
Quantum Computation and Quantum Algorithms

Vinod Sharma and Arun Padakandla

Indian Institute of Science and University of Tennessee at Knoxville,

July 20, 2020

1/1

Part I : Foundations, Protocols and Algorithms

1. Axioms of Quantum Mechanics

2. Quantum Gates

3. Quantum Protocols

4. Quantum Algorithms

2/1

Focus on Ideas. Contrast with Conventional (Classical) bits

1. Simplicity and Ideas at the cost of Generality

▸ Ex. R2,R3 or Finite Dim. Inner product spaces instead of Hilbert spaces.

2. Comparison with classical bits, notions - A Running Thread.

3. Pictorial. Dont get bogged down by the math.

▸ Fine to not grasp text on a slide.

3/1

The Power of Quantum Algorithms, Quantum Cryptography

crucially relies on

Unique Behaviour of Quantum Systems - Superposition, Entanglement, etc.

To understand, design, leverage this power,

An Understanding of the Behaviour of Quantum Systems is Necessary.

Behaviour of Quantum Systems described through

Axioms of Quantum Mechanics ←Ð Our First Topic

4/1

The Power of Quantum Algorithms, Quantum Cryptography

crucially relies on

Unique Behaviour of Quantum Systems - Superposition, Entanglement, etc.

To understand, design, leverage this power,

An Understanding of the Behaviour of Quantum Systems is Necessary.

Behaviour of Quantum Systems described through

Axioms of Quantum Mechanics ←Ð Our First Topic

4/1

The Power of Quantum Algorithms, Quantum Cryptography

crucially relies on

Unique Behaviour of Quantum Systems - Superposition, Entanglement, etc.

To understand, design, leverage this power,

An Understanding of the Behaviour of Quantum Systems is Necessary.

Behaviour of Quantum Systems described through

Axioms of Quantum Mechanics ←Ð Our First Topic

4/1

Axioms of Quantum Mechanics

5/1

A bit lives in {0,1} (it’s state space). It is 0 or 1.

Where does a Qubit live?

Axiom 1

6/1

Axiom 1 : How is a Quantum system described?

0
1
0

0
0
1

1
0
0

∣φ⟩ : unit vector in H.

Ex. : ∣φ⟩ = [
1
√

2
1
√

2

] ∈H = R2.

Polarization of photon, spin of electron.

State Space of a quantum system is an Inner Product Space (IPS).

The state of a quantum system is described through a Unit vector in an IPS H.

7/1

Axiom 1 : How is a Quantum system described?

0
1
0

0
0
1

1
0
0

Quantum state

|ϕ⟩ = unit norm vector

|ϕ⟩

∣φ⟩ : unit vector in H.

Ex. : ∣φ⟩ = [
1
√

2
1
√

2

] ∈H = R2.

Polarization of photon, spin of electron.

State Space of a quantum system is an Inner Product Space (IPS).

The state of a quantum system is described through a Unit vector in an IPS H.

7/1

Axiom 1 : How is a Quantum system described?

0
1
0

0
0
1

1
0
0

Quantum state

|ϕ⟩ = unit norm vector

|ϕ⟩

∣φ⟩ : unit vector in H.

Ex. : ∣φ⟩ = [
1
√

2
1
√

2

] ∈H = R2.

Polarization of photon, spin of electron.

State Space of a quantum system is an Inner Product Space (IPS).

The state of a quantum system is described through a Unit vector in an IPS H.

7/1

Axiom 1 : How is a Quantum system described?

0
1
0

0
0
1

1
0
0

Quantum state

|ϕ⟩ = unit norm vector

|ϕ⟩

∣φ⟩ : unit vector in H.

Ex. : ∣φ⟩ = [
1
√

2
1
√

2

] ∈H = R2.

Polarization of photon, spin of electron.

State Space of a quantum system is an Inner Product Space (IPS).

The state of a quantum system is described through a Unit vector in an IPS H.

7/1

Why H? What is the General Theory?

General Quantum Theory is based on a Hilbert space. Hence H.

Mathematician : Hilbert space is a complete ∞−dimensional inner product space.

This tutorial : Euclidean space with std. inner product suffices ← our Hilbert space.

Rd suffices. But we denote it as Cd. Pretend C = R.

8/1

Axiom 1 : How is a Quantum system described?

0
1

1
0

2-D Quant st.
 = QUBIT

|ϕ⟩ ∈ C2

Two Special Qubits

∣0⟩ = [
1
0

] and ∣1⟩ = [
0
1

]

CAUTION

For any α,β ∈ C s.t ∣α∣2 + ∣β∣2 = 1

α∣0⟩ + β∣1⟩ is valid qubit

Valid state of a quantum system.

A 2− dimensional quantum state is a QUBIT.

Incorrect ilustration : Scalars are Complex numbers.

Correct illustration via 3-dimensional Bloch sphere.

9/1

Axiom 1 : How is a Quantum system described?

0
1

1
0

2-D Quant st.
 = QUBIT

|ϕ⟩ ∈ C2

Two Special Qubits

∣0⟩ = [
1
0

] and ∣1⟩ = [
0
1

]

CAUTION

For any α,β ∈ C s.t ∣α∣2 + ∣β∣2 = 1

α∣0⟩ + β∣1⟩ is valid qubit

Valid state of a quantum system.

A 2− dimensional quantum state is a QUBIT.

Incorrect ilustration : Scalars are Complex numbers.

Correct illustration via 3-dimensional Bloch sphere.

9/1

Axiom 1 : How is a Quantum system described?

0
1

1
0

2-D Quant st.
 = QUBIT

|ϕ⟩ ∈ C2

Two Special Qubits

∣0⟩ = [
1
0

] and ∣1⟩ = [
0
1

]

CAUTION

For any α,β ∈ C s.t ∣α∣2 + ∣β∣2 = 1

α∣0⟩ + β∣1⟩ is valid qubit

Valid state of a quantum system.

A 2− dimensional quantum state is a QUBIT.

Incorrect ilustration : Scalars are Complex numbers.

Correct illustration via 3-dimensional Bloch sphere.

9/1

Axiom 1 : How is a Quantum system described?

0
1

1
0

2-D Quant st.
 = QUBIT

|ϕ⟩ ∈ C2

Two Special Qubits

∣0⟩ = [
1
0

] and ∣1⟩ = [
0
1

]

CAUTION

For any α,β ∈ C s.t ∣α∣2 + ∣β∣2 = 1

α∣0⟩ + β∣1⟩ is valid qubit

Valid state of a quantum system.

A 2− dimensional quantum state is a QUBIT.

Incorrect ilustration : Scalars are Complex numbers.

Correct illustration via 3-dimensional Bloch sphere.

9/1

Axiom 1 : Superposition and Inner Products.

Suppose System is in state ∣φ⟩ = α∣0⟩ + β∣1⟩. ∣φ⟩ is a Superposition state.

INCORRECT: System is in state ∣0⟩ with prob. ∣α∣2 and in state ∣1⟩ with prob. ∣β∣2.

The inner product (IP) between ∣x⟩ ∈H and ∣y⟩ ∈H is denoted ⟨y∣x⟩.

Example : ∣x⟩ = [
x1

x2
] ∈ , ∣y⟩ = [

y1

y2
] ∈ ,

⟨y∣x⟩ = y1x1 + y2x2.

10/1

Axiom 1 : Superposition and Inner Products.

Suppose System is in state ∣φ⟩ = α∣0⟩ + β∣1⟩. ∣φ⟩ is a Superposition state.

INCORRECT: System is in state ∣0⟩ with prob. ∣α∣2 and in state ∣1⟩ with prob. ∣β∣2.

The inner product (IP) between ∣x⟩ ∈H and ∣y⟩ ∈H is denoted ⟨y∣x⟩.

Example : ∣x⟩ = [
x1

x2
] ∈ C2, ∣y⟩ = [

y1

y2
] ∈ C2,

⟨y∣x⟩ = y1
∗x1 + y2

∗x2. Note : First argument is C−conjugated. Physics Notation.

10/1

Axiom 1 : Superposition and Inner Products.

Suppose System is in state ∣φ⟩ = α∣0⟩ + β∣1⟩. ∣φ⟩ is a Superposition state.

INCORRECT: System is in state ∣0⟩ with prob. ∣α∣2 and in state ∣1⟩ with prob. ∣β∣2.

The inner product (IP) between ∣x⟩ ∈H and ∣y⟩ ∈H is denoted ⟨y∣x⟩.

Example : ∣x⟩ = [
x1

x2
] ∈ R2, ∣y⟩ = [

y1

y2
] ∈ R2,

⟨y∣x⟩ = y1x1 + y2x2.

10/1

Qubits are our Information Carriers. Analogous to Bits.

11/1

Axiom 1 : Contrasting Quantum and Classical Worlds

Quantum World

Qubit : Unit vector in a Inner product space.

H ≡ Inner product space.

∣φ⟩ : where we encode our information.

∣φ⟩ ∈ R2 is a qubit.

Classical World

Bit : Element in a Finite Set

X - Our Finite set

x ≡ the information we wish to encode.

x in X = {0,1} is a bit.

12/1

Points to Keep in Mind

Unit norm.

13/1

Acronyms, Abbreviations and Short Forms

IP FDIPS dim.

14/1

Our Universe and Its Contents

0
1
0

0
0
1

1
0
0

Quantum state

|ϕ⟩ = unit norm vector

|ϕ⟩

Linear Transformation (LT) : T ∶H →H

T ∣φ⟩

Unitary Transf. : LT that preserves length.

Just a rotation

U ∶H →H

Projection : LT that projects.

Just a projection Π1 ∶H →H

Π1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
0 1 0
0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Important

Any projector Π satisfies Π2 = Π� = Π.

15/1

Our Universe and Its Contents

0
1
0

0
0
1

1
0
0

|ϕ⟩ = unit norm vector

|ϕ⟩

H

Linear Transformation (LT) : T ∶H →H

T ∣φ⟩

Unitary Transf. : LT that preserves length.

Just a rotation

U ∶H →H

Projection : LT that projects.

Just a projection Π1 ∶H →H

Π1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
0 1 0
0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Important

Any projector Π satisfies Π2 = Π� = Π.

15/1

Our Universe and Its Contents

0
1
0

0
0
1

1
0
0

|ϕ⟩ = unit norm vector

|ϕ⟩

H

U|ϕ⟩

Linear Transformation (LT) : T ∶H →H

T ∣φ⟩

Unitary Transf. : LT that preserves length.

Just a rotation

U ∶H →H

Projection : LT that projects.

Just a projection Π1 ∶H →H

Π1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
0 1 0
0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Important

Any projector Π satisfies Π2 = Π� = Π.

15/1

Our Universe and Its Contents

0
1
0

0
0
1

1
0
0

Π1 projects

onto subspace

Linear Transformation (LT) : T ∶H →H

T ∣φ⟩

Unitary Transf. : LT that preserves length.

Just a rotation

U ∶H →H

Projection : LT that projects.

Just a projection Π1 ∶H →H

Π1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
0 1 0
0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Important

Any projector Π satisfies Π2 = Π� = Π.

15/1

Our Universe and Its Contents

0
1
0

0
0
1

1
0
0

Π1 projects

onto subspace

Linear Transformation (LT) : T ∶H →H

T ∣φ⟩

Unitary Transf. : LT that preserves length.

Just a rotation

U ∶H →H

Projection : LT that projects.

Just a projection Π1 ∶H →H

Π1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
0 1 0
0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Important

Any projector Π satisfies Π2 = Π� = Π.

15/1

Our Universe and Its Contents

0
1
0

0
0
1

1
0
0

Π1 projects

onto subspace

Linear Transformation (LT) : T ∶H →H

T ∣φ⟩

Unitary Transf. : LT that preserves length.

Just a rotation

U ∶H →H

Projection : LT that projects.

Just a projection Π1 ∶H →H

Π1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
0 1 0
0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Important

Any projector Π satisfies Π2 = Π� = Π.

15/1

More on Projections

0
1
0

0
0
1

1
0
0

Projection Π1

Projection Π2

|ϕ⟩

Projections Π1, Π2 ∶H →H.

Π1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
0 1 0
0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Π2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
0 0 0
0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Π1 +Π2 = I ⇒ a2
+ b2 = 1

a2
+ b2 = (length of ∣φ⟩)2

= ∣ ⟨φ∣φ⟩ ∣2 = 1

16/1

More on Projections

0
1
0

0
0
1

1
0
0

Projection Π1

Projection Π2

|ϕ⟩

(Length)2 =a2

(Length)2 =b2

Projections Π1, Π2 ∶H →H.

Π1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
0 1 0
0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Π2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
0 0 0
0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Π1 +Π2 = I ⇒ a2
+ b2 = 1

a2
+ b2 = (length of ∣φ⟩)2

= ∣ ⟨φ∣φ⟩ ∣2 = 1

16/1

More on Projections

0
1
0

0
0
1

1
0
0

Projection Π1

Projection Π2

|ϕ⟩

(Length)2 =a2

(Length)2 =b2

Projections Π1, Π2 ∶H →H.

Π1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
0 1 0
0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Π2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
0 0 0
0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Π1 +Π2 = I ⇒ a2
+ b2 = 1

a2
+ b2 = (length of ∣φ⟩)2

= ∣ ⟨φ∣φ⟩ ∣2 = 1

16/1

More on Projections

0
1
0

0
0
1

1
0
0

Projection Π1

Projection Π2

|ϕ⟩

(Length)2 =a2

(Length)2 =b2

Projections Π1, Π2 ∶H →H.

Π1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
0 1 0
0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Π2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
0 0 0
0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Π1 +Π2 = I ⇒ a2
+ b2 = 1

a2
+ b2 = (length of ∣φ⟩)2

= ∣ ⟨φ∣φ⟩ ∣2 = 1

16/1

Axiom 2 : How does a Closed system evolve?

The evolution of a closed (isolated) quantum system evolves through a Unitary
Transformation.

∣x⟩t1 ≡ State of System at time t1, ∣x⟩t2 ≡ State of System at time t2

∣x⟩t2 is related to ∣x⟩t1 through a Unitary transformation U .

∣x⟩t2 = U ∣x⟩t1

17/1

Axiom 3 :

Our Interaction with a Quantum System and the

Rules that Govern this Interaction

Axiom 3 is the Measurement Axiom

18/1

Axiom 3 - The Measurement Axiom - A Very Important Axiom

Can eye-ball/read-out a bit. Cannot eye-ball/stare at qubit.

Your interaction is via a Measurement.

Axiom 3 describes this interaction and the rules governing this interaction.

19/1

Axiom 3 : The Measurement Axiom

A measurement is described through

a collection {Πα1 ,Πα2 ,⋯,ΠαK} of projectors acting on inner product Space H

that satify the Completeness Relation
K

∑
k=1

Παk = Πα1 +⋯ +ΠαK = I (I ≡ the Identity on H).

What are these operators and the indices α1,⋯, αK?

Centimeter Scale

0 1 2 3 4 5 6 7

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8

8 9 10

2 4 6 8 2 4 6 8

α1
α2

αk αK

Indices α1,⋯, αK : possible outcomes.

Each Projector Παk corresponds to its
outcome αk.

Completeness Relation “You must get atleast
one of the possible outcomes.”

20/1

Axiom 3 : The Measurement Axiom

A measurement is described through

a collection {Πα1 ,Πα2 ,⋯,ΠαK} of projectors acting on inner product Space H

that satify the Completeness Relation
K

∑
k=1

Παk = Πα1 +⋯ +ΠαK = I (I ≡ the Identity on H).

What are these operators and the indices α1,⋯, αK?

Centimeter Scale

0 1 2 3 4 5 6 7

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8

8 9 10

2 4 6 8 2 4 6 8

α1
α2

αk αK

Indices α1,⋯, αK : possible outcomes.

Each Projector Παk corresponds to its
outcome αk.

Completeness Relation “You must get atleast
one of the possible outcomes.”

20/1

Axiom 3 : The Measurement Axiom

A measurement is described through

a collection {Πα1 ,Πα2 ,⋯,ΠαK} of projectors acting on inner product Space H

that satify the Completeness Relation
K

∑
k=1

Παk = Πα1 +⋯ +ΠαK = I (I ≡ the Identity on H).

What are these operators and the indices α1,⋯, αK?

Centimeter Scale

0 1 2 3 4 5 6 7

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8

8 9 10

2 4 6 8 2 4 6 8

α1
α2

αk αK

Indices α1,⋯, αK : possible outcomes.

Each Projector Παk corresponds to its
outcome αk.

Completeness Relation “You must get atleast
one of the possible outcomes.”

20/1

Simplify, Simplify, Simplify, ⋯

Just call α1, α2, αK as 1,2,⋯,K

Outcomes are 1,2,⋯,K.

