SPCOM 2020: Deep Learning for Communication Algorithms

Sreeram Kannan

Hyeji Kim

Presenting Team

Sreeram Kannan

Thanks:

Yihan Jiang

Hyeji Kim

Himanshu Asnani

Pramod Viswanath Sewoong Oh

Success of Deep Learning

Speech

Image recognition

"construction worker in orange safety vest is working on road."

Video

<u>https://www.youtube.com/</u> watch?v=9Yq67CjDqvw

Success of Deep Learning

Speech

Image recognition

"construction worker in orange safety vest is working on road."

Video

<u>https://www.youtube.com/</u> watch?v=9Yq67CjDqvw

Nanopore Sequencing

Nearly a markov model

Yet deep learning does "better". Why?

Model deficit

Hard to model image, speech, language, video..

Algorithm deficit

Hard to find optimal algorithms for known model..

Why Deep Learning Works

alphaGo => No model deficit

- Models are well-defined

• Designing a robust code (encoder/decoder) is critical • Challenge: space of encoder/decoder mappings very large

• Huge practical impact

Design of codes

• Technical communities

Design of codes

Technical communities

• Sporadic progress

C.E. Shannon Definition 1948

Design of codes

- Introduction to Neural Networks
- Inventing neural decoders
- Inventing neural codes

• Other applications of deep learning to information theory

- Introduction to Neural Networks
- Inventing neural decoders
- Inventing neural codes

• Other applications of deep learning to information theory

Introduction to Neural Networks

Slides made by Sewoong Oh (University of Washington)

• Problem statement

that minimizes the loss \mathcal{L} of our choice

```
Given labelled examples \{(X_i, Y_i)\}_{i=1}^n, find a classifier f
```

 $\min_{f} \mathbb{E}_{X,Y} \left[\mathcal{L}(f(X),Y) \right]$

• Problem statement

that minimizes the loss \mathcal{L} of our choice

the sample mean instead,

- Given labelled examples $\{(X_i, Y_i)\}_{i=1}^n$, find a classifier f
 - $\min_{f} \mathbb{E}_{X,Y} \left[\mathcal{L}(f(X), Y) \right]$
- As we access the joint distribution ${\cal P}_{X,Y}$ through samples, we minimize

• Problem statement

Given labelled examples - that minimizes the loss \mathcal{L}

 $\min_{f} \mathbb{E}_{X,}$

• As we access the joint distribut the sample mean instead,

 $\min_{f} \frac{1}{n} \sum_{i=1}^{n}$

 To avoid overfitting to the train class of functions

 $\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n}$

$$\{(X_i, Y_i)\}_{i=1}^n$$
, find a classifier f
c of our choice

$$_{Y} \left[\mathcal{L}(f(X), Y) \right]$$

• As we access the joint distribution $P_{X,Y}$ through samples, we minimize

$$\sum_{i=1}^{n} \mathcal{L}(f(X_i), Y_i)$$

• To avoid overfitting to the training samples, we search over a restricted

$$\sum_{i=1}^{n} \mathcal{L}(f(X_i), Y_i)$$

• Problem statement

Given labelled examples that minimizes the loss \mathcal{L}

 $\min_{f} \mathbb{E}_{X,}$

the sample mean instead,

 $\min_{f} \frac{1}{n} \sum_{i=1}^{n}$

class of functions

 $\overline{f} \in \mathcal{F}$ $n \stackrel{\frown}{i=1}$

representation and generalization

$$\{(X_i, Y_i)\}_{i=1}^n$$
, find a classifier f
c of our choice

$$_{Y} \left[\mathcal{L}(f(X), Y) \right]$$

• As we access the joint distribution $P_{X,Y}$ through samples, we minimize

$$\sum_{k=1}^{n} \mathcal{L}(f(X_i), Y_i)$$

• To avoid overfitting to the training samples, we search over a restricted

$$\sum_{i=1}^{n} \mathcal{L}(f(X_i),$$

• Neural networks: a parametric family with a graceful tradeoff between

Neural Network of depth *d* and weights $(W_1, ..., W_d)$

input layer X

output layer f(X)

Gradient computation is simple

- Choose the loss function
 L₂ loss
 - $\min_{W_1,\ldots,W_d} \frac{1}{n}$

• Choose the loss function (e.g. for binary classification)

$$\sum_{i=1}^{n} (Y_i - f(X_i))^2$$

Gradient computation is simple

- Choose the loss function
 L₂ loss
 - $\min_{W_1,\ldots,W_d} \frac{1}{n}$

• Cross entropy loss $\min_{W_1,...,W_d} \frac{1}{n} \sum_{i=1}^n -\{Y_i \log(f(X_i)) + (1 - Y_i) \log(1 - f(X_i))\}$

Choose the loss function (e.g. for binary classification)

$$\sum_{i=1}^{n} (Y_i - f(X_i))^2$$

Gradient computation is simple

- \blacktriangleright L₂ loss
 - $\min_{W_1,\ldots,W_d} \frac{1}{n}$

Cross entropy loss $\min_{W_1,\dots,W_d} \frac{1}{n} \sum_{i=1}^n -\{Y_i \log(f(X_i)) + (1 - Y_i) \log(1 - f(X_i))\}$

(variants of) gradient descent are used

Choose the loss function (e.g. for binary classification)

$$\sum_{i=1}^{n} (Y_i - f(X_i))^2$$

Efficient gradient computation via backpropagation $f(X) = \sigma \left(W_d \cdots \sigma \left(W_2 \sigma (W_1 X) \right) \cdots \right)$

