.70 23.27 24.06
SPIRAL-TAP-TI 20.30 21.68 25.17
PoissonDeconv 15.03 15.28 18.51
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Fluocells at peak 255

Gaussian PSF with variance 3

Original Observed (PSNR 28.01 dB)
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Deblurring results

PURE-LET (31.42 dB) Proposed (31.67 dB)

180 / 190



References

181 / 190



Anscombe, F.J., �The transformation of Poisson, binomial and
negative-binomial data�, Biometrika, vol. 35, no. 3/4, pp. 246�254, Dec.
1948.
Arsenault, H. H., and M. Denis, �Integral expression for transforming
signal-dependent noise into signal-independent noise�, Opt. Lett., vol.6, no.
5, pp. 210-212, May 1981.
Azzari, L., and A. Foi, �Gaussian-Cauchy mixture modeling for robust
signal-dependent noise estimation�, Proc. 2014 IEEE Int. Conf. Acoustics,
Speech, Signal Process. (ICASSP 2014), pp. 5357-5361, Florence, Italy,
May 2014.
L. Azzari and A. Foi, "Variance Stabilization for Noisy+Estimate
Combination in Iterative Poisson Denoising", IEEE Signal Processing
Letters, vol. 23, no. 8, pp. 1086-1090, August 2016.
L. Azzari and A. Foi, "Variance Stabilization in Poisson Image Deblurring",
Proc. 2017 IEEE Int. Sym. Biomedical Imaging, pp. 728�731, Melbourne,
Australia, April 18-21, 2017.

L. Azzari, L. R. Borges, and A. Foi, "Modeling and Estimation of

Signal-Dependent and Correlated Noise", in Denoising of Photographic

Images and Video: Fundamentals, Open Challenges and New Trends, M.

Bertalmío (Ed.), Springer, 2018.

182 / 190



Bar-Lev, S.K., and P. Enis, �On the construction of classes of variance
stabilizing transformations�, Statistics & Probability Letters, vol. 10, pp.
95�100, July 1990.
Bartlett, M. S., �The Square Root Transformation in Analysis of Variance,�
J. R. Statist. Soc. Suppl., vol.3, no. 1, pp. 68-78, 1936.
L. R. Borges, L. Azzari, P. R. Bakic, A. D. A. Maidment, M. A. C. Vieira,
and A. Foi, "Restoration of low-dose digital breast tomosynthesis",
Measurement Science and Technology, vol. 29, no. 6 (Special Feature on
Advanced X-Ray Tomography), April 2018.
L. R. Borges, I. Guerrero, P. R. Bakic, A. Foi, A. D. A. Maidment, and M.
A. C. Vieira, "Method for Simulating Dose Reduction in Digital Breast
Tomosynthesis", IEEE Trans. Medical Imaging, vol. 36, no. 11, pp.
2331-2342, November 2017.
Cohen, A. C., Truncated and Censored Samples, CRC Press, 1991.

Conn, A.R., K. Scheinberg, and L.N. Vicente, Introduction to

derivative-free optimization, MPS-SIAM Series on Optimization, vol. 8,

2009.

183 / 190



Coupé, P., P. Yger, S. Prima, P. Hellier, C. Kervrann, and C. Barillot, �An
optimized blockwise nonlocal means denoising �lter for 3-D magnetic
resonance images,� IEEE Transactions on Medical Imaging, vol. 27, no. 4,
pp. 425�441, April 2008.
Curtiss, J.H., �On transformations used in the analysis of variance�, The
Annals of Mathematical Statistics, vol. 14, no. 2, pp. 107�122, June 1943.
Dabov, K., A. Foi, V. Katkovnik, and K. Egiazarian, �Image denoising by
sparse 3D transform-domain collaborative �ltering,� IEEE Trans. Image
Process., vol. 16, no. 8, pp. 2080-2095, August 2007.
Efron, B., �Transformation theory: How normal is a family of
distributions?�, The Annals of Statistics, vol. 10, no. 2, pp. 323�339, 1982.
Foi, A., �Clipped noisy images: heteroskedastic modeling and practical
denoising�, Signal Processing, vol. 89, no. 12, pp. 2609-2629, December
2009.
Foi, A., �Noise estimation and removal in MR imaging: the
variance-stabilization approach,� Proc. 2011 IEEE Int. Symp. Biomedical
Imaging (ISBI 2011), Chicago, IL, USA, 30 March - 2 April 2011.

Foi, A., S. Alenius, V. Katkovnik, and K. Egiazarian, �Noise measurement

for raw-data of digital imaging sensors by automatic segmentation of

non-uniform targets�, IEEE Sensors Journal, vol. 7, no. 10, pp. 1456-1461,

October 2007.