Reduce notation.

21/1

Axiom 3 : The Measurement Axiom
When a measurement {Π1,Π2,⋯,ΠK} is performed on a state ∣φ⟩ ∈H

1. You get outcome k with probability

P (Outcome = k) = (Length of proj. Πk ∣φ⟩)
2
= Inn. prod. between Πk ∣φ⟩ and Πk ∣φ⟩

= ⟨φ∣Π�
k ∣ Πkφ⟩ = ⟨φ∣Πk ∣ Πkφ⟩ = ⟨φ∣ Πkφ⟩

= (Length of projection Πk ∣φ⟩)
2

Note :

K

∑

k=1

P (Outcome = k) =

K

∑

k=1

⟨φ∣Πk ∣φ⟩ = ⟨φ∣
K

∑

k=1

Πk ∣φ⟩ = ⟨φ∣I ∣φ⟩ = 1 Completeness
+ unit-norm

2. The quantum system collapses to one of the following states

Πk ∣φ⟩
√

⟨φ∣Πk ∣φ⟩

=
Πk ∣φ⟩

√
Length of Πk ∣φ⟩

∶ k = 1,2⋯,K

3. Moreover, if you observe outcome j, then the state collapses to

Πj ∣φ⟩
√

⟨φ∣Πj ∣φ⟩

22/1

Axiom 3 : The Measurement Axiom
When a measurement {Π1,Π2,⋯,ΠK} is performed on a state ∣φ⟩ ∈H

1. You get outcome k with probability

P (Outcome = k) = (Length of proj. Πk ∣φ⟩)
2
= Inn. prod. between Πk ∣φ⟩ and Πk ∣φ⟩

= ⟨φ∣Π�
k ∣ Πkφ⟩ = ⟨φ∣Πk ∣ Πkφ⟩ = ⟨φ∣ Πkφ⟩

= (Length of projection Πk ∣φ⟩)
2

Note :

K

∑

k=1

P (Outcome = k) =

K

∑

k=1

⟨φ∣Πk ∣φ⟩ = ⟨φ∣
K

∑

k=1

Πk ∣φ⟩ = ⟨φ∣I ∣φ⟩ = 1 Completeness
+ unit-norm

2. The quantum system collapses to one of the following states

Πk ∣φ⟩
√

⟨φ∣Πk ∣φ⟩

=
Πk ∣φ⟩

√
Length of Πk ∣φ⟩

∶ k = 1,2⋯,K

3. Moreover, if you observe outcome j, then the state collapses to

Πj ∣φ⟩
√

⟨φ∣Πj ∣φ⟩

22/1

Axiom 3 : The Measurement Axiom
When a measurement {Π1,Π2,⋯,ΠK} is performed on a state ∣φ⟩ ∈H

1. You get outcome k with probability

P (Outcome = k) = (Length of proj. Πk ∣φ⟩)
2
= Inn. prod. between Πk ∣φ⟩ and Πk ∣φ⟩

= ⟨φ∣Π�
k ∣ Πkφ⟩ = ⟨φ∣Πk ∣ Πkφ⟩ = ⟨φ∣ Πkφ⟩

= (Length of projection Πk ∣φ⟩)
2

Note :

K

∑

k=1

P (Outcome = k) =

K

∑

k=1

⟨φ∣Πk ∣φ⟩ = ⟨φ∣
K

∑

k=1

Πk ∣φ⟩ = ⟨φ∣I ∣φ⟩ = 1 Completeness
+ unit-norm

2. The quantum system collapses to one of the following states

Πk ∣φ⟩
√

⟨φ∣Πk ∣φ⟩

=
Πk ∣φ⟩

√
Length of Πk ∣φ⟩

∶ k = 1,2⋯,K

3. Moreover, if you observe outcome j, then the state collapses to

Πj ∣φ⟩
√

⟨φ∣Πj ∣φ⟩

22/1

Axiom 3 : The Measurement Axiom
When a measurement {Π1,Π2,⋯,ΠK} is performed on a state ∣φ⟩ ∈H

1. You get outcome k with probability

P (Outcome = k) = (Length of proj. Πk ∣φ⟩)
2
= Inn. prod. between Πk ∣φ⟩ and Πk ∣φ⟩

= ⟨φ∣Π�
k ∣ Πkφ⟩ = ⟨φ∣Πk ∣ Πkφ⟩ = ⟨φ∣ Πkφ⟩

= (Length of projection Πk ∣φ⟩)
2

Note :

K

∑

k=1

P (Outcome = k) =

K

∑

k=1

⟨φ∣Πk ∣φ⟩ = ⟨φ∣
K

∑

k=1

Πk ∣φ⟩ = ⟨φ∣I ∣φ⟩ = 1 Completeness
+ unit-norm

2. The quantum system collapses to one of the following states

Πk ∣φ⟩
√

⟨φ∣Πk ∣φ⟩

=
Πk ∣φ⟩

√
Length of Πk ∣φ⟩

∶ k = 1,2⋯,K

3. Moreover, if you observe outcome j, then the state collapses to

Πj ∣φ⟩
√

⟨φ∣Πj ∣φ⟩

22/1

Axiom 3 : The Measurement Axiom
When a measurement {Π1,Π2,⋯,ΠK} is performed on a state ∣φ⟩ ∈H

1. You get outcome k with probability

P (Outcome = k) = (Length of proj. Πk ∣φ⟩)
2
= Inn. prod. between Πk ∣φ⟩ and Πk ∣φ⟩

= ⟨φ∣Π�
k ∣ Πkφ⟩ = ⟨φ∣Πk ∣ Πkφ⟩ = ⟨φ∣ Πkφ⟩

= (Length of projection Πk ∣φ⟩)
2

Note :

K

∑

k=1

P (Outcome = k) =

K

∑

k=1

⟨φ∣Πk ∣φ⟩ = ⟨φ∣
K

∑

k=1

Πk ∣φ⟩ = ⟨φ∣I ∣φ⟩ = 1 Completeness
+ unit-norm

2. The quantum system collapses to one of the following states

Πk ∣φ⟩
√

⟨φ∣Πk ∣φ⟩

=
Πk ∣φ⟩

√
Length of Πk ∣φ⟩

∶ k = 1,2⋯,K

3. Moreover, if you observe outcome j, then the state collapses to

Πj ∣φ⟩
√

⟨φ∣Πj ∣φ⟩

22/1

Axiom 3 : The Measurement Axiom
When a measurement {Π1,Π2,⋯,ΠK} is performed on a state ∣φ⟩ ∈H

1. You get outcome k with probability

P (Outcome = k) = (Length of proj. Πk ∣φ⟩)
2
= Inn. prod. between Πk ∣φ⟩ and Πk ∣φ⟩

= ⟨φ∣Π�
k ∣ Πkφ⟩ = ⟨φ∣Πk ∣ Πkφ⟩ = ⟨φ∣ Πkφ⟩

= (Length of projection Πk ∣φ⟩)
2

Note :

K

∑

k=1

P (Outcome = k) =

K

∑

k=1

⟨φ∣Πk ∣φ⟩ = ⟨φ∣
K

∑

k=1

Πk ∣φ⟩ = ⟨φ∣I ∣φ⟩ = 1 Completeness
+ unit-norm

2. The quantum system collapses to one of the following states

Πk ∣φ⟩
√

⟨φ∣Πk ∣φ⟩
=

Πk ∣φ⟩
√

Length of Πk ∣φ⟩
∶ k = 1,2⋯,K

3. Moreover, if you observe outcome j, then the state collapses to

Πj ∣φ⟩
√

⟨φ∣Πj ∣φ⟩

22/1

Axiom 3 : The Measurement Axiom
When a measurement {Π1,Π2,⋯,ΠK} is performed on a state ∣φ⟩ ∈H

1. You get outcome k with probability

P (Outcome = k) = (Length of proj. Πk ∣φ⟩)
2
= Inn. prod. between Πk ∣φ⟩ and Πk ∣φ⟩

= ⟨φ∣Π�
k ∣ Πkφ⟩ = ⟨φ∣Πk ∣ Πkφ⟩ = ⟨φ∣ Πkφ⟩

= (Length of projection Πk ∣φ⟩)
2

Note :

K

∑

k=1

P (Outcome = k) =

K

∑

k=1

⟨φ∣Πk ∣φ⟩ = ⟨φ∣
K

∑

k=1

Πk ∣φ⟩ = ⟨φ∣I ∣φ⟩ = 1 Completeness
+ unit-norm

2. The quantum system collapses to one of the following states

Πk ∣φ⟩
√

⟨φ∣Πk ∣φ⟩
=

Πk ∣φ⟩
√

Length of Πk ∣φ⟩
∶ k = 1,2⋯,K

3. Moreover, if you observe outcome j, then the state collapses to

Πj ∣φ⟩
√

⟨φ∣Πj ∣φ⟩

22/1

Understanding the Measurement Axiom : Classical World

Classical world

Nataraj Pencil 2B

Wish to measure pencil’s length

23/1

Understanding the Measurement Axiom : Classical World

Classical world

Centimeter Scale

0 1 2 3 4 5 6 7

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8

8 9 10

2 4 6 8 2 4 6 8

Nataraj Pencil 2B

Wish to measure pencil’s length

23/1

Understanding the Measurement Axiom : Classical World

Classical world

Centimeter Scale

0 1 2 3 4 5 6 7

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8

8 9 10

2 4 6 8 2 4 6 8

Nataraj Pencil 2B

1. Length is accurately read- 6cm.
No uncertainty.

23/1

Understanding the Measurement Axiom : Classical World

Classical world

Nataraj Pencil 2B

1. Length is accurately read- 6cm.
No uncertainty.

2. Pencil’s length does NOT
change post-measurement

23/1

Understanding the Measurement Axiom : Quantum World

Quantum World

Nataraj Pencil 2B

Wish to measure pencil’s
(quantum state) length

24/1

Understanding the Measurement Axiom : Quantum World

Quantum World

Centimeter Scale

0 1 2 3 4 5 6 7

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8

8 9 10

2 4 6 8 2 4 6 8

α1
α2

αk αK

Nataraj Pencil 2B

Wish to measure pencil’s
(quantum state) length

24/1

Understanding the Measurement Axiom : Quantum World

Quantum World

Centimeter Scale

0 1 2 3 4 5 6 7

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8

8 9 10

2 4 6 8 2 4 6 8

α1
α2

αk αK

1. Outcome is RANDOM.

2.4 cm

24/1

Understanding the Measurement Axiom : Quantum World

Quantum World

1. Outcome is RANDOM.

2. Pencil’s length CHANGES
post-measurement

Nataraj Pencil 2B

2.4 cm

24/1

Understanding the Measurement Axiom : Quantum World

Quantum World

1. Outcome is RANDOM.

2. Pencil’s length CHANGES
post-measurement

Nataraj Pencil 2B

2.4 cm

Welcome to the QUANTUM WORLD.

24/1

Measurement Axiom : An Example

Example

Quantum system in state ∣φ⟩ = 1
√

2
∣0⟩ + 1

√
2
∣1⟩ = [

1
√

2
1
√

2

] ∈H = C2.

Perform measurement with two outcome {−0.5,+0.5}.

Two meas. operators Π−0.5 = [
0 0
0 1

], Π+0.5 = [
1 0
0 0

].

Π−0.5 +Π+0.5 = I. Completeness Relation satisfied.

P (Outcome = −0.5) = (Length of Π−0.5∣φ⟩)
2
= ∣∣[

0 0
0 1

] [
1
√

2
1
√

2

]∣∣

2

= ∣∣[
0
1
√

2

]∣∣

2

=
1

2

P (Outcome = +0.5) = ∣∣[
1
√

2

0
]∣∣

2

=
1

2

If Outcome = −0.5, state collapses to ∣1⟩. If Outcome = +0.5, state collapses to ∣0⟩.

25/1

Points to Keep in Mind

▸ Non-orthogonal states cannot be distinguished with certainty.

▸ Computation/Communication results need to be projected to orthogonal states.

26/1

Axiom 4 : Description of a Joint/Composite Quantum System

Quantum World

Suppose Quantum System 1 is in state ∣φ1⟩ ∈H1

Quantum System 2 is in state ∣φ2⟩ ∈H2

⋮

Quantum System n is in state ∣φn⟩ ∈Hn

State space of composite Quant Sys. is the tensor product

H1 ⊗H2 ⊗⋯⊗Hn of constituent state spaces.

Composite System is described by State

∣φ1⟩⊗ ∣φ2⟩⊗⋯⊗ ∣φn⟩ ∈H1 ⊗H2 ⊗⋯⊗Hn.

Classical World

System 1 in state x1 ∈ X1

System 2 in state x2 ∈ X2

⋮

System n in state xn ∈ Xn

Cartesian product

X1 ×X2 ×⋯ ×Xn.

n−tuple

(x1,⋯, xn) ∈ X1×⋯×Xn.

27/1

Axiom 4 : Description of a Joint/Composite Quantum System

Quantum World

Suppose Quantum System 1 is in state ∣φ1⟩ ∈H1

Quantum System 2 is in state ∣φ2⟩ ∈H2

⋮

Quantum System n is in state ∣φn⟩ ∈Hn

State space of composite Quant Sys. is the tensor product

H1 ⊗H2 ⊗⋯⊗Hn of constituent state spaces.

Composite System is described by State

∣φ1⟩⊗ ∣φ2⟩⊗⋯⊗ ∣φn⟩ ∈H1 ⊗H2 ⊗⋯⊗Hn.

Classical World

System 1 in state x1 ∈ X1

System 2 in state x2 ∈ X2

⋮

System n in state xn ∈ Xn

Cartesian product

X1 ×X2 ×⋯ ×Xn.

n−tuple

(x1,⋯, xn) ∈ X1×⋯×Xn.

27/1

What is a Tensor Product and what are the rules governing it?

Quantum World

Classical World

Suppose V is a m−dimensional IPS,

x ∈ X , ∣X ∣ =m

W is a n−dimensional IPS.

y ∈ Y, ∣Y ∣ = n

V ⊗W is mn−dimensional IPS.

(x, y) ∈ X ×Y, ∣X ×Y ∣ =mn

Alert : NOT a direct sum. direct sum if m + n-dim.

Elements of V ⊗W
All possible linear combinations of tensor product ∣v⟩⊗ ∣w⟩

of elements ∣v⟩ ∈ V and ∣w⟩ ∈W .

∣v⟩⊗ ∣w⟩ Just an (ordered) pair of vectors from respective spaces

28/1

What is a Tensor Product and what are the rules governing it?

Quantum World Classical World

Suppose V is a m−dimensional IPS, x ∈ X , ∣X ∣ =m

W is a n−dimensional IPS. y ∈ Y, ∣Y ∣ = n

V ⊗W is mn−dimensional IPS. (x, y) ∈ X ×Y, ∣X ×Y ∣ =mn

Alert : NOT a direct sum. direct sum if m + n-dim.

Elements of V ⊗W
All possible linear combinations of tensor product ∣v⟩⊗ ∣w⟩

of elements ∣v⟩ ∈ V and ∣w⟩ ∈W .

∣v⟩⊗ ∣w⟩ Just an (ordered) pair of vectors from respective spaces

28/1

What is a Tensor Product and what are the rules governing it?

Quantum World Classical World

Suppose V is a m−dimensional IPS, x ∈ X , ∣X ∣ =m

W is a n−dimensional IPS. y ∈ Y, ∣Y ∣ = n

V ⊗W is mn−dimensional IPS. (x, y) ∈ X ×Y, ∣X ×Y ∣ =mn

Alert : NOT a direct sum. direct sum if m + n-dim.

Elements of V ⊗W
All possible linear combinations of tensor product ∣v⟩⊗ ∣w⟩

of elements ∣v⟩ ∈ V and ∣w⟩ ∈W .

∣v⟩⊗ ∣w⟩ Just an (ordered) pair of vectors from respective spaces

28/1

What is a Tensor Product and what are the rules governing it?

Quantum World Classical World

Suppose V is a m−dimensional IPS, x ∈ X , ∣X ∣ =m

W is a n−dimensional IPS. y ∈ Y, ∣Y ∣ = n

V ⊗W is mn−dimensional IPS. (x, y) ∈ X ×Y, ∣X ×Y ∣ =mn

Alert : NOT a direct sum. direct sum if m + n-dim.

Elements of V ⊗W
All possible linear combinations of tensor product ∣v⟩⊗ ∣w⟩

of elements ∣v⟩ ∈ V and ∣w⟩ ∈W .

∣v⟩⊗ ∣w⟩ Just an (ordered) pair of vectors from respective spaces

28/1

What is a Tensor Product and what are the rules governing it?