- Introduction to Neural Networks
- Inventing neural decoders
- Inventing neural codes

• Other applications of deep learning to information theory

- Inventing neural decoders
 - Example
 - Literature
 - Open problems

Learning state-of-the-art decoders for AWGN channels

Improving the state-of-the-art decoders for non-AWGN channels

Deep learning based decoder for practical channels

"Communication Algorithms via Deep Learning," Kim-Jiang-Rana-Kannan-Oh-Viswanath ICLR '18

Convolutional codes, turbo codes

Sequential codes

- Convolutional codes, turbo codes
- Practical

 - (Deep space) satellite communications

3G/4G mobile communications (e.g., in UMTS and LTE)

- Convolutional codes, turbo codes
- Practical
 - 3G/4G mobile communications (e.g., in UMTS and LTE) (Deep space) satellite communications
- Achieve performance close to fundamental limit

- Convolutional codes, turbo codes
- Practical
 - 3G/4G mobile communications (e.g., in UMTS and LTE) (Deep space) satellite communications
- Achieve performance close to fundamental limit
- Recurrent structure aligns well w. Recurrent Neural Networks

• Mapping a message bit sequence **b** to a codeword seq. **c**

Convolutional codes

Sequential codes

 $s_k = (b_{k, b_{k-1, b_{k-2}})$

Example of a rate 1/2 convolutional code

- Turbo codes

Concatenate codewords from two convolutional encoders

Recurrent Neural Network (RNN)

Sequential mappings with memory

$h_k = f(h_{k-1}, \operatorname{In}_k)$ Out_k = g(h_k)

Recurrent Neural Network (RNN)

Sequential mappings with memory

$$h_k = f(h_{k-1}, \operatorname{In}_k)$$

$$\operatorname{Out}_k = g(h_k)$$

 $h_k = \tanh(W \ln_k + U h_{k-1})$ $\operatorname{Out}_k = Vh_k$

Recurrent neural network and sequential codes

k
$$h_k = f(h_{k-1}, \operatorname{In}_k)$$
 $\operatorname{Out}_k = g(h_k)$ t Neural Network

message

codeword

Sequential codes

Sequential codes under AWGN

- Optimal decoders known for convolutional codes
 - Viterbi (Viterbi '67) dynamic programming
 - BCJR (Bahl-Cocke-Jelinek-Raviv'74) forward-backward alg.

codeword

message
Sequential codes under AWGN

- Optimal decoders known for convolutional codes
 - Viterbi (Viterbi '67) dynamic programming
 - BCJR (Bahl-Cocke-Jelinek-Raviv'74) forward-backward alg.
- Efficient iterative decoders for turbo codes

Decoding becomes challenging

message

codeword

Non-AWGN channel

noisy codeword estimated message

• High-power noise is added occasionally

• High-power noise is added occasionally

Decoders designed for AWGN channels fail significantly

• Decoding turbo codes under bursty vs. AWGN channels

Bit Error Rate (BER)

Bursty noise

Bursty noise

- Decoders designed for AWGN channels fail significantly
 - Challenge 1. decoders that are robust to channel statistics?

Bursty noise

- Decoders designed for AWGN channels fail significantly
 - Challenge 1. decoders that are robust to channel statistics?
- Heuristic decoders are used

• Heuristic decoders (thresholding) are used

Bit Error Rate

Bursty noise

- Decoders designed for AWGN channels fail significantly
 - Challenge 1. decoders that are robust to channel statistics?
- Heuristic decoders are used
 - Challenge 2. decoders that adapt better?

Model decoder as a neural network and learn

message

codeword

Output

-1

Input

noisy **codeword** message

Our approach

- Model decoder as a neural network and learn
- Neural network based decoder is robust and adaptive
 - (Kim-Jiang-Rana-Kannan-Oh-Viswanath '18)

codeword

Output

Input

noisy codeword message

Main results: Robustness

• Neural decoder as reliable as traditional dec. under AWGN

Main results: Robustness

• Neural decoder is more reliable under bursty channels

Main results: Adaptivity

• Adapted neural decoder is more reliable than heuristics

Outline - learning a decoder

- 1. Convolutional codes under AWGN
- 2. Turbo codes under AWGN
- 3. Turbo codes under bursty

Convolutional codes under AWGN

- Neural networks can emulate optimal decoders
 - Viterbi (Wang-Wicker '96)
 - BCJR (Sazli-Icsik'07)

ANN Viterbi decoder (Wang-Wicker'96)

Convolutional codes under AWGN

Can optimal decoders be learned from data alone?

Decoder as a Recurrent Neural Network

• Maps $(y_1, y_2, y_3) \rightarrow (\hat{b}_1, \hat{b}_2, \hat{b}_3)$ via bi-directional RNN

Input

• Supervised training with (noisy codeword y, message b)

Training

• Supervised training with (noisy codeword y, message b)

b

С

• Generate training examples (message **b**, noisy codeword **y**)

У

• Generate training examples (message **b**, noisy codeword **y**)

У

- Length of message bits $\mathbf{b} = (b_1, ..., b_K)$
- SNR of the noisy codeword y

b

С

• Train at block length 100, fixed SNR (0dB)

Strong generalization

• Train at block length 100, fixed SNR (0dB)

b

• Optimal performance for every test block lengths, SNR

Y

Results: test block length 10000

• Neural decoder is as reliable as an optimal decoder

Train: block length = 100, SNR=0dB

Results: test block length 100

• Neural decoder is as reliable as an optimal decoder

Train: block length = 100, SNR=0dB

• What if we train with noisy codewords at test SNR?

