
SPCOM 2020:
Deep Learning for

Communication Algorithms

Hyeji KimSreeram Kannan

Presenting Team

Hyeji Kim

Sewoong Oh

Sreeram Kannan

Thanks:

Pramod Viswanath
Himanshu

AsnaniYihan Jiang

Success of Deep Learning

https://www.youtube.com/
watch?v=9Yq67CjDqvw

Speech Image recognition

NLP
Video

https://www.youtube.com/watch?v=9Yq67CjDqvw
https://www.youtube.com/watch?v=9Yq67CjDqvw
https://www.youtube.com/watch?v=9Yq67CjDqvw
https://www.youtube.com/watch?v=9Yq67CjDqvw

Success of Deep Learning

https://www.youtube.com/
watch?v=9Yq67CjDqvw

Speech Image recognition

NLP
Video

https://www.youtube.com/watch?v=9Yq67CjDqvw
https://www.youtube.com/watch?v=9Yq67CjDqvw
https://www.youtube.com/watch?v=9Yq67CjDqvw
https://www.youtube.com/watch?v=9Yq67CjDqvw

Nanopore Sequencing

Nearly a markov model

✤ Yet deep learning does “better”. Why?

Why Deep Learning Works
Model deficit

✤ Hard to model image, speech, language, video..

alphaGo => No model deficit
Algorithm deficit

✤ Hard to find optimal algorithms for known model..

Communication

• Models are well-defined

• Designing a robust code (encoder/decoder) is critical

• Challenge: space of encoder/decoder mappings very large

Receiver
(Decoder)

message

Transmitter
(Encoder)

estimated
message

noisy
codeword

0,1,0,… 0,1,0,…

codeword
Noisy

channel

Design of codes

• Huge practical impact

Design of codes

• Technical communities

Design of codes

• Technical communities

• Sporadic progress

Overview

• Introduction to Neural Networks

• Inventing neural decoders

• Inventing neural codes

• Other applications of deep learning to information theory

Overview

• Introduction to Neural Networks

• Inventing neural decoders

• Inventing neural codes

• Other applications of deep learning to information theory

Slides made by Sewoong Oh (University of Washington)

Introduction to Neural Networks

• Problem statement

• As we access the joint distribution through samples, we minimize
the sample mean instead,

• To avoid overfitting to the training samples, we search over a restricted
class of functions

• Neural networks: a parametric family with a graceful tradeoff between
representation and generalization

Classification

min
f2F

1

n

nX

i=1

L(f(Xi), Yi)

min
f

EX,Y

⇥
L(f(X), Y)

⇤

Given labelled examples {(Xi, Yi)}ni=1, find a classifier f
that minimizes the loss L of our choice

PX,Y

min
f

1

n

nX

i=1

L(f(Xi), Yi)

• Problem statement

• As we access the joint distribution through samples, we minimize
the sample mean instead,

• To avoid overfitting to the training samples, we search over a restricted
class of functions

• Neural networks: a parametric family with a graceful tradeoff between
representation and generalization

Classification

min
f2F

1

n

nX

i=1

L(f(Xi), Yi)

min
f

EX,Y

⇥
L(f(X), Y)

⇤

Given labelled examples {(Xi, Yi)}ni=1, find a classifier f
that minimizes the loss L of our choice

PX,Y

min
f

1

n

nX

i=1

L(f(Xi), Yi)

• Problem statement

• As we access the joint distribution through samples, we minimize
the sample mean instead,

• To avoid overfitting to the training samples, we search over a restricted
class of functions

• Neural networks: a parametric family with a graceful tradeoff between
representation and generalization

Classification

min
f2F

1

n

nX

i=1

L(f(Xi), Yi)

min
f

EX,Y

⇥
L(f(X), Y)

⇤

Given labelled examples {(Xi, Yi)}ni=1, find a classifier f
that minimizes the loss L of our choice

PX,Y

min
f

1

n

nX

i=1

L(f(Xi), Yi)

• Problem statement

• As we access the joint distribution through samples, we minimize
the sample mean instead,

• To avoid overfitting to the training samples, we search over a restricted
class of functions

• Neural networks: a parametric family with a graceful tradeoff between
representation and generalization

Classification

min
f2F

1

n

nX

i=1

L(f(Xi), Yi)

min
f

EX,Y

⇥
L(f(X), Y)

⇤

Given labelled examples {(Xi, Yi)}ni=1, find a classifier f
that minimizes the loss L of our choice

PX,Y

min
f

1

n

nX

i=1

L(f(Xi), Yi)

 Neural Network of depth d and weights (W1,…,Wd)

f(X) = �
⇣
Wd · · · �

�
W2 �(W1X)

�
· · ·

⌘

input layer X output layer f(X)

W1

W2
W3

X1

X2

X3

�(W11X1 +W13X3 +W13X3)

Gradient computation is simple
• Choose the loss function (e.g. for binary classification)
‣ L2 loss

‣ Cross entropy loss

• (variants of) gradient descent are used
‣ Efficient gradient computation via backpropagation

f(X) = �
⇣
Wd · · · �

�
W2 �(W1X)

�
· · ·

⌘

min
W1,...,Wd

1

n

nX

i=1

�
�
Yi log(f(Xi)) + (1� Yi) log(1� f(Xi))}

min
W1,...,Wd

1

n

nX

i=1

(Yi � f(Xi))
2

Gradient computation is simple
• Choose the loss function (e.g. for binary classification)
‣ L2 loss

‣ Cross entropy loss

• (variants of) gradient descent are used
‣ Efficient gradient computation via backpropagation

f(X) = �
⇣
Wd · · · �

�
W2 �(W1X)

�
· · ·

⌘

min
W1,...,Wd

1

n

nX

i=1

�
�
Yi log(f(Xi)) + (1� Yi) log(1� f(Xi))}

min
W1,...,Wd

1

n

nX

i=1

(Yi � f(Xi))
2

Gradient computation is simple
• Choose the loss function (e.g. for binary classification)
‣ L2 loss

‣ Cross entropy loss

• (variants of) gradient descent are used
‣ Efficient gradient computation via backpropagation

f(X) = �
⇣
Wd · · · �

�
W2 �(W1X)

�
· · ·

⌘

min
W1,...,Wd

1

n

nX

i=1

�
�
Yi log(f(Xi)) + (1� Yi) log(1� f(Xi))}

min
W1,...,Wd

1

n

nX

i=1

(Yi � f(Xi))
2

Overview

• Introduction to Neural Networks

• Inventing neural decoders

• Inventing neural codes

• Other applications of deep learning to information theory

Overview

• Inventing neural decoders

‣ Example

• Learning state-of-the-art decoders for AWGN channels

• Improving the state-of-the-art decoders for non-AWGN channels

‣ Literature

‣ Open problems

Deep learning based decoder

for practical channels

“Communication Algorithms via Deep Learning,” Kim-Jiang-Rana-Kannan-Oh-Viswanath ICLR ’18

Sequential codes

• Convolutional codes, turbo codes

Sequential codes

• Convolutional codes, turbo codes

• Practical

‣ 3G/4G mobile communications (e.g., in UMTS and LTE)

‣ (Deep space) satellite communications

Sequential codes

• Convolutional codes, turbo codes

• Practical

‣ 3G/4G mobile communications (e.g., in UMTS and LTE)

‣ (Deep space) satellite communications

• Achieve performance close to fundamental limit

Sequential codes

• Convolutional codes, turbo codes

• Practical

‣ 3G/4G mobile communications (e.g., in UMTS and LTE)

‣ (Deep space) satellite communications

• Achieve performance close to fundamental limit

• Recurrent structure aligns well w. Recurrent Neural Networks

Sequential codes

sKs2s1

b1 b2 bK

…

cKc2c1

• Mapping a message bit sequence b to a codeword seq. c

Sequential codes

Example of a rate 1/2 convolutional code

• Convolutional codes

bk-1 bk-2

+
bk

ck1

ck2

+

sk = (bk, bk-1, bk-2)

Sequential codes

• Turbo codes

‣ Concatenate codewords from two convolutional encoders

Convolutional
 Encoder

Convolutional
 Encoder

c1

c2
b

c3
Interleaver

Recurrent Neural Network (RNN)

