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. Axioms of Quantum Mechanics

. Quantum Gates

. Quantum Protocols

. Quantum Algorithms
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Focus on Ideas. Contrast with Conventional (Classical) bits

1. Simplicity and Ideas at the cost of Generality

» Ex. R2,R3 or Finite Dim. Inner product spaces instead of Hilbert spaces.

2. Comparison with classical bits, notions - A Running Thread.

3. Pictorial. Dont get bogged down by the math.

» Fine to not grasp text on a slide.
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The Power of Quantum Algorithms, Quantum Cryptography
crucially relies on

Unique Behaviour of Quantum Systems - Superposition, Entanglement, etc.
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To understand, design, leverage this power,

An Understanding of the Behaviour of Quantum Systems is Necessary.
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Behaviour of Quantum Systems described through

Axioms of Quantum Mechanics

<—  Our First Topic
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Axioms of Quantum Mechanics
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A bit lives in {0,1} ( it's state space). It is 0 or 1.
Where does a Qubit live?

Axiom 1
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Axiom 1 : How is a Quantum system described?

H

= OO

i

State Space of a quantum system is an Inner Product Space (IPS).
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Axiom 1 : How is a Quantum system described?

|

= OO

} |¢) : unit vector in H.

Quantum state

0
1
0 |¢) = unit norm vector

State Space of a quantum system is an Inner Product Space (IPS).

The state of a quantum system is described through a Unit vector in an IPS H.

7/1



Axiom 1 : How is a Quantum system described?

|

= OO

} |¢) : unit vector in H.

Quantum state

m
X
s
[
| a—
S-Sl

]EH=R2.

0
1
0 |¢) = unit norm vector

State Space of a quantum system is an Inner Product Space (IPS).

The state of a quantum system is described through a Unit vector in an IPS H.

7/1



Axiom 1 : How is a Quantum system described?

0
0
! |¢) : unit vector in H.
Quantum state
1
Ex. : |¢):[ V2 ]EH:RQ.
V2
o) »
1 . .
{0} Polarization of photon, spin of electron.
0

i

State Space of a quantum system is an Inner Product Space (IPS).

|¢) = unit norm vector

The state of a quantum system is described through a Unit vector in an IPS H.
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Why H? What is the General Theory?

General Quantum Theory is based on a Hilbert space. Hence H.

Mathematician : Hilbert space is a complete co—dimensional inner product space.

This tutorial : Euclidean space with std. inner product suffices < our Hilbert space.

R? suffices. But we denote it as C¢. Pretend C = R.

8/1



Axiom 1 : How is a Quantum system described?

2-D Quant st.
= QUBIT

lp) € C*

5

A 2- dimensional quantum state is a QUBIT.
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Axiom 1 : How is a Quantum system described?

[OJ Two Special Qubits
1
1 0
|0)=[0] and |1)=[1]
2-D Quant st.
= QUBIT
4) € C°

5

A 2- dimensional quantum state is a QUBIT.
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Axiom 1 : How is a Quantum system described?

2-D Quant st.
= QUBIT

lp) € C*

5

A 2- dimensional quantum state is a QUBIT.

Two Special Qubits
1
|0)=[ 0] and |1)=[

CAUTION
For any a,8eCs.t|a)® +|67 =1
a|0) + B[1) is valid qubit

Valid state of a quantum system.
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Axiom 1 : How is a Quantum system described?

2-D Quant st.
= QUBIT

lp) € C*

[

A 2- dimensional quantum state is a QUBIT.

0

Two Special Qubits
1
|0)=[0] and |1)=[

CAUTION
For any a,8eCs.t|a)® +|67 =1
a|0) + B[1) is valid qubit

Valid state of a quantum system.

Incorrect ilustration : Scalars are Complex numbers.

Correct illustration via 3-dimensional Bloch sphere.
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Axiom 1 : Superposition and Inner Products.

Suppose System is in state |¢) = a|0) + 8]1). |$) is a Superposition state.

INCORRECT: System is in state |0) with prob. |a|?> and in state |1) with prob. |5]?.
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Axiom 1 : Superposition and Inner Products.

Suppose System is in state |¢) = |0) + B8|1). |$) is a Superposition state.
INCORRECT: System is in state |0) with prob. |a|*> and in state |1) with prob. |3]?.

The inner product (IP) between |z) € H and |y) € H is denoted (y|x).

Example : |z) :[ o ]ECQ, ly) :[ L ]ECQ,

Z2 Y2

(y|m) = yl*xl + yQ*LL’Q. Note : First argument is C—conjugated. Physics Notation.
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Axiom 1 : Superposition and Inner Products.

Suppose System is in state |¢) = |0) + B8|1). |$) is a Superposition state.
INCORRECT: System is in state |0) with prob. |a|*> and in state |1) with prob. |3]?.

The inner product (IP) between |z) € H and |y) € H is denoted (y|x).

Example : |z) :[ il ]ERQ, ly) :[ zl :IERQ,
2 2

(ylz) = y121 + yowa.
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Qubits are our Information Carriers. Analogous to Bits.
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Axiom 1 : Contrasting Quantum and Classical Worlds

Quantum World Classical World
Qubit : Unit vector in a Inner product space. Bit : Element in a Finite Set
H = Inner product space. X - Our Finite set
|¢) : where we encode our information. z = the information we wish to encode.

|$) € R? is a qubit. xin X ={0,1} is a bit.
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Points to Keep in Mind

Unit norm.
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Acronyms, Abbreviations and Short Forms

IP FDIPS dim.
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Our Universe and Its Contents

0
1
0 |¢) = unit norm vector
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Our Universe and Its Contents

Linear Transformation (LT) : T: H - H

Tl¢)

0
1
0 |¢) = unit norm vector
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Our Universe and Its Contents

Linear Transformation (LT) : T: H - H

Tl¢)

Unitary Transf. : LT that preserves length.

Just a rotation

0
1
0 .
|¢) = unit norm vector
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Our Universe and Its Contents
Linear Transformation (LT) : T: H - H
Tl¢)

Unitary Transf. : LT that preserves length.

Just a rotation

11, projects U:H->H

onto subspace
' Projection : LT that projects.

1]
i i I : —
Lg V Just a projection II; : H — H
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Our Universe and Its Contents
Linear Transformation (LT) : T: H - H
Tl¢)

Unitary Transf. : LT that preserves length.

Just a rotation

11, projects U:H->H

onto subspace
' Projection : LT that projects.

1]
0 Just jection TI; : H
LV ust a projection II; -

i

H
0
1
0

S O =
o o O
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Our Universe and Its Contents

11, projects
onto subspace

Linear Transformation (LT) : T: H - H

Tl¢)

Unitary Transf. : LT that preserves length.

Just a rotation
U:H->H

Projection : LT that projects.

Just a projection I : H —

H
0
I, = 1
0

S O =
o o O

Important

Any projector II satisfies 112 = IIT = II.
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More on Projections

Projections 11y, Il2: H — H.

Projection IT,

- Projection IT,

1]
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More on Projections

o Projections II;, Il : H — H.
0
LJ Projection IT,
, 100 000
(Lengthy =a* , A== - Projection 11, m=|l010] II,={000
~‘ v/ | 000 001
L
) - 1]
4\; '

0 "’
1 S —
0 (Length)? =b?
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More on Projections

o Projections II;, Il : H — H.
0
LJ Projection IT,
) 100 000
(tength)’ =a* A - Projection I, Mm=(010]| My=|l000
~‘ /e 000 001
L
i 1
v i U I+ =T =a*+b° =1
= M

0 "’
1 S —
0 (Length)? =b?
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More on Projections

(Length)® =a? A

oOr o
L

~.‘ -|-¢->£E‘
v ; J@

(Length)? =b*

Projections II;, Il : H — H.

Projection IT,

Projection II, II; = IIs =

S O =
O = O
o o O
o O O
o O O
—= o O

Oy +T =T =a®+b° =1

a®+b°> = (length of ¢))?
[(le)[* = 1
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Axiom 2 : How does a Closed system evolve?

The evolution of a closed (isolated) quantum system evolves through a Unitary
Transformation.

|z):, = State of System at time t1, |z):, = State of System at time t2

|}, is related to |x)¢, through a Unitary transformation U.

|x)t2 = U|x>t1
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Axiom 3 :

Our Interaction with a Quantum System and the

Rules that Govern this Interaction

Axiom 3 is the Measurement Axiom
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Axiom 3 - The Measurement Axiom - A Very Important Axiom

Can eye-ball/read-out a bit. Cannot eye-ball/stare at qubit.

Your interaction is via a Measurement.

Axiom 3 describes this interaction and the rules governing this interaction.
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Axiom 3 : The Measurement Axiom

A measurement is described through
a collection {Ila,,Ia,, -, o, } of projectors acting on inner product Space H

that satify the Completeness Relation

K
S Ilay, =Ha, + -+ 1, =1 (I = the Identity on H).
k=

-
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Axiom 3 : The Measurement Axiom

A measurement is described through
a collection {Il,,,Iq,, -, s, } of projectors acting on inner product Space H

that satify the Completeness Relation
K
> Moy, =1la, +-+1ay =1 (I = the Identity on ).
k=1

What are these operators and the indices a1, -+, ax?
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Axiom 3 : The Measurement Axiom

A measurement is described through
a collection {Il,,,Iq,, -, s, } of projectors acting on inner product Space H

that satify the Completeness Relation
K
> Moy, =1la, +-+1ay =1 (I = the Identity on ).
k=1

What are these operators and the indices a1, -+, ax?

Indices a1, -+, i : possible outcomes.

|Il|||IlII|IlII|Il||||l|||IIII|IIII|IIII|IIII T

Each Projector I1,,, corresponds to its
Cennme(erSCale A T outcome ay.

% i Completeness Relation “You must get atleast
one of the possible outcomes.”
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Simplify, Simplify, Simplify, ---

Just call oy, a9, as 1,2, K

Outcomes are 1,2, -+, K.