Quantum World Classical World

Suppose V is a m−dimensional IPS, x ∈ X , ∣X ∣ =m

W is a n−dimensional IPS. y ∈ Y, ∣Y ∣ = n

V ⊗W is mn−dimensional IPS. (x, y) ∈ X ×Y, ∣X ×Y ∣ =mn

Alert : NOT a direct sum. direct sum if m + n-dim.

Elements of V ⊗W
All possible ?linear combinations? of ?tensor product? ∣v⟩⊗ ∣w⟩

of elements ∣v⟩ ∈ V and ∣w⟩ ∈W .

∣v⟩⊗ ∣w⟩ Just an (ordered) pair of vectors from respective spaces

28/1

Rules Governing Linear Combinations in Tensor Product Spaces

Rules governing Linear combination

∣v1⟩⊗ ∣w⟩
°
↑

+ ∣v2⟩⊗ ∣w⟩
°

= (∣v1⟩ + ∣v2⟩)⊗ ∣w⟩
°

State Distrbtv Law (SDL) 1

∣v⟩
¯

⊗ ∣w1⟩ + ∣v⟩
¯

⊗ ∣w2⟩ = ∣v⟩
¯

⊗(∣w1⟩ + ∣w2⟩) State Distrbtv Law (SDL) 2

α ⋅ (∣v⟩⊗ ∣w⟩) = (α ⋅ ∣u⟩)⊗ ∣w⟩ = ∣v⟩⊗ (α ⋅ ∣w⟩) State Distrbtv Law (SDL) 3

The above rules tell you how and when to combine terms.

In general, if the above rules do not apply, the sum

∣v1⟩⊗ ∣w1⟩ + ∣v2⟩⊗ ∣w2⟩ = ∣v1⟩⊗ ∣w1⟩ + ∣v2⟩⊗ ∣w2⟩

is a distinct element of V ⊗W .

29/1

Rules Governing Operations on Tensor Products and Inner Products

What are the linear transformations/operators acting on V ⊗W?

Suppose A ∶ V → V and B ∶W →W are LTs.

(A⊗B)(∣v⟩⊗ ∣w⟩) = A ∣v⟩⊗B ∣w⟩ Operator Dist. Law (ODL) 1

(A⊗B)(∑
i

∣vi⟩⊗ ∣wi⟩) =∑
i

A ∣vi⟩⊗B ∣wi⟩ Operator Dist. Law (ODL) 2

A⊗ (B1 +B2) = A⊗B1 +A⊗B2 Operator Dist. Law (ODL) 3

What about the inner product on V ⊗W

Ans : Product of inner products.

IP between ∣v1⟩⊗ ∣w1⟩ and ∣v2⟩⊗ ∣w2⟩ = ⟨v1∣v2⟩ ⟨w1∣w2⟩ .

30/1

Rules Governing Operations on Tensor Products and Inner Products

What are the linear transformations/operators acting on V ⊗W?

Suppose A ∶ V → V and B ∶W →W are LTs.

(A⊗B)(∣v⟩⊗ ∣w⟩) = A ∣v⟩⊗B ∣w⟩ Operator Dist. Law (ODL) 1

(A⊗B)(∑
i

∣vi⟩⊗ ∣wi⟩) =∑
i

A ∣vi⟩⊗B ∣wi⟩ Operator Dist. Law (ODL) 2

A⊗ (B1 +B2) = A⊗B1 +A⊗B2 Operator Dist. Law (ODL) 3

What about the inner product on V ⊗W

Ans : Product of inner products.

IP between ∣v1⟩⊗ ∣w1⟩ and ∣v2⟩⊗ ∣w2⟩ = ⟨v1∣v2⟩ ⟨w1∣w2⟩ .

30/1

Rules Governing Operations on Tensor Products and Inner Products

What are the linear transformations/operators acting on V ⊗W?

Suppose A ∶ V → V and B ∶W →W are LTs.

(A⊗B)(∣v⟩⊗ ∣w⟩) = A ∣v⟩⊗B ∣w⟩ Operator Dist. Law (ODL) 1

(A⊗B)(∑
i

∣vi⟩⊗ ∣wi⟩) =∑
i

A ∣vi⟩⊗B ∣wi⟩ Operator Dist. Law (ODL) 2

A⊗ (B1 +B2) = A⊗B1 +A⊗B2 Operator Dist. Law (ODL) 3

What about the inner product on V ⊗W

Ans : Product of inner products.

IP between ∣v1⟩⊗ ∣w1⟩ and ∣v2⟩⊗ ∣w2⟩ = ⟨v1∣v2⟩ ⟨w1∣w2⟩ .

30/1

Tensor Product : A Concrete Example

V = C2,W = C2, ∣v⟩ = [
1
2

] , ∣w⟩ = [
3
4

] , ∣v⟩⊗ ∣w⟩ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 × 3
1 × 4
2 × 3
2 × 4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

A = [
a11 a12

a21 a22
] , B = [

b11 b12

b21 b22
] A⊗B = [

a11B a12B
a21B a22B

]

Simple Consequences

1. dim(V ⊗W) = dim(V)× dim(W).

2. If {∣α1⟩ ,⋯, ∣αm⟩} is

orthonormal

basis for V ,

{∣β1⟩ ,⋯, ∣βn⟩} is

orthonormal

basis for W ,

then {∣αi⟩⊗ ∣βj⟩ ∶ 1 ≤ i ≤m,1 ≤ j ≤ n} is

orthonormal

basis for V ⊗W .

31/1

Tensor Product : A Concrete Example

V = C2,W = C2, ∣v⟩ = [
1
2

] , ∣w⟩ = [
3
4

] , ∣v⟩⊗ ∣w⟩ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 × 3
1 × 4
2 × 3
2 × 4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

A = [
a11 a12

a21 a22
] , B = [

b11 b12

b21 b22
] A⊗B = [

a11B a12B
a21B a22B

]

Simple Consequences

1. dim(V ⊗W) = dim(V)× dim(W).

2. If {∣α1⟩ ,⋯, ∣αm⟩} is orthonormal basis for V ,

{∣β1⟩ ,⋯, ∣βn⟩} is orthonormal basis for W ,

then {∣αi⟩⊗ ∣βj⟩ ∶ 1 ≤ i ≤m,1 ≤ j ≤ n} is orthonormal basis for V ⊗W .

31/1

Our Basis in C2
⊗C2

Example ∣0⟩ , ∣1⟩ forms an orthonormal basis for HA =HB = C2

∣0⟩⊗ ∣0⟩ , ∣0⟩⊗ ∣1⟩ , ∣1⟩⊗ ∣0⟩ , ∣1⟩⊗ ∣1⟩ forms an orthonormal basis for HA ⊗HB

Notational Simplification : ∣0⟩⊗ ∣1⟩ = ∣0⟩ ∣1⟩ = ∣01⟩

{ ∣00⟩ , ∣01⟩ , ∣10⟩ , ∣11⟩} orthonormal basis for HA ⊗HB

If ∣v1⟩ , ∣v2⟩ , ∣v3⟩ , ∣v4⟩ are orthonormal ⇒

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1
√

2
∣v1⟩ +

1
√

2
∣v2⟩ ,

1
√

2
∣v1⟩ −

1
√

2
∣v2⟩

1
√

2
∣v3⟩ +

1
√

2
∣v4⟩ ,

1
√

2
∣v3⟩ −

1
√

2
∣v4⟩

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

are orthonormal.

1
√

2
∣00⟩ ± 1

√
2
∣11⟩ , 1

√
2
∣01⟩ ± 1

√
2
∣10⟩ , are orthonormal

32/1

Our Basis in C2
⊗C2

Example ∣0⟩ , ∣1⟩ forms an orthonormal basis for HA =HB = C2

∣0⟩⊗ ∣0⟩ , ∣0⟩⊗ ∣1⟩ , ∣1⟩⊗ ∣0⟩ , ∣1⟩⊗ ∣1⟩ forms an orthonormal basis for HA ⊗HB

Notational Simplification : ∣0⟩⊗ ∣1⟩ = ∣0⟩ ∣1⟩ = ∣01⟩

{ ∣00⟩ , ∣01⟩ , ∣10⟩ , ∣11⟩} orthonormal basis for HA ⊗HB

If ∣v1⟩ , ∣v2⟩ , ∣v3⟩ , ∣v4⟩ are orthonormal ⇒

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1
√

2
∣v1⟩ +

1
√

2
∣v2⟩ ,

1
√

2
∣v1⟩ −

1
√

2
∣v2⟩

1
√

2
∣v3⟩ +

1
√

2
∣v4⟩ ,

1
√

2
∣v3⟩ −

1
√

2
∣v4⟩

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

are orthonormal.

1
√

2
∣00⟩ ± 1

√
2
∣11⟩ , 1

√
2
∣01⟩ ± 1

√
2
∣10⟩ , are orthonormal

32/1

Our Basis in C2
⊗C2

Example ∣0⟩ , ∣1⟩ forms an orthonormal basis for HA =HB = C2

∣0⟩⊗ ∣0⟩ , ∣0⟩⊗ ∣1⟩ , ∣1⟩⊗ ∣0⟩ , ∣1⟩⊗ ∣1⟩ forms an orthonormal basis for HA ⊗HB

Notational Simplification : ∣0⟩⊗ ∣1⟩ = ∣0⟩ ∣1⟩ = ∣01⟩

{ ∣00⟩ , ∣01⟩ , ∣10⟩ , ∣11⟩} orthonormal basis for HA ⊗HB

If ∣v1⟩ , ∣v2⟩ , ∣v3⟩ , ∣v4⟩ are orthonormal ⇒

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1
√

2
∣v1⟩ +

1
√

2
∣v2⟩ ,

1
√

2
∣v1⟩ −

1
√

2
∣v2⟩

1
√

2
∣v3⟩ +

1
√

2
∣v4⟩ ,

1
√

2
∣v3⟩ −

1
√

2
∣v4⟩

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

are orthonormal.

1
√

2
∣00⟩ ± 1

√
2
∣11⟩ , 1

√
2
∣01⟩ ± 1

√
2
∣10⟩ , are orthonormal

32/1

Secrets of the Tensor Product

More Consequences

1.
{ ∣v⟩⊗ ∣w⟩ ∶ ∣v⟩ ∈ V, ∣w⟩ ∈W } does NOT exhaust V ⊗W

Not all vectors in V ⊗W can be expressed as ∣v⟩⊗ ∣w⟩. However,

V ⊗W = span{ ∣v⟩⊗ ∣w⟩ ∶ ∣v⟩ ∈ V, ∣w⟩ ∈W }

(
√

3
2

∣0⟩ + 1
2
∣1⟩)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣v⟩

⊗ (1
√

2
∣0⟩ + 1

√
2
∣1⟩)

´¹¹¹¸¹¹¹¶
∣w⟩

=

(
√

3

2
√

2
∣00⟩ +

√
3

2
√

2
∣01⟩ + 1

2
√

2
∣10⟩ + 1

2
√

2
∣11⟩)

(a ∣0⟩ + b ∣1⟩)⊗ (c ∣0⟩ + d ∣1⟩)
??
=

(1
√

2
∣00⟩ + 1

√
2
∣11⟩)

ad = 0, ac = 1
√

2
⇒ d = 0 but need bd = 1

√
2

33/1

Secrets of the Tensor Product

More Consequences

1.
{ ∣v⟩⊗ ∣w⟩ ∶ ∣v⟩ ∈ V, ∣w⟩ ∈W } does NOT exhaust V ⊗W

Not all vectors in V ⊗W can be expressed as ∣v⟩⊗ ∣w⟩. However,

V ⊗W = span{ ∣v⟩⊗ ∣w⟩ ∶ ∣v⟩ ∈ V, ∣w⟩ ∈W }

(
√

3
2

∣0⟩ + 1
2
∣1⟩)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣v⟩

⊗ (1
√

2
∣0⟩ + 1

√
2
∣1⟩)

´¹¹¹¸¹¹¹¶
∣w⟩

=

(
√

3

2
√

2
∣00⟩ +

√
3

2
√

2
∣01⟩ + 1

2
√

2
∣10⟩ + 1

2
√

2
∣11⟩)

(a ∣0⟩ + b ∣1⟩)⊗ (c ∣0⟩ + d ∣1⟩)
??
=

(1
√

2
∣00⟩ + 1

√
2
∣11⟩)

ad = 0, ac = 1
√

2
⇒ d = 0 but need bd = 1

√
2

33/1

Secrets of the Tensor Product

More Consequences

1.
{ ∣v⟩⊗ ∣w⟩ ∶ ∣v⟩ ∈ V, ∣w⟩ ∈W } does NOT exhaust V ⊗W

Not all vectors in V ⊗W can be expressed as ∣v⟩⊗ ∣w⟩. However,

V ⊗W = span{ ∣v⟩⊗ ∣w⟩ ∶ ∣v⟩ ∈ V, ∣w⟩ ∈W }

(
√

3
2

∣0⟩ + 1
2
∣1⟩)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣v⟩

⊗ (1
√

2
∣0⟩ + 1

√
2
∣1⟩)

´¹¹¹¸¹¹¹¶
∣w⟩

=

(
√

3

2
√

2
∣00⟩ +

√
3

2
√

2
∣01⟩ + 1

2
√

2
∣10⟩ + 1

2
√

2
∣11⟩)

(a ∣0⟩ + b ∣1⟩)⊗ (c ∣0⟩ + d ∣1⟩)
??
=

(1
√

2
∣00⟩ + 1

√
2
∣11⟩)

ad = 0, ac = 1
√

2
⇒ d = 0 but need bd = 1

√
2

33/1

Secrets of the Tensor Product

More Consequences

1.
{ ∣v⟩⊗ ∣w⟩ ∶ ∣v⟩ ∈ V, ∣w⟩ ∈W } does NOT exhaust V ⊗W

Not all vectors in V ⊗W can be expressed as ∣v⟩⊗ ∣w⟩. However,

V ⊗W = span{ ∣v⟩⊗ ∣w⟩ ∶ ∣v⟩ ∈ V, ∣w⟩ ∈W }

(
√

3
2

∣0⟩ + 1
2
∣1⟩)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣v⟩

⊗ (1
√

2
∣0⟩ + 1

√
2
∣1⟩)

´¹¹¹¸¹¹¹¶
∣w⟩

= (
√

3

2
√

2
∣00⟩ +

√
3

2
√

2
∣01⟩ + 1

2
√

2
∣10⟩ + 1

2
√

2
∣11⟩)

(a ∣0⟩ + b ∣1⟩)⊗ (c ∣0⟩ + d ∣1⟩)
??
=

(1
√

2
∣00⟩ + 1

√
2
∣11⟩)

ad = 0, ac = 1
√

2
⇒ d = 0

but need bd = 1
√

2

33/1

Secrets of the Tensor Product

More Consequences

1.
{ ∣v⟩⊗ ∣w⟩ ∶ ∣v⟩ ∈ V, ∣w⟩ ∈W } does NOT exhaust V ⊗W

Not all vectors in V ⊗W can be expressed as ∣v⟩⊗ ∣w⟩. However,

V ⊗W = span{ ∣v⟩⊗ ∣w⟩ ∶ ∣v⟩ ∈ V, ∣w⟩ ∈W }

(
√

3
2

∣0⟩ + 1
2
∣1⟩)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣v⟩

⊗ (1
√

2
∣0⟩ + 1

√
2
∣1⟩)

´¹¹¹¸¹¹¹¶
∣w⟩

= (
√

3

2
√

2
∣00⟩ +

√
3

2
√

2
∣01⟩ + 1

2
√

2
∣10⟩ + 1

2
√

2
∣11⟩)

(a ∣0⟩ + b ∣1⟩)⊗ (c ∣0⟩ + d ∣1⟩)
??
= (1

√
2
∣00⟩ + 1

√
2
∣11⟩)

ad = 0, ac = 1
√

2
⇒ d = 0 but need bd = 1

√
2

33/1

Secrets of the Tensor Product

More Consequences

1.
{ ∣v⟩⊗ ∣w⟩ ∶ ∣v⟩ ∈ V, ∣w⟩ ∈W } does NOT exhaust V ⊗W

Not all vectors in V ⊗W can be expressed as ∣v⟩⊗ ∣w⟩. However,

V ⊗W = span{ ∣v⟩⊗ ∣w⟩ ∶ ∣v⟩ ∈ V, ∣w⟩ ∈W }

(
√

3
2

∣0⟩ + 1
2
∣1⟩)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣v⟩

⊗ (1
√

2
∣0⟩ + 1

√
2
∣1⟩)

´¹¹¹¸¹¹¹¶
∣w⟩

= (
√

3

2
√

2
∣00⟩ +

√
3

2
√

2
∣01⟩ + 1

2
√

2
∣10⟩ + 1

2
√

2
∣11⟩)

(a ∣0⟩ + b ∣1⟩)⊗ (c ∣0⟩ + d ∣1⟩)
??
= (1

√
2
∣00⟩ + 1

√
2
∣11⟩)

ad = 0, ac = 1
√

2
⇒ d = 0 but need bd = 1

√
2

33/1

Secrets of the Tensor Product

More Consequences

1.
{ ∣v⟩⊗ ∣w⟩ ∶ ∣v⟩ ∈ V, ∣w⟩ ∈W } does NOT exhaust V ⊗W

Not all vectors in V ⊗W can be expressed as ∣v⟩⊗ ∣w⟩. However,

V ⊗W = span{ ∣v⟩⊗ ∣w⟩ ∶ ∣v⟩ ∈ V, ∣w⟩ ∈W }

(
√

3
2

∣0⟩ + 1
2
∣1⟩)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣v⟩

⊗ (1
√

2
∣0⟩ + 1

√
2
∣1⟩)

´¹¹¹¸¹¹¹¶
∣w⟩

= (
√

3

2
√

2
∣00⟩ +

√
3

2
√

2
∣01⟩ + 1

2
√

2
∣10⟩ + 1

2
√

2
∣11⟩)

(a ∣0⟩ + b ∣1⟩)⊗ (c ∣0⟩ + d ∣1⟩) × (1
√

2
∣00⟩ + 1

√
2
∣11⟩)

ad = 0, ac = 1
√

2
⇒ d = 0 but need bd = 1

√
2

33/1

Separable and Entangled states

Definition
Consider a joint quantum system consisting of 2 constituent quantum systems. The
joint state vector ∣φ⟩ ∈HA ⊗HB is separable if ∣φ⟩ can be expressed as a tensor product
of constituent state vectors ∣φ1⟩ ∈HA, ∣φ2⟩ ∈HB , i.e,

∣φ⟩ = ∣φ1⟩⊗ ∣φ2⟩ .