• Sequential mappings with memory

hKh2h1 …

Out1

In1

Out2

In2

OutK

InK

hk = f(hk�1, AMk)

Pmik = g(hk)

Recurrent Neural Network (RNN)

• Sequential mappings with memory

hKh2h1 …

Out1

In1

Out2

In2

OutK

InK

hk = f(hk�1, AMk)

Pmik = g(hk)

hk = tanh(W Ink + Uhk�1)

Outk = V hk
<latexit sha1_base64="0smRJFTvwWHuI1/xNIpWAQmdtIo=">AAACLXicbVDLSgMxFM34tr6qLt0Ei6KIZUYF3QiiLnRlBdsKnTJk0tQJk8kMyR2xDPNDbvwVEVxUxK2/YdrpwteBwMk595Dc4yeCa7DtvjU2PjE5NT0zW5qbX1hcKi+vNHScKsrqNBaxuvWJZoJLVgcOgt0mipHIF6zph2cDv3nPlOaxvIFewtoRuZO8yykBI3nl88AL8eYxdoE9QAZEBvlWs7hcytx4O7iOAy8Ld51823VLhXWVQl7kGsYMvXLFrtpD4L/EGZEKGqHmlV/cTkzTiEmggmjdcuwE2hlRwKlgeclNNUsIDckdaxkqScR0Oxtum+MNo3RwN1bmSMBD9XsiI5HWvcg3kxGBQP/2BuJ/XiuF7lE74zJJgUlaPNRNBYYYD6rDHa4YBdEzhFDFzV8xDYgiFEzBJVOC83vlv6SxV3X2q3vXB5WT01EdM2gNraMt5KBDdIIuUA3VEUWP6Bn10Zv1ZL1a79ZHMTpmjTKr6Aeszy8J76bC</latexit>

Recurrent neural network and sequential codes

Recurrent Neural Network

sKs2s1

b1 b2 bK

cK

…

c2c1

Convolutional codes

bk-1 bk-2

+
bk

ck1

ck2

+

sk = (bk, bk-1, bk-2)

hKh2h1 …

Out1

In1

Out2

In2

OutK

InK

hk = f(hk�1, AMk)

Pmik = g(hk)

Sequential codes

message codeword

Sequential
encoder

Sequential codes under AWGN

• Optimal decoders known for convolutional codes

‣ Viterbi (Viterbi ’67) — dynamic programming

‣ BCJR (Bahl-Cocke-Jelinek-Raviv ’74) — forward-backward alg.

AWGN
channel

message codeword noisy
codeword

estimated
message

Sequential
encoder

Optimal
decoders

AWGN

Sequential codes under AWGN

• Optimal decoders known for convolutional codes

‣ Viterbi (Viterbi ’67) — dynamic programming

‣ BCJR (Bahl-Cocke-Jelinek-Raviv ’74) — forward-backward alg.

• Efficient iterative decoders for turbo codes

AWGN
channel

message codeword noisy
codeword

estimated
message

Sequential
encoder

Optimal
decoders

AWGN

Non-AWGN channel

AWGN
channel

message codeword noisy
codeword

estimated
message

Sequential
encoder ???

Non-
AWGN

• Decoding becomes challenging

Bursty noise

• High-power noise is added occasionally

Bursty noise

• High-power noise is added occasionally

• Decoders designed for AWGN channels fail significantly

Bursty noise

• Decoding turbo codes under bursty vs. AWGN channels

Signal-to-Noise Ratio (SNR) in dB

Bit Error Rate
(BER)

Rate 1/3 turbo code, block length 1000

AWGN

Bursty

Bursty noise

• Decoders designed for AWGN channels fail significantly

‣ Challenge 1. decoders that are robust to channel statistics?

Bursty noise

• Decoders designed for AWGN channels fail significantly

‣ Challenge 1. decoders that are robust to channel statistics?

• Heuristic decoders are used

Bursty noise

• Heuristic decoders (thresholding) are used

Rate 1/3 turbo code, block length 1000

Signal-to-Noise Ratio (SNR) in dB

Bit Error Rate
(BER)

Heuristic
under bursty

Bursty noise

• Decoders designed for AWGN channels fail significantly

‣ Challenge 1. decoders that are robust to channel statistics?

• Heuristic decoders are used

‣ Challenge 2. decoders that adapt better?

Our approach

• Model decoder as a neural network and learn

“Train”

AWGN
channel

message codeword noisy
codeword

estimated
message

Sequential
encoder

Channel of
interest

Neural Network
Decoder

Our approach

• Model decoder as a neural network and learn

• Neural network based decoder is robust and adaptive

(Kim-Jiang-Rana-Kannan-Oh-Viswanath ’18)

“Train”

AWGN
channel

message codeword noisy
codeword

estimated
message

Sequential
encoder

Channel of
interest

Neural Network
Decoder

Main results: Robustness

• Neural decoder as reliable as traditional dec. under AWGN

Rate 1/3 turbo code, block length 1000

BER

SNRAWGN channels

Main results: Robustness

• Neural decoder is more reliable under bursty channels

BER

SNR

Rate 1/3 turbo code, block length 1000

BER

SNRAWGN channels

Traditional
decoder

Neural
decoder

Main results: Adaptivity

• Adapted neural decoder is more reliable than heuristics

Traditional
heuristic decoder

Adapted
neural decoder

Rate 1/3 turbo code, block length 1000

BER

SNRAWGN channels

Outline - learning a decoder

1. Convolutional codes under AWGN

2. Turbo codes under AWGN

3. Turbo codes under bursty

Convolutional codes under AWGN

• Neural networks can emulate optimal decoders

‣ Viterbi (Wang-Wicker ’96)

‣ BCJR (Sazli-Icsik ’07)

ANN Viterbi decoder (Wang-Wicker’96)

Convolutional codes under AWGN

• Can optimal decoders be learned from data alone?

AWGN
channel
AWGN

Neural
Network
Decoder

Convolutional
code

b c y b̂

message codeword noisy
codeword

estimated
message

“Learn”

Decoder as a Recurrent Neural Network

• Maps (y1, y2, y3) (b1, b2, b3) via bi-directional RNN

RNN RNN RNN

y1 y2 y3

b1 b2 b3
^ ^ ^

^ ^ ^

Training

AWGN
channel
AWGN

Recurrent
Neural

Network
Decoder

Convolutional
code

b c y b̂

message codeword noisy
codeword

estimated
message

“Train”

• Supervised training with (noisy codeword y, message b)

Training

• Supervised training with (noisy codeword y, message b)

• Binary cross-entropy loss

AWGN
channel
AWGN

Recurrent
Neural

Network
Decoder

Convolutional
code

b c y b̂

message codeword noisy
codeword

estimated
message

“Train”

Choice of training examples

• Generate training examples (message b, noisy codeword y)

AWGN
channel

b c y

AWGNConvolutional
code

Choice of training examples

• Generate training examples (message b, noisy codeword y)

‣ Length of message bits b = (b1, …, bK)

‣ SNR of the noisy codeword y

AWGN
channel

b c y

AWGNConvolutional
code

K
SNR

Choice of training examples

• Train at block length 100, fixed SNR (0dB)

AWGN
channel
AWGN

Neural
Network
Decoder

Convolutional
code

b c y b̂

“Train”

100
0dB

Strong generalization

• Train at block length 100, fixed SNR (0dB)

• Optimal performance for every test block lengths, SNR

AWGN
channel
AWGN

Neural
Network
Decoder

Convolutional
code

b c y b̂

“Test”

10000
0~7dB

Results: test block length 10000

• Neural decoder is as reliable as an optimal decoder

Train: block length = 100, SNR=0dB

SNR

BER

Results: test block length 100

• Neural decoder is as reliable as an optimal decoder

Train: block length = 100, SNR=0dB

SNR

BER

Choice of training examples

• What if we train with noisy codewords at test SNR?

