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Classical Error Correction Codes (CECC)

I ECC corrects errors caused by environment or noise in the
system.

I In classical systems, ECC mainly used in data transmission to
correct errors caused by noise in the channel and/or
environmental interference.

I Finitely many errors possible.
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Quantum Error Correction Codes (QECC)

I In quantum systems, since effect of environment is strong,
ECC is required in any quantum information processing task.

I Error possible due to imperfect quantum gates also.

I Measurement of quantum states alters them and also due to
no cloning theorem, direct application of classical ECC not
possible.

I Errors are uncountably many in the quantum case.

I Nevertheless, classical techniques are basis of QECC.
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Introduction : Classical ECC

I Transmit one bit ∈ {0, 1} on noisy channel.

X Y X,Y ∈ {0, 1}

I E.g. Transmitted X = 0 may become Y = 1.

I Channel noise causes P (X 6= Y ) > 0.

I ECC : Three bit Repetition Code

0 7→ 000 and 1 7→ 111.

I At receiver, the bits received : b2b1b0.

I Channel causes error on each transmitted bit independently.
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Error Detection and Correction
I After receiving b2b1b0, the receiver creates two more bits

called syndrome, namely b2 ⊕ b1 and b2 ⊕ b0.

b2 ⊕ b1 b2 ⊕ b0 Correction

0 0 Do Nothing

0 1 Flip b0
1 0 Flip b1
1 1 Flip b2

I This procedure corrects one bit error. If two bits get flipped, it
will “correct” to wrong bit.

I Works well if prob. of error for different bits are independent
and small.

I Receiver needn’t have computed syndromes. Could also use
majority rule on b2, b1, b0.

I But this does not work on general coding schemes with larger
block codes. Even on quantum codes for this scheme.
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Quantum ECC: Introduction
Error Models

Main Causes:

I Coherent quantum errors: Due to imperfect gates, applying
I to |ψ〉 may not exactly give |ψ〉.

I Decoherence of states: Due to interaction with
environment, ρ 7→

∑
iEiρEi, where Ei needn’t be unitary.

I Can cause correlated errors in multiple qubits.
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Quantum ECC: Introduction

I Need to transmit one qubit on a quantum channel.

I Obtain a QECC corresponding to classical 3 bit repetition
code.

I Transmitted qubit can get in error by bit flip by Pauli
operator.

X =

[
0 1
1 0

]
. |0〉 =

[
1
0

]
, |1〉 =

[
0
1

]
, and hence

X|0〉 = |1〉 and X|1〉 = |0〉.
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Quantum ECC : Introduction (Contd.)

I We use a linear code (called CBF code)

|0〉 7→ |000〉, |1〉 7→ |111〉,

a|0〉+ b|1〉︸ ︷︷ ︸ 7→ a |000〉+ b |111〉

|ψ〉

I By no cloning theorem, we cannot prepare |ψψψ〉
I If we transmit a|0〉+ b|1〉 by above code and first qubit is

flipped by Pauli operator X, then receiver gets

a|100〉+ b|011〉
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Error Detection and Correction

I Suppose receiver receives qubits x2x1x0.

I Receiver generates two qubit syndrome by operator UBF :

UBF |x2 x1 x0 0 0〉 7→ |x2 x1 x0 x2 ⊕ x1 x2 ⊕ x0〉

I Receiver makes measurements only on the first two qubits
(the syndrome qubits)

I If we get 11 then x2 ⊕ x1 = 1, x2 ⊕ x0 = 1, then x2 bit has
been flipped by operator X ⊗ I ⊗ I in transmission.

I Since X−1 = X, to correct this error use operator X ⊗ I ⊗ I
on (x2, x1, x0).
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Error Detection and Correction (Contd.)

Thus the error detection and correction procedure is

Bit Flipped by Channel Syndrome Error Correction

None |00〉 None

0 |01〉 I ⊗ I ⊗X

1 |10〉 I ⊗X ⊗ I

2 |11〉 X ⊗ I ⊗ I
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Error Detection and Correction (Contd.)

Comments

I We have made measurements on only the syndrome qubits.
I Thus state x2x1x0 remains undisturbed.
I Also syndrome measurement tells nothing about x2x1x0.

I Unlike in classical case, linear combination of bit flips is also
corrected by above procedure.

I But it does not recover from multiple qubit bit flip errors, as
in classical case.

I Also, unlike classical case, in quantum case it does not detect
phase errors caused by Pauli matrix

Z =

[
1 0
0 −1

]
. |0〉 =

[
1
0

]
, |1〉 =

[
0
1

]
, and hence

Z|0〉 = |0〉 and Z|1〉 = −|1〉.
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Quantum Code for Single phase-flip error (CPF code)
I X = HZH where H ≡ Hadamard matrix = 1√

2

[
1 1
1 −1

]
.