A joint state vector is entangled if it is not separable.

Example

The state ∣Φ−⟩ ∶= (
1

√
2
∣00⟩ −

1
√

2
∣11⟩) is entangled.

individual constituent components have no definite description.

What is state of the first component ∣Φ+⟩ : Invalid Qn..

Only state of a joint system.

34/1

Separable and Entangled states

Definition
Consider a joint quantum system consisting of 2 constituent quantum systems. The
joint state vector ∣φ⟩ ∈HA ⊗HB is separable if ∣φ⟩ can be expressed as a tensor product
of constituent state vectors ∣φ1⟩ ∈HA, ∣φ2⟩ ∈HB , i.e,

∣φ⟩ = ∣φ1⟩⊗ ∣φ2⟩ .

A joint state vector is entangled if it is not separable.

Example

The state ∣Ψ+⟩ ∶= (
1

√
2
∣01⟩ +

1
√

2
∣10⟩) is entangled.

individual constituent components have no definite description.

What is state of the first component ∣Φ+⟩ : Invalid Qn..

Only state of a joint system.

34/1

Separable and Entangled states

Definition
Consider a joint quantum system consisting of 2 constituent quantum systems. The
joint state vector ∣φ⟩ ∈HA ⊗HB is separable if ∣φ⟩ can be expressed as a tensor product
of constituent state vectors ∣φ1⟩ ∈HA, ∣φ2⟩ ∈HB , i.e,

∣φ⟩ = ∣φ1⟩⊗ ∣φ2⟩ .

A joint state vector is entangled if it is not separable.

Example

The state ∣Ψ−⟩ ∶= (
1

√
2
∣01⟩ −

1
√

2
∣10⟩) is entangled.

individual constituent components have no definite description.

What is state of the first component ∣Φ+⟩ : Invalid Qn..

Only state of a joint system.

34/1

Separable and Entangled states

Definition
Consider a joint quantum system consisting of 2 constituent quantum systems. The
joint state vector ∣φ⟩ ∈HA ⊗HB is separable if ∣φ⟩ can be expressed as a tensor product
of constituent state vectors ∣φ1⟩ ∈HA, ∣φ2⟩ ∈HB , i.e,

∣φ⟩ = ∣φ1⟩⊗ ∣φ2⟩ .

A joint state vector is entangled if it is not separable.

Example

The state ∣Φ+⟩ ∶= (
1

√
2
∣00⟩ +

1
√

2
∣11⟩) is entangled.

individual constituent components have no definite description.

What is state of the first component ∣Φ+⟩ : Invalid Qn..

Only state of a joint system.

34/1

Separable and Entangled states

Definition
Consider a joint quantum system consisting of 2 constituent quantum systems. The
joint state vector ∣φ⟩ ∈HA ⊗HB is separable if ∣φ⟩ can be expressed as a tensor product
of constituent state vectors ∣φ1⟩ ∈HA, ∣φ2⟩ ∈HB , i.e,

∣φ⟩ = ∣φ1⟩⊗ ∣φ2⟩ .

A joint state vector is entangled if it is not separable.

Example

The state ∣Φ+⟩ ∶= (
1

√
2
∣00⟩ +

1
√

2
∣11⟩) is entangled.

individual constituent components have no definite description.

What is state of the first component ∣Φ+⟩ : Invalid Qn..

Only state of a joint system.

34/1

Entanglement has NO Classical Analogue

The entangled state ∣Φ+⟩ = (
1

√
2
∣00⟩ +

1
√

2
∣11⟩) represents the state of a joint system.

Analogous to a pair of registers storing the values of two quantities.

Joint System in our Classical World

x y
Register A Register B

x = Rainfall in Chennai,
y = Humidity in Bangalore.

Alice in
Chennai

Bob in
Bangalore

 x y (,)

Inspite of (potentially) correlated/ or related, each element of the pair (x, y) has its
identity, description.

The joint system is in a superposition of states ∣00⟩ and ∣11⟩.

35/1

Entanglement has NO Classical Analogue

The entangled state ∣Φ+⟩ = (
1

√
2
∣00⟩ +

1
√

2
∣11⟩) represents the state of a joint system.

Analogous to a pair of registers storing the values of two quantities.

Joint System in our Quantum World

First Qubit Second
Qubit

Alice in
Chennai

Bob in
Bangalore

|Φ+⟩AB

Alice and Bob can share a pair of qubits describing the joint system.

However, each qubit has no definite description, identity.

The joint system is in a superposition of states ∣00⟩ and ∣11⟩.

35/1

Entanglement has NO Classical Analogue

The entangled state ∣Φ+⟩ = (
1

√
2
∣00⟩ +

1
√

2
∣11⟩) represents the state of a joint system.

Analogous to a pair of registers storing the values of two quantities.

Joint System in our Quantum World

First Qubit Second
Qubit

Alice in
Chennai

Bob in
Bangalore

|Φ+⟩AB

Alice and Bob can share a pair of qubits describing the joint system.

However, each qubit has no definite description, identity.

The joint system is in a superposition of states ∣00⟩ and ∣11⟩.

35/1

Entanglement

+

Randomness in measurement outcomes

yield new information processing resources.

36/1

Getting used to the Ket-Bra notation
What is Π1 ∣φ⟩?

Π1 ∣φ⟩ =

⟨b1∣φ⟩

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
IP between
∣b1⟩and ∣φ⟩

∣b1⟩ +

⟨b2∣φ⟩

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
IP between
∣b2⟩and ∣φ⟩

∣b2⟩

Π1 ∣φ⟩ =

⟨b1∣φ⟩

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
scalar

∣b1⟩
°

vector

+

⟨b2∣φ⟩

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
scalar

∣b2⟩
°

vector

Π1 ∣φ⟩ = ∣b1⟩
°

vector

⟨b1∣φ⟩

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
scalar

+ ∣b2⟩
°

vector

⟨b2∣φ⟩

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
scalar

Π1 ∣φ⟩ = ∣b1⟩

⟨b1∣φ⟩

+ ∣b2⟩

⟨b2∣φ⟩

Π1 ∣φ⟩ = (∣b1⟩ ⟨b1∣ + ∣b2⟩ ⟨b2∣)
´¹¹¹¸¹¹¶

Π1

∣φ⟩

0
0
1

Π1 projects

onto subspace

0
1
0

0
0
1

|ϕ⟩

|b1⟩

|b2⟩

⟨a∣b⟩
±

bra-ket

⟨a∣
¯
bra

∣b⟩
¯
ket

∣b⟩ ⟨b∣
²
ket-bra

37/1

Getting used to the Ket-Bra notation
What is Π1 ∣φ⟩?

Π1 ∣φ⟩ =

⟨b1∣φ⟩

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
IP between
∣b1⟩and ∣φ⟩

∣b1⟩ +

⟨b2∣φ⟩

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
IP between
∣b2⟩and ∣φ⟩

∣b2⟩

Π1 ∣φ⟩ =

⟨b1∣φ⟩

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
scalar

∣b1⟩
°

vector

+

⟨b2∣φ⟩

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
scalar

∣b2⟩
°

vector

Π1 ∣φ⟩ = ∣b1⟩
°

vector

⟨b1∣φ⟩

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
scalar

+ ∣b2⟩
°

vector

⟨b2∣φ⟩

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
scalar

Π1 ∣φ⟩ = ∣b1⟩

⟨b1∣φ⟩

+ ∣b2⟩

⟨b2∣φ⟩

Π1 ∣φ⟩ = (∣b1⟩ ⟨b1∣ + ∣b2⟩ ⟨b2∣)
´¹¹¹¸¹¹¶

Π1

∣φ⟩

0
0
1

Π1 projects

onto subspace

0
1
0

0
0
1

|ϕ⟩

|b1⟩

|b2⟩

⟨a∣b⟩
±

bra-ket

⟨a∣
¯
bra

∣b⟩
¯
ket

∣b⟩ ⟨b∣
²
ket-bra

37/1

Getting used to the Ket-Bra notation
What is Π1 ∣φ⟩?

Π1 ∣φ⟩ = ⟨b1∣φ⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

IP between
∣b1⟩and ∣φ⟩

∣b1⟩ + ⟨b2∣φ⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

IP between
∣b2⟩and ∣φ⟩

∣b2⟩

Π1 ∣φ⟩ = ⟨b1∣φ⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

scalar

∣b1⟩
°

vector

+ ⟨b2∣φ⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
scalar

∣b2⟩
°

vector

Π1 ∣φ⟩ = ∣b1⟩
°

vector

⟨b1∣φ⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

scalar

+ ∣b2⟩
°

vector

⟨b2∣φ⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
scalar

Π1 ∣φ⟩ = ∣b1⟩ ⟨b1∣φ⟩ + ∣b2⟩ ⟨b2∣φ⟩

Π1 ∣φ⟩ = (∣b1⟩ ⟨b1∣ + ∣b2⟩ ⟨b2∣)
´¹¹¹¸¹¹¶

Π1

∣φ⟩

0
0
1

Π1 projects

onto subspace

0
1
0

0
0
1

|ϕ⟩

|b1⟩

|b2⟩

⟨a∣b⟩
±

bra-ket

⟨a∣
¯
bra

∣b⟩
¯
ket

∣b⟩ ⟨b∣
²
ket-bra

37/1

Getting used to the Ket-Bra notation
What is Π1 ∣φ⟩?

Π1 ∣φ⟩ = ⟨b1∣φ⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

IP between
∣b1⟩and ∣φ⟩

∣b1⟩ + ⟨b2∣φ⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

IP between
∣b2⟩and ∣φ⟩

∣b2⟩

Π1 ∣φ⟩ = ⟨b1∣φ⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

scalar

∣b1⟩
°

vector

+ ⟨b2∣φ⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
scalar

∣b2⟩
°

vector

Π1 ∣φ⟩ = ∣b1⟩
°

vector

⟨b1∣φ⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

scalar

+ ∣b2⟩
°

vector

⟨b2∣φ⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
scalar

Π1 ∣φ⟩ = ∣b1⟩ ⟨b1∣φ⟩ + ∣b2⟩ ⟨b2∣φ⟩

Π1 ∣φ⟩ = (∣b1⟩ ⟨b1∣ + ∣b2⟩ ⟨b2∣)
´¹¹¹¸¹¹¶

Π1

∣φ⟩

0
0
1

Π1 projects

onto subspace

0
1
0

0
0
1

|ϕ⟩

|b1⟩

|b2⟩

⟨a∣b⟩
±

bra-ket

⟨a∣
¯
bra

∣b⟩
¯
ket

∣b⟩ ⟨b∣
²
ket-bra

37/1

Getting used to the Ket-Bra notation
What is Π1 ∣φ⟩?

Π1 ∣φ⟩ = ⟨b1∣φ⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

IP between
∣b1⟩and ∣φ⟩

∣b1⟩ + ⟨b2∣φ⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

IP between
∣b2⟩and ∣φ⟩

∣b2⟩

Π1 ∣φ⟩ = ⟨b1∣φ⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

scalar

∣b1⟩
°

vector

+ ⟨b2∣φ⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
scalar

∣b2⟩
°

vector

Π1 ∣φ⟩ = ∣b1⟩
°

vector

⟨b1∣φ⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

scalar

+ ∣b2⟩
°

vector

⟨b2∣φ⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
scalar

Π1 ∣φ⟩ = ∣b1⟩ ⟨b1∣φ⟩ + ∣b2⟩ ⟨b2∣φ⟩

Π1 ∣φ⟩ = (∣b1⟩ ⟨b1∣ + ∣b2⟩ ⟨b2∣)
´¹¹¹¸¹¹¶

Π1

∣φ⟩

0
0
1

Π1 projects

onto subspace

0
1
0

0
0
1

|ϕ⟩

|b1⟩

|b2⟩

⟨a∣b⟩
±

bra-ket

⟨a∣
¯
bra

∣b⟩
¯
ket

∣b⟩ ⟨b∣
²
ket-bra

37/1

Getting used to the Ket-Bra notation
What is Π1 ∣φ⟩?

Π1 ∣φ⟩ = ⟨b1∣φ⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

IP between
∣b1⟩and ∣φ⟩

∣b1⟩ + ⟨b2∣φ⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

IP between
∣b2⟩and ∣φ⟩

∣b2⟩

Π1 ∣φ⟩ = ⟨b1∣φ⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

scalar

∣b1⟩
°

vector

+ ⟨b2∣φ⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
scalar

∣b2⟩
°

vector

Π1 ∣φ⟩ = ∣b1⟩
°

vector

⟨b1∣φ⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

scalar

+ ∣b2⟩
°

vector

⟨b2∣φ⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
scalar

Π1 ∣φ⟩ = ∣b1⟩ ⟨b1∣φ⟩ + ∣b2⟩ ⟨b2∣φ⟩

Π1 ∣φ⟩ = (∣b1⟩ ⟨b1∣ + ∣b2⟩ ⟨b2∣)
´¹¹¹¸¹¹¶

Π1

∣φ⟩

0
0
1

Π1 projects

onto subspace

0
1
0

0
0
1

|ϕ⟩

|b1⟩

|b2⟩

⟨a∣b⟩
±

bra-ket

⟨a∣
¯
bra

∣b⟩
¯
ket

∣b⟩ ⟨b∣
²
ket-bra

37/1

Getting used to the Ket-Bra notation
What is Π1 ∣φ⟩?

Π1 ∣φ⟩ = ⟨b1∣φ⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

IP between
∣b1⟩and ∣φ⟩

∣b1⟩ + ⟨b2∣φ⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

IP between
∣b2⟩and ∣φ⟩

∣b2⟩

Π1 ∣φ⟩ = ⟨b1∣φ⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

scalar

∣b1⟩
°

vector

+ ⟨b2∣φ⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
scalar

∣b2⟩
°

vector

Π1 ∣φ⟩ = ∣b1⟩
°

vector

⟨b1∣φ⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

scalar

+ ∣b2⟩
°

vector

⟨b2∣φ⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
scalar

Π1 ∣φ⟩ = ∣b1⟩ ⟨b1∣φ⟩ + ∣b2⟩ ⟨b2∣φ⟩

Π1 ∣φ⟩ = (∣b1⟩ ⟨b1∣ + ∣b2⟩ ⟨b2∣)
´¹¹¹¸¹¹¶

Π1

∣φ⟩

0
0
1

Π1 projects

onto subspace

0
1
0

0
0
1

|ϕ⟩

|b1⟩

|b2⟩

⟨a∣b⟩
±

bra-ket

⟨a∣
¯
bra

∣b⟩
¯
ket

∣b⟩ ⟨b∣
²
ket-bra

37/1

Getting used to the Ket-Bra notation
What is Π1 ∣φ⟩?