• Empirically find best training SNR for different code rates

Range of best training SNR

• Hardest but decodable training examples

SNR

Range of best training SNR

Hard training examples

- Idea of hardest but do-able training examples
 - Training with noisy examples
 - Applied to problems where training examples can be chosen

Outline - learning a decoder

1. Convolutional codes under AWGN channels

2. Turbo codes under AWGN channels

Turbo code

• Concatenate codewords from two convolutional encoders

Belief propagation decoder

• Iterations of BCJR w. interleaver (π), de-interleaver (π^{-1})

Belief propagation decoder

- Iterations of BCJR w. interleaver (π), de-interleaver (π^{-1})
 - BCJR: maps (prior, noisy codewords) to posterior

Learning an iterative decoder for turbo

• Neural BCJR: If we could generate BCJR input-output pairs, can we learn a neural network based BCJR algorithm?

Learning an iterative decoder for turbo

- Neural BCJR: If we could generate BCJR input-output pairs, can we learn a neural network based BCJR algorithm?
 - Would iteration of Neural BCJR decoders mimic the iterative decoder?

Learning an iterative decoder for turbo

- Neural BCJR: If we could generate BCJR input-output pairs, can we learn a neural network based BCJR algorithm?
 - Would iteration of Neural BCJR decoders mimic the iterative decoder?

• DeepTurbo: Can we learn an iterative decoder end-to-end?

Decoder as a Recurrent Neural Network

- NeuralBCJR
 - Iterations of RNNs w. interleaver (π), de-interleaver (π^{-1})

Decoder as a Recurrent Neural Network

- NeuralBCJR
 - Each RNN trained to mimic BCJR

- Step 1: Neural BCJR learning

Supervised training with BCJR input-output under AWGN channels

- Step 2: E2E fine-tuning
 - Supervised training with (y,b) under AWGN channels

Decoding turbo codes: block length 1000

• Neural decoder is as reliable as traditional decoder

Rate 1/3 turbo code

Decoding turbo codes: block length 100

• Neural decoder is more reliable than traditional decoder

Rate 1/3 turbo code

Learning BP decoder from data alone

• What if BCJR input-output values are not available?

Learning BP decoder from data alone

- - DeepTurbo: learning the BP decoder from data alone

• What if BCJR input-output values are not available?

(Jiang-Kim-Asnani-Kannan-Oh-Viswanath SPAWC '19)

Learning BP decoder from data alone

- **DeepTurbo**: Iteration of 12 layers of bi-RNNs
 - De-coupled RNNs
 - Belief vectors

- Supervised training with (y,b) under AWGN channels
 - Training with hardest but do-able examples

Neural BCJR vs. DeepTurbo

• Comparable performance

Rate 1/3 turbo code w/ memory 2 (100 bits)

Rate 1/3 turbo code w/ memory 3 (100 bits)

Outline - learning a decoder

1. Convolutional codes under AWGN channels

2. Turbo codes under AWGN channels

3. Turbo codes under bursty channels

codeword

Robustness

Decoders for AWGN channel => test under bursty channels

noisy codeword estimated message

Robustness

Neural decoder for AWGN is more reliable under bursty

SNR of bursty noise channel

Rate 1/3, 1000 bits

• Decoder adapted to actual test channels

codeword

noisy codeword estimated message

• Re-train neural decoder with bursty examples

Rate 1/3 turbo code, block length 1000

• Re-trained neural decoder more reliable than heuristic dec.

Rate 1/3 turbo code, block length 1000

Neural BCJR vs. DeepTurbo - Adaptivity comparison

DeepTurbo shows improved adaptivity

SNR of bursty channel

SNR of T-distributed noise channel

Rate 1/3 turbo code (100 bits)

- Optimal decoders can be learned for AWGN channels
 - Training with hardest but decodable examples

- Optimal decoders can be learned for AWGN channels
 - Training with hardest but decodable examples

- Benefits
 - Robust to varying channel statistics
 - Adaptive when analytically designing a decoder is hard

- Inventing neural decoders Example

 - Literature
 - Open problems

Learning state-of-the-art decoders for AWGN channels

Improving the state-of-the-art decoders for non-AWGN channels

- Decoding sequential codes or linear block codes

• Learning a decoder from data alone vs. model-based

- Learning a decoder from data alone
 - Polar codes for AWGN channels
 - *channel decoding*", 2017

Tobias Gruber, Sebastian Cammerer, Jakob Hoydis, Stephan ten Brink, "*On deep learning-based*

- Learning a decoder from data alone
 - Polar codes for AWGN channels
 - channel decoding", 2017
 - Achieving strong generalization is challenging

Tobias Gruber, Sebastian Cammerer, Jakob Hoydis, Stephan ten Brink, "On deep learning-based

- Learning a decoder from data alone
 - Polar codes for AWGN channels
 - channel decoding", 2017
 - Achieving strong generalization is challenging
 - Scaling to longer block lengths

Conventional iterative decoding algorithm w/ sub-blocks replaced by neural decoders

Literature

Tobias Gruber, Sebastian Cammerer, Jakob Hoydis, Stephan ten Brink, "On deep learning-based

- Learning a decoder from data alone
 - Nonlinear channels (e.g., molecular channels)
 - Nariman Farsad, Andrea Goldsmith, "Neural Network Detection of Data Sequences in Communication Systems", 2018

- Learning a decoder from data alone

 - *Communication Systems*, 2018

Block Detector Stream of Sliding BRNN Detector

• Nonlinear channels (e.g., molecular channels)

Nariman Farsad, Andrea Goldsmith, "*Neural Network Detection of Data Sequences in*

RNN-based detection (w/o CSI) achieves the reliability of Viterbi detector with CSI

Fig. 4: The sliding BRNN detector.