I This relation with above bit flip error correction scheme gives
scheme for phase-flip error

|0〉
↓ Message qubit |ψ〉 converted to three qubit

code given by |0〉 7→ |000〉, |1〉 7→ |111〉
|000〉
↓ Apply H ⊗H ⊗H to codeword.(

|0〉+|1〉√
2

)⊗3

↓ Pass through the channel I ⊗ Z ⊗ I which

can possibly cause one phase-flip error Z(
|0〉+|1〉√

2

)
⊗
(
|0〉−|1〉√

2

)
⊗
(
|0〉+|1〉√

2

)
↓ Apply H ⊗H ⊗H to received 3 qubits.

|0〉 ⊗ |1〉 ⊗ |0〉
↓ Apply UBF to get syndrome of CBF .

|0〉 ⊗ |0〉 ⊗ |0〉 Detect and correct X error via syndrome.
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Quantum Code for Single phase-flip error (CPF code)

Comments

I Above scheme corrects all single qubit phase errors but not
single bit flip errors.

I We combine above ideas to obtain a code that converts all
single qubit errors obtaining Shor’s nine qubit code.

The following facts will be used

I Pauli Matrices I,X, Y, Z form a basis and hence any error is a
superposition of these errors.

I If X and Z errors can be corrected then Y error can also be
corrected.

I Thus a code correcting one X,Z error will correct all single
qubit errors.
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Code to Correct an X or Z error

I First encode a qubit using CPF to a 3 qubit code.

I Encode each of the 3 qubits of above code via CBF to get
nine qubit code :

|0〉 → |000〉 7→ 1√
8

[(|000〉+ |111〉)⊗ (|000〉+ |111〉)⊗ (|000〉+ |111〉)]

|1〉 → |111〉 7→ 1√
8

[(|000〉 − |111〉)⊗ (|000〉 − |111〉)⊗ (|000〉 − |111〉)]

For Error Correction

I Use UBF on each block of three qubits to correct for possible
X errors in each block separately.

I Use expansion of UPF to nine bits to correct for phase errors.
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General Framework of ECC

I We now develop a general framework to obtain codes that
correct multiple qubit errors.

I First we study classical codes and then extend to quantum
ECC.

I We limit to linear codes due to computational complexity.
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Classical Linear ECC

Notation

I {1, 2, · · · ,M} set of messages to be transmitted on a channel
with binary input, output.

I F2 = {0, 1} vector space with field {0, 1}.

For x, y ∈ F2, x+ y := x⊕ y

For a, x ∈ F2, ax := a ∧ x

I Fn2 = F2 × · · · × F2 n product.

For x, y ∈ Fn2 , x+ y := ((x1 ⊕ y1), · · · , (xn ⊕ yn))T

For a, x ∈ F2, ax := ((a1 ∧ x1), · · · , (an ∧ xn))T
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Linear Classical Coding

I M = 2k, Elements of M denoted by k−length binary vectors
∈ Fk2.

I Linear code φ : Fk2 → Fn2 , n ≥ k, one-one map.

I Subspace C = φ(Fk2) ⊆ Fn2 called (n, k) code.

I Define generator matrix G to denote φ :

Gx = φ(x), x ∈ Fk2

x 7→ Gx, efficient way to encode.

I Define parity check matrix H of dimension (n− k)× n s.t
Ker(H) = H−1(0) = C and H is one-one on C⊥. Thus
HG = 0. This provides an efficient way of error detection and
correction.
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Linear Classical Coding

I Hamming Norm : x ∈ Fn2 , ||x|| = No. of 1’s in x.

I Hamming Distance : x, y ∈ Fn2

‖x− y‖ =
∑
i

|xi ⊕ yi|

I Dmin = min Hamming distance between code words of C.
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Error Detection and Correction

I xn ∈ Fn2 transmitted on channel (n uses of binary channel)

and x̂n = xn + yn received. yn channel error.

I If ‖yn‖ < dmin, then yn /∈ C and x̂n = xn + yn /∈ C.

Thus receiver can detect there is error in transmission. An
efficient detector is to declare error if Hx̂n 6= 0.

I If ‖yn‖ < bdmin−1
2 c then error can be detected and by

replacing x̂n by the nearest codeword c it can be corrected to
xn.

I Hx̂n = Hyn is the syndrome. Since H is one-one on C⊥, we
can identify yn. Then x̂n + yn = xn corrects the error.
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Error Detection and Correction contd.

I Set of correctable errors

A =

{
yn ∈ Fn2 : ‖yn‖ <

⌊
dmin − 1

2

⌋}
can be written as: e1, e2 ∈ A if for c1, c2 ∈ C,

e1 + c1 6= e2 + c2 unless e1 = e2 and c1 = c2

This is disjointness condition.