Π1 ∣φ⟩ = ⟨b1∣φ⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

IP between
∣b1⟩and ∣φ⟩

∣b1⟩ + ⟨b2∣φ⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

IP between
∣b2⟩and ∣φ⟩

∣b2⟩

Π1 ∣φ⟩ = ⟨b1∣φ⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

scalar

∣b1⟩
°

vector

+ ⟨b2∣φ⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
scalar

∣b2⟩
°

vector

Π1 ∣φ⟩ = ∣b1⟩
°

vector

⟨b1∣φ⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

scalar

+ ∣b2⟩
°

vector

⟨b2∣φ⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
scalar

Π1 ∣φ⟩ = ∣b1⟩ ⟨b1∣φ⟩ + ∣b2⟩ ⟨b2∣φ⟩

Π1 ∣φ⟩ = (∣b1⟩ ⟨b1∣ + ∣b2⟩ ⟨b2∣)
´¹¹¹¸¹¹¶

Π1

∣φ⟩

0
0
1

Π1 projects

onto subspace

0
1
0

0
0
1

|ϕ⟩

|b1⟩

|b2⟩

⟨a∣b⟩
±

bra-ket

⟨a∣
¯
bra

∣b⟩
¯
ket

∣b⟩ ⟨b∣
²
ket-bra

37/1

Ket-Bra Notation
The ket-bra notation is very useful in simplifying computation.

Suppose Π is a projection onto subspace W ⊆H.

Suppose {∣v1⟩ ,⋯, ∣vr⟩} ∈W is an orthonormal basis (ONB).

Π = ∣v1⟩ ⟨v1∣ + ∣v2⟩ ⟨v2∣ +⋯ ∣vr⟩ ⟨vr ∣ = ∑
r
i=1 ∣vi⟩ ⟨vi∣

Π ∣φ⟩ = ∑i ∣vi⟩ ⟨vi∣ ∣φ⟩
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

= ∑i ∣vi⟩ ⟨vi∣φ⟩
²
scalar

= ∑i ⟨vi∣φ⟩
²
scalar

∣vi⟩
°

vector

∣ ⟨vi∣φ⟩ ∣ = Length of projection of ∣φ⟩ on ∣vi⟩

∑i ⟨vi∣φ⟩ ∣vi⟩ = Projection of ∣φ⟩ on subspace W

Bra-ket Notation ∣a⟩ ⟨b∣ ∣c⟩ = ⟨b∣c⟩ ∣a⟩

Suppose HA has ONB {∣v1⟩⋯, ∣vd⟩}, then any linear transformation T ∶H →H
can be expressed as

T =
d

∑
i=1

d

∑
j=1

tij ∣vi⟩ ⟨vj ∣ .

Scalars tij ∶ 1 ≤ i, j ≤ d completely characterize T

38/1

Ket-Bra Notation
The ket-bra notation is very useful in simplifying computation.

Suppose Π is a projection onto subspace W ⊆H.

Suppose {∣v1⟩ ,⋯, ∣vr⟩} ∈W is an orthonormal basis (ONB).

Π = ∣v1⟩ ⟨v1∣ + ∣v2⟩ ⟨v2∣ +⋯ ∣vr⟩ ⟨vr ∣ = ∑
r
i=1 ∣vi⟩ ⟨vi∣

Π ∣φ⟩ = ∑i ∣vi⟩ ⟨vi∣ ∣φ⟩
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

= ∑i ∣vi⟩ ⟨vi∣φ⟩
²
scalar

= ∑i ⟨vi∣φ⟩
²
scalar

∣vi⟩
°

vector

∣ ⟨vi∣φ⟩ ∣ = Length of projection of ∣φ⟩ on ∣vi⟩

∑i ⟨vi∣φ⟩ ∣vi⟩ = Projection of ∣φ⟩ on subspace W

Bra-ket Notation ∣a⟩ ⟨b∣ ∣c⟩ = ⟨b∣c⟩ ∣a⟩

Suppose HA has ONB {∣v1⟩⋯, ∣vd⟩}, then any linear transformation T ∶H →H
can be expressed as

T =
d

∑
i=1

d

∑
j=1

tij ∣vi⟩ ⟨vj ∣ . Scalars tij ∶ 1 ≤ i, j ≤ d completely characterize T

38/1

Ket-Bra Notation

T = ∣a⟩ ⟨b∣

T ∣c⟩ = ∣a⟩ ⟨b∣ ∣c⟩ = ⟨b∣c⟩ ∣a⟩

What is T doing on ∣c⟩?

Scaling ∣a⟩ by length of projection of ∣c⟩ on ∣b⟩.

∣⋅⟩ ⟨⋅∣ is an Operator ⟨⋅∣ ∣⋅⟩ = ⟨⋅∣⋅⟩ is a scalar

∣⋅⟩ is an vector ⟨⋅∣ is a linear functional

39/1

Ket-Bra Notation

T = ∣a⟩ ⟨b∣

T ∣c⟩ = ∣a⟩ ⟨b∣ ∣c⟩ = ⟨b∣c⟩ ∣a⟩

What is T doing on ∣c⟩?

Scaling ∣a⟩ by length of projection of ∣c⟩ on ∣b⟩.

∣⋅⟩ ⟨⋅∣ is an Operator ⟨⋅∣ ∣⋅⟩ = ⟨⋅∣⋅⟩ is a scalar

∣⋅⟩ is an vector ⟨⋅∣ is a linear functional

39/1

Ket-Bra Notation

T = ∣a⟩ ⟨b∣

T ∣c⟩ = ∣a⟩ ⟨b∣ ∣c⟩ = ⟨b∣c⟩ ∣a⟩

What is T doing on ∣c⟩?

Scaling ∣a⟩ by length of projection of ∣c⟩ on ∣b⟩.

∣⋅⟩ ⟨⋅∣ is an Operator ⟨⋅∣ ∣⋅⟩ = ⟨⋅∣⋅⟩ is a scalar

∣⋅⟩ is an vector ⟨⋅∣ is a linear functional

39/1

Examples of Ket-Bra notation with Tensor Products

Recall Operative Distributive Law

(A⊗B)(∣v⟩⊗ ∣w⟩) = A ∣v⟩⊗B ∣w⟩ Operator Dist. Law (ODL) 1

40/1

Examples of Ket-Bra notation with Tensor Products

Suppose ∣0⟩ ⟨0∣ ∶ R2 → R2 (Op. on our qubit space : say A−space)

Suppose IB ∶ R2 → R2 (A second qubit space : B−space)

What is ∣0⟩ ⟨0∣⊗ IB ∶ R2 ⊗R2 → R2 ⊗R2???

IB = ∣0⟩ ⟨0∣ + ∣1⟩ ⟨1∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Sum of two operators

Recall ODL 3 A⊗ (B1 +B2) = A⊗B1 +A⊗B2

∣0⟩ ⟨0∣⊗ (∣0⟩ ⟨0∣ + ∣1⟩ ⟨1∣) = ∣0⟩ ⟨0∣⊗ ∣0⟩ ⟨0∣ + ∣0⟩ ⟨0∣⊗ ∣1⟩ ⟨1∣

= ∣00⟩ ⟨00∣ + ∣01⟩ ⟨01∣

∣0⟩ ⟨0∣⊗ IB = ∣00⟩ ⟨00∣ + ∣01⟩ ⟨01∣ = Projection on subspace spanned by ∣00⟩ , ∣01⟩.

41/1

Examples of Ket-Bra notation with Tensor Products

Suppose ∣0⟩ ⟨0∣ ∶ R2 → R2 (Op. on our qubit space : say A−space)

Suppose IB ∶ R2 → R2 (A second qubit space : B−space)

What is ∣0⟩ ⟨0∣⊗ IB ∶ R2 ⊗R2 → R2 ⊗R2???

IB = ∣0⟩ ⟨0∣ + ∣1⟩ ⟨1∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Sum of two operators

Recall ODL 3 A⊗ (B1 +B2) = A⊗B1 +A⊗B2

∣0⟩ ⟨0∣⊗ (∣0⟩ ⟨0∣ + ∣1⟩ ⟨1∣) = ∣0⟩ ⟨0∣⊗ ∣0⟩ ⟨0∣ + ∣0⟩ ⟨0∣⊗ ∣1⟩ ⟨1∣

= ∣00⟩ ⟨00∣ + ∣01⟩ ⟨01∣

∣0⟩ ⟨0∣⊗ IB = ∣00⟩ ⟨00∣ + ∣01⟩ ⟨01∣ = Projection on subspace spanned by ∣00⟩ , ∣01⟩.

41/1

Examples of Ket-Bra notation with Tensor Products

Suppose ∣0⟩ ⟨0∣ ∶ R2 → R2 (Op. on our qubit space : say A−space)

Suppose IB ∶ R2 → R2 (A second qubit space : B−space)

What is ∣0⟩ ⟨0∣⊗ IB ∶ R2 ⊗R2 → R2 ⊗R2???

IB = ∣0⟩ ⟨0∣ + ∣1⟩ ⟨1∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Sum of two operators

Recall ODL 3 A⊗ (B1 +B2) = A⊗B1 +A⊗B2

∣0⟩ ⟨0∣⊗ (∣0⟩ ⟨0∣ + ∣1⟩ ⟨1∣) = ∣0⟩ ⟨0∣⊗ ∣0⟩ ⟨0∣ + ∣0⟩ ⟨0∣⊗ ∣1⟩ ⟨1∣

= ∣00⟩ ⟨00∣ + ∣01⟩ ⟨01∣

∣0⟩ ⟨0∣⊗ IB = ∣00⟩ ⟨00∣ + ∣01⟩ ⟨01∣ = Projection on subspace spanned by ∣00⟩ , ∣01⟩.

41/1

Examples of Ket-Bra notation with Tensor Products

Suppose ∣0⟩ ⟨0∣ ∶ R2 → R2 (Op. on our qubit space : say A−space)

Suppose IB ∶ R2 → R2 (A second qubit space : B−space)

What is ∣0⟩ ⟨0∣⊗ IB ∶ R2 ⊗R2 → R2 ⊗R2???

IB = ∣0⟩ ⟨0∣ + ∣1⟩ ⟨1∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Sum of two operators

Recall ODL 3 A⊗ (B1 +B2) = A⊗B1 +A⊗B2

∣0⟩ ⟨0∣⊗ (∣0⟩ ⟨0∣ + ∣1⟩ ⟨1∣) = ∣0⟩ ⟨0∣⊗ ∣0⟩ ⟨0∣ + ∣0⟩ ⟨0∣⊗ ∣1⟩ ⟨1∣

= ∣00⟩ ⟨00∣ + ∣01⟩ ⟨01∣

∣0⟩ ⟨0∣⊗ IB = ∣00⟩ ⟨00∣ + ∣01⟩ ⟨01∣ = Projection on subspace spanned by ∣00⟩ , ∣01⟩.

41/1

Examples of Ket-Bra notation with Tensor Products

Suppose ∣0⟩ ⟨0∣ ∶ R2 → R2 (Op. on our qubit space : say A−space)

Suppose IB ∶ R2 → R2 (A second qubit space : B−space)

What is ∣0⟩ ⟨0∣⊗ IB ∶ R2 ⊗R2 → R2 ⊗R2???

IB = ∣0⟩ ⟨0∣ + ∣1⟩ ⟨1∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Sum of two operators

Recall ODL 3 A⊗ (B1 +B2) = A⊗B1 +A⊗B2

∣0⟩ ⟨0∣⊗ (∣0⟩ ⟨0∣ + ∣1⟩ ⟨1∣) = ∣0⟩ ⟨0∣⊗ ∣0⟩ ⟨0∣ + ∣0⟩ ⟨0∣⊗ ∣1⟩ ⟨1∣

= ∣00⟩ ⟨00∣ + ∣01⟩ ⟨01∣

∣0⟩ ⟨0∣⊗ IB = ∣00⟩ ⟨00∣ + ∣01⟩ ⟨01∣ = Projection on subspace spanned by ∣00⟩ , ∣01⟩.

41/1

Points to keep in mind

∣0⟩ ⟨0∣⊗ IB = ∣00⟩ ⟨00∣ + ∣01⟩ ⟨01∣ = Projection on subspace spanned by ∣00⟩ , ∣01⟩.

∣1⟩ ⟨1∣⊗ IB = ∣10⟩ ⟨10∣ + ∣11⟩ ⟨11∣ = Projection on subspace spanned by ∣10⟩ , ∣11⟩.

42/1

Entangled pair can be separated, Acted upon Individually

Components of the joint system can be separated, Acted upon Individually

First Qubit Second
Qubit

Alice in
Chennai

Bob in
Bangalore

|Φ+⟩AB

Suppose Alice performs measurement {Π1,⋯,ΠK}. Bob remains silent.

?? Effect on Joint system ??

Equivalent to measurement {Π1 ⊗ IB ,⋯,ΠK ⊗ IB} on joint system.

Only Alice sees outcome. Joint state collapses.

43/1

Measurement on a Distributed Entangled State

Component A

Alice Bob

|Φ+⟩AB
Component B

∣Φ+⟩ = (
1

√
2
∣0⟩⊗ ∣0⟩ +

1
√

2
∣1⟩⊗ ∣1⟩)

Alice performs measurement Bob does nothing.
{Π0 = ∣0⟩ ⟨0∣ ,Π1 = ∣1⟩ ⟨1∣}

Measurement on joint system
{∣0⟩ ⟨0∣⊗ IB , ∣1⟩ ⟨1∣⊗ IB}

equivalent to

{
Π0 ⊗ IB = ∣00⟩ ⟨00∣ + ∣01⟩ ⟨01∣ ,
Π1 ⊗ IB = ∣10⟩ ⟨10∣ + ∣11⟩ ⟨11∣

}

Outcome 0 with prob. 1
2

.
Outcome 0 ⇒ State collapses to ∣00⟩

Outcome 1 with prob. 1
2

.
Outcome 0 ⇒ State collapses to ∣11⟩

44/1

Measurement on a Distributed Entangled State

Component A

Alice Bob

|Φ+⟩AB
Component B

∣Φ+⟩ = (
1

√
2
∣0⟩⊗ ∣0⟩ +

1
√

2
∣1⟩⊗ ∣1⟩)

Alice performs measurement Bob does nothing.
{Π0 = ∣0⟩ ⟨0∣ ,Π1 = ∣1⟩ ⟨1∣}

Measurement on joint system
{∣0⟩ ⟨0∣⊗ IB , ∣1⟩ ⟨1∣⊗ IB}

equivalent to

{
Π0 ⊗ IB = ∣00⟩ ⟨00∣ + ∣01⟩ ⟨01∣ ,
Π1 ⊗ IB = ∣10⟩ ⟨10∣ + ∣11⟩ ⟨11∣

}

Outcome 0 with prob. 1
2

.
Outcome 0 ⇒ State collapses to ∣00⟩

Outcome 1 with prob. 1
2

.
Outcome 0 ⇒ State collapses to ∣11⟩

44/1

Measurement on a Distributed Entangled State

Component A

Alice Bob

|Φ+⟩AB
Component B

∣Φ+⟩ = (
1

√
2
∣0⟩⊗ ∣0⟩ +

1
√

2
∣1⟩⊗ ∣1⟩)

Alice performs measurement Bob does nothing.
{Π0 = ∣0⟩ ⟨0∣ ,Π1 = ∣1⟩ ⟨1∣}

Measurement on joint system
{∣0⟩ ⟨0∣⊗ IB , ∣1⟩ ⟨1∣⊗ IB}

equivalent to

{
Π0 ⊗ IB = ∣00⟩ ⟨00∣ + ∣01⟩ ⟨01∣ ,
Π1 ⊗ IB = ∣10⟩ ⟨10∣ + ∣11⟩ ⟨11∣

}

Outcome 0 with prob. 1
2

.
Outcome 0 ⇒ State collapses to ∣00⟩

Outcome 1 with prob. 1
2

.
Outcome 0 ⇒ State collapses to ∣11⟩

44/1

Measurement on a Distributed Entangled State

Component A

Alice Bob

|Φ+⟩AB
Component B

∣Φ+⟩ = (
1

√
2
∣0⟩⊗ ∣0⟩ +

1
√

2
∣1⟩⊗ ∣1⟩)

Alice performs measurement Bob does nothing.
{Π0 = ∣0⟩ ⟨0∣ ,Π1 = ∣1⟩ ⟨1∣}

Measurement on joint system

{
Π0 ⊗ IB = ∣00⟩ ⟨00∣ + ∣01⟩ ⟨01∣ ,
Π1 ⊗ IB = ∣10⟩ ⟨10∣ + ∣11⟩ ⟨11∣

}

Outcome 0 with prob. 1
2

.
Outcome 0 ⇒ State collapses to ∣00⟩

Outcome 1 with prob. 1
2

.
Outcome 0 ⇒ State collapses to ∣11⟩

44/1

Measurement on a Distributed Entangled State

Component A

Alice Bob

|Φ+⟩AB
Component B

∣Φ+⟩ = (
1

√
2
∣00⟩ +

1
√

2
∣11⟩)