- Model-based decoder with learnable variables
 - Weighted BP decoder for linear block codes

Eliya Nachmani, Yair Be'ery, David Burshtein, "Learning to decode linear codes using deep learning", 2016

Eliya Nachmani, Yaron Bachar, Elad Marciano, David Burshtein, Yair Be'ery, "Near Maximum Likelihood Decoding with Deep Learning", 2018

$$x_{i,e=(v,c)} = \tanh\left(\frac{1}{2}\left(w_{i,v}l_v + \sum_{e'=(v,c'), c'\neq c} w_{i,e,e'}x_{i-1,e'}\right)\right)$$

for odd *i*,

$$x_{i,e=(v,c)} = 2 \tanh^{-1} \left(\prod_{e'=(v',c), v' \neq v} x_{i-1,e'} \right)$$

for even *i*, and

$$o_{v} = \sigma \left(w_{2L+1,v} l_{v} + \sum_{e'=(v,c')} w_{2L+1,v,e'} x_{2L,e'} \right)$$

• Learnable variables (w) to the BP over the trellis graph

- Training and generalization

due to the symmetry in the decoder structure

Training with (noisy versions of) all-zero codewords is sufficient

Model-based decoder with learnable variables

N. Shlezinger, Y. C. Eldar, N. Farsad and A. J. Goldsmith, "ViterbiNet: Symbol Detection Using a Deep Learning Based Viterbi Algorithm," 2019 IEEE 20th SPAWC, Cannes, France, 2019

ViterbiNet for convolutional codes for non-AWGN channels

Model-based decoder with learnable variables

2019 IEEE 20th SPAWC, Cannes, France, 2019

- ViterbiNet for convolutional codes for non-AWGN channels
 - N. Shlezinger, Y. C. Eldar, N. Farsad and A. J. Goldsmith, "ViterbiNet: Symbol Detection Using a Deep Learning Based Viterbi Algorithm,"

Channels with memory: Inter-symbol-interference channels

ViterbiNet: Cost computation of Viterbi is learned from data

ViterbiNet (w/o CSI) ~ Reliability of Viterbi detector w/ CSI

SER versus SNR, ISI channel with AWGN.

Literature

Model-based decoder with learnable variables

TurboNet

Yunfeng He, Jing Zhang, Shi Jin, Chao-Kai Wen, Geoffrey Ye Li arXiv June 2020

Literature

"Model-Driven DNN Decoder for Turbo Codes: Design, Simulation and Experimental Results,"

• TurboNet outperforms DeepTurbo at high SNR

- High SNR
- Large block lengths

Open problems

- Channels for which decoders can be improved
 - Nonlinear channels (e.g., low-precision ADC)
 - Deletion channels (e.g., nanopore sequencing)

- Practical aspects of neural network based decoders
 - Complexity
 - Testing on real channels

- Practical aspects of neural network based decoders
 - Complexity
 - Testing on real channels
 - Fast adaptation to varying channels
 - Meta-learning!

Adapting Decoder to Channel Variations

Joint work with Yihan Jiang, Himanshu Asani, Hyeji Kim

Adaptation Hierarchy

- Train on AWGN, Test on General: Robustness
 - Theory: Worst case noise
- Generality
 - Theory: Optimal codes on non-AWGN
- Train on Set of channels, New channel (few training symbols), Test on New Channel

• Train on Complex channel, Test on Complex Channel:

Adaptation: Goal

- equalization
- effects
- variations

• Existing systems: Decoders adapt to channel variations by

• Equalization is typically for *parametrizable multiplicative*

• Can we design a method to adapt to general channel

► For example, noise is not Gaussian, channel is not iid,...

Test: Trained channels {c₁, c₂,...,c_m}

codeword

Paradigm: Observe training symbols on c_i Then Adapt

Training: Possible channels {C₁,C₂,...,C_m}

noisy codeword estimated message

Multi-task learning: General Idea

Setting: K Tasks with different (x_j, y_j) distributions

Train: Data from the K Tasks

 $\begin{array}{ll} \mathsf{MTL} \\ (\text{Train for average} & \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \boldsymbol{\beta} \nabla_{\boldsymbol{\theta}} \sum_{T_i \in T_i \in T_i} \\ \text{Of tasks} \end{array}$

Test phase: 1) Observe few samples from a random task2) Update the model using SGD3) Calculate test performance on the updated model

$$L_{T_i}(f_{\theta}) = \sum_{\substack{x^{(j)}, y^{(j)} \sim T_i}} BCE(f_{\theta}(x^{(j)}), y^{(j)}).$$

$$\sum_{\in \{T\}} L_{T_i}(f_{\theta}).$$

Setting: K Tasks with different (x_i, y_i) distributions

Train: Data from the K Tasks

1-step $\theta'_i = \theta - \alpha \nabla_{\theta} L_{T_i}(f_{\theta})$ Grad for task-i

$$\min_{\theta} \sum_{i} L_{T_i}(\theta_i') = \min_{\theta} \sum_{i} L_T$$

Test: SGD on θ after observing a batch

MAML: General Idea

$$L_{T_{i}}(f_{\theta}) = \sum_{x^{(j)}, y^{(j)} \sim T_{i}} BCE(f_{\theta}(x^{(j)}), y^{(j)}).$$

MAML: For Channel Decoding

- **Setting**: K Tasks = K Channels
- **Train:** Using simulated data from K channels
- **Test phase:** 1) On the new channel: Observe some received symbols (with ground truth message known) 2) Update the decoder model using SGD 3) Calculate test performance on the updated model

Two performance metrics: 1) How much data? 2) How much computation?