There is another set in Fn2 that also satisfies disjointness
condition (and hence correctable) but it is not most probable
set of errors.
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ECC examples

Ex. : 3 bit repetition code

0 7→ 000, 1 7→ 111

c = {(0, 0, 0)T , (1, 1, 1)T } subspace of F3
2

G =

 1
1
1

 , H =

[
0 1 1
1 0 1

]
dmin = 3.

Therefore can detect upto 2 errors and correct upto 1.

A =
{

(0, 0, 1)T , (0, 1, 0)T , (1, 0, 0)T
}
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ECC examples contd.

Another set that satisfies disjointness condition is

{011, 101, 110}

This set of errors, causing two bit errors is less likely although can
also be corrected.

But a union of the two sets cannot be corrected.

Ex. Hamming Code (n, k) = (2m − 1, n−m), m ≥ 2. For
n = 7, k = 4 and dmin = 3,

GT =


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

H =

 1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1


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Quantum ECC

I Development parallel to classical ECC.

I Consider linear coding of states of k qubits to n qubits, n ≥ k.
W = Hilbert space of dim 2k, as state space of k qubits.
V = Hilbert space of dim 2n as state space of n qubits.
Encoder : φ : W → V linear, one-one map

[n, k] linear quantum code.

I Considering W as subspace of V define unitary transformation
Uc : V → V s.t.
Uc(W ):= C : the code space of φ

and Uc(|w〉) = φ(|w〉) for |w〉 ∈W .
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Quantum ECC (Contd.)
Ex.: Consider code

|0〉 7→ |000〉, |1〉 7→ |111〉

C = code space = subspace spanned by {|000〉, |111〉} of V = C6.

Ex. Shor code [9, 1]:

|0〉 7→ 1√
8

(|000〉+ |111〉)⊗3

|1〉 7→ 1√
8

(|000〉 − |111〉)⊗3

C = 2−dim subspace spanned by{
1√
8

(|000〉+ |111〉)⊗3 , 1√
8

(|000〉 − |111〉)⊗3
}

.
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Correctable Set of Errors for QECC

I As in classical case we have a set of unitary transformations,

E = {E1, E2, · · · , EL} , El : V → V,L <∞

which cause error in transmission on a quantum channel, is
correctable for code C if

〈ca|E†iEj |cb〉 = mijδab,∀ca, cb ∈ c, Ei, Ej ∈ E (1)

I As in classical case, there are many different sets of
correctable errors, some more probable than others in a
practical scenario.

I Any mixture or superposition of elements of E is also
correctable by the same code.
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Correctable Set of Errors for QECC (Contd.)

I A stronger condition for correctability of errors by C is

〈ca|E†iEj |cb〉 = 0,∀ca, cb ∈ c, Ei, Ej ∈ E , Ei 6= Ej (2)

I A code satisfying (2) is called non-degenerate. A code
satisfying (1) but not (2) is degenerate for E .

I Shor code [9, 1] is degenerate. There is no analog of
degenerate codes in classical case.

I For non-degenerate, since EiC has dim 2k and is orthogonal
to EjC, j 6= i, max no. in E is 2n−k. For nondegenerate case
E can be larger.
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Correctable Set of Errors for QECC (Contd.)

Ex. : Consider again 3 bit repetition code

|0〉 7→ |000〉, |1〉 7→ |111〉

C = code space = subspace spanned by {|000〉, |111〉}

E =

I ⊗ I ⊗ I︸ ︷︷ ︸
E00

, X ⊗ I ⊗ I︸ ︷︷ ︸
E01

, I ⊗X ⊗ I︸ ︷︷ ︸
E10

, I ⊗ I ⊗X︸ ︷︷ ︸
E11

 . (3)

Eij ∈ C are orthogonal. Hence satisfy stronger condition (2) and
C is a nondegenerate code.
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Identification and correction of ERRORS

I Consider C to be nondegenerate, [n, k] quantum code.

I E = {E1, · · · , EM} correctable unitary errors.

I Since EiC orthogonal and Ei unitary, if |w〉 = Ei|v〉 is
received at receiver, then from |w〉, it can uniquely find Ei.

Thus taking E†i |w〉 = E†iEi|v〉 = |v〉, receiver obtains the
correct code |v〉.

I Consider an [n, k] nondegenerate quantum code that can
correct X,Z errors. For error set with Hamming norm i, no of
errors is 3i

(
n
i

)
and hence

t∑
i=0

3i
(
n

i

)
≤ 2n−k. (4)
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Identification and correction of ERRORS : Comments

I If (4) is satisfied with equality, the code is called perfect code.