Alice performs measurement Bob does nothing.
{Π0 = ∣0⟩ ⟨0∣ ,Π1 = ∣1⟩ ⟨1∣}

Measurement on joint system

{
Π0 ⊗ IB = ∣00⟩ ⟨00∣ + ∣01⟩ ⟨01∣ ,
Π1 ⊗ IB = ∣10⟩ ⟨10∣ + ∣11⟩ ⟨11∣

}

Outcome 0 with prob. 1
2

.
Outcome 0 ⇒ State collapses to ∣00⟩

Outcome 1 with prob. 1
2

.
Outcome 0 ⇒ State collapses to ∣11⟩

44/1

Measurement on a Distributed Entangled State

Component A

Alice Bob

|Φ+⟩AB
Component B

∣Φ+⟩ = (
1

√
2
∣00⟩ +

1
√

2
∣11⟩)

Alice performs measurement Bob does nothing.
{Π0 = ∣0⟩ ⟨0∣ ,Π1 = ∣1⟩ ⟨1∣}

Measurement on joint system

{
Π0 ⊗ IB = ∣00⟩ ⟨00∣ + ∣01⟩ ⟨01∣ ,
Π1 ⊗ IB = ∣10⟩ ⟨10∣ + ∣11⟩ ⟨11∣

}

Outcome 0 with prob. 1
2

.
Outcome 0 ⇒ State collapses to ∣00⟩

Outcome 1 with prob. 1
2

.
Outcome 0 ⇒ State collapses to ∣11⟩

44/1

Measurement on a Distributed Entangled State

Component A

Alice Bob

|Φ+⟩AB
Component B

∣Φ+⟩ = (
1

√
2
∣00⟩ +

1
√

2
∣11⟩)

Alice performs measurement Bob does nothing.
{Π0 = ∣0⟩ ⟨0∣ ,Π1 = ∣1⟩ ⟨1∣}

Measurement on joint system

{
Π0 ⊗ IB = ∣00⟩ ⟨00∣ + ∣01⟩ ⟨01∣ ,
Π1 ⊗ IB = ∣10⟩ ⟨10∣ + ∣11⟩ ⟨11∣

}

Outcome 0 with prob. 1
2

.
Outcome 0 ⇒ State collapses to ∣00⟩

Outcome 1 with prob. 1
2

.
Outcome 0 ⇒ State collapses to ∣11⟩

44/1

Measurement on a Distributed Entangled State

Component A

Alice Bob

|Φ+⟩AB
Component B

∣Φ+⟩ = (
1

√
2
∣00⟩ +

1
√

2
∣11⟩)

Alice performs measurement Bob does nothing.
{Π0 = ∣0⟩ ⟨0∣ ,Π1 = ∣1⟩ ⟨1∣}

Post Measurement on joint system
Outcome 0 with prob. 1

2
.

State collapses to ∣00⟩

States are UNENTANGLED

Outcome 0 and state ∣0⟩ No Outcome. State ∣0⟩

Meas. {∣0⟩ ⟨0∣ , ∣1⟩ ⟨1∣}

Sure shot outcome 0.

45/1

Distributed Generation of common randomness

Component A

Alice Bob

|Φ+⟩AB
Component B

∣Φ+⟩ = (
1

√
2
∣00⟩ +

1
√

2
∣11⟩)

Alice performs measurement Bob does nothing.
{Π0 = ∣0⟩ ⟨0∣ ,Π1 = ∣1⟩ ⟨1∣}

Post Measurement on joint system
Outcome 1 with prob. 1

2
.

State collapses to ∣11⟩

States are UNENTANGLED

Outcome 1 and state ∣1⟩ No Outcome. State ∣1⟩

Meas. {∣0⟩ ⟨0∣ , ∣1⟩ ⟨1∣}

Sure shot outcome 1.

46/1

Distributed Generation of common randomness

Component A

Alice Bob

|Φ+⟩AB
Component B

∣Φ+⟩ = (
1

√
2
∣00⟩ +

1
√

2
∣11⟩)

Alice in Chennai, Bob in Bangalore can generate common randomness.

Experimentally, components of entangled pair are separated by 1100 kms!!!!

47/1

Idea Points to take Home

Entangled particles evolve simultanneously.

If you perturb one, the other gets perturbed.

If you wish to perturb the other, you can perturb your qubit!!!

48/1

A Quantum system cannot be Cloned - The No-Cloning Theorem

The contents of a (classical) register can be copied onto another register.

However, the state of a quantum system cannot be duplicated or cloned.

Given an arbitrary state ∣φ⟩, there exists no unitary transformation that can duplicate
this state.

Theorem
There exists no unitary transformation U ∶H⊗H →H⊗H and a state ∣ω⟩ ∈H such
that

U (∣φ⟩⊗ ∣ω⟩) = ∣φ⟩⊗ ∣φ⟩

holds for every ∣φ⟩ ∈H.

49/1

2. Quantum Gates

50/1

Boolean Gates

A classical computation ≡ a map f ∶ {0,1}n → {0,1}n.

Computation is reversible if the input bits can be determined from the output bits, i.e.,
f is invertible (1 ∶ 1 and ONTO).

Example : NAND is NOT reversible.

Example : Controlled NOT (C-NOT)

a

b

a

a ⊕ b

Example : CC-NOT (C-NOT) is
reversible.

a

b

a

c⊕(a∧b)
c

b

51/1

Boolean Gates

A classical computation ≡ a map f ∶ {0,1}n → {0,1}n.

Computation is reversible if the input bits can be determined from the output bits, i.e.,
f is invertible (1 ∶ 1 and ONTO).

Example : NAND is NOT reversible.

Example : Controlled NOT (C-NOT)

a

b

a

a ⊕ b

a

a ⊕a ⊕ b b=

Example : CC-NOT (C-NOT) is
reversible.

a

b

a

c⊕(a∧b)
c

b

51/1

Boolean Gates

A classical computation ≡ a map f ∶ {0,1}n → {0,1}n.

Computation is reversible if the input bits can be determined from the output bits, i.e.,
f is invertible (1 ∶ 1 and ONTO).

Example : NAND is NOT reversible.

Example : Controlled NOT (C-NOT) is reversible.

a

b

a

a ⊕ b

Example : CC-NOT (C-NOT) is
reversible.

a

b

a

c⊕(a∧b)
c

b

51/1

Boolean Gates

A classical computation ≡ a map f ∶ {0,1}n → {0,1}n.

Computation is reversible if the input bits can be determined from the output bits, i.e.,
f is invertible (1 ∶ 1 and ONTO).

Example : NAND is NOT reversible.

Example : Controlled NOT (C-NOT) is reversible.

a

b

a

a ⊕ b

Example : CC-NOT (C-NOT) is
reversible.

a

b

a

c⊕(a∧b)
c

b

51/1

Quantum Gates and Operations are Unitary Transformations

Quantum circuits map superposition of n qubits into a superposition of n qubits.

Quantum Gate ∶ ∣φ⟩↦ ∣ω⟩.

Valid Transformations : 1) Norm Preservation ⟨φ∣φ⟩ = ⟨ω∣ω⟩. 2) Linearity.

Non-Linearity results in physical unrealizability.

Quantum Gate is a Unitary Transformation.

0
0
1

|ϕ⟩

H

U|ϕ⟩

0
0
1

0
1
0

1
0
0

Quantum Operations : Unitary Transformations Mapping n qubits to n qubits.

Operation of a Quantum Gate : Completely specified by action on its bases.

Only need ∣0⟩↦ ? and ∣1⟩↦ ?

52/1

Quantum Gates and Operations are Unitary Transformations

Quantum circuits map superposition of n qubits into a superposition of n qubits.

Quantum Gate ∶ ∣φ⟩↦ ∣ω⟩.

Valid Transformations : 1) Norm Preservation ⟨φ∣φ⟩ = ⟨ω∣ω⟩. 2) Linearity.

Non-Linearity results in physical unrealizability.

Quantum Gate is a Unitary Transformation.

0
0
1

|ϕ⟩

H

U|ϕ⟩

0
0
1

0
1
0

1
0
0

Quantum Operations : Unitary Transformations Mapping n qubits to n qubits.

Operation of a Quantum Gate : Completely specified by action on its bases.

Only need ∣0⟩↦ ? and ∣1⟩↦ ?

52/1

Single Qubit Gates - Pauli gates

Identity Gate

I

I ∶
∣0⟩↦ ∣0⟩
∣1⟩↦ ∣1⟩

Pauli X− Gate

X
a|0⟩ b+ |1⟩ b|0⟩ a+ |1⟩

X ∶
∣0⟩↦ ∣1⟩
∣1⟩↦ ∣0⟩

Matrix Representation

X = [
0 1
1 0

]

Pauli Z−Gate

Z
a|0⟩ b+ |1⟩ a|0⟩ - b|1⟩

Z ∶
∣0⟩↦ ∣0⟩
∣1⟩↦ − ∣1⟩

Matrix Representation Z = [
1 0
0 −1

]

Pauli Y −Gate

Y
a|0⟩ b+ |1⟩ ib|0⟩ - ia|1⟩

Y ∶
∣0⟩↦ i ∣1⟩
∣1⟩↦ −i ∣0⟩

Matrix Representation Y = [
0 −i
i 0

]

53/1

Single Qubit Gates - Pauli gates

Identity Gate

I

I ∶
∣0⟩↦ ∣0⟩
∣1⟩↦ ∣1⟩

Pauli X− Gate

X
a|0⟩ b+ |1⟩ b|0⟩ a+ |1⟩

X ∶
∣0⟩↦ ∣1⟩
∣1⟩↦ ∣0⟩

Matrix Representation

X = [
0 1
1 0

]

Pauli Z−Gate

Z
a|0⟩ b+ |1⟩ a|0⟩ - b|1⟩

Z ∶
∣0⟩↦ ∣0⟩
∣1⟩↦ − ∣1⟩

Matrix Representation Z = [
1 0
0 −1

]

Pauli Y −Gate

Y
a|0⟩ b+ |1⟩ ib|0⟩ - ia|1⟩

Y ∶
∣0⟩↦ i ∣1⟩
∣1⟩↦ −i ∣0⟩

Matrix Representation Y = [
0 −i
i 0

]

53/1

Single Qubit Gates - Pauli gates

Identity Gate

I

I ∶
∣0⟩↦ ∣0⟩
∣1⟩↦ ∣1⟩

Pauli X− Gate

X
a|0⟩ b+ |1⟩ b|0⟩ a+ |1⟩

X ∶
∣0⟩↦ ∣1⟩
∣1⟩↦ ∣0⟩

Matrix Representation

X = [
0 1
1 0

]

Pauli Z−Gate

Z
a|0⟩ b+ |1⟩ a|0⟩ - b|1⟩

Z ∶
∣0⟩↦ ∣0⟩
∣1⟩↦ − ∣1⟩

Matrix Representation Z = [
1 0
0 −1

]

Pauli Y −Gate

Y
a|0⟩ b+ |1⟩ ib|0⟩ - ia|1⟩

Y ∶
∣0⟩↦ i ∣1⟩
∣1⟩↦ −i ∣0⟩

Matrix Representation Y = [
0 −i
i 0

]

53/1

Single Qubit Gates - Pauli gates

Identity Gate

I

I ∶
∣0⟩↦ ∣0⟩
∣1⟩↦ ∣1⟩

Pauli X− Gate

X
a|0⟩ b+ |1⟩ b|0⟩ a+ |1⟩

X ∶
∣0⟩↦ ∣1⟩
∣1⟩↦ ∣0⟩

Matrix Representation

X = [
0 1
1 0

]

Pauli Z−Gate

Z
a|0⟩ b+ |1⟩ a|0⟩ - b|1⟩

Z ∶
∣0⟩↦ ∣0⟩
∣1⟩↦ − ∣1⟩

Matrix Representation Z = [
1 0
0 −1

]

Pauli Y −Gate

Y
a|0⟩ b+ |1⟩ ib|0⟩ - ia|1⟩

Y ∶
∣0⟩↦ i ∣1⟩
∣1⟩↦ −i ∣0⟩

Matrix Representation Y = [
0 −i
i 0

]

53/1

Playing with the Pauli I,X,Y,Z Gates

I

X
a|0⟩ b+ |1⟩ b|0⟩ a+ |1⟩

Z
a|0⟩ b+ |1⟩ a|0⟩ - b|1⟩

Y
a|0⟩ b+ |1⟩ ib|0⟩ - ia|1⟩

Your task is to recover the qubit a ∣0⟩ + b ∣1⟩.

Which operator will you use if you are given

State you are given Operator to use

a ∣0⟩ − b ∣1⟩

Z

b ∣0⟩ + a ∣1⟩

X

b ∣0⟩ − a ∣1⟩

First Z, then X

54/1

Playing with the Pauli I,X,Y,Z Gates

I

X
a|0⟩ b+ |1⟩ b|0⟩ a+ |1⟩

Z
a|0⟩ b+ |1⟩ a|0⟩ - b|1⟩

Y
a|0⟩ b+ |1⟩ ib|0⟩ - ia|1⟩

Your task is to recover the qubit a ∣0⟩ + b ∣1⟩.

Which operator will you use if you are given

State you are given Operator to use

a ∣0⟩ − b ∣1⟩ Z

b ∣0⟩ + a ∣1⟩ X

b ∣0⟩ − a ∣1⟩ First Z, then X

54/1

The Hadamard Gate and Some Interesting Properties

Hadamard Gate

H

H ∶
∣0⟩↦ 1

√
2
∣0⟩ + 1

√
2
∣1⟩ =∶ ∣+⟩

∣1⟩↦ 1
√

2
∣0⟩ − 1

√
2
∣1⟩ =∶ ∣−⟩

Matrix Representation

H =
1

√
2
[

1 1
1 −1

]

Property 1

(H ⊗H)(∣0⟩⊗ ∣0⟩) =
1

2
(∣0⟩ + ∣1⟩)⊗ (∣0⟩ + ∣1⟩)

=
1

2
(∣00⟩ + ∣01⟩ + ∣10⟩ + ∣11⟩)

H⊗n
∣0⟩⊗n = ∑

(b1,⋯,bn)
∈{0,1}n

1
√

2
n ∣b1⋯bn⟩

All possible bit combinations are stored in
n−qubits.

Property 2

∣b⟩
H
↦

1

∑
z=0

(−1)b⋅z ∣z⟩ ,

∣b1⋯bn⟩
H⊗n

↦ ∑
zn∈{0,1}n

(−1)b1 ⋅z1+⋯+⋯bnzn ∣z1⋯zn⟩

55/1

The Hadamard Gate and Some Interesting Properties

Hadamard Gate

H

H ∶
∣0⟩↦ 1

√
2
∣0⟩ + 1

√
2
∣1⟩ =∶ ∣+⟩

∣1⟩↦ 1
√

2
∣0⟩ − 1

√
2
∣1⟩ =∶ ∣−⟩

Matrix Representation

H =
1

√
2
[

1 1
1 −1

]

Property 1

(H ⊗H)(∣0⟩⊗ ∣0⟩) =
1

2
(∣0⟩ + ∣1⟩)⊗ (∣0⟩ + ∣1⟩)

=
1

2
(∣00⟩ + ∣01⟩ + ∣10⟩ + ∣11⟩)

H⊗n
∣0⟩⊗n = ∑

(b1,⋯,bn)
∈{0,1}n

1
√

2
n ∣b1⋯bn⟩

All possible bit combinations are stored in
n−qubits.

Property 2

∣b⟩
H
↦

1

∑
z=0

(−1)b⋅z ∣z⟩ ,

∣b1⋯bn⟩
H⊗n

↦ ∑
zn∈{0,1}n

(−1)b1 ⋅z1+⋯+⋯bnzn ∣z1⋯zn⟩

55/1

The Hadamard Gate and Some Interesting Properties

Hadamard Gate

H

H ∶
∣0⟩↦ 1

√
2
∣0⟩ + 1

√
2
∣1⟩ =∶ ∣+⟩

∣1⟩↦ 1
√

2
∣0⟩ − 1

√
2
∣1⟩ =∶ ∣−⟩

Matrix Representation

H =
1

√
2
[

1 1
1 −1

]

Property 1

(H ⊗H)(∣0⟩⊗ ∣0⟩) =
1

2
(∣0⟩ + ∣1⟩)⊗ (∣0⟩ + ∣1⟩)

=
1

2
(∣00⟩ + ∣01⟩ + ∣10⟩ + ∣11⟩)

H⊗n
∣0⟩⊗n = ∑

(b1,⋯,bn)
∈{0,1}n

1
√

2
n ∣b1⋯bn⟩

All possible bit combinations are stored in
n−qubits.