Convolutional Code + MAML

Convolutional Code + MAML

Untrained Channel

Turbo MAML Decoder

Untrained Channel

Parameters

Parameters	Convolutional Code	Turbo Code
Neural Decoder	2 layer bi-GRU	2 layer bi-GRU
Number of Neural Units	200	200
Batch Size B	100	100
Meta Batch Size P	10	10
Meta Learning Rate β	0.00001	0.00001
Adaptation Learning Rate α	0.001	0.0001
Number of Meta Update Steps	50000	50000
Block Length L	100	100
Train SNR	0 to 4dB	-1.5 to 2dB
Code Rate	1/2	1/3

Testing Method	Adaptation Data	Task Update Steps K
Fine-tune	1000000	10000
MIND-1 Meta Testing	100	1
MIND-10 Meta Testing	1000	10

- samples using MAML
- for adaptation
- Proposal for practice:
 - Use Equalizer to deal with multiplicative effects

Showed that adaptation is possible with much fewer

• Still 100 batches of 100 training symbols each is required

Use MAML to adapt to <u>additive noise effects over slow-time scale</u>

- samples using MAML
- for adaptation
- Proposal for practice:
 - Use Equalizer to deal with multiplicative effects

Showed that adaptation is possible with much fewer

• Still 100 batches of 100 training symbols each is required

Use MAML to adapt to <u>additive noise effects over slow-time scale</u>

- Introduction to Neural Networks
- Inventing neural decoders
- Inventing neural codes

• Other applications of deep learning to information theory

- Inventing neural codes
 - Example

 - Learning Turbo codes
 - Literature
 - Open problems

• Learning a code for channels with output feedback

Coding for channels with block-wise output feedback

Learning a code for channels with feedback

"Deepcode: feedback codes via deep learning," K-Jiang-Kannan-Oh-Viswanath NeurIPS'18

Feedback

AWGN channels with output feedback

- AWGN channel from transmitter to receiver
- Output fed back to the transmitter

- Noiseless feedback
 - Improved reliability
 - Coding schemes

 - Posterior matching (Shayevitz-Feder '09)

• Schalkwijk-Kailath scheme (Schalkwijk-Kailath '66)

- Noisy feedback
 - Existing schemes perform poorly

- Noisy feedback
 - Existing schemes perform poorly
 - Concatenated coding (Chance-Love '11)

- Noisy feedback
 - Existing schemes perform poorly
 - Concatenated coding (Chance-Love '11)
 - Linear codes very bad (Kim-Lapidoth-Weissman '07)

- Noisy feedback
 - Existing schemes perform poorly
 - Concatenated coding (Chance-Love '11)
 - Linear codes very bad (Kim-Lapidoth-Weissman '07)
- Nonlinear codes?

- Noisy feedback
 - Existing schemes perform poorly
 - Concatenated coding (Chance-Love '11)
 - Linear codes very bad (Kim-Lapidoth-Weissman '07)
- Nonlinear codes?
 - "Deepcode" (Kim-Jiang-Kannan-Oh-Viswanath '18)

- Noisy feedback
 - Existing schemes perform poorly
 - Concatenated coding (Chance-Love '11)
 - Linear codes very bad (Kim-Lapidoth-Weissman '07)
- Nonlinear codes?
 "Deepcode" (Kim-Jiang-Kannan-Oh-Viswanath '18)
- Challenge: How to combine noisy feedback and message causally?

- Deepcode

Model encoder and decoder as neural networks and learn

• 100x better reliability under noiseless feedback w. precision

Main results

(Rate 1/3, 50 bits)

Feedback SNR (dB)

Main results

Outperforms state-of-the-art for AWGN feedback channel

(Rate 1/3, 50 bits, SNR = 0dB)

Key: Architectural innovations, ideas from communications

Outline - towards Deepcode

1. Neural network based encoder and decoder

Outline - towards Deepcode

Neural network based encoder and decoder Training

Outline - towards Deepcode

- 1. Neural network based encoder and decoder
- 2. Training
- 3. Modification on the encoder "Deepcode"

Encoder as a neural network

- Two-phase scheme

• e.g. maps information bits $b_{1,}b_{2,}b_{3}$ to a length-6 code

Phase II.

Phase I: send information bits

Phase II.

• Parity for **b**₁

Phase II.

Phase II.

• Another parity for **b**₁?

Phase II.

• Parity for **b**₂?

Phase II.

• Parity for b_2 and b_1

Phase II.