I Stabilizer codes are perfect codes and also efficient in
implementation.

I We study CSS (Calderbank-Shor-Steane) codes which were
the first stabilizer codes proposed.

I CSS codes encode only once to correct for both phase and bit
flip errors and hence for any linear combinations of these.

I For 1 qubit error correction these require 7 qubits instead of 9
qubits for Shor code. The most efficient code requires 5
qubits.
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CSS Codes
I Let C1 and C⊥2 be two classical linear [n, k1], [n, k2] codes,
k1 > k2. C⊥2 ⊂ C1.

I Both codes correct upto t errors.

I Consider C1, C2 as groups with binary operation as inner
product. For c ∈ C1{

c · a, a ∈ C⊥2
}

is a coset.

I There are 2k1−k2 distinct cosets. Denote a coset by Cg where
g ∈ C1 is in that coset.

I For each g ∈ C1 define quantum state

|φg〉 =
1√
2k2

∑
c∈C⊥

2

|cg ⊕ c〉 (5)

I {|φg〉, g ∈ G} where G is the set of cosets is a [n, k1 − k2]
quantum code with dim 2k1−k2 .
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Error Correction for CSS Codes

I Suppose in transmission of a quantum code |φg〉 upto t qubits
are in error.

I These errors are linear combinations of upto t bit flip errors
and t phase flip errors.

I From (5), |φg〉 is a linear combination of codes in C1.

I Thus above errors can be considered as linear combinations of
C1 codes with upto t bit flip and phase flip errors.

I Correct the bit flip errors by UBF for code C1. (the phase flip
error stays untouched).
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Error Correction for CSS Codes (Contd)
I Now we are left with phase-flip errors. Let e = en−1 · · · e0 be

binary string denoting the errors : ei = 1 means i−th qubit
has phase flip, ei = 0 means no error.

I After error |φg〉 becomes

1

2k

∑
c∈C⊥

2

(−1)〈e,cg⊕c〉|cg ⊕ c〉

I Apply Hadamard transform H ⊗ · · · ⊗H on n qubits and
obtain

1√
2n−k

∑
y∈C2

(−1)〈y,cg〉|y ⊕ e〉

This is the code word before e but with bit flip errors
corresponding to ei = 1 in the linear combination of codewords
in C2.

I Apply UBF for code C⊥2 to detect and correct the errors.
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E.g. Steane code

I Take C1 = [7, 4] Hamming code. Then C⊥1 is the [7, 3]
Hamming code and so we can take C2 = C1.

I There are 24−3 = 2 cosets. Using (5), we get a [7, 1] CSS
code called Steane code.

I

|0〉 =
1√
8

∑
c∈C⊥

1

|c〉

|1〉 =
1√
8

∑
c∈C,c6∈C⊥

1

|c〉
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Other QECC

I Entanglement assisted Codes
I Can be used for quantum communication.
I Sender and receiver share a maximally entangled state before

communication starts.
I Entanglement can dramatically boost power of quantum codes

i.e. increase rate and/or error correction ability.

I Quantum convolutional codes
I Above codes were Block codes: need the whole block of

prepared qubits before encoding starts.
I In convolutional codes the qubits are encoded online as they

arrive.
I Further developed to quantum Turbo codes, providing rates

close to quantum capacity.
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Fault Tolerant Computing

I QECC sufficient for quantum communication: only one
encoder and one decoder needed.

I For quantum computing, we store and process information
repeatedly.
I This requires repeated error correction.
I Now, errors due to faulty gates and circuits in implementing

EC accumulate.
I Threshold theorem tells that if prob of error of physical circuits

below a threshold, then can design circuits to do arbitrarily
long computations with low error prob.

I Surface codes have realistic threshold values (10−3).
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Quantum Cryptography: Introduction

I Alice wants to transmit a secret message to Bob such that
Eve who may be eavesdropping is not able to intercept it.

I Today most important electronics comm via public key crypto
systems : RSA or elliptic curve system
I Their security depends on intractability of factoring composite

integers or computing discrete log.
I These can be broken in exp time by classical computers and in

polynomial time via Quantum computers.

I One time pad is unconditionally secure
I Distribution of private key is major issue.
I Quantum key distribution (QKD) enables it.
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Private Key Cryptography: Components

I Private Key Cryptographic

I Privacy Amplification

I Information reconciliation

In the following we explain each of above components and then
explain the cryptography protocol.
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Private Key Cryptography

I Alice encodes the message with an encoding key and sends to
Bob.

I Bob uses a matching decoding key to decode the received
message.

I A simple and effective method is vernam cipher or one time
pad.