Reduce notation.
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Axiom 3 : The Measurement Axiom
When a measurement {II;,II5, -, IIx } is performed on a state |¢) € H
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Axiom 3 : The Measurement Axiom
When a measurement {II;,II5, -, IIx } is performed on a state |¢) € H

1. You get outcome k with probability

P(Outcome =k) = (Length of proj. Hk|¢))2 = Inn. prod. between IIx|®) and Ilj|¢p)
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Axiom 3 : The Measurement Axiom
When a measurement {II;,II5, -, IIx } is performed on a state |¢) € H

1. You get outcome k with probability

P(Outcome =k) = (Length of proj. Hk\d)))Q = Inn. prod. between IIx|®) and Ilj|¢p)
= (GIIT} | T1kg) = (GITTx | T1k) = (9] T1eo)
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Axiom 3 : The Measurement Axiom
When a measurement {II;,II5, -, IIx } is performed on a state |¢) € H

1. You get outcome k with probability

P(Outcome =k) = (Length of proj. Hk\d)))Q = Inn. prod. between IIx|®) and Ilj|¢p)

= (S | Tko) = (G[TTx | TIxg) = (] TTxp)
(Length of projection IIx|¢))*

Note :
K

K K
_ _ _ _ _ C let
2. P(Outcome =k) = 32 (dlI1il6) = (9] 3. T1xl6) = (elllo) = 1 “RRPEESs
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Axiom 3 : The Measurement Axiom
When a measurement {II;,II5, -, IIx } is performed on a state |¢) € H

1. You get outcome k with probability

P(Outcome =k) = (Length of proj. Hk\d)))Q = Inn. prod. between IIx|®) and Ilj|¢p)

= (S | Tko) = (G[TTx | TIxg) = (] TTxp)
(Length of projection IIx|¢))*

2. The quantum system collapses to one of the following states

Ik |p)

k=12 K
([k|o)
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k=1,2 K

22/1



Axiom 3 : The Measurement Axiom
When a measurement {II;,II5, -, IIx } is performed on a state |¢) € H

1. You get outcome k with probability

P(Outcome =k) = (Length of proj. Hk\d)))Q = Inn. prod. between IIx|®) and Ilj|¢p)

= (S | Tko) = (G[TTx | TIxg) = (] TTxp)
(Length of projection IIx|¢))*

2. The quantum system collapses to one of the following states

Hk|¢>> _ Hk|¢> .
V{9llk|p)  \/Length of I1k|¢)

k=1,2 K

3. Moreover, if you observe outcome j, then the state collapses to

IL,]¢)

(¢ITL;]¢)
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Understanding the Measurement Axiom : Classical World

Classical world

Wish to measure pencil’s length

Nataraj Pencil 2B >
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Understanding the Measurement Axiom : Classical World

Classical world

Wish to measure pencil’s length

Nataraj Pencil 2B >
CETTTET T T
2468 2 468

2468|2468

0 1 2 3 4 5 6 7 8 9 10

Centimeter Scale

23/1



Understanding the Measurement Axiom : Classical World

Classical world

1. Length is accurately read- 6cm.
No uncertainty.

Nataraj Pencil 2B >
CETTTET T T
2468 2 468

2468|2468

0 1 2 3 4 5 6 7 8 9 10

Centimeter Scale
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Understanding the Measurement Axiom : Classical World

Classical world

1. Length is accurately read- 6cm.
No uncertainty.

2. Pencil’'s length does NOT
change post-measurement

Nataraj Pencil 2B >
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Understanding the Measurement Axiom : Quantum World

Quantum World

Wish to measure pencil’'s
(quantum state) length

Nataraj Pencil 2B >
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Understanding the Measurement Axiom : Quantum World

Quantum World

Wish to measure pencil’'s
(quantum state) length

Nataraj Pencil 2B >

T T T T
OA 1 2 3 4 5 6 7 8 9 10
,A, Centimeter Scale A

|
Lo |

Ay Qg
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Understanding the Measurement Axiom : Quantum World

Quantum World

1. Outcome is RANDOM.

A

Centimeter Scale

/a

Al
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Understanding the Measurement Axiom : Quantum World

Quantum World

1. Outcome is RANDOM.

2. Pencil’s length CHANGES

24.cm post-measurement

Nataraj Pencil 28
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Understanding the Measurement Axiom : Quantum World

Quantum World

1. Outcome is RANDOM.

2. Pencil’s length CHANGES

24.cm post-measurement

Nataraj Pencil 28

Welcome to the QUANTUM WORLD.
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Measurement Axiom : An Example
Example

B
Quantum system in state |¢) = —=[0) + |1) = [ y2 ] eH =C2
V2

Perform measurement with two outcome {-0.5,+0.5}.

Two meas. operators I1_¢ 5 :[ 8 (1) ] Ili05 =[ (1) 8 ]

II_o.5 + II10.5 = I. Completeness Relation satisfied.

P(Outcome =-05) = (Length ofn,0,5|¢>)2=H[8 (1)”

S8l

2

= 1 -

/2 2

U TR

P(Outcome =+0.5) = H[ \65 ] =35

If Outcome = 0.5, state collapses to |1). If Outcome = +0.5, state collapses to |0).
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Points to Keep in Mind

> Non-orthogonal states cannot be distinguished with certainty.

» Computation/Communication results need to be projected to orthogonal states.
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Axiom 4 : Description of a Joint/Composite Quantum System

Quantum World
Suppose Quantum System 1 is in state |¢1) € H1

Quantum System 2 is in state |¢2) € Ho

Quantum System n is in state |, ) € Hn

State space of composite Quant Sys. is the tensor product
Hi ® Ho ® - ® H,, of constituent state spaces.
Composite System is described by State

[61) ® |p2) ® - ®|dn) e H1 @ Ho ® -+ ® Hn.
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Axiom 4 : Description of a Joint/Composite Quantum System

Quantum World
Suppose Quantum System 1 is in state |¢1) € H1

Quantum System 2 is in state |¢2) € Ho

Quantum System n is in state |, ) € Hn

State space of composite Quant Sys. is the tensor product
Hi ® Ho ® - ® H,, of constituent state spaces.
Composite System is described by State

[61) ® |p2) ® - ®|dn) e H1 @ Ho ® -+ ® Hn.

Classical World
System 1 in state 1 € X}

System 2 in state x5 € X>

System n in state x, € X,

Cartesian product
X1 x Xy x - x X,
n—tuple

(1,3 xn) € Xy x X,
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What is a Tensor Product and what are the rules governing it?

Quantum World

Suppose V is a Th—dimensional IPS,
W is a n—dimensional IPS.

V ® W is mn—dimensional IPS.
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What is a Tensor Product and what are the rules governing it?

Quantum World Classical World
Suppose V' is a m—dimensional IPS, zeX, |X|=m
W is a n—dimensional IPS. yel, [V =n

V @ W is mn—dimensional IPS. (z,y) e X x Y,

X x)Y|=mn
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V ® W is mn—dimensional IPS. (z,y) e X x Y, |X xY|=mn

Alert : NOT a direct sum. direct sum if m + n-dim.
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What is a Tensor Product and what are the rules governing it?

Quantum World Classical World
Suppose V' is a m—dimensional IPS, zeX, |X|=m
W is a n—dimensional IPS. yel, [V =n
V ® W is mn—dimensional IPS. (z,y) e X x Y, |X xY|=mn

Alert : NOT a direct sum. direct sum if m + n-dim.

All possible ?linear combinations? of ?tensor product? |v) ® |w)

Elements of Ve IV of elements |v) € V and |w) e W.

[v) ® Jw) Just an (ordered) pair of vectors from respective spaces
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Rules Governing Linear Combinations in Tensor Product Spaces

Rules governing Linear combination

[v1) ® |w) +|v2) ® |w) = (Jv1) +|v2)) ® |w)  State Distrbtv Law (SDL) 1
—_—— —_ —_
;

[v) ® |wi) + [v) ® |wa) = |v) ®(Jw1) + |w2)) State Distrbtv Law (SDL) 2

"~ —— ——

a-(Jvy®w)) =(a-|u)) ®|w) =|v)® (a-|w)) State Distrbtv Law (SDL) 3

The above rules tell you how and when to combine terms.

In general, if the above rules do not apply, the sum
[v1) ® [wi) + [v2) ® [w2) = [v1) ® [w1) + |v2) ® [w2)

is a distinct element of V @ W.
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Rules Governing Operations on Tensor Products and Inner Products

What are the linear transformations/operators acting on V @ W7
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Rules Governing Operations on Tensor Products and Inner Products

What are the linear transformations/operators acting on V @ W7

Suppose A:V -V and B: W — W are LTs.
(A® B)(Jv) ® |w)) = Alv) ® Blw) Operator Dist. Law (ODL) 1
(A® B)(D_|vi) ® |wi)) = > Alvi) ® B|w;) Operator Dist. Law (ODL) 2

A®(B1+B2)=A®B1+A® B> Operator Dist. Law (ODL) 3
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Rules Governing Operations on Tensor Products and Inner Products

What are the linear transformations/operators acting on V @ W7

Suppose A:V -V and B: W — W are LTs.
(A® B)(Jv) ® |w)) = Alv) ® Blw) Operator Dist. Law (ODL) 1
(A® B)(D_|vi) ® |wi)) = > Alvi) ® B|w;) Operator Dist. Law (ODL) 2

A®(B1+B2)=A®B1+A® B> Operator Dist. Law (ODL) 3

What about the inner product on V@ W

Ans : Product of inner products.

IP between |v1) ® |w1) and |v2) ® [w2) = (vi]v2) (w1lw2) .
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Tensor Product : A Concrete Example

1x3

2 2 |1 | 3 | 1Ix4
veew=ch b=y | e ] mew-| )1
2x4

Simple Consequences

1. dim(V @ W) = dim(V)x dim(W).
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Tensor Product : A Concrete Example

1x3

2 2 |1 | 3 | 1Ix4
veew=ch b=y | e ] mew-| )1
2x4

Simple Consequences

1. dim(V @ W) = dim(V)x dim(W).

2. If {Jaa),+, |am)} is orthonormal basis for V,
{IB1),+,|Bn)} is orthonormal basis for W,

then {|a;) ® |85) : 1 <4< m,1<j<n} is orthonormal basis for V@ W.
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Our Basis in C2 @ C2

Example [0),]1) forms an orthonormal basis for Ha = Hp = C?
|0) ®0),|0) ®|1),[1) ®|0),|1) ® |1) forms an orthonormal basis for Ha @ Hp
Notational Simplification :|0) ® 1) = |0) |1) = |01)

{00}, |01),]10),]11)} orthonormal basis for Ha ® Hp
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Our Basis in C2 @ C2
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Notational Simplification :|0) ® 1) = |0) |1) = |01)

{00}, |01),]10),]11)} orthonormal basis for Ha ® Hp

T5lon) + 5 l2), 5 fon) = 5 [ve)
If |v1),|v2),|vs),|va) are orthonormal =
5 lvs) + 5 [va) , 75 |vs) = 75 [va)

are orthonormal.
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Our Basis in C2 @ C2

Example [0),]1) forms an orthonormal basis for Ha = Hp = C?
|0) ®0),|0) ®|1),[1) ®|0),|1) ® |1) forms an orthonormal basis for Ha @ Hp
Notational Simplification :|0) ® 1) = |0) |1) = |01)

{00}, |01),]10),]11)} orthonormal basis for Ha ® Hp

T5lon) + 5 l2), 5 fon) = 5 [ve)
If |v1),|v2),|vs),|va) are orthonormal =
5 lvs) + 5 [va) , 75 |vs) = 75 [va)

are orthonormal.