• Parity for b₃, b₂ and b₁

Phase II.

b₁,**y**₁,**y**_{c1},**b**₂,**y**₂,**y**_{c2},**b**₃,**y**₃

Recurrent Neural Network for parity generation

• Sequential mapping with memory

 $h_i = f(h_{i-1})$ Output_i =

$$_{-1}, \operatorname{Input}_i)$$

= $g(h_i)$

Outline - towards Deepcode

1. Neural network based encoder and decoder

Decoder as a recurrent neural network

• Maps $(y_{1}, y_{2}, y_{3}, y_{c1}, y_{c2}, y_{c3}) \rightarrow \hat{b}_{1}, \hat{b}_{2}, \hat{b}_{3}$ via bi-directional RNN

Outline - towards Deepcode

Neural network based encoder and decoder Training

Learn encoder and decoder jointly – autoencoder training

• Generate random bit sequences **b** of length K

Training

- Auto-encoder training : (input,output) = (b,b)

• Loss : binary cross entropy $\mathcal{L}(\mathbf{b}, \hat{\mathbf{b}}) = -\mathbf{b} \log \hat{\mathbf{b}} - (1 - \mathbf{b}) \log(1 - \hat{\mathbf{b}})$

"Learn"

Choice of training examples

- Length of binary bit sequence b
- SNR of AWGN/feedback channels

"Learn"

Choice of training examples

- K = 100matched to test SNR
- Length of binary bit sequence **b** • SNR of AWGN/feedback channels

"Learn"

Intermediate result

• Outperforms S-K for a small range of SNR

Outline - towards Deepcode

1. Baseline encoder and decoder 2. Training

3. Modification on the encoder - "Deepcode"

High error in the last bits

Position

High error in the last bits

Phase I.

Phase II.

Position

Encoder modification 1. Zero padding

Phase I.

Encoder modification 2. Power allocation

Final results

• 100x improvement for noiseless feedback w. precision

Final results

Outperforms state-of-the-art for AWGN feedback channel

Feedback SNR (dB)

(Rate 1/3, 50 bits, forward SR = 0dB)

Generalization: block lengths

• Train on block length 100. Test on block lengths 50 & 500

SNR

Improved error exponents

Non-feedback scheme: BLER as block length

Block length

Improved error exponents

Block length

- Deep learning based code (encoder-decoder)
 - Significantly more reliable for channels with feedback
 - Key: neural architecture
 - two phase scheme + ideas from communications

Turbo Autoencoder: AWGN Channel Codes via Deep Learning

Yihan Jiang, Hyeji Kim, Himanshu Asani, Sreeram Kannan, Sewoong Oh, Pramod Viswanath

Channel coding as an autoencoder

• Channel coding

• Autoencoder that learns to copy its input to its output

Literature

• Deep learning (DL) based code for AWGN channels

Literature

- Deep learning (DL) based code for AWGN channels
- DL based code achieves the reliability of (7,4) Hamming code (O'Shea, Hoydis '17)
- Blocklength 100 => 2^{100.} codewords!

• Challenge: generalization to longer block lengths

Key: Architectural innovations, novel training methodology

Turbo AutoEncoder
Our approach

Turbo AutoEncoder (TurboAE)

ENC and DEC as neural networks inspired by turbo code

Main results

• TurboAE is comparable to turbo codes for block length 100

1. Neural network based encoder and decoder

Neural network based encoder and decoder Training

Outline

- 1. Neural network based encoder and decoder
- 2. Training
- 3. Binarization of learned (TurboAE) codewords

1. Neural network based encoder and decoder

Inspiration from Turbo code

- - Long term memory via interleaver

Concatenate codewords from two convolutional encoders

Encoder as a CNN with an interleaver

• 1D convolutional neural network

1. Neural network based encoder and decoder

Belief Propagation Decoding

- Iterations of BCJR w. interleaver (π), de-interleaver (π^{-1})
 - BCJR: maps (prior, noisy codewords) to posterior

Belief Propagation Decoding

- Iterations of BCJR w. interleaver (π), de-interleaver (π^{-1})
 - BCJR: maps (prior, noisy codewords) to posterior

• Earlier: RNN decoder can be learned solely from data (Jiang-Kim-Asani-Kannan-Oh-Viswanath '19)

Decoder as a CNN

Model decoder as a CNN with a vector belief propagation

Neural network based encoder and decoder Training

- Generate random bit sequences **b** of length 100
- Simulate the AWGN channels

- Auto-encoder training : (input,output) = (b,b)

Training

• Loss : binary cross entropy $\mathcal{L}(\mathbf{b}, \hat{\mathbf{b}}) = -\mathbf{b} \log \hat{\mathbf{b}} - (1 - \mathbf{b}) \log(1 - \hat{\mathbf{b}})$

• Alternate training of encoder and training of decoder

• Alternate training of encoder and training of decoder

Training

- Alternate training of encoder and training of decoder
 - Encoder 100 times & decoder 500 times
 - Principle: (For each code, learn near-optimal decoder)

Training choice 1. Alternating training

Joint training of encoder and decoder results in a local optima

Training Iterations

Training choice 2. SNR

• SNR of AWGN channels

Learn at test SNR

Learn at Mixture SNRs (-1.5 to 2dB)

Training choice 3. Batch size

- Batch size is critical
 - Large batch size is necessary (>500!)