I For n bit message, there is n bit secret key shared by Alice and
Bob

I x message ∈ Fn
2 , y secret key ∈ Fn

2 .

I Alice XORs x and y = x⊕ y and sends to Bob.

I Bob receives x⊕ y and again X-OR’s with y : (x⊕ y)⊕ y = x.
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Private Key Cryptography : Comments

I If y is truly secret (Eve has no information about y), with
arbitrarily high prob (by increasing n), Eve will not get the
message.

I If Eve jams the channel, Alice and Bob can detect it and
declare failure.

I For any eavesdropping strategy of Eve, Alice and Bob can
ensure that Eve has as small mutual information about their
message as desired.

I Vernam cipher is secure only if no. of key bits is ≥ size of
message and key bits are not reused.

I Main difficulty with this approach is secure distribution of key
bits to Alice and Bob. Privacy amplification and Information
reconciliation are used to ensure this.
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Secure Distribution of key between Alice and Bob

I Alice has bit string x and Bob has y, each of n bits.

I x and y are correlated and it is ensured that Eve’s mutual
information about x and y is upper bounded.

I Information Reconciliation is error correction conducted over a
public channel to enable from x and y to create a shared bit
string w between Bob and Alice, while divulging as little as
possible to Eve.

I After information reconciliation, Eve has z which may be
partially correlated with w. Then privacy amplification is done
by Alice and Bob to distill from w a smaller set of bits s
whose correlation with z is below a desired threshold.
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Information Reconciliation

I Starting from bit string x, Alice performs a series of parity
checks on subsets of x.

I From these subsets and parity bits, Alice makes a message u
and transmits to Bob via a public channel.
I Can be done via an ECC.

I From u, Bob corrects errors in its bit string y to obtain w.

I Since Alice used public channel, Eve gets extra information
about w, (in addition to her initial information) z.
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Privacy Amplification

I B = Set of m bit sequences s.t. if g is selected randomly
uniformly from

G:= {g : Fn2 → B} then prob. that for any a1, a2 ∈ Fn2 ,
a1 6= a2,

g(a1) = g(a2) ≤ 1

|B|
. (6)

(Universal hashing functions).

I Alice and Bob publicly select same g ∈ G randomly uniformly.

I Alice and Bob compute g(w) = s. s is the needed secret key
shared by Alice and Bob.

I Since Eve does not have exact w, by (6), prob that it gets s is
very low.

I Information reconciliation and privacy amplification can be
done by ECC.
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CSS code Information Reconciliation and Privacy
Amplification

I This doesn’t need quantum communications.

I Consider [n,m] CSS code C1, C2, C2 ⊆ C1, both can correct
upto t errors.

I Communication channel between Alice and Bob can cause
mean no. of errors in a codeword ≤ t.

I Alice chooses a random n bit string x and transmits to Bob
on the channel.

I Bob receives y = x+ e where e is transmission error.

I Alice and Bob pick at random codes C1, C2 and Eve does not
know about it.

I Alice and Bob both correct their states x and y to the nearest
codeword w ∈ C1 (this is information reconciliation).
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CSS code Information Reconciliation and Privacy
Amplification (contd.)

I Eve’s mutual information about w may be unacceptably high.

I Privacy Amplification : Alice and Bob identify which of the
2m cosets of C2 in C1, w belongs to : they compute w + C2.
This gives m bit string s.
I Since Eve does not know C2 and because of error correction of

C2, Eve’s mutual information about s is brought below the
desired threshold.
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Quantum Key Distribution (QKD)

I The above procedure can be made more secure by using
Quantum Channel instead of a classical channel as public
channel for comm between Alice and Bob
I Quantum channel should be able to transmit qubits with error

rate lower than a threshold.
I Due to Quantum channel Eve cannot tap the channel without

disturbing quantum state transmitted. This will inform Bob.
I By no cloning theorem, Eve cannot copy the transmitted state

on channel properly.
I Following BB84 QKD protocol was the first QKD protocol

proposed.
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The BB84 QKD protocol

Z − basis ≡
{
|+〉 =

|0〉+ |1〉√
2

, |−〉 =
|0〉 − |1〉√

2

}
X − basis ≡ {|0〉, |1〉}

I Alice chooses (4 + δ)n random data bits.
I Alice chooses a random (4 + δ)n bit string b. She encodes

each data bit as {|0〉 , |1〉} if corresponding bit of b is 0 and as
{|+〉 , |−〉} if b is 1.
I Not all of of these states are orthogonal to each other. Thus

Eve cannot detect them all without disturbing their states.

I Alice sends the resulting state to Bob.
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The BB84 QKD protocol contd.

I Bob receives (4 + δ)n qubits, announces this fact and
measures each qubit in X or Z basis at random.