% |00) + % [11), % |01) + % |10), are orthonormal
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Secrets of the Tensor Product

More Consequences

1.
{|v)®|w):|v) e V,|w) e W } does NOT exhaust V@ W
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Secrets of the Tensor Product

More Consequences

1.
{|v)®|w):|v) e V,|w) e W } does NOT exhaust V@ W

Not all vectors in V ® W can be expressed as |v) ® |w). However,

VeW=span{ jv)®|w):|v)eV,|w)eW }

CE0)+ 311 @ (5100 + 2 [1)) = (32 100) + 225 [01) + 525 [10) + 525 [11))
— —————
[v) Jw)

(L5 100) + 25 111))
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Secrets of the Tensor Product

More Consequences
1.
{|v)®|w):|v) e V,|w) e W } does NOT exhaust V@ W

Not all vectors in V ® W can be expressed as |v) ® |w). However,

VeW=span{ jv)®|w):|v)eV,|w)eW }

CE0)+ 311 @ (5100 + 2 [1)) = (32 100) + 225 [01) + 525 [10) + 525 [11))
— —————
[v) Jw)

?7?

(@) +b)) @ (o) +a)) £ (L5100)+ L5 (11))
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Secrets of the Tensor Product

More Consequences

1.
{|v)®|w):|v) e V,|w) e W } does NOT exhaust V@ W

Not all vectors in V ® W can be expressed as |v) ® |w). However,

VeW =span{|v)®|w):[v) e V,[w)e W }

L0y + 311 @ (Z510) + 2 (1)) = (32 100) + 225 |01) + 525 [10) + 525 [11))
—————
[v) Jw)

(aloy+b[1)) @ (c[0) +d[1)) x (Z5100)+ L5 [11))

ad=0, ac=- = d=0 but need bd:%

S
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Separable and Entangled states

Definition

Consider a joint quantum system consisting of 2 constituent quantum systems. The
joint state vector |¢) € Ha ® Hp is separable if |¢) can be expressed as a tensor product
of constituent state vectors |¢1) € Ha, |¢p2) € Hp, i.e,

|9) = |¢1) ®|¢2) -

A joint state vector is entangled if it is not separable.

Example

The state |®7):= (L

V2

b

|00) NG

|11)) is entangled.
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Consider a joint quantum system consisting of 2 constituent quantum systems. The
joint state vector |¢) € Ha ® Hp is separable if |¢) can be expressed as a tensor product
of constituent state vectors |¢1) € Ha, |¢p2) € Hp, i.e,

|9) = |¢1) ®|¢2) -

A joint state vector is entangled if it is not separable.

Example

The state |®"):= (L

V2

€

|00) + 7

|11)) is entangled.
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Separable and Entangled states

Definition

Consider a joint quantum system consisting of 2 constituent quantum systems. The
joint state vector |¢) € Ha ® Hp is separable if |¢) can be expressed as a tensor product
of constituent state vectors |¢1) € Ha, |¢p2) € Hp, i.e,

|9) = |¢1) ®|¢2) -

A joint state vector is entangled if it is not separable.

Example

1 1
The state |®"):= (— |00) + 7 |11)) is entangled.

V2 V2
individual constituent components have no definite description.

What is state of the first component |®*) : Invalid Qn..

Only state of a joint system.
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Entanglement has NO Classical Analogue

1 .
The entangled state [®*) = (— represents the state of a joint system.

|00) + |11))
V2 V2
Analogous to a pair of registers storing the values of two quantities.

Joint System in our Classical World

z = Rainfall in Chennai,
y = Humidity in Bangalore.

(w,y)

Regxs!er A Register B

Alice i in. Bob in
Chennai Bangalore

Inspite of (potentially) correlated/ or related, each element of the pair (z,y) has its
identity, description.
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Entanglement has NO Classical Analogue

1 .
The entangled state [®*) = (— represents the state of a joint system.

|00) + |11))
V2 V2
Analogous to a pair of registers storing the values of two quantities.

Joint System in our Quantum World

+
127) 45
First Qublt Second
Qubit
Alice in Bobin

Chennai Bangalore

Alice and Bob can share a pair of qubits describing the joint system.

However, each qubit has no definite description, identity.
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Entanglement has NO Classical Analogue

1 .
The entangled state [®*) = (— represents the state of a joint system.

|00) + |11))
V2 V2
Analogous to a pair of registers storing the values of two quantities.

Joint System in our Quantum World

+
127) 45
First Qublt Second
Qubit
Alice in Bobin

Chennai Bangalore

Alice and Bob can share a pair of qubits describing the joint system.

However, each qubit has no definite description, identity.
The joint system is in a superposition of states |00) and |11).
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Entanglement
+
Randomness in measurement outcomes

yield new information processing resources.
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Getting used to the Ket-Bra notation
What is II; [¢)?

b))

II, projects
onto subspace

H

[1]
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Getting used to the Ket-Bra notation
What is II; [¢)?

mg) = b1) + b2) ;
~—— ~—— 0
IP between IP between u

[b1)and |¢) Ib2)and |¢)

II, projects
onto subspace

1
1
1
1
1
B
b)) ){ [1]
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Getting used to the Ket-Bra notation

What is II; [¢)?

Mig) = (bi]¢)
IP between

[b1)and [¢)

|b1> +

(bald)  [b2)
—
IP between
Ib2)and |¢)

b))

II, projects
onto subspace

[1]
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Getting used to the Ket-Bra notation
What is II; [¢)?

L) =  (ble) [bi)+ (belg) [ba)
N—— —
IP between IP between
[b1)and |¢) [bo)and |¢)

Mi|g) = (bilg) [b1) +(b2|@) [b2)

scalar Vector  scalar vector

|b1>

[6,)

II, projects
onto subspace

-‘f'-""

[1]
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Getting used to the Ket-Bra notation
What is II; [¢)?

M) =  (bilg) )+ (balg) oo )
~—— ~—— 0
IP between IP between u
[b1)and |¢) Ib2)and |¢)

Milg) = (balg) [br) + (bal®) [b2) _
—— —_—— —— Hl projects
vector  gcalar vector

scalar onto subspace
] ,
i
Mg) = [b) (bal) + [b2) {balo) Y/
M ~—— M ~—— b [ o
vector scalar vector gcalar | 2> :, LJ
o
I

b)) [1]
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Getting used to the Ket-Bra notation
What is II; [¢)?

L) =  (ble) [bi)+ (belg) [ba)
N—— —
IP between IP between
[b1)and |¢) [bo)and |¢)

Mi|g) = (bilg) [b1) +(b2|@) [b2)

—_— —— ——
vector  gcalar vector

scalar
Ihfg) = [b1) (balg) + [b2) (b2|9)
—_ —— —~— —
vector scalar vector gcalar
|b1>
Iilg) = [br)(ba]@) +[b2) (ba|@)

II, projects
onto subspace

H

[1]
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Getting used to the Ket-Bra notation
What is II; [¢)?

L) =  (ble) [bi)+ (belg) [ba)
N—— —
IP between IP between
[b1)and |¢) [bo)and |¢)

Mi|g) = (bilg) [b1) +(b2|@) [b2)

—_— —— ——

scalar Vector  scalar vector

o) = [bx) (bilg) + [b2) (b2|d)
M~ N—— M N——
scalar VECtor scalar

i) = [b1)(b1]g) + [b2) (b2]9)

Mifg) = ([br) (ba] + [b2) (b2]) [9)

1

|b1>

II, projects
onto subspace

[1]
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Getting used to the Ket-Bra notation
What is II; [¢)?

Mg) = (bulg) [ba)+ (b2]@) |b2)
e e H
IP between IP between 1
[b1)and |¢) Ib2)and |¢)
IMi¢) = (bild) [b1) + (b2[@) [b2) _
—_— ' — — —— 11, projects
scalar VECTOr  scalar vector onto subspace
1 ,
1
Mg) = [b) (bal) + [b2) {balo) Y/
—_—— —— —— —— ]
vector .. Vector scalar lb;) 1. m
b)) p{ [1]
IMy¢) = [b1)(b1]g) +b2) (b2]¢)
H
1
Iy ¢y = ([ba) (ba] +[b2) (b2]) |¢) 0
I

(alb) ~ (al [b)  |b)(b]
—— —_— = =
bra-ket bra ket ket-bra
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Ket-Bra Notation
The ket-bra notation is very useful in simplifying computation.

Suppose II is a projection onto subspace W c H.

Suppose {|v1), -, |vr}} € W is an orthonormal basis (ONB).
I = [vr) (1] + |vz) (va| + -+ o) (vr| = Eizy [vi) (vi]
IL|¢) = 3, [vi) (vil |} = Z; [vi) (vild) = Z; (vil@)  [vi)

N — —— —_—— ——
scalar scalar vector

| (vi|@) | = Length of projection of |¢) on |v;)

>, (vil@) |vi) = Projection of |¢) on subspace W

Bra-ket Notation|a) (b] |c) = (b|c) |a)

Suppose H 4 has ONB {|v1) -, |va)}, then any linear transformation T : H — H
can be expressed as

d d
T =73 tijlvi) (vg].

i=1j=1
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Ket-Bra Notation
The ket-bra notation is very useful in simplifying computation.

Suppose II is a projection onto subspace W c H.

Suppose {|v1), -, |vr}} € W is an orthonormal basis (ONB).
I = [vr) (1] + |vz) (va| + -+ o) (vr| = Eizy [vi) (vi]
IL|¢) = 3, [vi) (vil |} = Z; [vi) (vild) = Z; (vil@)  [vi)

N — —— —_—— ——
scalar scalar vector

| (vi|@) | = Length of projection of |¢) on |v;)

>, (vil@) |vi) = Projection of |¢) on subspace W

Bra-ket Notation|a) (b] |c) = (b|c) |a)
Suppose H 4 has ONB {|v1) -, |va)}, then any linear transformation T : H — H
can be expressed as

d d
T =5 tij|vi)(v;]. Scalars t;; :1<i,j<d completely characterize T
i=1;5-1
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Ket-Bra Notation

T = a) (0l

Tle) = la){0llc) = (ble) |a)

What is T doing on |c)?
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Ket-Bra Notation

T = a) (0l

Tle) = la){0llc) = (ble) |a)

What is T doing on |c)?

Scaling |a) by length of projection of |c) on |b).
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Ket-Bra Notation

T = a) (0l

Tle) = la){0llc) = (ble) |a)

What is T doing on |c)?
Scaling |a) by length of projection of |c) on |b).
|-} (- is an Operator (:||'y = (-|-) is a scalar

‘) IS an vector (‘ is a linear functional
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Examples of Ket-Bra notation with Tensor Products

Recall Operative Distributive Law

(A® B)(Jv) ® |w)) = Alv) ® Blw) Operator Dist. Law (ODL) 1
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Examples of Ket-Bra notation with Tensor Products

Suppose |0) (0] : R* - R? (Op. on our qubit space : say A-space)
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Suppose Iz : R? - R? (A second qubit space : B-space)
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Examples of Ket-Bra notation with Tensor Products

Suppose |0) (0] : R* - R? (Op. on our qubit space : say A-space)
Suppose Iz : R? - R? (A second qubit space : B-space)

What is [0) (0] ® I : R @ R® - R* @ R*?7?
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Examples of Ket-Bra notation with Tensor Products

Suppose |0) (0] : R* - R? (Op. on our qubit space : say A-space)
Suppose Iz : R? - R? (A second qubit space : B-space)
What is [0) (0] ® I : R* @ R? - R @ R*?7?