184 / 190



Foi, A., M. Trimeche, V. Katkovnik, and K. Egiazarian, �Practical
Poissonian-Gaussian noise modeling and �tting for single image raw-data�,
IEEE Trans. Image Process., vol. 17, no. 10, pp. 1737-1754, October 2008.
Foi, A., �Direct optimization of nonparametric variance-stabilizing
transformations,� presented at 8èmes Rencontres de Statistiques
Mathématiques, CIRM, Luminy, France, December 2008.
Foi, A., �Optimization of variance-stabilizing transformations�, preprint,
2009.
Foi, A. �Removal of signal-dependent noise: the BM3D �lter and optimized
variance-stabilizing transformations,� presented at "Patch-based Image
Representation, Manifolds and Sparsity" Minisymposium, INRIA Centre de
Rennes Bretagne Atlantique, IRISA, Rennes, France, April 2009.
http://videos.rennes.inria.fr/seminaire_Irisa/Vista/
Freeman, M. and J. Tukey, �Transformations Related to the Angular and
the Square Root,� The Annals of Mathematical Statistics, vol. 21, no. 4,
pp. 607-611, December 1950.
Fryzlewicz, P. and G. P. Nason, �A Haar-Fisz algorithm for Poisson
Intensity Estimation,� J. Comp. Graph. Stat., vol.13, pp. 621-638, 2004.
Fryzlewicz, P., �Data-driven wavelet-Fisz methodology for nonparametric
function estimation,� Electronic Journal of Statistics, vol.2, pp. 863-896,
2008.

Guan, Y., �Variance stabilizing transformations of Poisson, binomial and

negative binomial distributions,� Statistics and Probability Letters, 2009.
185 / 190



Z. Harmany, R. Marcia, and R. Willett, "This is SPIRAL-TAP: Sparse
Poisson intensity reconstruction algorithms?theory and prac- tice," IEEE
Trans. Image Process., vol. 21, no. 3, pp. 1084?1096, 201
Hirakawa, K. and T. W. Parks, �Image denoising using total least squares,�
IEEE Trans. Image Process., vol.15, no. 9, pp. 2730-2742, September 2006.
Jin, X., Z. Xu, and K. Hirakawa, �Noise Parameter Estimation for Poisson
Corrupted Images Using Variance Stabilization Transforms�, IEEE Trans.
Image Process., vol. 23, no. 3, pp. 1329�1339, March 2014.
Kasturi, R. and J. F. Walkup and T. F. Krile, �Image restoration by
transformation of signal-dependent noise to signal-independent noise,�
Applied Optics, vol.22, no. 22, pp. 3537-3542, November 1983.
Kervrann, C., and J. Boulanger, �Local adaptivity to variable smoothness
for exemplar-based image denoising and representation�, International
Journal of Computer Vision, vol. 79, no. 1, pp. 45�69, Aug. 2008.

186 / 190



S. Lefkimmiatis and M. Unser, "Poisson image reconstruction with Hessian
Schatten-norm regularization," IEEE Trans. Image Process., vol. 22, no.
11, pp. 4314?4327, 2013.
J. Li, F. Luisier, and T. Blu, "Deconvolution of Poissonian images with the
PURE-LET approach," in 2016 IEEE Int. Conf. Image Process., Sept.
2016, pp. 2708?2712.
Luisier, F., T. Blu, and M. Unser, �Image Denoising in Mixed
Poisson-Gaussian Noise�, IEEE Trans. Image Process., vol. 20, no. 3, pp.
696�708, March 2011.
Maggioni, M., V. Katkovnik, K. Egiazarian, and A. Foi, �A Nonlocal
Transform-Domain Filter for Volumetric Data Denoising and
Reconstruction�, IEEE Trans. Image Process., vol. 22, no. 1, pp. 119-133,
January 2013.

Manjón, J. V., P. Coupé, A. Buades, D. L. Collins, and M. Robles, �New

methods for MRI denoising based on sparseness and self-similarity,� Medical

Image Analysis, vol. 16, no. 1, pp. 18�27, 2012.

187 / 190



Murtagh, F., J.-L. Starck and F. Murtagh, �Image restoration with noise
suppression using a multiresolution support�, Astronomy and Astrophysics,
vol. 112, no. 179, 1995.
Mäkitalo, M., and A. Foi, �Optimal inversion of the Anscombe
transformation in low-count Poisson image denoising�, IEEE Trans. Image
Process., vol. 20, no. 1, pp. 99�109, January 2011.
Mäkitalo, M., and A. Foi, �A closed-form approximation of the exact
unbiased inverse of the Anscombe variance-stabilizing transformation�,
IEEE Trans. Image Process., vol. 20, no. 9, pp. 2697-2698, September
2011.
Mäkitalo, M., and A. Foi, �Optimal inversion of the generalized Anscombe
transformation for Poisson-Gaussian noise�, IEEE Trans. Image Process.,
vol. 22, no. 1, pp. 91�103, January 2013.

Mäkitalo, M., and A. Foi, �Noise parameter mismatch in variance

stabilization, with an application to Poisson-Gaussian noise estimation�,

IEEE Trans. Image Process., 2014.

