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The Road to Gigabit Wireless (5G and Beyond)

e How do we get to Gb/s wireless links? 4G

e Three symbiotic trends emerging:

— Deployment of pico- and femto-cells (5-10x decrease in cell size)
— Millimeter wave frequencies (10x increase in bandwidth)

— Massive MIMO (10x increase in antennas)

e Putting it all together, there is the potential for 500-1000x increase in
throughput



A Symbiotic Relationship

e Millimeter wave frequencies

— short wavelengths

— larger propagation losses, shorter range operation
— little multipath, line-of-sight (LOS) or near-LOS
— low SNR

— larger Doppler shifts, more sensitive to mobility

e Massive antenna arrays e Small cells
— large array gain — short range
— size proportional to wavelength — lower power
— narrow, focused beamforming — low mobility

— interference-limited



Standard Receiver Implementation
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e Full precision ADC requires linear, low-noise amplifiers and AGC

e ADC power consumption grows exponentially with resolution

e A commercial TI 1 Gs/s 12-bit ADC requires > 1W

e For 100 antennas, 500 Msamp/sec, RRH data rate is more than 1 Th/sec!

e Not practical for ideal massive MIMO



A One-Bit Receiver

cos(w.t)

analog E digital
Aé(>—~ LPF sign(-)

Y = ﬁ

LPF 4%—» sign(+)

sin(w,t) I J

e One-bit ADC = simple RF, no AGC or high cost LNA

e Operates at a fraction of the power (mW)

e Reduce data flow from RRH by 10x

e Performance degradation can be offset by adding more (cheap) antennas

e Compensate for coarse quantization with signal processing

Unlike hybrid schemes, all antenna outputs available for full digital flexibility



Single Antenna Theoretical Analysis
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Channel Estimation with One-Bit Receivers
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16-QAM Example
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How to Close the Gap?

e Use more bits (studies show 3-5 bits provide good spectral /energy
efficiency trade-off)

e Sample faster, e.g., using Sigma-Delta (XA) ADCs

e Still, the above methods consume more energy and do not solve the
data bottleneck problem

Idea: Use XA sampling in space = low power, low data rate!



Motivation for Spatial XA Sampling

In space-constrained scenarios, massive MIMO = closely spaced antennas
(spatial oversampling)

[~
d<\/2

Cellular users are sectorized (either by design or due to environment)

= Ideal setting for SPATIAL YA sampling!



Temporal Oversampling with XA ADCs

e Oversampling makes desired signal temporally correlated
e Exploit temporal correlation via feedback, quantization of the error signal

e Requires simple additional analog circuitry

Difference
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*From Texas Instruments Analog Applications Journal



Temporal 2A ADC Discrete-Time Equivalent Models
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Temporal Oversampling with XA ADCs

e Desired signal pushed to lower frequencies due to oversampling, quantization
noise pushed to higher frequencies (noise shaping)

e post-processing low-pass filter and decimation used to recover desired

samples
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Temporal 2A ADC Example

Y=X+Q(1-271)
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Spatial 2A Quantization

Instead of delayed feedback in time, feedback to adjacent antenna:
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Spatial 2A Quantization, cont.

e LExploits oversampling in space — however mutual coupling and physical
dimensions of antennas limit this

e Alternatively, users may already have low spatial frequency due to
sectorization

e Quantization noise pushed to higher spatial frequencies, so lowpass spatial
filtering (beamforming) can reduce quantization impact

e Center of angular sector can be controlled

e Second- or higher-order spatial XA quantization for further noise shaping
also possible



2"d Order XA ADC
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2"d Order Spatial XA ADC Architecture
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Beampatterns Obtained with Spatial XA ADCs

200 element array, 5dB SNR, A\/8 ULA
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Channel Estimation
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Channel Estimation
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Bussgang Analysis — Equivalent Linear Model

Bussgang Theorem: For zero-mean Gaussian r(¢) and nonlinearity Q(-),

y(t) = Q(r(t)) = 7ye(7) = are(7)

Suggests an equivalent linear model with quantization "noise”:

y =Sa(x) = @(Ux - Vy)
r

=Ir+q

There are in infinite number of such models; we choose the one for which
E(r;q;) = 0, and compute the LMMSE channel estimate:

~

h=E [hy™] (E [yy"]) "y = CnyC;ly



NMSE (dB)

Effect of Antenna Spacing & ADC Resolution

e 128 antenna ULA

e 10 users with multiple angles of arrival uniformly distributed in [—30°,30°]

e LMMSE channel estimate obtained using orthogonal pilots of duration 10

symbols
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Standard 1-Bit Receiver vs. 1-Bit XA
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Standard 1-Bit Receiver vs. 1-Bit XA
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Standard 1-Bit Receiver vs. 1-Bit XA

400 antennas
d=M\/6
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user DoAs
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Uplink Simulation with Channel Estimation

e 128 antenna ULA with \/6 element spacing

e 10 users with multiple angles of arrival uniformly distributed in [—30°, 30°]

e LMMSE channel estimate obtained using orthogonal pilots of duration 10
symbols

e Estimated channels used in ZF receiver to decode subsequent QPSK symbols

e Results compared with analytical predictions



Uplink Simulation with Channel Estimation
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Spectral Efficiency Comparison
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Impact of Mutual Coupling

Assumed model: ULA composed of thin dipoles

S. Schelkunoff, Antennas: Theory and Practice

steering vector:  Ta(6)
T=(I+42)" & =m/1+4d

30( 27Td” Cl(fw + ﬂ') - Cl(&j — 7T)
+7 (—=251(27d;;) + Si(&; + ™) + Si(&G; — ))), i

Z;; = 30 (’y + log(2m) — Ci(27) + jSi(Q’]T))

T cos(t) — 1
t

Ci(z) £ v + log(x) —I—/O dt

Si(z) & /O “sin(®)

t

noise covariance also depends on Z and R



Uplink Simulation with Mutual Coupling

e 10 users with multiple angles of arrival uniformly distributed in [—30°,10°]

e SNR = 10dB

e Spectral efficiency assuming CSI is known

e Case 1: 100 antenna ULA with variable antenna spacing (variable aperture)

e Case 2: ULA with 50\ fixed aperture, variable M and variable aperture



Impact of Mutual Coupling
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Impact of Mutual Coupling

space-constrained scenario with total aperture of 50\
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>A Rectangular Array Geometry
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PSD of Quantization Noise for Rectangular Array
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Conclusions

e Massive MIMO, small cells and mm-wave frequencies provide symbionic
benefits for 5G

e Low-resolution (e.g., 1-bit) quantization can provide high spectral efficiency
and significant energy savings, but there is a performance gap.

e One-bit XA ADC architectures provide gains in situations with spatial
oversampling or where users have low spatial frequencies

e Similar benefits observed with XA implemented on the transmit side

e Current work: impact of mutual coupling, rectangular arrays
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