Trained at 0dB

Trained at test SNR

SNR

BER

Choice of training examples

• Empirically find best training SNR for different code rates

Range of best training SNR

1/7 1/6 1/5 1/4 1/3 1/2

SNR

Code Rate

Choice of training examples

• Hardest but decodable training examples

Range of best training SNR

1/7 1/6 1/5 1/4 1/3 1/2

 Theoretical limit
 (Shannon capacity)

SNR

Code Rate

Impossible to decode

Hard training examples

• Idea of hardest but do-able training examples

‣ Training with noisy examples

‣ Applied to problems where training examples can be chosen

Outline - learning a decoder

1. Convolutional codes under AWGN channels

2. Turbo codes under AWGN channels

Turbo code

• Concatenate codewords from two convolutional encoders

Convolutional
 Encoder

Convolutional
 Encoder

c1

c2
b

c3
Interleaver

(π)

Belief propagation decoder

• Iterations of BCJR w. interleaver (π), de-interleaver (π-1)

B
C
J
R

y2

y1

0
y3

π(y1)
…y2

y1

y3

π(y1)

π-1π π-1π

B
C
J
R

B
C
J
R

B
C
J
R- - -

Belief propagation decoder

• Iterations of BCJR w. interleaver (π), de-interleaver (π-1)

‣ BCJR: maps (prior, noisy codewords) to posterior

y2

y1

0
y3

π(y1)
…y2

y1

y3

π(y1)

π-1π π-1π- - -

B
C
J
R

B
C
J
R

B
C
J
R

B
C
J
R

Learning an iterative decoder for turbo

• Neural BCJR: If we could generate BCJR input-output pairs,
 can we learn a neural network based BCJR algorithm?

Learning an iterative decoder for turbo

• Neural BCJR: If we could generate BCJR input-output pairs,
 can we learn a neural network based BCJR algorithm?

‣ Would iteration of Neural BCJR decoders mimic the iterative decoder?

Learning an iterative decoder for turbo

• Neural BCJR: If we could generate BCJR input-output pairs,
 can we learn a neural network based BCJR algorithm?

‣ Would iteration of Neural BCJR decoders mimic the iterative decoder?

• DeepTurbo: Can we learn an iterative decoder end-to-end?

Decoder as a Recurrent Neural Network

• NeuralBCJR

‣ Iterations of RNNs w. interleaver (π), de-interleaver (π-1)

y2

y1

0
y3

π(y1)
…y2

y1

y3

π(y1)

π-1π π-1π- - -

R
N
N

R
N
N

R
N
N

R
N
N

Decoder as a Recurrent Neural Network

• NeuralBCJR

‣ Each RNN trained to mimic BCJR

y2

y1

0
y3

π(y1)
…y2

y1

y3

π(y1)

π-1π π-1π- - -

R
N
N

R
N
N

R
N
N

R
N
N

• Step 1: Neural BCJR learning

‣ Supervised training with BCJR input-output under AWGN channels

q̂

Training

y2

y1

p -

R
N
N

y2

y1

p -

B
C
J
R q

• Step 2: E2E fine-tuning

‣ Supervised training with (y,b) under AWGN channels

Training

y2

y1

0
y3

π(y1)
…y2

y1

y3

π(y1)

π-1π π-1π- - -

R
N
N

R
N
N

R
N
N

R
N
N b̂

Decoding turbo codes: block length 1000

• Neural decoder is as reliable as traditional decoder

SNR
Rate 1/3 turbo code

BER

Decoding turbo codes: block length 100

• Neural decoder is more reliable than traditional decoder

SNR

BER

Rate 1/3 turbo code

Learning BP decoder from data alone

• What if BCJR input-output values are not available?

Learning BP decoder from data alone

• What if BCJR input-output values are not available?

‣ DeepTurbo: learning the BP decoder from data alone
(Jiang-Kim-Asnani-Kannan-Oh-Viswanath SPAWC ’19)

Learning BP decoder from data alone

• DeepTurbo: Iteration of 12 layers of bi-RNNs

‣ De-coupled RNNs

‣ Belief vectors

R
N
N

y2

y1

0
y3

π(y1)
…y2

y1

y3

π(y1)

π-1π

R
N
N

R
N
N

R
N
N π-1π- - -

Training

• Supervised training with (y,b) under AWGN channels

‣ Training with hardest but do-able examples

R
N
N

y2

y1

0
y3

π(y1)
…y2

y1

y3

π(y1)

π-1π

R
N
N

R
N
N

R
N
N π-1π- - -

Neural BCJR vs. DeepTurbo

• Comparable performance

Rate 1/3 turbo code w/ memory 2 (100 bits) Rate 1/3 turbo code w/ memory 3 (100 bits)
SNR

BER

SNR

Outline - learning a decoder

1. Convolutional codes under AWGN channels

2. Turbo codes under AWGN channels

3. Turbo codes under bursty channels

Robustness

• Decoders for AWGN channel => test under bursty channels

AWGN
channel

message codeword noisy
codeword

estimated
message

Sequential
code

Decoder
Neural

Network

Bursty
channels

Decoder for
AWGN

channels

Robustness

• Neural decoder for AWGN is more reliable under bursty

BER

Rate 1/3, 1000 bits
SNR of AWGN channelsbursty noise channelWGN channels

Adaptivity

• Decoder adapted to actual test channels

AWGN
channel

message codeword noisy
codeword

estimated
message

Sequential
code ?????

Decoder
adapted to

bursty
channels

Bursty
channels

Adaptivity

• Re-train neural decoder with bursty examples

BER

AWGN trained
neural decoder

Re-trained
neural decoder

SNR of AWGN channelsbursty noise channelWGN channels

Rate 1/3 turbo code, block length 1000

Adaptivity

• Re-trained neural decoder more reliable than heuristic dec.

BER

SNR of AWGN channelsbursty noise channelWGN channels

Traditional
heuristic decoder

Re-trained
neural decoder

Rate 1/3 turbo code, block length 1000

Neural BCJR vs. DeepTurbo - Adaptivity comparison

• DeepTurbo shows improved adaptivity

SNR of bursty channel

BER

SNR of T-distributed noise channel

Rate 1/3 turbo code (100 bits)

Summary

• Optimal decoders can be learned for AWGN channels

‣ Training with hardest but decodable examples

Summary

• Optimal decoders can be learned for AWGN channels

‣ Training with hardest but decodable examples

• Benefits

‣ Robust to varying channel statistics

‣ Adaptive when analytically designing a decoder is hard

Overview

• Inventing neural decoders

‣ Example

• Learning state-of-the-art decoders for AWGN channels

• Improving the state-of-the-art decoders for non-AWGN channels

‣ Literature

‣ Open problems

Literature

• Learning a decoder from data alone vs. model-based

• Decoding sequential codes or linear block codes

Literature

• Learning a decoder from data alone

• Polar codes for AWGN channels

‣ Tobias Gruber, Sebastian Cammerer, Jakob Hoydis, Stephan ten Brink, “On deep learning-based
channel decoding”, 2017

Literature

• Learning a decoder from data alone

• Polar codes for AWGN channels

‣ Tobias Gruber, Sebastian Cammerer, Jakob Hoydis, Stephan ten Brink, “On deep learning-based
channel decoding”, 2017

‣ Achieving strong generalization is challenging

Literature

• Learning a decoder from data alone

• Polar codes for AWGN channels

‣ Tobias Gruber, Sebastian Cammerer, Jakob Hoydis, Stephan ten Brink, “On deep learning-based
channel decoding”, 2017

‣ Achieving strong generalization is challenging

‣ Scaling to longer block lengths

Conventional iterative decoding algorithm w/
sub-blocks replaced by neural decoders

Literature

• Learning a decoder from data alone

• Nonlinear channels (e.g., molecular channels)

‣ Nariman Farsad, Andrea Goldsmith, “ Neural Network Detection of Data Sequences in
Communication Systems”, 2018

Literature

• Learning a decoder from data alone

• Nonlinear channels (e.g., molecular channels)

‣ Nariman Farsad, Andrea Goldsmith, “ Neural Network Detection of Data Sequences in
Communication Systems”, 2018

‣ RNN-based detection (w/o CSI) achieves the reliability of Viterbi detector with CSI

Literature

Eliya Nachmani, Yair Be'ery, David Burshtein,
“Learning to decode linear codes using deep learning”, 2016

Eliya Nachmani, Yaron Bachar, Elad Marciano, David Burshtein, Yair Be’ery,
“Near Maximum Likelihood Decoding with Deep Learning”, 2018