I Alice announces b.
I Alice and Bob discard any bits where Bob measured in a

different basis than Alice prepared. With high probability,
there are atleast 2n bits left (if not abort the protocol). They
keep 2n bits.
I Choose δ large enough that this probability is high.
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The BB84 QKD protocol

I Alice selects a subset of n bits from 2n bits obtained,
randomly. Then tells Bob which she selected.

I Alice and Bob announce and compare the values of n check
bits. If more than an acceptable no. disagree they abort the
protocol (this would have meant that Eve probably eaves
dropped on the channel and hence disturbed the transmitted
state).

I Alice and Bob perform reconciliation and privacy amplification
on the remaining n bits to obtain m shared key bits.

BB84 protocol can be generalized to use other states and bases.
B94 is obtained this way.
QKD is easy to realize in practice.
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Quantum Information Theory

Σ = finite alphabet, C = complex numbers

X = C|Σ| = set of all functions f : Σ→ C

vector space of dim |Σ|

L(X ,Y) = Set of linear maps : X → Y

L(X ) = L(X ,X ), 〈x, y〉 inner product ‖x‖ = norm = (〈x, x〉)
1
2

tr(X) =
∑
a∈Σ

X(a, a), X ∈ L(X )
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Quantum Information Theory

Pos(X ) = set of positive semidefinite operators on X.

Density Operator : X ∈ Pos(X ) and tr(X) = 1

Projection Operator : Π ∈ Pos(X ),with Π2 = Π

For A ∈ L(X ), A† is its adjoint operator if 〈v,Au〉 = 〈A†v, u〉.

Hermitian operator : A ∈ L(X ) s.t. A = A†

Unitary Operator : A ∈ L(X ) s.t. ‖Au‖ = ‖u‖ for all |u〉 ∈ X .

Completely Positive Operator : Φ⊗ 1L(Z) is a positive map for
every Euclidean space Z
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Quantum Information Theory

X ,Y Finite Dim. Vector spaces over C.

Quantum Channel Φ : X → Y Linear Completely positive trace
preserving operator.

E.g. : U unitary operator ∈ L(X ). Φ(X) = UXU †.

C(X ,Y): The set of quantum channels from X to Y.

Measurement : µ : Σ→ Pos(X )

where Σ a set,
∑

a∈Σ µ(a) = 1X .

p(a) = prob. of meas. outcome a ∈ Σ in state e = 〈e, µ(a)e〉.
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Classical and Quantum Entropy

u : Σ→ [0,∞) P : Positive semidefinite operator on X
λi : eigenvalues of P

Shannon entropy (log base 2) Von Neumann Entropy
H(u) = −

∑
u(a)>0

u(a) log u(a) H(P ) = −
∑
λi>0

λi log λi

= −tr(P logP )

Relative entropy: Relative entropy: P,Q ∈ Pos(X )

D(u||v) =
∑
a∈Σ
v(a)>0

u(a) log u(a)
v(a) D(P ||Q) = tr(P logP )− tr(P logQ)

X,Y : random variables X: Quantum system with state P
H(X) = H(P )

H(X|Y ) = H(X,Y )−H(Y ) H(X|Y ) := H(X,Y )−H(Y )
Unlike classical case, H(X|Y ) can be negative!!

Mutual Information Quantum Mutual Information
I(X;Y ) = H(X) +H(Y )−H(X,Y ) I(X;Y ) = H(X) +H(Y )−H(X,Y )

H(X) ≤ H(X,Y ) |H(X)−H(Y )| ≤ H(X,Y ) ≤ H(X) +H(Y )
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Shannon’s Classical Source Coding Theorem

Σ Alphabet, p prob. dist on Σ, Γ = {0, 1}.

X1, · · · , Xn IID sequence generated by a source with dist p,
(X1, · · · , Xn) ∈ Σn

f : Σn → Γm Encoder m < n, g : Γm → Σn Decoder

α > 0, 0 < δ < 1, m = bαnc

G = {(a1, · · · , an) ∈ Σn : g(f(a1, · · · , an)) = (a1, · · · , an)}

(f, g) is a (n, α, δ) coding scheme for p if P (G) > 1− δ.

53/71



Shannon’s Classical Source Coding Theorem

Theorem ( Shannon) :

(i) If α > H(p) then for any 0 < δ < 1, ∃ a (n, α, δ) coding
scheme for p for all large n.

(ii) If α < H(p) then ∃ a (n, α, δ) scheme for p only for a finite no.
of n. �

Comment : Above theorem states that on average a source
symbol X with dist p can be compressed with little error to α
binary sequence iff α < H(p).

Proof of this theorem uses concept of typical sequences.
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Quantum Source Coding Theorem

A Quantum Source produces iid quantum states
X1, · · · , Xn ∈ L(X ).