Ig = |0){0]+ 1) (1
——
Sum of two operators
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Examples of Ket-Bra notation with Tensor Products

Suppose |0) (0] : R* - R? (Op. on our qubit space : say A-space)
Suppose Iz : R? - R? (A second qubit space : B-space)
What is [0) (0] ® I : R* @ R? - R @ R*?7?

Ig = |0){0]+ 1) (1
——
Sum of two operators

Recall ODL 3 A®(B1+B2):A®B1+A®BQ

10} (0 @ (|0) (0] +[1) {1]) = [0)(0[@|0) (O +0) (O] ® [1) (1]
|00) (00| +]01) (01

|0) (0] ® Iz =100) (00| + |01) (01| = Projection on subspace spanned by |00), |01).
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Points to keep in mind

|0) (0] ® Iz =|00) (00| +|01) (01| = Projection on subspace spanned by |00}, |01).

[1) (1] ® I =]10) (10| + |11) (11| = Projection on subspace spanned by [10),|11).
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Entangled pair can be separated, Acted upon Individually

Components of the joint system can be separated, Acted upon Individually

127) sp

([ Aice |

First Qublt Second
Qubit

Alice in
) Bobin
Chennai Bangalore

Suppose Alice performs measurement {Il1,---,IIx }. Bob remains silent.
7?7 Effect on Joint system 77
Equivalent to measurement {II; ® Ip,---,Ilx ® Ip} on joint system.

Only Alice sees outcome. Joint state collapses.
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Measurement on a Distributed Entangled State

197) a5

Compone’ry Wponent B
I“““‘I iiéié?iil
Alice Bob

@*) - (i 0) @ 0)

1
- |1>®|1>)

"2
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Measurement on a Distributed Entangled State

197) a5

Compon;ry wponent B

Alice Bob
)= (J5 o0+ < e n)
V2 V2
Alice performs measurement Bob does nothing.

{Ilo = |0) O], ITy = [1) (1]}
Measurement on joint system
{10} (0] ® I, 1) (1| ® I}
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Measurement on a Distributed Entangled State

197) a5

Compon;ry wponent B

Alice Bob
)= (J5 o0+ < e n)
V2 V2
Alice performs measurement Bob does nothing.

{Ilo = |0) O], ITy = [1) (1]}
Measurement on joint system
{0} (0] ® I, |1} (1| ® I5}
equivalent to
ITp ® Ip =|00) (00| +|01) (01|,
IT; ® I =[10) (10| + [11) (11]

44/1



Measurement on a Distributed Entangled State

197) a5

Compon;ry wponent B

Alice Bob
)= (J5 o0+~ e n)
V2 V2
Alice performs measurement Bob does nothing.

{I1o = [0) (0], T = [1) (1}
Measurement on joint system
[ly®lIp = ‘OO) <00‘ + |01) (01| s
II; ® Ip =]10) (10| + [11) (11]
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Measurement on a Distributed Entangled State

197) a5

Compone’ry Component B
|||III |||||I
Alice Bob

@) - (%\om jiwm)

Alice performs measurement Bob does nothing.
{Ilo = 10) (O], Ty = [1) (1]}
Measurement on joint system
[Iy®lp= ‘OO) <00‘ + |01> (01| s
{ II; ® Ip =]10) (10| + [11) (11] }

44/1



Measurement on a Distributed Entangled State

197) a5

Compone’ry Component B
Alice Bob

@) - (%\om jiwm)

Alice performs measurement Bob does nothing.
{Ilo = |0) O], ITy = [1) (1]}
Measurement on joint system
[Iy®lp= ‘OO) <00‘ + |01) (01| s
II; ® Ip =]10) (10| + [11) (11]

Outcome 0 with prob. %

Outcome 0 => State collapses to |00)
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Measurement on a Distributed Entangled State

197) a5

Compone’ry Component B
Alice Bob

@) - (%\om jiwm)

Alice performs measurement Bob does nothing.
{Ilo = 10) (O], Ty = [1) (1]}
Measurement on joint system
Ilp ® Ip = |00) (00| +|01) (01|,
{ II; ® Ip =]10) (10| + [11) (11] }

Outcome 0 with prob. %

Outcome 0 => State collapses to |00)

Outcome 1 with prob. %

Outcome 0 = State collapses to [11)
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Measurement on a Distributed Entangled State

197) sn

Compone'ry Wponenl B
[ s ] Bob

Alice Bob

S 1
@ )_(ﬂ\00>+\/§\11))

Alice performs measurement

{Ilo = |0) (O[, T = [1) (1]}

Post Measurement on joint system

Outcome 0 with prob. %

State collapses to |00)

States are UNENTANGLED
Outcome 0 and state |0)

Bob does nothing.

No Outcome. State |0)
Meas. {[0)(0],[1) (1]}
Sure shot outcome 0.
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Distributed Generation of common randomness

197) sn

Compone'ry Wponenl B
[ s ] Bob

Alice Bob

S 1
@ )_(ﬂ\00>+\/§\11))

Alice performs measurement

{Ilo = |0) (O[, T = [1) (1]}

Post Measurement on joint system

Outcome 1 with prob. %

State collapses to |11)

States are UNENTANGLED
Outcome 1 and state 1)

Bob does nothing.

No Outcome. State 1)
Meas. {[0)(0],[1) (1]}
Sure shot outcome 1.
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Distributed Generation of common randomness

197) a5

Compone’m/ Wponent B
[ e | Bo0

Alice Bob

D) = (%\oop %\11))

Alice in Chennai, Bob in Bangalore can generate common randomness.

Experimentally, components of entangled pair are separated by 1100 kms!!!!
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Idea Points to take Home

Entangled particles evolve simultanneously.

If you perturb one, the other gets perturbed.

If you wish to perturb the other, you can perturb your qubit!!!
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A Quantum system cannot be Cloned - The No-Cloning Theorem

The contents of a (classical) register can be copied onto another register.
However, the state of a quantum system cannot be duplicated or cloned.

Given an arbitrary state |¢), there exists no unitary transformation that can duplicate
this state.

Theorem
There exists no unitary transformation U : H ® H — H ® H and a state |w) € H such
that

U(lp) ®w)) = |¢) ®[¢)
holds for every |¢) € H.
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2. Quantum Gates
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Boolean Gates

A classical computation = a map f:{0,1}" - {0,1}".

Computation is reversible if the input bits can be determined from the output bits, i.e.,
f is invertible (1:1 and ONTO).

Example : NAND is NOT reversible.

Example : Controlled NOT (C-NOT)

a ——

a

b =D —adb
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Boolean Gates

A classical computation = a map f:{0,1}" - {0,1}".

Computation is reversible if the input bits can be determined from the output bits, i.e.,

f is invertible (1:1 and ONTO).

Example : NAND is NOT reversible.

Example : Controlled NOT (C-NOT)

a

b

fan)
Ay

a

adb

a

a®a®b=b
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Boolean Gates

A classical computation = a map f:{0,1}" - {0,1}".

Computation is reversible if the input bits can be determined from the output bits, i.e.,
f is invertible (1:1 and ONTO).

Example : NAND is NOT reversible.

Example : Controlled NOT (C-NOT) is reversible.

a ——

a

b =D —adb
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Boolean Gates

A classical computation = a map f:{0,1}" - {0,1}".

Computation is reversible if the input bits can be determined from the output bits, i.e.,
f is invertible (1:1 and ONTO).

Example : NAND is NOT reversible.

Example : CC-NOT (C-NOT) is

Example : Controlled NOT (C-NOT) is reversible. reversible.
a —=— a
b =P —adbd ¢ “
b—es>—"a—1>
ca(anb)
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Quantum Gates and Operations are Unitary Transformations

Quantum circuits map superposition of n qubits into a superposition of n qubits.
Quantum Gate : |¢) — |w).

Valid Transformations : 1) Norm Preservation (¢|¢) = (w|w). 2) Linearity.

Non-Linearity results in physical unrealizability.

Quantum Gate is a Unitary Transformation.
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Quantum Gates and Operations are Unitary Transformations

Quantum circuits map superposition of n qubits into a superposition of n qubits.
Quantum Gate : |¢) — |w).

Valid Transformations : 1) Norm Preservation (¢|¢) = (w|w). 2) Linearity.

Non-Linearity results in physical unrealizability.

Quantum Gate is a Unitary Transformation.

Quantum Operations : Unitary Transformations Mapping n qubits to n qubits.

Operation of a Quantum Gate : Completely specified by action on its bases.
Only need [0) » ?and 1) » ?
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Single Qubit Gates - Pauli gates

Identity Gate
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Single Qubit Gates - Pauli gates

Identity Gate

—

I (—»

. 10)
A

Pauli

= 10)
= 1)

X - Gate

al0)+b|1)

— X —

bl0)+al1)

X:

0) ~ [1)

1) ~0)

Matrix Representation

X =

7]
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Single Qubit Gates - Pauli gates

Identity Gate

— [ —»

. [0} = 10)
Ty e )
Pauli X- Gate
al0)+b|1) bl0)+a|1)

— X —

0) ~ [1)

X 1) e o)

Matrix Representation

1)

Pauli Z-Gate
alo) - b|1)
—.

al0)+b|1)

— 7

~10)~[0)
25 1y e -1

Matrix Representation Z = [ (1) _01 ]
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Single Qubit Gates - Pauli gates

Identity Gate

— [ —»

. [0} = 10)
Ty e )
Pauli X- Gate
al0)+b|1) bl0)+a|1)

— X —

0) ~ [1)

X 1) e o)

Matrix Representation

1]

Pauli Z-Gate
alo) = b[1)
-

al0)+b|1)

— 7

~10)~[0)
25 1y e -1

Matrix Representation Z = [ (1) _01 ]

Pauli Y -Gate

al0)+b|1) v ib|0) - ia|1)

0y eif)
Yy -ijo)

Matrix Representation Y = [ O N ]
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Playing with the Pauli I, XY, Z Gates

alo)+b|1)
—

al0)+b|1)
—

al0)+b|1)
—

—>
Your task is to recover the qubit a|0) + b|1).
b|0)+al1)
Which operator will you use if you are given
State you are given | Operator to use
al0) - b[1)
alo) - b|1)
b|0) +a|l)
b|0) - al1)
ib]0) - ia|1)
—>
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Playing with the Pauli I, XY, Z Gates

alo)+b|1)
—

al0)+b|1)
—

al0)+b|1)
—

—>
Your task is to recover the qubit a|0) + b|1).
blo)+al1)
Which operator will you use if you are given
State you are given | Operator to use
al0) - b|1) Z
alo) - b|1)
b|0) +a|l) X
b[0) —a|1) First Z, then X
ib]0) - ia|1)
—>
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The Hadamard Gate and Some Interesting Properties