• Model-based decoder with learnable variables

‣ Weighted BP decoder for linear block codes

Literature

• Learnable variables (w) to the BP over the trellis graph

Literature

• Training and generalization

‣ Training with (noisy versions of) all-zero codewords is sufficient

due to the symmetry in the decoder structure

Literature

• Model-based decoder with learnable variables

‣ ViterbiNet for convolutional codes for non-AWGN channels

N. Shlezinger, Y. C. Eldar, N. Farsad and A. J. Goldsmith,
"ViterbiNet: Symbol Detection Using a Deep Learning Based Viterbi Algorithm,"
2019 IEEE 20th SPAWC, Cannes, France, 2019

Literature

• Model-based decoder with learnable variables

‣ ViterbiNet for convolutional codes for non-AWGN channels

‣ Channels with memory: Inter-symbol-interference channels

N. Shlezinger, Y. C. Eldar, N. Farsad and A. J. Goldsmith,
"ViterbiNet: Symbol Detection Using a Deep Learning Based Viterbi Algorithm,"
2019 IEEE 20th SPAWC, Cannes, France, 2019

Literature

• ViterbiNet: Cost computation of Viterbi is learned from data

Literature

• ViterbiNet (w/o CSI) ~ Reliability of Viterbi detector w/ CSI

Literature

• Model-based decoder with learnable variables

‣ TurboNet

Yunfeng He, Jing Zhang, Shi Jin, Chao-Kai Wen, Geoffrey Ye Li
“Model-Driven DNN Decoder for Turbo Codes: Design, Simulation and Experimental Results,”
arXiv June 2020

https://arxiv.org/search/eess?searchtype=author&query=He%2C+Y
https://arxiv.org/search/eess?searchtype=author&query=Zhang%2C+J
https://arxiv.org/search/eess?searchtype=author&query=Jin%2C+S
https://arxiv.org/search/eess?searchtype=author&query=Wen%2C+C
https://arxiv.org/search/eess?searchtype=author&query=Li%2C+G+Y
https://arxiv.org/search/eess?searchtype=author&query=He%2C+Y
https://arxiv.org/search/eess?searchtype=author&query=Zhang%2C+J
https://arxiv.org/search/eess?searchtype=author&query=Jin%2C+S
https://arxiv.org/search/eess?searchtype=author&query=Wen%2C+C
https://arxiv.org/search/eess?searchtype=author&query=Li%2C+G+Y

Literature

• TurboNet outperforms DeepTurbo at high SNR

Open problems

• High SNR

• Large block lengths

Open problems

• Channels for which decoders can be improved

‣ Nonlinear channels (e.g., low-precision ADC)

‣ Deletion channels (e.g., nanopore sequencing)

Deletion
Channel

Encoder
Neural

Network

Decoder
Neural

Network

message codeword
received

codeword
estimated
message

b b̂

0
1
1
0
1

0
1
1

Open problems

• Practical aspects of neural network based decoders

‣ Complexity

‣ Testing on real channels

Open problems

• Practical aspects of neural network based decoders

‣ Complexity

‣ Testing on real channels

‣ Fast adaptation to varying channels

• Meta-learning!

Joint work with Yihan Jiang, Himanshu Asani, Hyeji Kim

Adapting Decoder to Channel Variations

Adaptation Hierarchy

• Train on AWGN, Test on General: Robustness

‣ Theory: Worst case noise

• Train on Complex channel, Test on Complex Channel:
Generality

‣ Theory: Optimal codes on non-AWGN

• Train on Set of channels, New channel (few training
symbols), Test on New Channel

Adaptation: Goal

• Existing systems: Decoders adapt to channel variations by
equalization

• Equalization is typically for parametrizable multiplicative
effects

• Can we design a method to adapt to general channel
variations

‣ For example, noise is not Gaussian, channel is not iid,…

Setting

AWGN
channel

message codeword noisy
codeword

estimated
message

Sequential
encoder DecoderChannel

Training: Possible channels {c1,c2,…,cm}

Test: Trained channels {c1,c2,…,cm} Paradigm: Observe training symbols on ci
Then Adapt

Multi-task learning: General Idea

Setting: K Tasks with different (xj,yj) distributions

Train: Data from the K Tasks

Test phase: 1) Observe few samples from a random task
2) Update the model using SGD

3) Calculate test performance on the updated model

MTL
(Train for average

Of tasks)

MAML: General Idea

Setting: K Tasks with different (xj,yj) distributions

Train: Data from the K Tasks

1-step
Grad for task-i

Test: SGD on after observing a batchθ

MAML: For Channel Decoding

Setting: K Tasks = K Channels

Train: Using simulated data from K channels

Two performance metrics: 1) How much data?
 2) How much computation?

Test phase: 1) On the new channel: Observe some received symbols
(with ground truth message known)

2) Update the decoder model using SGD
3) Calculate test performance on the updated model

Convolutional Code + MAML

Convolutional Code + MAML

Untrained Channel

Turbo MAML Decoder

Trained Channel Untrained Channel

Parameters

Summary

• Showed that adaptation is possible with much fewer
samples using MAML

• Still 100 batches of 100 training symbols each is required
for adaptation

• Proposal for practice:

‣ Use Equalizer to deal with multiplicative effects

‣ Use MAML to adapt to additive noise effects over slow-time scale

Summary

• Showed that adaptation is possible with much fewer
samples using MAML

• Still 100 batches of 100 training symbols each is required
for adaptation

• Proposal for practice:

‣ Use Equalizer to deal with multiplicative effects

‣ Use MAML to adapt to additive noise effects over slow-time scale

Overview

• Introduction to Neural Networks

• Inventing neural decoders

• Inventing neural codes

• Other applications of deep learning to information theory

Overview

• Inventing neural codes
‣ Example

• Learning a code for channels with output feedback

• Learning Turbo codes

• Coding for channels with block-wise output feedback

‣ Literature

‣ Open problems

Learning a code

for channels with feedback

“Deepcode: feedback codes via deep learning,” K-Jiang-Kannan-Oh-Viswanath NeurIPS’18

AWGN channels with output feedback

Encoder + y

n

x

y

• AWGN channel from transmitter to receiver

• Output fed back to the transmitter

Decoder

Delay, noise

ReceiverTransmitter

Literature

• Noiseless feedback

‣ Improved reliability

‣ Coding schemes

• Schalkwijk-Kailath scheme (Schalkwijk-Kailath ’66)

• Posterior matching (Shayevitz-Feder ’09)

Literature

• Noisy feedback

‣ Existing schemes perform poorly

Literature

• Noisy feedback

‣ Existing schemes perform poorly

‣ Concatenated coding (Chance-Love ’11)

Literature

• Noisy feedback

‣ Existing schemes perform poorly

‣ Concatenated coding (Chance-Love ’11)

‣ Linear codes very bad (Kim-Lapidoth-Weissman ’07)

Literature

• Noisy feedback

‣ Existing schemes perform poorly

‣ Concatenated coding (Chance-Love ’11)

‣ Linear codes very bad (Kim-Lapidoth-Weissman ’07)

• Nonlinear codes?

Literature

• Noisy feedback

‣ Existing schemes perform poorly

‣ Concatenated coding (Chance-Love ’11)

‣ Linear codes very bad (Kim-Lapidoth-Weissman ’07)

• Nonlinear codes?

“Deepcode”(Kim-Jiang-Kannan-Oh-Viswanath ’18)

Literature

• Noisy feedback

‣ Existing schemes perform poorly

‣ Concatenated coding (Chance-Love ’11)

‣ Linear codes very bad (Kim-Lapidoth-Weissman ’07)

• Nonlinear codes?

“Deepcode”(Kim-Jiang-Kannan-Oh-Viswanath ’18)

• Challenge:

How to combine noisy feedback and message causally?