Γ = {0, 1}, Y = CΓ, α > 0, 0 < δ < 0, m = bαnc

Φ ∈ C(X⊗n,Y⊗m) Encoder channel, Ψ ∈ (Y⊗m,X⊗n) Decoder
channel

In Classical case for a (countable) finite alphabet Σ, we want to
recover the original sequence after decoding.

In Quantum case the corresponding task is to recover the original
state sequence ρ⊗n as much as possible, similarity measured by
Fidelity function.
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Quantum Source Coding contd.

Defn : P,Q ∈ Pos(X ). Fidelity between P and Q is

F (P,Q) = tr(
√√

QP
√
Q).

If F (P,Q) is large then ||P −Q||1 is small and vice versa where || · ||1, is
trace norm :

||A||1 := tr(
√
A†A)

Def: (Φ,Ψ) is a (n, α, δ) quantum coding scheme for ρ if
F (Ψ(Φ(ρ⊗n)), ρ⊗n) ≥ 1− δ.

Theorem : ( Schumacher)

(i) If α > H(ρ), then ∃ a (n, α, δ) quantum code for ρ for all large n.
(ii) If α < H(ρ) then ∃ a (n, α, δ) quantum code for ρ at most for
finitely many n. �

Proof of this theorem uses concept of typical subspace, corresponding to

typical sequences in classical case. Historically, this correspondence was

the key step in transferring classical IT results to quantum IT.
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Teleportation Protocol

I Allows transmission of quantum information via a classical
channel and entanglement.

I Alice has a quantum register X and Bob Y both with
classical alphabet Σ.

I Alice gets a new quantum register Z whose state she wants to
communicate to Bob via a classical channel.

I To send quantum state over a classical channel exactly, Alice
needs to send the two complex amplitudes of the state with
infinite precision.
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Teleportation Protocol contd.

Following shows, using entanglement, quantum state can be
transmitted by sending only two classical bits!

I Alice and Bob initially prepare (X,Y ) in a maximally
entangled state.

τ =
1

|Σ|
∑
b,c∈Σ

Ebc ⊗ Ebc

I Alice performs measurement M : Γ→ Pos(Z ⊗ X ) on (Z,X)
and gets measurement a ∈ Γ.

I Alice sends classical information a to Bob through a classical
channel.

I Bob applies quantum channel Ψa ∈ C(Y,Z) to Y and the
output of it is transferred to a register Z

′
.
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Teleportation Protocol: Comments
I Overall, the protocol provides Z 7→ Z

′
which is equivalent to

channel.

Φ(Z) =
1

|Σ|
∑
a∈Γ

∑
b,c∈Σ

〈M(a), Z ⊗ Ebc〉Ψa(Ebc).

I There exist M and {Ψa, a ∈ Σ} which provides state of Z
′

equal to Z.

I Alice and Bob need not know the quantum state
communicated. Provides long distance quantum
cryptography. Using classical techniques, Alice cannot
transmit state without knowing it.

I Transmission of quantum information via classical channel
happened due to initial entangled state of (X,Y ). Otherwise
not.

I To transmit state of one qubit, it takes two classical bits to
transmit; the least number of bits possible.
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Teleportation Example

Σ = {0, 1}, Γ = {0, 1}.
I Initial state of (X,Y ) = |00〉+|11〉√

2
.

I State of Z, |ψ〉 = α0|0〉+ α1|1〉, to be sent to Bob. α0, α1

unknown.

I The state of (Z,X, Y ) is |ψ〉
(
|00〉+|11〉√

2

)
.

Bell basis of C2 is

|β00〉 =
|00〉+ |11〉√

2
, |β01〉 =

|01〉+ |10〉√
2

,

|β10〉 =
|00〉 − |11〉√

2
, |β11〉 =

|01〉 − |10〉√
2

.
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Teleportation Example contd.

In the Bell basis, state of (Z,X, Y ) is

1

2
|β00〉 (|ψ〉) +

1

2
|β10〉 (Z |ψ〉) +

1

2
|β11〉 (XZ |ψ〉) +

1

2
|β01〉 (X |ψ〉).

I Alice performs measurement in this basis on her qubits (Z,X)
and sends the result to Bob. Any of the four states occur with
equal probability.

I E.g. if 10 occurs, then Y is left with state Z |ψ〉. Bob
performs I ⊗ I ⊗ Z on the system to obtain |ψ〉.
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Dense Coding

I Allows transmission of classical information via a quantum
channel and entanglement, optimally.

I Alice has quantum register X, Bob Y , both with alphabet Σ.