Hadamard Gate

— H [—
10y e 2 10) + 1) =]+
By o 2 o) - 2y = )-)
V2 V2

Matrix Representation

sl
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The Hadamard Gate and Some Interesting Properties
Property 1
1
(H & H)(|0)®[0)) = (0} + 1)) ® (|0) +[1))

Hadamard Gate = S000) +[01) + 10} +[11))

i
1

Matrix Representation

sl
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The Hadamard Gate and Some Interesting Properties

Property 1

(He H)(|0)®|0)) = %(IO) +[1)) ® ([0} +[1))

1
Hadamard Gate = 5(100) +[01) +[10) +[11))
— H [— 1
H®n |0>®n _ Z — |b1bn)
) . (b1,bn) \/5
. 0 0 =1 (0.0
1)~ NG |0) - G 1) =1-) All possible bit combinations are stored in

. . n—qubits.
Matrix Representation 4

sl

55/1



The Hadamard Gate and Some Interesting Properties

Hadamard Gate

—» H [—

1 1 _.
I :(1); - ? :g; + ﬁ :1; =: :+; Property 2
=5 -5 =1 H H
e 0) 3 10)+ 1), 11) = Jo) - 1)
Matrix Representation 10) H (_1)0.0 10} + (_1)().1 Iy,
m-ol 1 Y] 1) (o) + (1) 1)

oy & é(—l)l” ),
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The Hadamard Gate and Some Interesting Properties

Hadamard Gate

— H [—
1 1 _
Iy IO)H?IOHﬁIl)— +)
1) o) - 1) =)
Matrix Representation
Property 2
1 1 1
== H ! bz
va bl by = > (=1)"" |z2),
z=0
HO"

|b1.nbn) s 2: (71)brzl+m+nbn2n|21n.zn)

zne{0,1}m
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Our Two Qubit C-NOT Gate
C-NOT Gate

la) =1 |a)

100)  [00)

. [o1) = Jo1)
G o) e 1)
) o |10)

[11) — |10
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Our Two Qubit C-NOT Gate

C-NOT Gate An Application : Entangle two unentangled systems.
la) =—7—= |a) & o) ——
b el 4
|b) == la) @ [b) W)AB%MV
00)  [00) i S
o iy
[11) ~ [10) )

Let [w) = al0) +b[1). (o) =) ® [87) 5
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Our Two Qubit C-NOT Gate

C-NOT Gate

la) =1 |a)

00
o1
|10
111

) = 100)
)~ [01)
)= [11)
) = [10)

|000) ~ |000)
|001) ~ |001)
|010) ~ |010)
|011) > [011)
[100) - |110)
[111) ~ |101)
[100) - |110)
|111) ~ |101)

D= |a) & |b)

An Application :

o&(\

&%)

\

y‘m'

AB%

Let |w)=al0)+Db|1).

Entangle two unentangled systems.

|w) ——

16,)

6o) = lw) ® |®7) 4 5

Use gate Col
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Our Two Qubit C-NOT Gate

C-NOT Gate An Application : Entangle two unentangled systems.
la) — la) §S§S§g> |w)
B%e
|b) ——= la) ® |b) © _owr > &
&%) i
00) = [00) B
. |01) |01> Step 1 : Entangle
C ’ |10> = |11> all qubits
[11) ~ [10)
16,) 16,)
|000) +~ |000) Let [w)=al0)+b]1). [6p) = |w)® |P*
o0 = oco) @) =alo) +b[1). o) =) ® [0°) 1,
|010) ~ |010)
= |011) — |011) _
cel |100) ~ |110) Use gate el
[111) = |101)
[100) — |110)
[111) ~ [101) 161) = (C®I)[0o) = (CoI)(|w)®|D*) ,5)
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3. Quantum Protocols
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Quantum Teleportation
No Cloning Theorem : No Replication of qubits.

Can we transport them?

Goal : Transport Qubit

a|0)+5|1)
L Aiice ] Bob

&

Alice Bob
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Quantum Teleportation
No Cloning Theorem : No Replication of qubits.

Can we transport them? If YES, what resources do we need?

a|0)+5|1) Goal : Transport Qubit

L Ale ] Bob

&

Alice Bob
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Quantum Teleportation
No Cloning Theorem : No Replication of qubits.

Can we transport them? If YES, what resources do we need?

Goal : Transport Qubit

a|0)+5|1)
L Aice Bob

&

Alice >~ 2classical > Bob
T bits T
+
Qubit A |¢ >AB Qubit B

Resource : Shared entangled state |®*) = % |00) + % |11) and 2 classical bits suffice.
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The Technique behind Teleportation

Goal : Transport

) = al0) +b[1) _Goal Transpor o

Alice > 2classical_>—_ Bob

bits T
—+
Qubit A | @ >AB Qubit B
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The Technique behind Teleportation

|w,) = al0)+b|1)

F%M

2

QubitA |@+>AB Qubit B

High-Level Technique : ‘Induce’ |wa) on to Qubit B of [®*) , 5.
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The Technique behind Teleportation

|w,) = a|0)+b[1)

ﬁﬂ

2

QubitA |q§+>AB Qubit B

High-Level Technique : ‘Induce’ [wa) on to Qubit B of |®7) , ;.  HOW?
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The Technique behind Teleportation

|w,) = al0)+b|1)

]

Alice ssi
b o
Qubit A |q-S >AB Qubit B

High-Level Technique : ‘Induce’ [wa) on to Qubit B of |®7) , ;.  HOW?

Entangled qubits evolve simultaneously.
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The Technique behind Teleportation

|w,) = al0)+b|1)

]

Alice ssi
b o
Qubit A |q-S >AB Qubit B

High-Level Technique : ‘Induce’ [wa) on to Qubit B of |®7) , ;.  HOW?
Entangled qubits evolve simultaneously.

Alice has |wa) AND first qubit of |®*) , .
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The Technique behind Teleportation

|w,) = a|0)+b[1)

Alice ssi
b o
Qubit A |¢ >AB Qubit B

High-Level Technique : ‘Induce’ [wa) on to Qubit B of |®7) , ;.  HOW?
Entangled qubits evolve simultaneously.

Alice has |wa) AND first qubit of |®*) , .

Step 1 : Entangle |®") , ; with |wa) by Alice entangling her two qubits.

Step 2 : Alice cleverly evolves her two qubits. Bob’s entangled qubit evolves!!!
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Quantum Teleportation

e {th—
ubit A i
|¢+> Q/'
w—owe | r
Bob's qubit
16,
1
|6o) = IwA)®I<I>+>AB=(a|0>+b|1>)®ﬁ(|00>+\11>)
1
00) = ——= (a]000)+a011)+b[100) + b|111))

V2
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Quantum Teleportation

i {lm
) D
_—___ggﬁﬁﬁf;-———IV
|¢+>AB%{
Bob’s qubit Step 1 : Entangle
\._____;\/_______/
all qubits
16,) 16,)
1
0o) = |wa)®|®") 5= (al0)+b]1))® — (]00) + |11
|00) wa) ®|®7) 45 = (al0) +b[1)) \/5(|>|))
1
0 = — (a|000) +a|011) +b|100) + b|111
|00) ﬂ(|)|)|>|))
1

101) = (C ® I)(|6o)) (a]000) + a]011) +b[110) + b[101))

V2
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Quantum Teleportation

i {lw H
) a
|¢+>AB%{
Bob's qubit \Step 1 : Entangle , Step2: Evolve
Y Y
all qubits Alice’s qubits
16, 16,) 16,)
1
o) = |wa)®|®"),p = (al0)+b[1))® —= (J00) +[11
|60) wa) @ |®7) 4 = (al0) +b[1)) \/5(\>|>)
1
0 = —(a|000) +a|011) +b|100) + b|111
|60) ﬂ(\)|)|)|))
1
101) = ——= (a]000)+a|011) +b[110) + b|101))

V2

|62) = (HeIeI)(|61))
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Quantum Teleportation

i {lm H
__outh=— D
|¢+>AB%{
Bob's qubit \Step 1 : Entangle , Step2: Evolve
Y Y
all qubits Alice’s qubits
16,) 16,) 16,)
1
6o) = |wA)®|CI>+>AB:(a|0>+b|1>)®ﬁ(|00>+‘11>)
1
0 = —(a|000) + a|011) +b|100) + b|111
|60) \/5(|>|)|)\>)
1
0 = —(a|000) + a|011) +b|110) + b|101
161) ﬂ(|>|)|)\>)
62) = 100)@ (al0)+b]1)) +[01) @ (a[1) - b]0))

+[10) @ (a0) - b[1)) +[11) ® (a|1) - b[0))
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Quantum Teleportation

Alice's two |w > H
aubits 4 I—I Measure
A -ment [T
|¢+>AB%{
Bob's qubit \Step 1: Entangle , \Step2:EvoIve ) N Step 3 : Alice P
A Y A
all qubits Alice’s qubits measures and
communicates
outcome
16,) 16,) 19,) 16,)
1
00) = lwa)®[®") 5 = (al0) +b[1)) ® — ([00) +[11))
V2
1
0 = —(a|000) + a|011) +b|100) + b|111
|60} \/5(|>|)|)\>)
1
0 = —(a|000) +a|011) +b|110) + b|101
161) \/5(|>|>|)\>)
62) = 100)® (a[0) +b[1)) +|01) ® (a[1) - b]0))

+10) ® (a|0) = b[1)) +|11) ® (a[1) - b|0))
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Quantum Teleportation

:ngiet: two |‘*’A> I H Step 4 : Bob
Measure — applies the right
A -ment gate
|¢+>AB%{ D
Bob’s qubit \Step 1: Entangle, \Step2: Evolve \ Step3:Alice ~ 14;‘ \
all q\Lﬂ)its Alice's\q(ubils measags and I X Z Xz
communicates
outcome 123 4
16,) 16,) 16,) 16,)
1
00) = |wa)®[2"),p = (al0) +b[1)) ® —= (|00) +[11))
V2
1
0 = —(a|000) +a|011) +b|100) + b|111
|00) \/5(|>|)|)\>)
1
0 = —(a|000) +a|011) +b|110) + b|101
|61) \/5(|>|>|)\>)
62) = 100)® (a0} +b[1)) +]01) ® (a1) - b|0))

+10) ® (a|0) = b[1)) +|11) ® (a[1) - b|0))
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Super Dense Coding
How many classical bits of information can you pack in one qubit?

Shared entangled state |®*) + 2 classical bits = Teleport 1 qubit

|“’A> =al0)+b|1) Teleport
Successfu »

[ 5o

& &

Alice > 2classical > Bob

bits

Qubit A | ¢+>AB Qubit B
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Super Dense Coding
How many classical bits of information can you pack in one qubit?

Shared entangled state |®*) + 2 classical bits = Teleport 1 qubit

[ 5op

8 Can hand over 1 qubit %
>
Alice W,_”@/)/ Bob
classical bits ??

Qubit A | ¢+>AB Qubit B

Shared entangled state |®*) + Hand over 1 qubit = ?? number of classical bits 77
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Super Dense Coding
How many classical bits of information can you pack in one qubit?