Our approach

• Deepcode

‣ Model encoder and decoder as neural networks and learn

AWGN
Channel

Decoder
Neural

Network

b b̂c y

Encoder
Neural

Network

AWGN
channel

Feedback
channel

Main results

• 100x better reliability under noiseless feedback w. precision

(Rate 1/3, 50 bits)

BER Deepcode
16 bit precision

Schalkwijk-Kailath
64 bit precision

SNR (dB)

Main results

• Outperforms state-of-the-art for AWGN feedback channel

(Rate 1/3, 50 bits, SNR = 0dB)

Feedback SNR (dB)

BER

Deepcode

Key: Architectural innovations, ideas from communications

Outline - towards Deepcode

1. Neural network based encoder and decoder

AWGN
Channel

Encoder
Neural

Network

Decoder
Neural

Network

b b̂

AWGN
with delay

c y

AWGN
channel

Feedback
channel

Outline - towards Deepcode

1. Neural network based encoder and decoder

2. Training

AWGN
Channel

Encoder
Neural

Network

Decoder
Neural

Network

b b̂

AWGN
Channel

c y

Learn Learn

AWGN
channel

Feedback
channel

1. Neural network based encoder and decoder

2. Training

3. Modification on the encoder — “Deepcode”

Outline - towards Deepcode

Encoder
Neural

Network

Decoder
Neural

Network

b b̂c y

AWGN
channel

Feedback
channel

Encoder as a neural network

• Two-phase scheme

‣ e.g. maps information bits b1, b2, b3 to a length-6 code

Phase I. Phase II.

codeword

Phase I: send information bits

b1 b2 b3

y1 y2 y3

Phase I.

Encoder receives
 feedback

codeword

Phase II: use feedback to generate parity bits

b1 b2 b3

y1 y2 y3
Encoder receives
 feedback

Phase I. Phase II.

codeword

Phase II: use feedback to generate parity bits

• Parity for b1

b1 b2 b3

y1 y2 y3

b1, y1

c1

Phase I. Phase II.

Encoder receives
 feedback

codeword

Phase II: use feedback to generate parity bits

b1 b2 b3

y1 y2 y3

b1, y1

c1

yc1

Phase I. Phase II.

Encoder receives
 feedback

codeword

Phase II: use feedback to generate parity bits

• Another parity for b1?

b1 b2 b3

y1 y2 y3

b1, y1

c1 c2

yc1

b1, y1 b1,y1,yc1

Phase I. Phase II.

Encoder receives
 feedback

codeword

Phase II: use feedback to generate parity bits

• Parity for b2?

b1 b2 b3

y1 y2 y3

b1, y1

c1 c2

yc1

b1, y1 b2,y2

Phase I. Phase II.

Encoder receives
 feedback

codeword

Phase II: use feedback to generate parity bits

• Parity for b2 and b1

b1 b2 b3

y1 y2 y3

b1, y1

c1 c21

yc1

b1, y1 b2,y2,b1,y1,yc1b1, y1 b1,y1,yc1, b2,y2

Phase I. Phase II.

Encoder receives
 feedback

codeword

Phase II: use feedback to generate parity bits

b1 b2 b3

y1 y2 y3

b1, y1

c1 c21 c321

yc1

b1, y1 b2,y2,b1,y1,yc1b1, y1 b1,y1,yc1, b2,y2 b1,y1,yc1,b2,y2,yc2,b3,y3

yc1 yc2 yc3

Phase I. Phase II.

• Parity for b3, b2 and b1

Encoder receives
 feedback

codeword

b1, y1 yc1, b2,y2 yc2,b3,y3

Recurrent Neural Network for parity generation

• Sequential mapping with memory

b1 b2 b3

y1 y2 y3

c1 c21 c321

yc1yc1 yc2 yc3

h1 h2 h3

hi = f(hi�1, AMTmii)

PmiTmii = g(hi)

Encoder receives
 feedback

codeword

Outline - towards Deepcode

1. Neural network based encoder and decoder

AWGN
Channel

Encoder
Neural

Network

Decoder
Neural

Network

b b̂

AWGN
with delay

c y

AWGN
channel

Feedback
channel

Decoder as a recurrent neural network

• Maps (y1, y2, y3, yc1, yc2, yc3) -> b1, b2, b3 via bi-directional RNN^ ^ ^

RNN RNN RNN

y1 y2 y3

b1 b2 b3
^ ^ ^

yc1 yc2 yc3

Outline - towards Deepcode

1. Neural network based encoder and decoder

2. Training

AWGN
Channel

Encoder
Neural

Network

Decoder
Neural

Network

b b̂

AWGN
Channel

c y

Learn Learn

AWGN
channel

Feedback
channel

Training

• Learn encoder and decoder jointly— autoencoder training

AWGN
Channel

Encoder
Neural

Network

Decoder
Neural

Network

b b̂

AWGN
Channel

c y

AWGN
channel

Feedback
channel

Input Output
“Learn”

Training

• Generate random bit sequences b of length K

b

Training

• Auto-encoder training : (input,output) = (b,b)

• Loss : binary cross entropy

“Learn”

AWGN
Channel

Encoder
Neural

Network

Decoder
Neural

Network

b b̂

AWGN
Channel

c y

AWGN
channel

Feedback
channel

Choice of training examples

“Learn”

AWGN
Channel

Encoder
Neural

Network

Decoder
Neural

Network

b b̂

AWGN
Channel

c y

AWGN
channel

Feedback
channel

• Length of binary bit sequence b

• SNR of AWGN/feedback channels

K

Choice of training examples

“Learn”

AWGN
Channel

Encoder
Neural

Network

Decoder
Neural

Network

b b̂

AWGN
Channel

c y

AWGN
channel

Feedback
channel

• Length of binary bit sequence b K = 100

• SNR of AWGN/feedback channels matched to test SNR

K

Feedback
channel

Intermediate result

• Outperforms S-K for a small range of SNR

BER

SNR (dB)
(50 bits, rate 1/3, noiseless feedback)

Outline - towards Deepcode

1. Baseline encoder and decoder

2. Training

3. Modification on the encoder - “Deepcode”

AWGN
Channel

Encoder
Neural

Network

Decoder
Neural

Network

b b̂

AWGN
Channel

c y

AWGN
channel

Feedback
channel

High error in the last bits

Position

BER

b1 b2 b3 ..… b48 b49 b50

High error in the last bits

c1 c21 c321

b1, y1 b2,y2,yc1 b3, y3,yc2

h1 h2 h3

b1 b2 b3

Phase I.

Phase II.

Position

b1 b2 b3 ..… b48 b49 b50

BER

Encoder modification 1. Zero padding

c1 c21 c321

b1, y1 b2,y2,yc1 b3, y3,yc2

h1 h2 h3

b1 b2 b3

Phase I.

Phase II.

0

0, y4,yc3

h4

c4321

Position

BER

b1 b2 b3 ..… b48 b49 b50

0, y4,yc3

h4

Encoder modification 2. Power allocation

c1 c21 c321

b1, y1 b2,y2,yc1 b3, y3,yc2

h1 h2 h3

b1 b2 b3

Phase I.

Phase II.

0

0, y4,yc3

h4

c4321

x W1 x W2 x W3 x W4

x Wc1 x Wc2 x Wc3 x Wc4

Position

BER

b1 b2 b3 ..… b48 b49 b50

Final results

• 100x improvement for noiseless feedback w. precision

SNR (dB)

BER

Final results

• Outperforms state-of-the-art for AWGN feedback channel

(Rate 1/3, 50 bits, forward SR = 0dB)

Feedback SNR (dB)

BER

Generalization: block lengths

• Train on block length 100. Test on block lengths 50 & 500

SNR

BER

Improved error exponents

• Non-feedback scheme: BLER as block length

Block length

Block Error Rate
 (BLER)

Improved error exponents

• Concatenated code: turbo + Deepcode

‣ BLER decays faster

Block length

Block Error Rate
 (BLER)

Summary

• Deep learning based code (encoder-decoder)

‣ Significantly more reliable for channels with feedback

‣ Key: neural architecture

two phase scheme + ideas from communications

Yihan Jiang, Hyeji Kim, Himanshu Asani, Sreeram Kannan, Sewoong Oh, Pramod Viswanath

Turbo Autoencoder:
AWGN Channel Codes via Deep Learning

Channel coding as an autoencoder

• Channel coding

• Autoencoder that learns to copy its input to its output

DecoderEncoder +Noisy
Channel

Literature

• Deep learning (DL) based code for AWGN channels

b

DecoderEncoder +
N(0,I)

Literature

• Deep learning (DL) based code for AWGN channels

• DL based code achieves the reliability of (7,4) Hamming code

(O’Shea, Hoydis ’17)

• Blocklength 100 => 2100. codewords!