Main result

• Achieve the reliability of turbo codes for block length 100

TurboAE: Results

non-AWGN: TurboAE harvests encoder flexibility:
iid non-Gaussian Channel (ATN)
non-iid Markovian AWGN channel

Block length gain

• TurboAE has a block length gain

Blocklength

Generalization across interleavers

• Fix an interleaver during training, and test with various interleavers

SNR (dB)

Generalization across interleavers

- - No overfitting to the interleaver used in the training

• Fix an interleaver during training, and test with various interleavers

SNR (dB)

1. Neural network based encoder and decoder

- 2. Training
- 3. Binarization of TurboAE code

Binarization of TurboAE

Binarizer: Output = sign(Input)

Effect of binarization

• Reliability remains almost the same after binarization

TurboAE: Results

non-AWGN: TurboAE harvests encoder flexibility:
iid non-Gaussian Channel (ATN)
non-iid Markovian AWGN channel

- TurboAE
 - Reliability comparable to modern codes at block length 100 Key: Architectural innovation (long term memory by interleaving) & Training methodology

- TurboAE
 - Reliability comparable to modern codes at block length 100
 - Key: Architectural innovation (long term memory by interleaving)
 & Training methodology
 - Improves reliability for non-AWGN channels

• Longer block length, High SNR

- Longer block length, High SNR
- Interpretation

- Longer block length, High SNR
- Interpretation
- Extension of TurboAE architecture to other applications

- Source code
 - https://github.com/yihanjiang/turboae
- Paper will be available soon
 - <u>"TurboAE: channel codes via deep learning</u>"
 Y. Jiang, H.Kim, H. Asani, S. Kannan, S. Oh, and P. Viswanath, NeurIPS '19

TurboAE: Joint Modulation and Coding

Joint Coding and Modulation

TurboAE automatically learns coding + mod together.

But Learning separately allows rate adaptation using same code.

TurboAE with modulation

- All modules are neural network
 - Mod/Demod is small FCNN.
 - TurboAE is CNN+interleaver.

Training Algorithm

- If no TurboAE initialization, the performance drops.
- Just training modulation is suboptimal.
- Joint optimization lead to best performance

- Benchmarks:
 - Turbo+QPSK/8PSK/16QAM
- TurboAE-STE:
 - Still use QPSK/8PSK/16QAM
- TurboAE Norm:
 - Learned constellation.
- Better at low SNRs.
 - High SNR performance not good

AWGN Performance

AWGN Performance

AWGN Performance

Total Rate 4/3, SNR

Non-AWGN performance

- ATN is much better than AWGN.
- Joint optimization is good:

Feedback code with block output feedback

Deepcode: Recall

- Deepcode
 - Model encoder and dec and learn them jointly

Model encoder and decoder as recurrent neural networks

Deepcode: Performance

• 100x better reliability under noiseless feedback w. precision

(Rate 1/3, 50 bits)

Deepcode: Limitation

- Limitation of deepcode
 - Deepcode does not have a block-length gain

Deepcode: Limitation

- Limitation of deepcode
 - Deepcode does not have a block-length gain
 - Requires feedback with unit-step delay

Deepcode: Limitation

- Limitation of deepcode
 - Deepcode does not have a block-length gain
 - Requires feedback with unit-step delay

Feedback Turbo Autoencoder addresses these limitations!

Block-wise output feedback

- Message: **b** = binary sequence of length k
- Code rate $1/3: \mathbf{x} = (x_1, \dots, x_{3k})$

Block-wise output feedback

- Message: **b** = binary sequence of length k
- Code rate $1/3: \mathbf{x} = (x_1, \dots, x_{3k})$
- Block feedback:

1. Neural network based encoder and decoder

Neural network based encoder and decoder Training

1. Neural network based encoder and decoder

Inspiration from Turbo code

• Concatenate codewords from two convolutional encoders

Inspiration from Turbo code

- - Long term memory via interleaver

Concatenate codewords from two convolutional encoders

• 1D convolutional neural network

1. Neural network based encoder and decoder

Belief Propagation Decoding

- Iterations of BCJR w. interleaver (π), de-interleaver (π^{-1})
 - BCJR: maps (prior, noisy codewords) to posterior

Decoder as a CNN

Model decoder as a CNN with a vector belief propagation

Neural network based encoder and decoder Training

Training

Two stage training

1. Train FTAE without feedback until convergence 2. Train FTAE with feedback

Two stage training

1. Train FTAE without feedback until convergence

Let feedback signal y ~ N(0,0.01²)

Two stage training

- 1. Train FTAE without feedback until convergence
 - Let feedback signal y ~ N(0,0.01²)
 - Training techniques
 - Large batch size

- Alternating training of the encoder and decoder (5x)
Two stage training

Train FTAE without feedback until convergence Train FTAE with feedback

Two stage training

- 1. Train FTAE without feedback until convergence
- 2. Train FTAE with feedback
 - Training techniques
 - Large batch size

- Alternating training of the encoder and decoder (equally)

• FTAE outperforms Deepcode at high SNR

Results

(Rate 1/3, 50 bits, noiseless feedback)

• FTAE demonstrates block length gain:

BER as block length

Results

Block Length

(Rate 1/3)

Conclusion

- Feedback Turbo Autoencoder

 - Two-stage training

CNN based code for channels with feedback, inspired by turbo codes

Conclusion

- Feedback Turbo Autoencoder

 - Two-stage training
 - Outperforms existing codes in reliability
 - Achieves a block length gain

CNN based code for channels with feedback, inspired by turbo codes

Conclusion

- Feedback Turbo Autoencoder

 - Two-stage training
 - Outperforms existing codes in reliability
 - Achieves a block length gain