Shared entangled state |®*) + 2 classical bits = Teleport 1 qubit

[ Aiee ] Bob

8 Can hand over 1 qubit %
>
Alice W,_”@/)/ Bob
classical bits ??

Qubit A | ¢+>AB Qubit B

Shared entangled state |®*) + Hand over 1 qubit = Nl Answer is 2 11

Super Dense Coding
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Super Dense Coding : What is the idea? How do we do it?

TS Bob

8 Can hand over 1 qubit %

Alice > obis22 > BoD

|27) ]

AB QubitB

Qubit A
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Super Dense Coding : What is the idea? How do we do it?

TS Bob

8 Can hand over 1 qubit %

Alice > obis22 > BoD

|27) ]

AB QubitB

Qubit A

Only qubit Alice has : her share of the entangled pair |®*).
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Super Dense Coding : What is the idea? How do we do it?

Bob

Finally, Alice hands over her
share of the entangled pair — *

Alice Bob

o]

;
}

QubitA |¢+> AB QubitB

Only qubit Alice has : her share of the entangled pair |®*). She hands it over.
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Super Dense Coding : What is the idea? How do we do it?

Bob

Finally, Alice hands over her
share of the entangled pair — *

Alice Bob

o]

;
}

27)
Qubit A AB QubitB
Only qubit Alice has : her share of the entangled pair |®*). She hands it over.

At the end, Bob has both qubits.
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Super Dense Coding : What is the idea? How do we do it?

Bob

Finally, Alice hands over her
share of the entangled pair — *

Alice Bob

o]

;
}

27)
Qubit A AB QubitB
Only qubit Alice has : her share of the entangled pair |®*). She hands it over.

At the end, Bob has both qubits. He must read out 2 bits.
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Super Dense Coding : What is the idea? How do we do it?

L Allee ] Bob
Alice Z/\' Bob
Qubit A -

10

%

AL

Only qubit Alice has : her share of the entangled pair |®*). She hands it over.
At the end, Bob has both qubits. He must read out 2 bits.

Based on the two information bits, Alice employs a specific gate on her qubit.
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Super Dense Coding : What is the idea? How do we do it?

[ Alce ] Bob
///////’ |wy) sp
8 |45+>AB/ o) as %
N
Alice lw,),;  BoD

QubitA

Q

o

10

%

AL

Only qubit Alice has : her share of the entangled pair |®*). She hands it over.
At the end, Bob has both qubits. He must read out 2 bits.
Based on the two information bits, Alice employs a specific gate on her qubit.

The entangled pair evolves.
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Super Dense Coding : What is the idea? How do we do it?

Bob

[ Alce ]
///////’ |wy) sp
w,)
gr L 1“2/
8 I >AB\ |w3>AB %

Alice lw,),s  BODb

Q

o

QubitA )

%

AL

Only qubit Alice has : her share of the entangled pair |®*). She hands it over.
At the end, Bob has both qubits. He must read out 2 bits.

Based on the two information bits, Alice employs a specific gate on her qubit.
The entangled pair evolves.

If wi), |w2),|ws),|wa) are perfectly distnguishable, Bob can recover the two bits.

Need |w1),|w2), |ws), |ws) mutually orthonormal in R*.
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The Pauli Gates to our rescue

Alice’s qubit

. y\“*v Eouivalont —1T
1) 00 | N
it B (o]
- — I
Bob’s qubit

Alice applying gate T is equivalent to transformation 7' ® I on composite system.

Information bits | Gate Resulting State
00 Il %|00)+%|11)
01 Zel | 55100)- 5 [11)
10 X®I | 75101)+ J=[10)
11 Y ®I | 75[01)+ J5[10)

On receiving the Qubit A from Alice, Bob performs the measurement

{Ioo =100) (00[, Mox =[01) (01|, ILio = [10) (10], Ty =|[11)(11[}
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4. Quantum Algorithms
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Comparing Classical and Quantum Computational Powers

» Side-Step a formal definition of a Quantum Turing Machine and Quantum
complexity clases.

» Single-Qubit Unitary operator = single-input Boolean gate.
» Proxy for run-time ~ No. of quantum gates and No. of unitary operations

BPP : Problem II is in BPP if 3 a poly-time algo on a probabilistic Classical Turing
Machine that returns correct answer with prob. atleast %.

BQP : Problem II is in BPP if 3 a poly-time algo on a probabilistic Quantum Turing
Machine that returns correct answer with probability atleast %.

Informal Analysis. Techniques to exploit Superposition.
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Power of Quantum Algorithms | : Deutsch Josza algorithm

Is an n-bit Boolean function f: {0,1}" — {0,1} constant or balanced ?
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Power of Quantum Algorithms | : Deutsch Josza algorithm
Is an n—bit Boolean function f:{0,1}" — {0,1} constant or balanced ?

Category 1 ‘

f(z™) is constant
i.e., either f=0or f=1.
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Power of Quantum Algorithms | : Deutsch Josza algorithm

Is an n—bit Boolean function f:{0,1}" — {0,1} constant or balanced ?

Category 1 ‘ Category 2
f(z™) is constant f(z™) =0 for half the inputs and
i.e., either f=0or f=1. f(z™) =1 for the rest half of the inputs.

[{z": fa") =1} = [{z" : f(a") = 1}| = 2"
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Power of Quantum Algorithms | : Deutsch Josza algorithm

Is an n—bit Boolean function f:{0,1}" — {0,1} constant or balanced ?

Category 1 ‘ Category 2
f(z™) is constant f(z™) =0 for half the inputs and
i.e., either f=0or f=1. f(z™) =1 for the rest half of the inputs.

[{z": fa") =1} = [{z" : f(a") = 1}| = 2"

Task : Given f, determine whether it is in Category 1 or Category 2.
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Power of Quantum Algorithms | : Deutsch Josza algorithm

Is an n—bit Boolean function f:{0,1}" — {0,1} constant or balanced ?

Category 1 ‘ Category 2
f(z™) is constant f(z™) =0 for half the inputs and
i.e., either f=0or f=1. f(z™) =1 for the rest half of the inputs.

{a™: f(a™) = 1}] = {a": f(a") = 1}] = 2"

Task : Given f, determine whether it is in Category 1 or Category 2.

We have an oracle who, given z", will compute f(z™).
One usage : Binary oracle will provide us f(z™).

One usage : Quantum oracle will provide us |f(z™)).

How many times should we poll our oracles?
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Known algorithms on Classical Computers
Worst Case Analysis with guaranteed correctness

Must poll > 2"* + 1 sequences in {0,1}"
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Known algorithms on Classical Computers

Worst Case Analysis with guaranteed correctness

Must poll > 2"* + 1 sequences in {0,1}"

Performance of Probabilistic (Randomized) Algorithms

Algorithm : Pick k boolean inputs uniformly and randomly.

Poll f—values for chosen random inputs.

If all f—values for chosen random inputs are same, declare f is constant, (Category 1).
Otherwise, declare f is balanced, i.e., Category 2.

Performance : If you declare f is balanced, f is definitely balanced.

= P(f is constant | you declare balanced) = 0.

2% P(f is balanced ) koo

P(f is balanced | you declare constant) = 1= P(f is balanced )
- I

0.
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Problem in BPP.

2"~1 4+ 1 computations for certain answer.
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Deustch Jozsa discovered an efficient quantum algorithm

What is the idea?

Prepare a (n + 1)— qubit state |¢) based on the function f such that is
(a) if f is constant state |¢) lies in subspace W and
(b) if f is balanced, then |@®) lies in subspace W*.

(c) Preparation of |¢) has low quantum complexity.
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Our Quantum Oracle

How many times will we need poll this quantum oracle?
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Deutsch Jozsa Algorithm

|0>®n H®”

1) H

Step 1 : Design  [6,)
appropriate qubits

101) = HE D [0)°" [1) = HE"([0)°") @ H(|1))
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Deutsch Jozsa Algorithm

|0>®n H®”

1) H

Step 1 : Design  [6,)
appropriate qubits

161) = H® D 0)®™ 1) = H®"(|0)®™) ® H(|1)) Ignoring 75 factors
= Z |b1--bn, 0) - Z |b1-+by, 1)

bne{0,1}n bne{0,1}n
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Deutsch Jozsa Algorithm

|0>®n H®”

1) H

1

1

i
Yo H_j il“'””n>|w1
appropriate qubits ! (n+1) qubits 2 i ly) | fz,

-

Step 1 : Design |‘9 ) Step 2 : Orient the |0>

z,)® y)

161) = H® D 0)®™ 1) = H®"(|0)®™) ® H(|1)) Ignoring 75 factors
- Z |b1--bn, 0) - Z |b1-+by, 1)

bne{0,1}n bre{0,1}n
62) = 3 fbrba f(brba)) = X [brba 1@ f(brbi))
bne{0,1}n bne{0,1}n

Suppose f were a constant f(b™) =0 for all b™
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Deutsch Jozsa Algorithm

|0>®n H®"

11) H

.y

appropriate qubits (n+1) qubits

1
1
1
i - ERSENES R
Step 1 : Design : Ori
1) Step 2: Orient the 1V E f |f(z1...:t")69y>l

61) = H® D 0)®™ [1) = H®"(|0)®™) ® H(|1)) Ignoring % factors
- Z |b1-+by, 0)  — Z |b1++by, 1)

bne{0,1}7 bne{0,1}
|62) = Z |b1-+br, f(b1++bn)) - Z [b1-bn 1@ f(b1-bp))
bne{0,1}m bne{0,1}7

Suppose f were a constant f(b") =0 for all b

02) = > |bibn 0) - S breba 1)

bne{0,1}7 bne{0,1}7
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Deutsch Jozsa Algorithm

|0>®n H®"

11) H

.y

appropriate qubits (n+1) qubits

1
1
1
i - ERSENES R
Step 1 : Design : Ori
1) Step 2: Orient the 1V E f |f(z1...:t")69y>l

61) = H® D 0)®™ [1) = H®"(|0)®™) ® H(|1)) Ignoring % factors
- Z |b1-+by, 0)  — Z |b1++by, 1)

bne{0,1}7 bne{0,1}
|62) = Z |b1-+br, f(b1++bn)) - Z [b1-bn 1@ f(b1-bp))
bne{0,1}m bne{0,1}7

Suppose f were a constant f(b") =1 for all b

02) = S b 1) =3 [bieba 0)

bne{0,1}7 bne{0,1}7
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Deutsch Jozsa Algorithm

0 ®n n : 1
10) Ho" =t -
B
1 1
1) H — — : |
HEN ) H oo o) | |
HEZTERR T :c”> |
Step 1:Design  |6,) step 2: Orient the 16,) E i
appropriate qubits (n+1) qubits | |y) |f(@,... z)® y) |

61) = H® D 0)®™ [1) = H®"(|0)®™) ® H(|1)) Ignoring % factors
- Z |b1-+by, 0)  — Z |b1++by, 1)

bne{0,1}7 bne{0,1}
|62) = Z |b1-+br, f(b1++bn)) - Z [b1-bn 1@ f(b1-bp))
bne{0,1}m bne{0,1}7

Suppose f were a constant

02)enst =+ D [brba) ®([0) - [1))
bne{0,1}n
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Deutsch Jozsa Algorithm

|0>®n H®"

11) H

.y

il

Step 1 : Design [6,) step 2 : Orient the 6,)
appropriate qubits (n+1) qubits

1

|

|

2y @) 2y ) i
v o ey oo ) |

|

61) = H® D 0)®™ [1) = H®"(|0)®™) ® H(|1)) Ignoring % factors
- Z |b1-+by, 0)  — Z |b1++by, 1)

bne{0,1}7 bne{0,1}
|62) = Z |b1-+br, f(b1++bn)) - Z [b1-bn 1@ f(b1-bp))
bne{0,1}m bne{0,1}7

Suppose f were a constant

02)cnst = = 2. lbrba) @ (J0) - [1))
b e{0,1}"
Suppose f were a balanced

02)bined = 2. lbr=ba) @ (I0)=[1)) = > [ba-ba) @ (0) - [1))

bm:f(b7)=0 br:f(bm)=1
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Deutsch Jozsa Algorithm

|0>®n e

|92>cnst and |92>blncd
are orthogonal!!!