Literature

• Challenge: generalization to longer block lengths

CNN based code
& RNN based code

Turbo code

SNR (dB)

BER

(100 bits, rate 1/3)

Turbo AutoEncoder

Key: Architectural innovations, novel training methodology

Our approach

• Turbo AutoEncoder (TurboAE)

‣ ENC and DEC as neural networks inspired by turbo code

AWGN
Channel

Decoder
Neural

Network

b b̂c y

Encoder
Neural

Network

AWGN
channel

• TurboAE is comparable to turbo codes for block length 100

Main results

SNR (dB)

BER
Turbo code

Turbo AE

(Rate 1/3, 100 info. bits)

LDPC code

Outline

1. Neural network based encoder and decoder

AWGN
Channel

Encoder
Neural

Network

Decoder
Neural

Network

b b̂c y

AWGN
channel

Outline

1. Neural network based encoder and decoder

2. Training

AWGN
Channel

Encoder
Neural

Network

Decoder
Neural

Network

b b̂c y

Learn Learn

AWGN
channel

Outline

1. Neural network based encoder and decoder

2. Training

3. Binarization of learned (TurboAE) codewords

AWGN
Channel

Encoder
Neural

Network

Decoder
Neural

Network

b b̂c y

Non-
AWGN
AWGN

channel

Outline

1. Neural network based encoder and decoder

AWGN
Channel

Encoder
Neural

Network

Decoder
Neural

Network

b b̂c y

AWGN
channel

Inspiration from Turbo code

• Concatenate codewords from two convolutional encoders

‣ Long term memory via interleaver

Convolutional
 Encoder

Convolutional
 Encoder

c1

c2
b

c3
Interleaver

(π)

Encoder as a CNN with an interleaver

• 1D convolutional neural network

CNN

CNN

b

Interleaver
(π)

CNN

Power
Normalizer

c1

c2

c3

Outline

1. Neural network based encoder and decoder

AWGN
Channel

Encoder
Neural

Network

Decoder
Neural

Network

b b̂c y

AWGN
channel

Belief Propagation Decoding

• Iterations of BCJR w. interleaver (π), de-interleaver (π-1)

‣ BCJR: maps (prior, noisy codewords) to posterior

B
C
J
R

y2

y1

0
y3

π(y1)
…y2

y1

y3

π(y1)

π-1π π-1π

B
C
J
R

B
C
J
R

B
C
J
R- - -

Belief Propagation Decoding

• Iterations of BCJR w. interleaver (π), de-interleaver (π-1)

‣ BCJR: maps (prior, noisy codewords) to posterior

• Earlier: RNN decoder can be learned solely from data
(Jiang-Kim-Asani-Kannan-Oh-Viswanath ’19)

B
C
J
R

y2

y1

0
y3

π(y1)
…y2

y1

y3

π(y1)

π-1π π-1π

B
C
J
R

B
C
J
R

B
C
J
R- - -

Decoder as a CNN

• Model decoder as a CNN with a vector belief propagation

C
N
N

y2

y1

0
y3

π(y1)
…y2

y1

y3

π(y1)

π-1π

C
N
N

C
N
N

C
N
N π-1π- - -

Outline

1. Neural network based encoder and decoder

2. Training

AWGN
Channel

Encoder
Neural

Network

Decoder
Neural

Network

b b̂c y

Learn Learn

AWGN
channel

Training

• Generate random bit sequences b of length 100

• Simulate the AWGN channels

AWGN
Channel

Encoder
Neural

Network

Decoder
Neural

Network

b b̂c y

AWGN
channel

Input Output
“Learn”

Training

• Auto-encoder training : (input,output) = (b,b)

• Loss : binary cross entropy

AWGN
Channel

Encoder
Neural

Network

Decoder
Neural

Network

b b̂c y

AWGN
channel

Input Output
“Learn”

Backpropagation

Training

• Alternate training of encoder and training of decoder

AWGN
Channel

Encoder
Neural

Network

Decoder
Neural

Network

b b̂c y

Learn

AWGN
channel

Training

• Alternate training of encoder and training of decoder

AWGN
Channel

Encoder
Neural

Network

Decoder
Neural

Network

b b̂c y

Learn

AWGN
channel

Training

• Alternate training of encoder and training of decoder

‣ Encoder 100 times & decoder 500 times

‣ Principle: (For each code, learn near-optimal decoder)

AWGN
Channel

Encoder
Neural

Network

Decoder
Neural

Network

b b̂c y

Learn

AWGN
channel

Learn

Training choice 1. Alternating training

• Joint training of encoder and decoder results in a local optima

Training Iterations

Test loss

Joint training

Alternating training

Training choice 2. SNR

• SNR of AWGN channels

AWGN
Channel

Encoder
Neural

Network

Decoder
Neural

Network

b b̂c y

Learn at Mixture SNRs (-1.5 to 2dB)

AWGN
channel

Learn at test SNR

Training choice 3. Batch size

• Batch size is critical

‣ Large batch size is necessary (>500!)

Training iterations

Test loss

Batch size 100

Batch size 500

• Achieve the reliability of turbo codes for block length 100

Main result

SNR (dB)

BER
Turbo code

Turbo AE

(100 bits, Rate 1/3)

• non-AWGN: TurboAE harvests encoder flexibility:

‣ iid non-Gaussian Channel (ATN)

‣ non-iid Markovian AWGN channel

TurboAE: Results

Block length gain

• TurboAE has a block length gain

BER

Blocklength

Turbo AE

Turbo code

CNN AE

Generalization across interleavers

• Fix an interleaver during training, and test with various interleavers

SNR (dB)

BER

No interleaver

Mismatched random
interleaver

Matched interleaver

Generalization across interleavers

• Fix an interleaver during training, and test with various interleavers

‣ No overfitting to the interleaver used in the training

SNR (dB)

BER

No interleaver

Mismatched random
interleaver

Matched interleaver

Outline

1. Neural network based encoder and decoder

2. Training

3. Binarization of TurboAE code

AWGN
Channel

Encoder
Neural

Network

Decoder
Neural

Network

b b̂c y

AWGN
channel

Binarization of TurboAE

CNN

CNN

b

Interleaver
(π)

CNN

Power
Normalizer

c1

c2

c3

Binarizer

• Binarizer: Output = sign(Input)

Backpropagation

Training through Straight-Through-Estimator

No Gradient Non-trivial Gradient

Effect of binarization

• Reliability remains almost the same after binarization

BER

SNR (dB)

• non-AWGN: TurboAE harvests encoder flexibility:

‣ iid non-Gaussian Channel (ATN)

‣ non-iid Markovian AWGN channel

TurboAE: Results

Summary

• TurboAE

‣ Reliability comparable to modern codes at block length 100

‣ Key: Architectural innovation (long term memory by interleaving)

 & Training methodology

Summary

• TurboAE

‣ Reliability comparable to modern codes at block length 100

‣ Key: Architectural innovation (long term memory by interleaving)

 & Training methodology

‣ Improves reliability for non-AWGN channels

Open problem

• Longer block length, High SNR

Open problem

• Longer block length, High SNR

• Interpretation

Open problem

• Longer block length, High SNR

• Interpretation

• Extension of TurboAE architecture to other applications

Remark

• Source code

‣ https://github.com/yihanjiang/turboae

• Paper will be available soon

‣ “TurboAE: channel codes via deep learning”

Y. Jiang, H.Kim, H. Asani, S. Kannan, S. Oh, and P. Viswanath, NeurIPS ’19

https://github.com/yihanjiang/feedback_code
https://github.com/yihanjiang/feedback_code

TurboAE: Joint Modulation and Coding

Joint Coding and Modulation

‣ TurboAE automatically learns coding + mod together.

‣ But Learning separately allows rate adaptation using same code.

• All modules are neural network

‣ Mod/Demod is small FCNN.

‣ TurboAE is CNN+interleaver.

TurboAE with modulation

• If no TurboAE initialization, the performance drops.

• Just training modulation is suboptimal.

• Joint optimization lead to best performance

Training Algorithm

• Benchmarks:

‣ Turbo+QPSK/8PSK/16QAM

• TurboAE-STE:

‣ Still use QPSK/8PSK/16QAM

• TurboAE Norm:

‣ Learned constellation.