I Alice obtains classical register Z with alphabet Γ whose
classical state she wants to transmit to Bob
I Initially (X,Y ) is prepared in maximally entangled state.
I If Z has state a, Alice applies channel Φa ∈ C(X ) to register

X.
I Alice sends state Φa(X) to Bob via a quantum channel.
I Bob performs meas. M : Γ→ Pos(X ⊗ Y) on the received

state Φa(X) and Y .
I Outcome of meas is taken by Bob as the state of Z.

I By appropriately choosing Φa and Γ, if |Γ| ≤ |Σ|2 then Bob
can exactly recover state of Z.
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Dense Coding Example

Σ = {0, 1}, Γ = {(0, 0), (0, 1), (1, 0), (1, 1)}.
Initial state of (X,Y ) = |00〉+|11〉√

2
, prepared by Alice.

State of Register Z Φa channel used State of (Φa(X), Y )
a by Alice at Bob

00 I ⊗ I |β00〉 = |00〉+|11〉√
2

01 X⊗ I |β01〉 = |01〉+|10〉√
2

10 Z⊗ I |β10〉 = |00〉−|11〉√
2

11 ZX⊗ I |β11〉 = |01〉−|10〉√
2

The state of (Φa(X), Y ) at Bob is one of the four orthogonal Bell states.

It uses µ((i, j)) = βij as measurement to get back the original state

(i, j) of register Z at Alice.
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Classical Information on a Quantum Channel

Φ ∈ C(X ,Y)

Defn. : Rate α is achievable on Φ if for any ε > 0, for all large n,
∃ an encoder channel and a decoder channel for Φ⊗n s.t. a unif
distributed binary string of length m = bαnc can be transmitted
over it with Prob. of error < ε.
The sup over such α is called classical capacity of quantum
channel Φ:= C(Φ)

χ(Φ) = sup
p
H

(
Φ

(∑
a∈Σ

p(a)ρa

))
−
∑
a∈Σ

p(a)H(Φ(ρa))

where Σ is the alphabet of a classical input source X and

p(a) = P (X = a), a 7→ ρa ∈ D(X )

Theorem: [Holevo-Schumacher-Westmoreland]

C(Φ) = lim
n→∞

χ(Φ⊗n)

n
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Classical Information on a Quantum Channel : Comments

1. Computing χ(Φ⊗n) for large n is intractable because of
optimization over p.

2. If χ(Φ⊗n) = nχ(Φ) then C(Φ) = χ(Φ). This is true for many
channels, not all.

Defn. : A channel Φ is entanglement breaking if ∃ alphabet Σ, a
measurement M : Σ→ Pos(X ), σa ∈ D(Y), a ∈ Σ, s.t.

Φ(X) =
∑
a∈Σ

〈M(A), X〉σa, ∀X ∈ L(X )

The output state of this channel is always unentangled.
Theorem: For an entanglement breaking channel Φ,

χ(Φ⊗n) = nχ(Φ).
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Classical Information on a Quantum Channel : Example

Erasure Channel : Φ(ρ) = (1− ε)ρ+ εee†,
where 0 < ε < 1, e is an erasure symbol, orthogonal to input space
{ρa : a ∈ Σ} of the channel.
The classical capacity of this channel is

C(Φ) = (1− ε) log d

where d = dim of X .
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Entanglement Assisted Classical Capacity

I If before transmission, sender and receiver can have
entanglement of their quantum states, then classical capacity
of channel can be increased.

I Super dense coding can often provide the capacity now.

I For erasure channel, entanglement doubles classical capacity.
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Further Reading contd.

Advanced Reading

I A. M. Childs, Lecture Notes on Quantum Algorithms, 2017.
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2013.
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Concluding Remarks

I Capabilities of computers are constrained by laws of physics
and not by pure math.

I Superposition, interference, non-determinism and
entanglement make quantum computing different from
classical computing.

I There is no function computable by quantum computers but
not by classical.
I However, computational tasks are there:

I Generating true random numbers.
I Teleportation of information.

I In quantum computing, two kinds of algorithms found:
I Shor’s algorithm on factoring composite integers that provide

exponential speedup over classical computations.
I Grover’s algorithm for unstructured search which show only

polynomial speedup.
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Concluding Remarks contd.

I So far no exponential speedup found for NP-complete
problems. Unlikely to be found in the future.
I Good candidates for exp. speedup are NP intermediate

problems, e.g., factoring composite integers.

I QECC and fault tolerant computing essential for quantum
computing and communication.

I Public key cryptography threatened by quantum computing
but QKD strengthens private key cryptography.

I Entanglement can speedup computations, strengthen QECC
and enhance communication capacity.

I Classical techniques are key to develop quantum algorithms,
QECC and Quantum IT results.
I But new techniques and insights are also needed.

I Currently main challenge is in building quantum computers.
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