188 / 190



Mäkitalo, M., A. Foi, D. Fevralev, and V. Lukin, �Denoising of single-look
SAR images based on variance stabilization and nonlocal �lters�, Proc. Int.
Conf. Math. Meth. Electromagn. Th., MMET 2010, Kiev, Ukraine,
September 2010.
Nason, G. P., Wavelet Methods in Statistics with R, Springer, 2008.
R. Neelamani, H. Choi, and R. Baraniuk, "ForWaRD: Fourier-wavelet
regularized deconvolution for ill-conditioned systems," IEEE Trans. Signal
Process., vol. 52, no. 2, pp. 418?433, 2004.
Nelder, J. A. and R. Mead, �A simplex method for function minimization,�
The Computer Journal, vol.7, pp. 308-313, 1965.
Portilla, J., V. Strela, M.J. Wainwright, and E.P. Simoncelli, �Image
denoising using scale mixtures of Gaussians in the wavelet domain�, IEEE
Trans. Image Process., vol. 12, no. 11, pp. 1338�1351, Nov. 2003.

Prucnal, P. R. and B. E. A. Saleh, �Transformation of

image-signal-dependent noise into image signal-independent noise,� Optics

Letters, vol.6, no. 7, July 1981.

189 / 190



Pyatykh, S., and J. Hesser, �Image Sensor Noise Parameter Estimation by
Variance Stabilization and Normality Assessment,� IEEE Trans. Image
Process., vol. 23, no. 9, pp. 3990�3998, September 2014.
Starck, J. L., F. Murtagh, and A. Bijaoui, Image Processing and Data
Analysis, Cambridge University Press, Cambridge, 1998.
Tippet, L. H. C., �Statistical methods in textile research. Part 2, Uses of
the binomial and Poisson distributions,� Shirley Inst. Mem., vol.13, pp.
35-72, 1934.
Tibshirani, R., �Estimating Transformations for Regression Via Additivity
and Variance Stabilization,� Journal of the American Statistical
Association, vol.83, no. 402, pp. 394-405, June 1988.
Uss M., Vozel B., Lukin, V., Chehdi K., "NoiseNet: Signal-Dependent
Noise Variance Estimation with Convolutional Neural Network",
International Conference on Advanced Concepts for Intelligent Vision
Systems, ACIVS 2018, September 2018.
Zhang, B., and M. J. Fadili and J. L. Starck, �Wavelets, Ridgelets and
Curvelets for Poisson Noise Removal,� IEEE Trans. Image Process., vol.17,
no. 7, pp. 1093-1108, July 2008.

190 / 190


	Contents
	Introduction
	Table of Classification

	From Local to Nonlocal Approximations
	Local Weighted Means
	Nonlocal Weighted Means (NL)
	Local versus Nonlocal Supports

	Nonparametric Regression: Local Approximations
	Local Polynomial Approximation
	How to formalize a local fit?
	Estimates
	2D examples
	2D examples (demo_CreateLPAKernels.m)
	2D examples (demo_CreateLPAKernels.m)
	2D examples (demo_CreateLPAKernels.m)
	2D examples (demo_CreateLPAKernels.m)
	2D examples (demo_CreateLPAKernels.m)
	Adaptive Window Size
	LPA accuracy
	ICI rule (minimum MSE window size)
	ICI rule (minimum MSE window size)
	A layout of the adaptive scale LPA-ICI algorithm
	Anisotropy: starshaped neighborhood
	Example
	Example
	Fusing
	Fusing
	Examples
	Shape adaptive DCT calculation
	Multipoint Estimate Fusing (fusing-aggregation)
	Implementation of SA-DCT
	NL-means Filters
	Nonlocal Transform domain

	Block Matching and 3D Filtering (BM3D)
	Sparsity of Collaborative Hard-Thresholding
	Algorithm flowchart
	Nonlocal BM3D vs SA-DCT
	Dependence on Transforms
	Experimental comparison

	Color BM3D denoising
	Image Denoising with BM3D

	Image Deblurring with BM3D
	BM3D based deblurring
	Cross-color BM3D Filtering of Noisy Raw Data
	Noise-Free Demosaicking
	Noise-Free CFA Demosaicking
	Noisy CFA Demosaicking
	How to deal with noise?
	Modern Denoising Approaches
	BM3D with color-constrained grouping
	Experiment 1
	Experiment 2
	Examples
	Examples

	BM3D algorithm with shape-adaptive PCA
	Non-Gaussian Observations
	Preliminaries
	Denoising Poisson-count images
	Poisson noise
	Anscombe transformation
	Inverse Anscombe transformation

	Exact unbiased inverse
	Definition
	Computation
	Implementation
	Figures

	ML inverse
	Assumptions
	Definition

	Conclusions
	Examples

	Video Processing with V-BM3D
	Compressive sensing
	Observation model
	Recursive algorithm
	Compressed sensing for resizing

	Image and Video Super-Resolution with BM3D
	BM3D Denoising and Alpha-Root Sharpening
	Variational BM3D imaging
	Meaning of the penalties
	Block-wise imaging
	Nonlocal transform domain modeling
	Deblurring: observation model
	Matrix DEB-NEM algorithm
	Frequency-domain algorithm
	Simulation experiments
	Frequency domain DEB-NEM algorithm