• Better at low SNRs.

‣ High SNR performance not good

AWGN Performance

AWGN Performance

AWGN Performance

AWGN Performance

• ATN is much better than AWGN.

• Joint optimization is good:

Non-AWGN performance

Feedback code with block output feedback

Deepcode: Recall

• Deepcode

‣ Model encoder and decoder as recurrent neural networks

and learn them jointly

AWGN
Channel

Decoder
Neural

Network

b b̂c y

Encoder
Neural

Network

AWGN
channel

Feedback
channel

Deepcode: Performance

• 100x better reliability under noiseless feedback w. precision

(Rate 1/3, 50 bits)

BER Deepcode
16 bit precision

Schalkwijk-Kailath
64 bit precision

SNR (dB)

Deepcode: Limitation

• Limitation of deepcode

‣ Deepcode does not have a block-length gain

SNR

BER

• Limitation of deepcode

‣ Deepcode does not have a block-length gain

‣ Requires feedback with unit-step delay

Deepcode: Limitation

• Limitation of deepcode

‣ Deepcode does not have a block-length gain

‣ Requires feedback with unit-step delay

• Feedback Turbo Autoencoder addresses these limitations!

Deepcode: Limitation

Block-wise output feedback

• Message: b = binary sequence of length k

• Code rate 1/3: x = (x1, … , x3k)

Encoder + y

n

x

y

Decoder

Delay, noise

ReceiverTransmitter
b

Block-wise output feedback

• Message: b = binary sequence of length k

• Code rate 1/3: x = (x1, … , x3k)

• Block feedback:

At time k+1, Tx gets (y1, … , yk); At time 2k+1, Tx gets (yk+1, … , y2k)

Encoder + y

n

x

y

Decoder

Delay, noise

ReceiverTransmitter
b

Outline

1. Neural network based encoder and decoder

AWGN
Channel

Encoder
Neural

Network

Decoder
Neural

Network

b b̂

AWGN
with delay

c y

AWGN
channel

Feedback
channel

Outline

1. Neural network based encoder and decoder

2. Training

AWGN
Channel

Encoder
Neural

Network

Decoder
Neural

Network

b b̂

AWGN
Channel

c y

Learn Learn

AWGN
channel

Feedback
channel

Outline

1. Neural network based encoder and decoder

AWGN
Channel

Encoder
Neural

Network

Decoder
Neural

Network

b b̂

AWGN
with delay

c y

AWGN
channel

Feedback
channel

Inspiration from Turbo code

• Concatenate codewords from two convolutional encoders

Convolutional
 Encoder

Convolutional
 Encoder

c1

c2
b

c3
Interleaver

(π)

Inspiration from Turbo code

• Concatenate codewords from two convolutional encoders

‣ Long term memory via interleaver

Convolutional
 Encoder

Convolutional
 Encoder

c1

c2
b

c3
Interleaver

(π)

Encoder as a CNN with an interleaver

• 1D convolutional neural network

b

CNN c1

Encoder as a CNN with an interleaver

• 1D convolutional neural network

b

CNN y1c1 AWGN

Encoder as a CNN with an interleaver

• 1D convolutional neural network

b

CNN y1c1 AWGN

c2CNN

Encoder as a CNN with an interleaver

• 1D convolutional neural network

b

CNN y1c1 AWGN

c2CNN y2AWGN

Encoder as a CNN with an interleaver

• 1D convolutional neural network

b

CNN y1c1 AWGN

c2CNN

CNNInterleaver
(π)

 y2AWGN

c3

Outline

1. Neural network based encoder and decoder

AWGN
Channel

Encoder
Neural

Network

Decoder
Neural

Network

b b̂c y

AWGN
channel

Belief Propagation Decoding

• Iterations of BCJR w. interleaver (π), de-interleaver (π-1)

‣ BCJR: maps (prior, noisy codewords) to posterior

B
C
J
R

y2

y1

0
y3

π(y1)
…y2

y1

y3

π(y1)

π-1π π-1π

B
C
J
R

B
C
J
R

B
C
J
R- - -

Decoder as a CNN

• Model decoder as a CNN with a vector belief propagation

C
N
N

y2

y1

0
y3

π(y1)
…y2

y1

y3

π(y1)

π-1π

C
N
N

C
N
N

C
N
N π-1π- - -

Outline

1. Neural network based encoder and decoder

2. Training

AWGN
Channel

Encoder
Neural

Network

Decoder
Neural

Network

b b̂c y

Learn Learn

AWGN
channel

AWGN
Channel

Encoder
Neural

Network

Decoder
Neural

Network

b b̂

AWGN
with delay

c y

AWGN
channel

Feedback
channel

Training

• Auto-encoder training : (input,output) = (b,b)

• Loss : binary cross entropy

AWGN
Channel

Encoder
Neural

Network

Decoder
Neural

Network

b b̂c y

AWGN
channel

Input Output
“Learn”

Feedback
channel

Backpropagation

Two stage training

1. Train FTAE without feedback until convergence

2. Train FTAE with feedback

Two stage training

1. Train FTAE without feedback until convergence

‣ Let feedback signal y ~ N(0,0.012)

Two stage training

1. Train FTAE without feedback until convergence

‣ Let feedback signal y ~ N(0,0.012)

‣ Training techniques

- Large batch size

- Alternating training of the encoder and decoder (5x)

Two stage training

1. Train FTAE without feedback until convergence

2. Train FTAE with feedback

Two stage training

1. Train FTAE without feedback until convergence

2. Train FTAE with feedback

‣ Training techniques

- Large batch size

- Alternating training of the encoder and decoder (equally)

Results

• FTAE outperforms Deepcode at high SNR

(Rate 1/3, 50 bits, noiseless feedback)

Results

• FTAE demonstrates block length gain:

‣ BER as block length

(Rate 1/3)

Conclusion

• Feedback Turbo Autoencoder

‣ CNN based code for channels with feedback, inspired by turbo codes

‣ Two-stage training

Conclusion

• Feedback Turbo Autoencoder

‣ CNN based code for channels with feedback, inspired by turbo codes

‣ Two-stage training

‣ Outperforms existing codes in reliability

‣ Achieves a block length gain

Conclusion

• Feedback Turbo Autoencoder

‣ CNN based code for channels with feedback, inspired by turbo codes

‣ Two-stage training

‣ Outperforms existing codes in reliability

‣ Achieves a block length gain

Survey of Other Directions to Invent Code

• AWGN

‣ Neural (7,4) code: BER ~ BER of (7,4) Hamming code

Discovering neural codes

T. O’Shea, J. Hoydis, “An Introduction to Deep Learning for the Physical
Layer” 2017

• AWGN

‣ Rate 1 (128 info. bits.) BER ~ 5dB better than QPSK

Discovering neural codes

T. O’Shea, K. Karra, and T. C. Clancy, “Learning to communicate: Channel
auto-encoders, domain specific regularizers, and attention” 2016

• No clean model: variation of AWGN channels

Discovering neural codes

S. Dörner, S. Cammerer, J. Hoydis, and S. ten Brink, “Deep learning-based
communication over the air”, 2017

Aoudia and Jakob Hoydis, “End-to-End Learning of Communications
Systems Without a Channel Model” 2018

8 bits, 4 (complex) symbols
under a wireless channel

• Clean channel (erasure) / source is complicated (text)

‣ Joint source channel coding

Discovering neural codes

N. Farsad, M. Rao, and A. Goldsmith, “Deep Learning for Joint Source-
Channel Coding of Text” 2018

• Clean channel (erasure) / source is complicated (text)

‣ Joint source channel coding

‣ Improved reliability, evaluated by human

Discovering neural codes

N. Farsad, M. Rao, and A. Goldsmith, “Deep Learning for Joint Source-
Channel Coding of Text” 2018

• Idea-1: Fix the code and learn which bits are good

‣ Ebada, et al, “Deep Learning-based Polar Code Design”

• Idea-2: Use Reinforcement Learning to optimize the starting
code for polar code

‣ Huang, et al, “Reinforcement Learning for Nested Polar Code
Construction”

Deep Learning Polar Design

• Coded computation

‣ J. Kosaian, K.V. Rashmi, and S. Venkataraman, “Learning a Code: Machine
Learning for Approximate Non-Linear Coded Computation”, 2018