1) H ——

Step 1 :Design  |0,) step 2 : Orient the 16,)
appropriate qubits (n+1) qubits

|61) = HED [0)®™ 1) = H®"(]0)®™) ® H(|1)) lgnoring —= factors

2
= Z |b1--bn 0) - Z [b1---by, 1)
bref0,1}m pre{0,1}m
02)=" > [brebn f(broba)) = D0 [bibe 1@ f(brbn))
bne{0,1}m bne{0,1}7

Suppose f were a constant

|02)cnst = % Z ‘bl"'bn>®(‘0>_|1))
b e{0,1}™
Suppose f were a balanced

02)bined = 2o lbrba)®(10)=[1)) = 30 [brba) @ (10) - 1))

b7 f(b7)=0 b7 f (b7)=1
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Deutsch Jozsa Algorithm

|0>®n e

1) H

i
- Step 3 : Rotate to

Step l.: esign |91> Step 2 : Orient the |02>std. measurement |93>
appropriate qubits (n+1) qubits

|61) = HED 0)®™ 1) = H®"(|0)®™) ® H(|1)) Ignoring % factors
= Z |b1+-bn, 0)  — Z [b1---by, 1)

bref0,1)n bref0,1)n
02)=" > [brebn f(broba)) = D0 [bibe 1@ f(brbn))
bne{0,1}n bne{0,1}n

Suppose f were a constant

|02)cnst = % Z ‘bl"'bn>®(‘0>_|1))
b e{0,1}™
Suppose f were a balanced

02)bined = 2o lbrba)®(10)=[1)) = 30 [brba) @ (10) - 1))

b7 f(b7)=0 b7 f (b7)=1
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Deutsch Jozsa Algorithm

|0)®" n H n
H° | eas
T, ! -ure- =
|1> H ‘%ﬁ ment

i
- Step 3 : Rotate to

Step l.: esign |91> Step 2 : Orient the |02>std. measurement |93>
appropriate qubits (n+1) qubits

|61) = HED [0)®™ 1) = H®"(]0)®™) ® H(|1)) lgnoring —= factors

2
= Z |b1+-bn, 0)  — Z [b1---by, 1)
bref0,1}m pre{0,1}m
02)=" > [brebn f(broba)) = D0 [bibe 1@ f(brbn))
bne{0,1}m bne{0,1}7

Suppose f were a constant

|02)cnst = % Z ‘bl"'bn>®(‘0>_|1))
b e{0,1}™
Suppose f were a balanced

02)bined = 2o lbrba)®(10)=[1)) = 30 [brba) @ (10) - 1))

b7 f(b7)=0 b7 f (b7)=1
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Analyzing Quantum Complexity

|0yer n [ 77en]
& & Meas
T, -ure- [
11) ment
= L | Ty )
ﬂ—j H—} Step 3 : Rotate to
Step 1:Design [0, step 2 : Orient the |0,)std. measurement [6,)
appropriate qubits (n+1) qubits

Quantum Algorithm

Computes Correct Answer with CERTAINTY.

No. of Unitary Operations = O(n)!!!
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Analyzing Quantum Complexity

0)e" n [ 77en]
10) H? & Meas
T, -ure- [
1) |_| ment
L1 L | 7 —
Siepl:SeS\gn |91> Step 2 : Orient the |92>Ssléepm35:a§5‘::e[:l|€3>
appropriate qubits (n+1) qubits
Quantum Algorithm Classical Computer
Computes Correct Answer with CERTAINTY. 2" 4+ 1 computations for certain answer.
No. of Unitary Operations = O(n)!!! Problem in BPP.

Problem in BPP n BQP. No insights on BQP \ BPP.
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Finding the Unknown Period in (Z2)"

f:{0,1}™ - {0,1}" is 2~ to~ 1 and periodic with unknown period (a1, an).
Exactly two n—bit sequences yield same output and f(z1, -, zn) = f(z1 ® a1, -, Tn ® an).

On how many n—bit inputs must you poll f(-)-values to figure out period (a1,--,an)?

Classically, if you poll for 2™ n—bit sequences, you have f(-)—values for at most
(22 ) < 229" input pairs.
2an

2 n(1-20) n-seo 1
P(Finding ") = =~ =2 n=20) M2E 0 ifac 3

Need to poll f(-)—values for 2% inputs to obtain reasonable success.
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Recall Property 2 of the Hadamard Gate

For x € {0,1} or ™ € {0,1}"
H o e
) = 3 (-1)"7|z)
2=0

®
|21 - @) e Z (_1)11‘21+-~-+~-znzn 21 Zn) = Z (-1)%2 |z - 2,)
2ne{0,1}n 2ne{0,1}n
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Exploring the Versatility of the The Hadamard Gate

Problem : Prepared State :

1
|9) = ﬁ(m o Tn b bn) + (21 @ ar) - (Tn @ an) b bn) )

L1,y Tn, A1, G unknown. Find ai, -+, a,. !l Cannot eye-ball A Statel!ll
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Exploring the Versatility of the The Hadamard Gate

Problem : Prepared State : 1 @ a1 =y1,+,Zn ® an = Yn
1
|p) = %(kﬂl Ty b1 b )+ |Y1 o Yn b1 e by)

L1,y Tn, A1, -+ G unknown. Find ai,---, a,. !l Cannot eye-ball A Statel!ll
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Exploring the Versatility of the The Hadamard Gate

Problem : Prepared State : x1 ® a1 =y1, -, Tn ® Gn = Yn

b)) + Y1 -+ Yn b1 -+ bp)

1
(|1 -+ @ by -

|¢>:ﬁ

L1, Tn, A1, an unknown. Find ay, -, an.

Step 1: Apply H®" ® I2"
) > [ D=+ (-1)=

z1,,2n€{0,1}7

- Z \Z1 e 2y by e bn)

Z1,,2nt
a121® - ®anzn=0

20a°2 ]|21 e 2z by -

.. brz>
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Exploring the Versatility of the The Hadamard Gate

Problem : Prepared State : 1 @ a1 =y1,+,Zn ® an = Yn

1
(|1 -+ T by -+ bp) + |1 Y by -

|¢>:ﬁ

L1, Tn, A1, an unknown. Find ay, -, an.

Step 1: Apply H®" ® I2"
) > [ D=+ (-1)=
z1,,2n€{0,1}7

- Z \Z1 e 2y by e bn)

2002 ]|z1 o Zp b1 by)

Z1, 20t
a121® - @Panzn=0

For any (a1,--,an,) there are 2"~ terms in above sum.
Step 2: Apply Measurement : {|0---0) (0---0| ® I, -+, |1---1) (1---1| ® I }

Outcome provides one choice of 21, 22, -, 2z, for which a121 ® - ® anzn =0
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Quantum Oracle for our period finding function

Ty n
L1 o Yrooyn) = [Tz, f(27) @ (Yreyn))
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Simon'’s circuit for period finding

|0>®n

H®n

|O>®n

Step1:

esign
appropriate qubits

16,)

|91> :H®(n) |0)®n ® I|0>®n
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Simon'’s circuit for period finding

|0>®n

H®n

|O>®n

Step1:

esign
appropriate qubits

16,)

61) = oo |0)®n ® I|O)®n Ignoring % factors

|z1+2p 0-0)
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Simon'’s circuit for period finding

|0>®n H®n

|O>®n

fy

---*.-----.Y.-

|zy... 2,) T |z, )
Step 1 :Design  |6,) : [6,) / " y"
X r 1) Step 2 : Invoke the 195 [y 9,) | flz" e y")
appropriate qubits oracle

61) = oo |0)®n ® I|O)®n Ignoring % factors
= Z |12y 0---0)
znef0,1}n
b= Yl flariean)
zme{0,1}7

77/1



Simon'’s circuit for period finding

®n 1 1 1
10) H®" E 5!’_ Meas +

! ! -ure !

E T ! last n E

|0)e" ! 4| qubits |4

1 1 1

1 1 1

Step 1.: eSign |91> Step 2 : Invoke the |02>Step3 . measure |03>
appropriate qubits oracle last n qubits

01) = e |0)®n ® I|0)®n Ignoring % factors
= Z |z1+2p 0-+-0)
zne{0,1}n

b2)=" > |ziza fzian))

zne{0,1}n

Suppose outcome of the measurement were by, -+, by,

|63) = i(|331 o Ty by b)) (1@ ar) o (T ®an) b1 b))

V2
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Simon'’s circuit for period finding

| 0 >®n n : 1 L :
H® T +—| Meas S H*" |

1 1 -ure 1 1

E T E lastn E E

|0)®" T — | qubits |4 :
i i i i

1 1 1 1

Step 1 : Design |91> Step 2 : Invoke the |02>Step3 . measure |03> Step 4: |04>

appropriate qubits oracle last n qubits Hadamard
61) = HE®™ |0)®n ®1 |0>®n Ignoring % factors
= Z |z1--2r 0---0)
eme(0,1}7

b2)=" > |ziza fzian))

zne{0,1}n

Suppose outcome of the measurement were by, -+, by,

1
103) = —(Jz1 = Tn b1 - bp) +[(z1 @ a1) - (zn D an) by -

V2
|64) = Z |21 - zn by - by)

Z1, 20t
a121® - @®anzn,=0

bn))
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Simon'’s circuit for period finding

|0>®n : 1 L :
H® T *—| Meas [+ H®" || Meas
! ! -ure ! ! -ure =
E T E last n E E firstn
|0)e" ! | qubits | 4 1| qubits
1 1 1 1
1 1 1 1
1 1 1 1

Step 1:Design  |6)) step 2 : Invoke the 16;)s1ep 3 : measure 10,) siepa: 10,)sieps: measure
appropriate qublts oracle last n qubits Hadamard first n qubits

01) = e |0)®n ® I|0)®n Ignoring % factors
= Z |z1+2p 0-+-0)
zne{0,1}n

b2)=" > |ziza fzian))

zne{0,1}n

Suppose outcome of the measurement were by, -+, by,

|63) = i(|331 o Ty by b)) (1@ ar) o (T ®an) b1 b))

V2
|64) = Z |21 - zn by - by)

Z1, 20t
a121®®anzn=0
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Simon'’s circuit for period finding

®n 1
10) H*" 5!’— Meas H*" Meas
! -ure -ure =
Tf E last n firstn
|0)e | qubits qubits
1
1
1

Step 1.3 eSig"" |91> Step 2 : Invoke the |02>Slep3 - measure |03> Step 4: |94>Step 5 : measure
appropriate qublts oracle last n qubits Hadamard first n qubits

Suppose outcome of the measurement were b1, -+, by,

|04) = Z |21 - 2o b1 -+ by)

21,720t
a121®®anzn=0

Measure the first n registers with measurement operators
{|0---00) {0---00| ® I$™,|0---01) {0---01| ® 2™ |1---11) (1---11| ® [2"}

Every outcome gives you one linear equation o1a1 @ -+ @ opa, = 0 where (01,+,0,) is
your outcome.