Property 2

∣b⟩
H
↦

1

∑
z=0

(−1)b⋅z ∣z⟩ ,

∣b1⋯bn⟩
H⊗n

↦ ∑
zn∈{0,1}n

(−1)b1 ⋅z1+⋯+⋯bnzn ∣z1⋯zn⟩

55/1

The Hadamard Gate and Some Interesting Properties

Hadamard Gate

H

H ∶
∣0⟩↦ 1

√
2
∣0⟩ + 1

√
2
∣1⟩ =∶ ∣+⟩

∣1⟩↦ 1
√

2
∣0⟩ − 1

√
2
∣1⟩ =∶ ∣−⟩

Matrix Representation

H =
1

√
2
[

1 1
1 −1

]

Property 1

(H ⊗H)(∣0⟩⊗ ∣0⟩) =
1

2
(∣0⟩ + ∣1⟩)⊗ (∣0⟩ + ∣1⟩)

=
1

2
(∣00⟩ + ∣01⟩ + ∣10⟩ + ∣11⟩)

H⊗n
∣0⟩⊗n = ∑

(b1,⋯,bn)
∈{0,1}n

1
√

2
n ∣b1⋯bn⟩

All possible bit combinations are stored in
n−qubits.

Property 2

∣0⟩
H
↦ ∣0⟩ + ∣1⟩ , ∣1⟩

H
↦ ∣0⟩ − ∣1⟩

∣0⟩
H
↦ (−1)0⋅0

∣0⟩ + (−1)0⋅1
∣1⟩ ,

∣1⟩
H
↦ (−1)1⋅0

∣0⟩ + (−1)1⋅1
∣1⟩ ,

∣b⟩
H
↦

1

∑
z=0

(−1)b⋅z ∣z⟩ ,

∣b⟩
H
↦

1

∑
z=0

(−1)b⋅z ∣z⟩ ,

∣b1⋯bn⟩
H⊗n

↦ ∑
zn∈{0,1}n

(−1)b1 ⋅z1+⋯+⋯bnzn ∣z1⋯zn⟩

55/1

The Hadamard Gate and Some Interesting Properties

Hadamard Gate

H

H ∶
∣0⟩↦ 1

√
2
∣0⟩ + 1

√
2
∣1⟩ =∶ ∣+⟩

∣1⟩↦ 1
√

2
∣0⟩ − 1

√
2
∣1⟩ =∶ ∣−⟩

Matrix Representation

H =
1

√
2
[

1 1
1 −1

]

Property 1

(H ⊗H)(∣0⟩⊗ ∣0⟩) =
1

2
(∣0⟩ + ∣1⟩)⊗ (∣0⟩ + ∣1⟩)

=
1

2
(∣00⟩ + ∣01⟩ + ∣10⟩ + ∣11⟩)

H⊗n
∣0⟩⊗n = ∑

(b1,⋯,bn)
∈{0,1}n

1
√

2
n ∣b1⋯bn⟩

All possible bit combinations are stored in
n−qubits.

Property 2

∣b⟩
H
↦

1

∑
z=0

(−1)b⋅z ∣z⟩ ,

∣b1⋯bn⟩
H⊗n

↦ ∑
zn∈{0,1}n

(−1)b1 ⋅z1+⋯+⋯bnzn ∣z1⋯zn⟩

55/1

Our Two Qubit C-NOT Gate

C-NOT Gate

a| ⟩

b| ⟩

a| ⟩

a| ⟩ ⊕ b| ⟩

C ∶

∣00⟩↦ ∣00⟩
∣01⟩↦ ∣01⟩
∣10⟩↦ ∣11⟩
∣11⟩↦ ∣10⟩

C ⊗ I ∶

∣000⟩↦ ∣000⟩
∣001⟩↦ ∣001⟩
∣010⟩↦ ∣010⟩
∣011⟩↦ ∣011⟩
∣100⟩↦ ∣110⟩
∣111⟩↦ ∣101⟩
∣100⟩↦ ∣110⟩
∣111⟩↦ ∣101⟩

An Application : Entangle two unentangled systems.

Let ∣ω⟩ = a ∣0⟩ + b ∣1⟩ . ∣θ0⟩ = ∣ω⟩⊗ ∣Φ+⟩AB

Use gate C ⊗ I

∣θ1⟩ = (C ⊗ I) ∣θ0⟩ = (C ⊗ I)(∣ω⟩⊗ ∣Φ+⟩AB)

56/1

Our Two Qubit C-NOT Gate

C-NOT Gate

a| ⟩

b| ⟩

a| ⟩

a| ⟩ ⊕ b| ⟩

C ∶

∣00⟩↦ ∣00⟩
∣01⟩↦ ∣01⟩
∣10⟩↦ ∣11⟩
∣11⟩↦ ∣10⟩

C ⊗ I ∶

∣000⟩↦ ∣000⟩
∣001⟩↦ ∣001⟩
∣010⟩↦ ∣010⟩
∣011⟩↦ ∣011⟩
∣100⟩↦ ∣110⟩
∣111⟩↦ ∣101⟩
∣100⟩↦ ∣110⟩
∣111⟩↦ ∣101⟩

An Application : Entangle two unentangled systems.

|θ0⟩

|ω⟩

|Φ+⟩AB

Qubit A

Qubit B

un
en

tan
gle

d

Let ∣ω⟩ = a ∣0⟩ + b ∣1⟩ . ∣θ0⟩ = ∣ω⟩⊗ ∣Φ+⟩AB

Use gate C ⊗ I

∣θ1⟩ = (C ⊗ I) ∣θ0⟩ = (C ⊗ I)(∣ω⟩⊗ ∣Φ+⟩AB)

56/1

Our Two Qubit C-NOT Gate

C-NOT Gate

a| ⟩

b| ⟩

a| ⟩

a| ⟩ ⊕ b| ⟩

C ∶

∣00⟩↦ ∣00⟩
∣01⟩↦ ∣01⟩
∣10⟩↦ ∣11⟩
∣11⟩↦ ∣10⟩

C ⊗ I ∶

∣000⟩↦ ∣000⟩
∣001⟩↦ ∣001⟩
∣010⟩↦ ∣010⟩
∣011⟩↦ ∣011⟩
∣100⟩↦ ∣110⟩
∣111⟩↦ ∣101⟩
∣100⟩↦ ∣110⟩
∣111⟩↦ ∣101⟩

An Application : Entangle two unentangled systems.

|θ0⟩

|ω⟩

|Φ+⟩AB

Qubit A

Qubit B

un
en

tan
gle

d

Let ∣ω⟩ = a ∣0⟩ + b ∣1⟩ . ∣θ0⟩ = ∣ω⟩⊗ ∣Φ+⟩AB

Use gate C ⊗ I

∣θ1⟩ = (C ⊗ I) ∣θ0⟩ = (C ⊗ I)(∣ω⟩⊗ ∣Φ+⟩AB)

56/1

Our Two Qubit C-NOT Gate

C-NOT Gate

a| ⟩

b| ⟩

a| ⟩

a| ⟩ ⊕ b| ⟩

C ∶

∣00⟩↦ ∣00⟩
∣01⟩↦ ∣01⟩
∣10⟩↦ ∣11⟩
∣11⟩↦ ∣10⟩

C ⊗ I ∶

∣000⟩↦ ∣000⟩
∣001⟩↦ ∣001⟩
∣010⟩↦ ∣010⟩
∣011⟩↦ ∣011⟩
∣100⟩↦ ∣110⟩
∣111⟩↦ ∣101⟩
∣100⟩↦ ∣110⟩
∣111⟩↦ ∣101⟩

An Application : Entangle two unentangled systems.

|θ0⟩

|ω⟩

|Φ+⟩AB

Qubit A

Qubit B

Step 1 : Entangle

all qubits

|θ1⟩

Gets
entangled

Let ∣ω⟩ = a ∣0⟩ + b ∣1⟩ . ∣θ0⟩ = ∣ω⟩⊗ ∣Φ+⟩AB

Use gate C ⊗ I

∣θ1⟩ = (C ⊗ I) ∣θ0⟩ = (C ⊗ I)(∣ω⟩⊗ ∣Φ+⟩AB)

56/1

3. Quantum Protocols

57/1

Quantum Teleportation

No Cloning Theorem : No Replication of qubits.

Can we transport them?

Alice Bob

a|0⟩ b+ |1⟩
Goal : Transport Qubit

Resource : Shared entangled state ∣Φ+⟩ = 1
√

2
∣00⟩ + 1

√
2
∣11⟩ and 2 classical bits suffice.

58/1

Quantum Teleportation

No Cloning Theorem : No Replication of qubits.

Can we transport them? If YES, what resources do we need?

Alice Bob

a|0⟩ b+ |1⟩
Goal : Transport Qubit

Resource : Shared entangled state ∣Φ+⟩ = 1
√

2
∣00⟩ + 1

√
2
∣11⟩ and 2 classical bits suffice.

58/1

Quantum Teleportation

No Cloning Theorem : No Replication of qubits.

Can we transport them? If YES, what resources do we need?

Qubit A

Alice Bob

|Φ+⟩AB Qubit B

a|0⟩ b+ |1⟩
Goal : Transport Qubit

2 classical
bits

Resource : Shared entangled state ∣Φ+⟩ = 1
√

2
∣00⟩ + 1

√
2
∣11⟩ and 2 classical bits suffice.

58/1

The Technique behind Teleportation

Qubit A

Alice Bob

|Φ+⟩AB Qubit B

|ω
A

⟩ = a|0⟩ b+ |1⟩

2 classical
bits

Goal : Transport
Qubit

High-Level Technique : ‘Induce’ ∣ωA⟩ on to Qubit B of ∣Φ+⟩AB . HOW?

Entangled qubits evolve simultaneously.

Alice has ∣ωA⟩ AND first qubit of ∣Φ+⟩AB .

Step 1 : Entangle ∣Φ+⟩AB with ∣ωA⟩ by Alice entangling her two qubits.

Step 2 : Alice cleverly evolves her two qubits. Bob’s entangled qubit evolves!!!

59/1

The Technique behind Teleportation

Qubit A

Alice Bob

|Φ+⟩AB Qubit B

|ω
A

⟩ = a|0⟩ b+ |1⟩

2 classical
bits

Attempt to induce

High-Level Technique : ‘Induce’ ∣ωA⟩ on to Qubit B of ∣Φ+⟩AB .

HOW?

Entangled qubits evolve simultaneously.

Alice has ∣ωA⟩ AND first qubit of ∣Φ+⟩AB .

Step 1 : Entangle ∣Φ+⟩AB with ∣ωA⟩ by Alice entangling her two qubits.

Step 2 : Alice cleverly evolves her two qubits. Bob’s entangled qubit evolves!!!

59/1

The Technique behind Teleportation

Qubit A

Alice Bob

|Φ+⟩AB Qubit B

|ω
A

⟩ = a|0⟩ b+ |1⟩

2 classical
bits

Attempt to induce

High-Level Technique : ‘Induce’ ∣ωA⟩ on to Qubit B of ∣Φ+⟩AB . HOW?

Entangled qubits evolve simultaneously.

Alice has ∣ωA⟩ AND first qubit of ∣Φ+⟩AB .

Step 1 : Entangle ∣Φ+⟩AB with ∣ωA⟩ by Alice entangling her two qubits.

Step 2 : Alice cleverly evolves her two qubits. Bob’s entangled qubit evolves!!!

59/1

The Technique behind Teleportation

Qubit A

Alice Bob

|Φ+⟩AB Qubit B

|ω
A

⟩ = a|0⟩ b+ |1⟩

2 classical
bits

Attempt to induce

High-Level Technique : ‘Induce’ ∣ωA⟩ on to Qubit B of ∣Φ+⟩AB . HOW?

Entangled qubits evolve simultaneously.

Alice has ∣ωA⟩ AND first qubit of ∣Φ+⟩AB .

Step 1 : Entangle ∣Φ+⟩AB with ∣ωA⟩ by Alice entangling her two qubits.

Step 2 : Alice cleverly evolves her two qubits. Bob’s entangled qubit evolves!!!

59/1

The Technique behind Teleportation

Qubit A

Alice Bob

|Φ+⟩AB Qubit B

|ω
A

⟩ = a|0⟩ b+ |1⟩

2 classical
bits

Attempt to induce

High-Level Technique : ‘Induce’ ∣ωA⟩ on to Qubit B of ∣Φ+⟩AB . HOW?

Entangled qubits evolve simultaneously.

Alice has ∣ωA⟩ AND first qubit of ∣Φ+⟩AB .

Step 1 : Entangle ∣Φ+⟩AB with ∣ωA⟩ by Alice entangling her two qubits.

Step 2 : Alice cleverly evolves her two qubits. Bob’s entangled qubit evolves!!!

59/1

The Technique behind Teleportation

Qubit A

Alice Bob

|Φ+⟩AB Qubit B

|ω
A

⟩ = a|0⟩ b+ |1⟩

2 classical
bits

Attempt to induce

High-Level Technique : ‘Induce’ ∣ωA⟩ on to Qubit B of ∣Φ+⟩AB . HOW?

Entangled qubits evolve simultaneously.

Alice has ∣ωA⟩ AND first qubit of ∣Φ+⟩AB .

Step 1 : Entangle ∣Φ+⟩AB with ∣ωA⟩ by Alice entangling her two qubits.

Step 2 : Alice cleverly evolves her two qubits. Bob’s entangled qubit evolves!!!

59/1

Quantum Teleportation

|θ0⟩

|ω
A
⟩

|Φ+⟩AB

Alice’s two
qubits

Bob’s qubit

Qubit A

Qubit B

∣θ0⟩ = ∣ωA⟩⊗ ∣Φ+
⟩AB = (a ∣0⟩ + b ∣1⟩)⊗

1
√

2
(∣00⟩ + ∣11⟩)

∣θ0⟩ =
1

√
2
(a ∣000⟩ + a ∣011⟩ + b ∣100⟩ + b ∣111⟩)

∣θ1⟩ =
1

√
2
(a ∣000⟩ + a ∣011⟩ + b ∣110⟩ + b ∣101⟩)

∣θ2⟩ =

∣00⟩⊗ (a ∣0⟩ + b ∣1⟩) + ∣01⟩⊗ (a ∣1⟩ − b ∣0⟩)

+∣10⟩⊗ (a ∣0⟩ − b ∣1⟩) + ∣11⟩⊗ (a ∣1⟩ − b ∣0⟩)

60/1

Quantum Teleportation

|θ0⟩

|ω
A
⟩

|Φ+⟩AB

Alice’s two
qubits

Bob’s qubit

Qubit A

Qubit B

Step 1 : Entangle

all qubits

|θ1⟩

∣θ0⟩ = ∣ωA⟩⊗ ∣Φ+
⟩AB = (a ∣0⟩ + b ∣1⟩)⊗

1
√

2
(∣00⟩ + ∣11⟩)

∣θ0⟩ =
1

√
2
(a ∣000⟩ + a ∣011⟩ + b ∣100⟩ + b ∣111⟩)

∣θ1⟩ = (C ⊗ I)(∣θ0⟩) =
1

√
2
(a ∣000⟩ + a ∣011⟩ + b ∣110⟩ + b ∣101⟩)

∣θ2⟩ =

∣00⟩⊗ (a ∣0⟩ + b ∣1⟩) + ∣01⟩⊗ (a ∣1⟩ − b ∣0⟩)

+∣10⟩⊗ (a ∣0⟩ − b ∣1⟩) + ∣11⟩⊗ (a ∣1⟩ − b ∣0⟩)

60/1

Quantum Teleportation

|θ0⟩

H|ω
A
⟩

|Φ+⟩AB

Alice’s two
qubits

Bob’s qubit

Qubit A

Qubit B

Step 1 : Entangle

all qubits

|θ1⟩ |θ2⟩

Step 2 : Evolve

Alice’s qubits

∣θ0⟩ = ∣ωA⟩⊗ ∣Φ+
⟩AB = (a ∣0⟩ + b ∣1⟩)⊗

1
√

2
(∣00⟩ + ∣11⟩)

∣θ0⟩ =
1

√
2
(a ∣000⟩ + a ∣011⟩ + b ∣100⟩ + b ∣111⟩)

∣θ1⟩ =
1

√
2
(a ∣000⟩ + a ∣011⟩ + b ∣110⟩ + b ∣101⟩)

∣θ2⟩ = (H ⊗ I ⊗ I)(∣θ1⟩) =

∣00⟩⊗ (a ∣0⟩ + b ∣1⟩) + ∣01⟩⊗ (a ∣1⟩ − b ∣0⟩)

+∣10⟩⊗ (a ∣0⟩ − b ∣1⟩) + ∣11⟩⊗ (a ∣1⟩ − b ∣0⟩)