• Orthogonal frequency-division multiplexing (OFDM)

‣ A. Felix, S. Cammerer, S. Dörner, J. Hoydis, and S. ten Brink, “OFDM-
Autoencoder for end-to-end learning of communications systems”, 2018

‣ M. Kim, W. Lee, and D. H. Cho, “A novel PAPR reduction scheme for
OFDM system based on deep learning”, 2018

• Multiple-Input Multiple-Output (MIMO)

‣ T. J. O’Shea, T. Erpek, and T. C. Clancy, “Physical layer deep learning of
encodings for the MIMO fading channel”, 2017

Discovering neural codes

• Canonical and benchmark : AWGN

Open problems

Encoder
Neural

Network

Decoder
Neural

Network

message codeword
received

codeword
estimated
message

b b̂

Gaussian noise

• Canonical and benchmark : AWGN

‣ Challenge 1. neural code that has a long range memory

‣ Challenge 2. Error floor at high SNR

Open problems - 1

Encoder
Neural

Network

Decoder
Neural

Network

message codeword
received

codeword
estimated
message

b b̂

Gaussian noise

• Channels with no good codes: deletion channel

‣ Practical (e.g. lack of synchronization, DNA sequencing)

Open problems - 2

Deletion
Channel

Encoder
Neural

Network

Decoder
Neural

Network

message codeword
received

codeword
estimated
message

b b̂

0
1
1
0
1

0
1
1

• Channels with no good codes: deletion channel

‣ Practical (e.g. lack of synchronization, DNA sequencing)

‣ Optimal codes known only if deletion probability v. small

‣ No practical code exists; capacity unknown in general

Open problems - 2

Deletion
Channel

Encoder
Neural

Network

Decoder
Neural

Network

message codeword
received

codeword
estimated
message

b b̂

0
1
1
0
1

0
1
1

• Network information theory setting

‣ Relay, interference, Coordinated Multipoint (CoMP)

Open problems - 3

Applications of Deep Learning to Information Theory

• Compressed sensing

• DeepCodec: Adaptive Sensing and Recovery via
Deep Convolutional Neural Networks

• Mutual Information estimation

• MINE - Mutual Information Neural Estimation

• CCMI - Classifier-based mutual information estimation

• Low Rank Matrix Decomposition

• Indyk et al, “Learning-Based Low-Rank
Approximations”

• Coded computation

Applications of Deep Learning to Info Theory

Reference

• Learning a decoder

‣ H. Kim, Y. Jiang, R. Rana, S. Kannan, S. Oh, P.
Viswanath, ‘‘Communication Algorithms via Deep
Learning," ICLR, 2018

‣ Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, P. Viswanath,
"DeepTurbo: Deep Turbo Decoder," SPAWC, 2019

‣ Y. Jiang, H. Kim, H. Asnani, S. Kannan, "MIND: Model
Independent Neural Decoder," SPAWC, 2019

‣ Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, and P.
Viswanath, “LEARN Codes: Inventing low-latency codes via
recurrent neural networks," ICC 2019

‣

https://www.google.com/url?q=https%3A%2F%2Farxiv.org%2Fabs%2F1903.02295&sa=D&sntz=1&usg=AFQjCNH-RTl_hS0VYLIs0IkNQA3uZYUwFw
https://www.google.com/url?q=https%3A%2F%2Farxiv.org%2Fabs%2F1903.02268&sa=D&sntz=1&usg=AFQjCNHTB46jb7yU-ZIwrA4iM81K681-Jw
https://www.google.com/url?q=https%3A%2F%2Farxiv.org%2Fabs%2F1903.02268&sa=D&sntz=1&usg=AFQjCNHTB46jb7yU-ZIwrA4iM81K681-Jw
https://www.google.com/url?q=https%3A%2F%2Farxiv.org%2Fpdf%2F1811.12707.pdf&sa=D&sntz=1&usg=AFQjCNEDU6OW4uoJjunifWiDx-VPDYKeDw
https://www.google.com/url?q=https%3A%2F%2Farxiv.org%2Fpdf%2F1811.12707.pdf&sa=D&sntz=1&usg=AFQjCNEDU6OW4uoJjunifWiDx-VPDYKeDw
https://www.google.com/url?q=https%3A%2F%2Farxiv.org%2Fpdf%2F1811.12707.pdf&sa=D&sntz=1&usg=AFQjCNEDU6OW4uoJjunifWiDx-VPDYKeDw
https://www.google.com/url?q=https%3A%2F%2Farxiv.org%2Fabs%2F1903.02295&sa=D&sntz=1&usg=AFQjCNH-RTl_hS0VYLIs0IkNQA3uZYUwFw
https://www.google.com/url?q=https%3A%2F%2Farxiv.org%2Fabs%2F1903.02268&sa=D&sntz=1&usg=AFQjCNHTB46jb7yU-ZIwrA4iM81K681-Jw
https://www.google.com/url?q=https%3A%2F%2Farxiv.org%2Fabs%2F1903.02268&sa=D&sntz=1&usg=AFQjCNHTB46jb7yU-ZIwrA4iM81K681-Jw
https://www.google.com/url?q=https%3A%2F%2Farxiv.org%2Fpdf%2F1811.12707.pdf&sa=D&sntz=1&usg=AFQjCNEDU6OW4uoJjunifWiDx-VPDYKeDw
https://www.google.com/url?q=https%3A%2F%2Farxiv.org%2Fpdf%2F1811.12707.pdf&sa=D&sntz=1&usg=AFQjCNEDU6OW4uoJjunifWiDx-VPDYKeDw
https://www.google.com/url?q=https%3A%2F%2Farxiv.org%2Fpdf%2F1811.12707.pdf&sa=D&sntz=1&usg=AFQjCNEDU6OW4uoJjunifWiDx-VPDYKeDw

Reference

• Learning a modulation

‣ Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, and P.
Viswanath, “Joint channel coding and modulation via deep
learning,” SPAWC 2020

Reference

• Learning an encoder

‣ H. Kim, Y. Jiang, S. Kannan, S. Oh, P. Viswanath,
"Deepcode: Feedback Codes via Deep Learning” NeurIPS,
2018

‣ Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, P. Viswanath,
"Turbo Autoencoder: Deep learning based channel code for
point-to-point communication channels," NeurIPS, 2019

• Y. Jiang, H. Kim, H. Asnani, S. Oh, S. Kannan, P. Viswanath,
"Feedback Turbo Encoder," ICASSP, 2020

Source codes

• Communication Algorithms via Deep Learning
International Conference on Learning Representations (ICLR), Vancouver, April 2018
by H. Kim, Y. Jiang, R. Rana, S. Kannan, S. Oh, P. Viswanath
Code: https://github.com/yihanjiang/Sequential-RNN-Decoder

• Deepcode: Feedback Codes via Deep Learning
IEEE Journal on Selected Areas in Information Theory, 2020
Conference on Neural Information Processing Systems (NeurIPS), Montreal, December 2018
by H. Kim, Y. Jiang, S. Kannan, S. Oh, P. Viswanath
Code (Keras): https://github.com/hyejikim1/Deepcode
Code (PyTorch): https://github.com/yihanjiang/feedback_code

• Turbo Autoencoder: Deep learning based channel code for point-to-point communication
channels
Conference on Neural Information Processing Systems (NeurIPS), Vancouver, December 2019
by Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, P. Viswanath
Code: https://github.com/yihanjiang/turboae

https://openreview.net/pdf?id=ryazCMbR-
https://github.com/yihanjiang/Sequential-RNN-Decoder
https://arxiv.org/abs/1807.00801
https://github.com/hyejikim1/Deepcode
https://github.com/yihanjiang/feedback_code
https://arxiv.org/abs/1911.03038
https://arxiv.org/abs/1911.03038
https://github.com/yihanjiang/turboae
https://openreview.net/pdf?id=ryazCMbR-
https://github.com/yihanjiang/Sequential-RNN-Decoder
https://arxiv.org/abs/1807.00801
https://github.com/hyejikim1/Deepcode
https://github.com/yihanjiang/feedback_code
https://arxiv.org/abs/1911.03038
https://arxiv.org/abs/1911.03038
https://github.com/yihanjiang/turboae