CNN based code for channels with feedback, inspired by turbo codes

Survey of Other Directions to Invent Code

AWGN

Neural (7,4) code: BER ~ BER of (7,4) Hamming code

Layer" 2017

T. O'Shea, J. Hoydis, "An Introduction to Deep Learning for the Physical

AWGN

Rate 1 (128 info. bits.) BER ~ 5dB better than QPSK

T. O'Shea, K. Karra, and T. C. Clancy, "*Learning to communicate: Channel* auto-encoders, domain specific regularizers, and attention" 2016

No clean model: variation of AWGN channels

communication over the air", 2017

Systems Without a Channel Model' 2018

- S. Dörner, S. Cammerer, J. Hoydis, and S. ten Brink, "Deep learning-based
- Aoudia and Jakob Hoydis, "End-to-End Learning of Communications

- - Joint source channel coding

N. Farsad, M. Rao, and A. Goldsmith, "Deep Learning for Joint Source-Channel Coding of Text" 2018

Clean channel (erasure) / source is complicated (text)

- - Joint source channel coding
 - Improved reliability, evaluated by human

N. Farsad, M. Rao, and A. Goldsmith, "Deep Learning for Joint Source-Channel Coding of Text" 2018

Clean channel (erasure) / source is complicated (text)

Deep Learning Polar Design

- Idea-1: Fix the code and learn which bits are good
 - Ebada, et al, "Deep Learning-based Polar Code Design"
- Idea-2: Use Reinforcement Learning to optimize the starting code for polar code
 - Huang, et al, "Reinforcement Learning for Nested Polar Code Construction"

- Coded computation
- - **OFDM** system based on deep learning", 2018
- Multiple-Input Multiple-Output (MIMO)
 - encodings for the MIMO fading channel", 2017

▶ J. Kosaian, K.V. Rashmi, and S. Venkataraman, "*Learning a Code: Machine* Learning for Approximate Non-Linear Coded Computation", 2018

Orthogonal frequency-division multiplexing (OFDM)

• A. Felix, S. Cammerer, S. Dörner, J. Hoydis, and S. ten Brink, "OFDM-Autoencoder for end-to-end learning of communications systems", 2018

▶ M. Kim, W. Lee, and D. H. Cho, *"A novel PAPR reduction scheme for*

► T. J. O'Shea, T. Erpek, and T. C. Clancy, "*Physical layer deep learning of*

Canonical and benchmark : AWGN

Gaussian noise

Open problems - 1

- Canonical and benchmark : AWGN
 - Challenge 1. neural code that has a long range memory
 - Challenge 2. Error floor at high SNR

Gaussian noise

- Channels with no good codes: deletion channel

Practical (e.g. lack of synchronization, DNA sequencing)

Open problems - 2

- Channels with no good codes: deletion channel
 - Practical (e.g. lack of synchronization, DNA sequencing)
 - Optimal codes known only if deletion probability v. small
 - No practical code exists; capacity unknown in general

Open problems - 3

- Network information theory setting
 - Relay, interference, Coordinated Multipoint (CoMP)

Applications of Deep Learning to Information Theory

Applications of Deep Learning to Info Theory

- Compressed sensing
 - DeepCodec: Adaptive Sensing and Recovery via Deep Convolutional Neural Networks
- Mutual Information estimation
 - MINE Mutual Information Neural Estimation
 - CCMI Classifier-based mutual information estimation
- Low Rank Matrix Decomposition
 - Indyk et al, "Learning-Based Low-Rank Approximations"
- Coded computation

- Learning a decoder
 - H. Kim, Y. Jiang, R. Rana, S. Kannan, S. Oh, P. Viswanath, <u>"Communication Algorithms via Deep</u> Learning," ICLR, 2018
 - "DeepTurbo: Deep Turbo Decoder," SPAWC, 2019
 - Independent Neural Decoder," SPAWC, 2019
 - recurrent neural networks," ICC 2019

Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, P. Viswanath,

Y. Jiang, H. Kim, H. Asnani, S. Kannan, "<u>MIND: Model</u>

Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, and P. Viswanath, "LEARN Codes: Inventing low-latency codes via

- Learning a modulation
 - learning," SPAWC 2020

Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, and P. Viswanath, "Joint channel coding and modulation via deep

- Learning an encoder
 - H. Kim, Y. Jiang, S. Kannan, S. Oh, P. Viswanath, 2018

 - "Feedback Turbo Encoder," ICASSP, 2020

"<u>Deepcode: Feedback Codes via Deep Learning</u>" NeurIPS,

Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, P. Viswanath, "Turbo Autoencoder: Deep learning based channel code for point-to-point communication channels," NeurIPS, 2019

• Y. Jiang, H. Kim, H. Asnani, S. Oh, S. Kannan, P. Viswanath,

Source codes

- Communication Algorithms via Deep Learning by H. Kim, Y. Jiang, R. Rana, S. Kannan, S. Oh, P. Viswanath Code: https://github.com/yihanjiang/Sequential-RNN-Decoder
- Deepcode: Feedback Codes via Deep Learning IEEE Journal on Selected Areas in Information Theory, 2020 by H. Kim, Y. Jiang, S. Kannan, S. Oh, P. Viswanath Code (Keras): https://github.com/hyejikim1/Deepcode Code (PyTorch): https://github.com/yihanjiang/feedback code
- channels by Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, P. Viswanath Code: https://github.com/yihanjiang/turboae

International Conference on Learning Representations (ICLR), Vancouver, April 2018

Conference on Neural Information Processing Systems (NeurIPS), Montreal, December 2018

• Turbo Autoencoder: Deep learning based channel code for point-to-point communication

Conference on Neural Information Processing Systems (NeurIPS), Vancouver, December 2019