Need n linear independent eqns to solve for a1, -+, a,. Repeat whole apparatus k times.
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Analysis of Simon's period finding algorithm

79/1



Factoring a composite integer
Every composite integer is a product of powers of primes.
Example

66=2-3-11

Example
275=5-5-11

Example
277 =77

Given n-bit integer N, find primes p1, -, pm and integers qi1,*, gm s.t

N =p{' .

Given n—bit integer N, need a quantum algorithm that identifies prime factors
in run-time n® for some k.
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Towards Shor's Algorithm for Prime Factorization

Goal : Design a polynomial-time quantum algorithm that can identify the prime factors
of a n—bit composite number N.

Break the task down.
Efficiently identify non-trivial factor of V.

Find a such that a|N and @ # 1 and a # N.

No. Factors No. Computations
N = a1 - Qg
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Towards Shor's Algorithm for Prime Factorization

Goal : Design a polynomial-time quantum algorithm that can identify the prime factors
of a n—bit composite number N.

Break the task down.
Efficiently identify non-trivial factor of V.

Find a such that a|N and @ # 1 and a # N.

No. Factors No. Computations
N = a1 - Qg
= Q11 Q12 - 021 - (22
= 0111001120021 (00122 (211 21200221 (0222
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Towards Shor's Algorithm for Prime Factorization

Goal : Design a polynomial-time quantum algorithm that can identify the prime factors
of a n—bit composite number N.

Break the task down.
Efficiently identify non-trivial factor of V.

Find a such that a|N and @ # 1 and a # N.

No. Factors No. Computations
N = a1 - Qg
= Q11 Q12 - 021 - (22
Q11111200121 (01227 Q211 (21200221 (222
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Towards Shor's Algorithm for Prime Factorization

Goal : Design a polynomial-time quantum algorithm that can identify the prime factors
of a n—bit composite number N.

Break the task down.
Efficiently identify non-trivial factor of V.

Find a such that a|N and @ # 1 and a # N.

No. Factors No. Computations
N = a1 - Qg
= Q11 Q12 - 021 - (22
Q11111200121 (01227 Q211 (21200221 (222

le

= pit-p3? - -plrat - phe
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Towards Shor's Algorithm for Prime Factorization

Goal : Design a polynomial-time quantum algorithm that can identify the prime factors
of a n—bit composite number N.

Break the task down.
Efficiently identify non-trivial factor of V.

Find a such that a|N and @ # 1 and a # N.

No. Factors No. Computations

N = o1 -2 2 n”
k
= Q11 - 02 - 021 - 2 4 2(n-1)
k
Q11101120121 1227 X211 02120221 (1222 8 4(n-2)

le

= R AR ey i 2! 2 (n - 1)
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Towards Shor's Algorithm for Prime Factorization

Goal : Design a polynomial-time quantum algorithm that can identify the prime factors
of a n—bit composite number N.

Break the task down.
Efficiently identify non-trivial factor of V.

Find a such that a|N and @ # 1 and a # N.

No. Factors No. Computations

N = o1 -2 2 n*
k
= Q11 - Q12 - 021 - 22 4 2(n-1)
k
Q11101120121 1227 X211 02120221 (1222 8 4(n-2)
— a1, 492 dm-1 | 4 l -1, k
= D1 P2 ~pmm1 P 2 27 (n-1)

| steps = No. Computations < n®+on® +an® 42k <2t
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Towards Shor's Algorithm for Prime Factorization

Goal : Design a polynomial-time quantum algorithm that can identify the prime factors
of a n—bit composite number N.

Break the task down.
Efficiently identify non-trivial factor of V.

Find a such that a|N and @ # 1 and a # N.

No. Factors No. Computations

N = o1 -2 2 n*
k
= Q11 - Q12 - 021 - 22 4 2(n-1)
k
Q11101120121 1227 X211 02120221 (1222 8 4(n-2)
— a1, 492 dm-1 , ndm l -1, k
= D1 P2 ~pmm1 P 2 27 (n-1)

| steps = No. Computations < n®+on® +an® 42k <2t

Since p; >2, No. of factors 2l < logy N = No. Computations < n® log, N < nt.
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The factorization Problem

Suffices to efficiently identify non-trivial factor of n—bit integer N.

Goal : Given N, find 1 <2z < N s.t, GCD(z,N) > 1.
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Some Number Theoretic Preliminaries

Goal : Given N, find 1 <z < N s.t, GCD(z, N) > 1.
co-pr(N)={a:1<a<N-1, st GCD(a,N) =1, i.e., a,N are co-prime}
1. co-pr(N) is a finite group under mod N multiplication.
Need b s.t : ab=1 mod N. As you sweep b, ab’s are distinct.
2. Being a finite group, each element of co-pr(IN) has a finite order.
ord(a) =min{k:a" =1 mod N} = period of the fn. fo n(k)=a" mod N.
3. Suppose r =ord(a) for a € {1,---, N —1}. Then
a"=0N+1=N|(a"-1)and N 4 (a? - 1)

Case 1: r is even. . .
N|(@" -1)=(a% -1)(a? +1)

If N + (a% —1), then we are done. Indeed, a2 +1 and a2 + 1 have non-trivial common
factors with N, i.e., GCD(aT - 1,N) >1 and GCD(aT +1,N) > 1.
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Chances of this happening are HIGH

Theorem
Suppose N = pit---pdm s the prime factorization. Let X € co-pr(N) be chosen
uniformly at random, Let R = ord(X). Then

P(Risevenand N+ (X% —1))>1- QLM

Suppose we can efficiently compute

ord(a) =min{k:a" =1 mod N} = period of the fn. fo n(k)=a" mod N.

Pick X1,--, X; unformly at random, compute R1 = ord(X1), -, Ry = ord(X;)
and obtain a non-trivial factor of N with high probability.
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Algorithm for Identifying Prime Factors

Efficiently identify non-trivial factor of n—bit integer V.
Algorithm

Inputs: Composite n—bit number N
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Algorithm for Identifying Prime Factors

Efficiently identify non-trivial factor of n—bit integer V.
Algorithm
Inputs: Composite n—bit number N

Step 1 : If N is even, return 2.
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Algorithm for Identifying Prime Factors

Efficiently identify non-trivial factor of n—bit integer V.
Algorithm

Inputs: Composite n—bit number N

Step 1 : If N is even, return 2.

Step 2 : Check if N = a® fora>1, b>2. If YES, return a.
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Algorithm for Identifying Prime Factors

Efficiently identify non-trivial factor of n—bit integer V.
Algorithm
Inputs: Composite n—bit number N

Step 1 : If N is even, return 2.

Step 2 : Check if N =a® fora>1, b>2. If YES, return a. b> 2 guarantees a = N.
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Algorithm for Identifying Prime Factors

Efficiently identify non-trivial factor of n—bit integer V.
Algorithm

Inputs: Composite n—bit number N

Step 1 : If N is even, return 2.

Step 2 : Check if N =a® fora>1, b>2. If YES, return a. 3 efficient classical algorithm.
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Algorithm for Identifying Prime Factors

Efficiently identify non-trivial factor of n—bit integer V.
Algorithm

Inputs: Composite n—bit number N

Step 1 : If N is even, return 2.
Step 2 : Check if N =a® fora>1, b>2. If YES, return a. 3 efficient classical algorithm.

Steps 1,2 are quick. Progression to Step 3 implies N is odd, non-prime power.
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Algorithm for Identifying Prime Factors

Efficiently identify non-trivial factor of n—bit integer V.
Algorithm

Inputs: Composite n—bit number N

Step 1 : If N is even, return 2.
Step 2 : Check if N =a® fora>1, b>2. If YES, return a. 3 efficient classical algorithm.
Steps 1,2 are quick. Progression to Step 3 implies N is odd, non-prime power.

Step 3 : Randomly choose z € {1, N = 1}. If GCD(z, N) > 1, return GCD(z, N)
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Algorithm for Identifying Prime Factors

Efficiently identify non-trivial factor of n—bit integer V.
Algorithm

Inputs: Composite n—bit number N

Step 1 : If N is even, return 2.

Step 2 : Check if N =a® fora>1, b>2. If YES, return a. 3 efficient classical algorithm.
Steps 1,2 are quick. Progression to Step 3 implies N is odd, non-prime power.

Step 3 : Randomly choose x € {1,--, N —1}. If GCD(x, N) > 1, return GCD(z, N)

Step 4 : Use quantum order finding sub-routine to find ord(z) mod N.
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Algorithm for Identifying Prime Factors

Efficiently identify non-trivial factor of n—bit integer V.
Algorithm

Inputs: Composite n—bit number N

Step 1 : If N is even, return 2.

Step 2 : Check if N =a® fora>1, b>2. If YES, return a. 3 efficient classical algorithm.
Steps 1,2 are quick. Progression to Step 3 implies N is odd, non-prime power.

Step 3 : Randomly choose x € {1,--, N —1}. If GCD(x, N) > 1, return GCD(z, N)
Step 4 : Use quantum order finding sub-routine to find ord(z) mod N.

Step 5 : If ris even and N { (22 + 1), then compute GCD(z% +1,N),

GCD(z2 —1,N). Return if either is non-trivial factor. If none is non-trivial factor
return FAILURE
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Period Finding is Zon is fundamental to Factorization

Simon's algorithm utilized the Hadamard transform to provide us period in (Z2)".

Suppose f:{0,1,--,2" =1} - {0,1,---,2™ — 1} is a periodic function in Za~, i.e,

f(x) = f(z+7) for some 0 <r < 2" -1 and Vz valid.

3 efficient algo. to compute r with - 13 efficient algo. to FACTOR
high prob. composite integer N with high. prob.

Quantum Fourier Transform in place of Hadamard transform yield period in Zon.
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