60/1

Quantum Teleportation

|θ0⟩

H|ω
A
⟩

|Φ+⟩AB

Alice’s two
qubits

Bob’s qubit

Qubit A

Qubit B

Step 1 : Entangle

all qubits

|θ1⟩ |θ2⟩

Step 2 : Evolve

Alice’s qubits

∣θ0⟩ = ∣ωA⟩⊗ ∣Φ+
⟩AB = (a ∣0⟩ + b ∣1⟩)⊗

1
√

2
(∣00⟩ + ∣11⟩)

∣θ0⟩ =
1

√
2
(a ∣000⟩ + a ∣011⟩ + b ∣100⟩ + b ∣111⟩)

∣θ1⟩ =
1

√
2
(a ∣000⟩ + a ∣011⟩ + b ∣110⟩ + b ∣101⟩)

∣θ2⟩ = ∣00⟩⊗ (a ∣0⟩ + b ∣1⟩) + ∣01⟩⊗ (a ∣1⟩ − b ∣0⟩)

+∣10⟩⊗ (a ∣0⟩ − b ∣1⟩) + ∣11⟩⊗ (a ∣1⟩ − b ∣0⟩)

60/1

Quantum Teleportation

|θ0⟩

H|ω
A
⟩

|Φ+⟩AB

Alice’s two
qubits

Bob’s qubit

Qubit A

Qubit B

Step 1 : Entangle

all qubits

Measure
-ment

|θ1⟩ |θ2⟩

Step 2 : Evolve

Alice’s qubits

Step 3 : Alice

 measures and
communicates

outcome

|θ3⟩

∣θ0⟩ = ∣ωA⟩⊗ ∣Φ+
⟩AB = (a ∣0⟩ + b ∣1⟩)⊗

1
√

2
(∣00⟩ + ∣11⟩)

∣θ0⟩ =
1

√
2
(a ∣000⟩ + a ∣011⟩ + b ∣100⟩ + b ∣111⟩)

∣θ1⟩ =
1

√
2
(a ∣000⟩ + a ∣011⟩ + b ∣110⟩ + b ∣101⟩)

∣θ2⟩ = ∣00⟩⊗ (a ∣0⟩ + b ∣1⟩) + ∣01⟩⊗ (a ∣1⟩ − b ∣0⟩)

+∣10⟩⊗ (a ∣0⟩ − b ∣1⟩) + ∣11⟩⊗ (a ∣1⟩ − b ∣0⟩)

60/1

Quantum Teleportation

I

|θ0⟩

H|ω
A
⟩

|Φ+⟩AB

Alice’s two
qubits

Bob’s qubit

Qubit A

Qubit B

Step 1 : Entangle

all qubits

Measure
-ment

|θ1⟩ |θ2⟩

Step 2 : Evolve

Alice’s qubits

1

Step 3 : Alice

 measures and
communicates

outcome

Step 4 : Bob

applies the right
gate

2 3 4

X Z XZ

|θ3⟩

∣θ0⟩ = ∣ωA⟩⊗ ∣Φ+
⟩AB = (a ∣0⟩ + b ∣1⟩)⊗

1
√

2
(∣00⟩ + ∣11⟩)

∣θ0⟩ =
1

√
2
(a ∣000⟩ + a ∣011⟩ + b ∣100⟩ + b ∣111⟩)

∣θ1⟩ =
1

√
2
(a ∣000⟩ + a ∣011⟩ + b ∣110⟩ + b ∣101⟩)

∣θ2⟩ = ∣00⟩⊗ (a ∣0⟩ + b ∣1⟩) + ∣01⟩⊗ (a ∣1⟩ − b ∣0⟩)

+∣10⟩⊗ (a ∣0⟩ − b ∣1⟩) + ∣11⟩⊗ (a ∣1⟩ − b ∣0⟩)

60/1

Super Dense Coding

How many classical bits of information can you pack in one qubit?

Shared entangled state ∣Φ+⟩ + 2 classical bits = Teleport 1 qubit

Qubit A

Alice Bob

|Φ+⟩AB Qubit B

|ω
A

⟩ = a|0⟩ b+ |1⟩

2 classical
bits

Teleport
Successful

Shared entangled state ∣Φ+⟩ + Hand over 1 qubit =

Super Dense Coding

61/1

Super Dense Coding

How many classical bits of information can you pack in one qubit?

Shared entangled state ∣Φ+⟩ + 2 classical bits = Teleport 1 qubit

Qubit A

Alice Bob

|Φ+⟩AB Qubit B

?? How many
classical bits ??

Can hand over 1 qubit

Shared entangled state ∣Φ+⟩ + Hand over 1 qubit = ?? number of classical bits ??

Super Dense Coding

61/1

Super Dense Coding

How many classical bits of information can you pack in one qubit?

Shared entangled state ∣Φ+⟩ + 2 classical bits = Teleport 1 qubit

Qubit A

Alice Bob

|Φ+⟩AB Qubit B

?? How many
classical bits ??

Can hand over 1 qubit

Shared entangled state ∣Φ+⟩ + Hand over 1 qubit = !!! Answer is 2 !!!

Super Dense Coding

61/1

Super Dense Coding : What is the idea? How do we do it?

Qubit A

Alice Bob

|Φ+⟩AB Qubit B

?? 2 bits ??

Can hand over 1 qubit

Only qubit Alice has : her share of the entangled pair ∣Φ+⟩. She hands it over.

At the end, Bob has both qubits. He must read out 2 bits.

Based on the two information bits, Alice employs a specific gate on her qubit.

The entangled pair evolves.

If ∣ω1⟩ , ∣ω2⟩ , ∣ω3⟩ , ∣ω4⟩ are perfectly distnguishable, Bob can recover the two bits.

Need ∣ω1⟩ , ∣ω2⟩ , ∣ω3⟩ , ∣ω4⟩ mutually orthonormal in R4.

62/1

Super Dense Coding : What is the idea? How do we do it?

Qubit A

Alice Bob

|Φ+⟩AB Qubit B

?? 2 bits ??

Can hand over 1 qubit

Only qubit Alice has : her share of the entangled pair ∣Φ+⟩.

She hands it over.

At the end, Bob has both qubits. He must read out 2 bits.

Based on the two information bits, Alice employs a specific gate on her qubit.

The entangled pair evolves.

If ∣ω1⟩ , ∣ω2⟩ , ∣ω3⟩ , ∣ω4⟩ are perfectly distnguishable, Bob can recover the two bits.

Need ∣ω1⟩ , ∣ω2⟩ , ∣ω3⟩ , ∣ω4⟩ mutually orthonormal in R4.

62/1

Super Dense Coding : What is the idea? How do we do it?

Qubit A

Alice Bob

|Φ+⟩AB Qubit B

Finally, Alice hands over her
share of the entangled pair

Only qubit Alice has : her share of the entangled pair ∣Φ+⟩. She hands it over.

At the end, Bob has both qubits. He must read out 2 bits.

Based on the two information bits, Alice employs a specific gate on her qubit.

The entangled pair evolves.

If ∣ω1⟩ , ∣ω2⟩ , ∣ω3⟩ , ∣ω4⟩ are perfectly distnguishable, Bob can recover the two bits.

Need ∣ω1⟩ , ∣ω2⟩ , ∣ω3⟩ , ∣ω4⟩ mutually orthonormal in R4.

62/1

Super Dense Coding : What is the idea? How do we do it?

Qubit A

Alice Bob

|Φ+⟩AB Qubit B

Finally, Alice hands over her
share of the entangled pair

Only qubit Alice has : her share of the entangled pair ∣Φ+⟩. She hands it over.

At the end, Bob has both qubits.

He must read out 2 bits.

Based on the two information bits, Alice employs a specific gate on her qubit.

The entangled pair evolves.

If ∣ω1⟩ , ∣ω2⟩ , ∣ω3⟩ , ∣ω4⟩ are perfectly distnguishable, Bob can recover the two bits.

Need ∣ω1⟩ , ∣ω2⟩ , ∣ω3⟩ , ∣ω4⟩ mutually orthonormal in R4.

62/1

Super Dense Coding : What is the idea? How do we do it?

Qubit A

Alice Bob

|Φ+⟩AB Qubit B

Finally, Alice hands over her
share of the entangled pair

Only qubit Alice has : her share of the entangled pair ∣Φ+⟩. She hands it over.

At the end, Bob has both qubits. He must read out 2 bits.

Based on the two information bits, Alice employs a specific gate on her qubit.

The entangled pair evolves.

If ∣ω1⟩ , ∣ω2⟩ , ∣ω3⟩ , ∣ω4⟩ are perfectly distnguishable, Bob can recover the two bits.

Need ∣ω1⟩ , ∣ω2⟩ , ∣ω3⟩ , ∣ω4⟩ mutually orthonormal in R4.

62/1

Super Dense Coding : What is the idea? How do we do it?

Qubit A

Alice Bob

11

10

01

00

Only qubit Alice has : her share of the entangled pair ∣Φ+⟩. She hands it over.

At the end, Bob has both qubits. He must read out 2 bits.

Based on the two information bits, Alice employs a specific gate on her qubit.

The entangled pair evolves.

If ∣ω1⟩ , ∣ω2⟩ , ∣ω3⟩ , ∣ω4⟩ are perfectly distnguishable, Bob can recover the two bits.

Need ∣ω1⟩ , ∣ω2⟩ , ∣ω3⟩ , ∣ω4⟩ mutually orthonormal in R4.

62/1

Super Dense Coding : What is the idea? How do we do it?

Qubit A

Alice Bob

|ω1⟩AB

11

10

01

00

|ω2⟩AB

|ω3⟩AB

|ω4⟩AB

|Φ+⟩AB

Only qubit Alice has : her share of the entangled pair ∣Φ+⟩. She hands it over.

At the end, Bob has both qubits. He must read out 2 bits.

Based on the two information bits, Alice employs a specific gate on her qubit.

The entangled pair evolves.

If ∣ω1⟩ , ∣ω2⟩ , ∣ω3⟩ , ∣ω4⟩ are perfectly distnguishable, Bob can recover the two bits.

Need ∣ω1⟩ , ∣ω2⟩ , ∣ω3⟩ , ∣ω4⟩ mutually orthonormal in R4.

62/1

Super Dense Coding : What is the idea? How do we do it?

Qubit A

Alice Bob

|ω1⟩AB

11

10

01

00

|ω2⟩AB

|ω3⟩AB

|ω4⟩AB

|Φ+⟩AB

Only qubit Alice has : her share of the entangled pair ∣Φ+⟩. She hands it over.

At the end, Bob has both qubits. He must read out 2 bits.

Based on the two information bits, Alice employs a specific gate on her qubit.

The entangled pair evolves.

If ∣ω1⟩ , ∣ω2⟩ , ∣ω3⟩ , ∣ω4⟩ are perfectly distnguishable, Bob can recover the two bits.

Need ∣ω1⟩ , ∣ω2⟩ , ∣ω3⟩ , ∣ω4⟩ mutually orthonormal in R4.

62/1

The Pauli Gates to our rescue

|Φ+⟩AB

Bob’s qubit

Qubit A

Qubit B

Alice’s qubit

Bob’s qubit

T T
Equivalent

to
I

⊗

Alice applying gate T is equivalent to transformation T ⊗ I on composite system.

Information bits Gate Resulting State

00 I ⊗ I 1
√

2
∣00⟩ + 1

√
2
∣11⟩

01 Z ⊗ I 1
√

2
∣00⟩ − 1

√
2
∣11⟩

10 X ⊗ I 1
√

2
∣01⟩ + 1

√
2
∣10⟩

11 iY ⊗ I 1
√

2
∣01⟩ + 1

√
2
∣10⟩

On receiving the Qubit A from Alice, Bob performs the measurement

{Π00 = ∣00⟩ ⟨00∣ , Π01 = ∣01⟩ ⟨01∣ , Π10 = ∣10⟩ ⟨10∣ , Π11 = ∣11⟩ ⟨11∣}
63/1

4. Quantum Algorithms

64/1

Comparing Classical and Quantum Computational Powers

▸ Side-Step a formal definition of a Quantum Turing Machine and Quantum
complexity clases.

▸ Single-Qubit Unitary operator ≡ single-input Boolean gate.

▸ Proxy for run-time ∼ No. of quantum gates and No. of unitary operations

BPP : Problem Π is in BPP if ∃ a poly-time algo on a probabilistic Classical Turing
Machine that returns correct answer with prob. atleast 3

4
.

BQP : Problem Π is in BPP if ∃ a poly-time algo on a probabilistic Quantum Turing
Machine that returns correct answer with probability atleast 3

4
.

Informal Analysis. Techniques to exploit Superposition.

65/1

Power of Quantum Algorithms I : Deutsch Josza algorithm

Is an n−bit Boolean function f ∶ {0,1}n → {0,1} constant or balanced ?

Category 1

Category 2

f(xn) is constant

f(xn) = 0 for half the inputs and

i.e., either f = 0 or f = 1.

f(xn) = 1 for the rest half of the inputs.
∣{xn ∶ f(xn) = 1}∣ = ∣{xn ∶ f(xn) = 1}∣ = 2n−1

Task : Given f , determine whether it is in Category 1 or Category 2.

We have an oracle who, given xn, will compute f(xn).

One usage : Binary oracle will provide us f(xn).

One usage : Quantum oracle will provide us ∣f(xn)⟩.

How many times should we poll our oracles?

66/1

Power of Quantum Algorithms I : Deutsch Josza algorithm

Is an n−bit Boolean function f ∶ {0,1}n → {0,1} constant or balanced ?

Category 1

Category 2

f(xn) is constant

f(xn) = 0 for half the inputs and

i.e., either f = 0 or f = 1.

f(xn) = 1 for the rest half of the inputs.
∣{xn ∶ f(xn) = 1}∣ = ∣{xn ∶ f(xn) = 1}∣ = 2n−1

Task : Given f , determine whether it is in Category 1 or Category 2.

We have an oracle who, given xn, will compute f(xn).

One usage : Binary oracle will provide us f(xn).

One usage : Quantum oracle will provide us ∣f(xn)⟩.

How many times should we poll our oracles?

66/1

Power of Quantum Algorithms I : Deutsch Josza algorithm

Is an n−bit Boolean function f ∶ {0,1}n → {0,1} constant or balanced ?

Category 1 Category 2

f(xn) is constant f(xn) = 0 for half the inputs and
i.e., either f = 0 or f = 1. f(xn) = 1 for the rest half of the inputs.

∣{xn ∶ f(xn) = 1}∣ = ∣{xn ∶ f(xn) = 1}∣ = 2n−1

Task : Given f , determine whether it is in Category 1 or Category 2.

We have an oracle who, given xn, will compute f(xn).

One usage : Binary oracle will provide us f(xn).

One usage : Quantum oracle will provide us ∣f(xn)⟩.

How many times should we poll our oracles?

66/1

Power of Quantum Algorithms I : Deutsch Josza algorithm

Is an n−bit Boolean function f ∶ {0,1}n → {0,1} constant or balanced ?

Category 1 Category 2

f(xn) is constant f(xn) = 0 for half the inputs and
i.e., either f = 0 or f = 1. f(xn) = 1 for the rest half of the inputs.

∣{xn ∶ f(xn) = 1}∣ = ∣{xn ∶ f(xn) = 1}∣ = 2n−1

Task : Given f , determine whether it is in Category 1 or Category 2.

We have an oracle who, given xn, will compute f(xn).

One usage : Binary oracle will provide us f(xn).

One usage : Quantum oracle will provide us ∣f(xn)⟩.

How many times should we poll our oracles?

66/1

Power of Quantum Algorithms I : Deutsch Josza algorithm

Is an n−bit Boolean function f ∶ {0,1}n → {0,1} constant or balanced ?

Category 1 Category 2

f(xn) is constant f(xn) = 0 for half the inputs and
i.e., either f = 0 or f = 1. f(xn) = 1 for the rest half of the inputs.

∣{xn ∶ f(xn) = 1}∣ = ∣{xn ∶ f(xn) = 1}∣ = 2n−1

Task : Given f , determine whether it is in Category 1 or Category 2.

We have an oracle who, given xn, will compute f(xn).

One usage : Binary oracle will provide us f(xn).

One usage : Quantum oracle will provide us ∣f(xn)⟩.

How many times should we poll our oracles?

66/1

Known algorithms on Classical Computers

Worst Case Analysis with guaranteed correctness

Must poll ≥ 2n−1 + 1 sequences in {0,1}n

Performance of Probabilistic (Randomized) Algorithms

Algorithm : Pick k boolean inputs uniformly and randomly.

Poll f−values for chosen random inputs.

If all f−values for chosen random inputs are same, declare f is constant, (Category 1).

Otherwise, declare f is balanced, i.e., Category 2.

Performance : If you declare f is balanced, f is definitely balanced.

⇒ P (f is constant ∣ you declare balanced) = 0.

P (f is balanced ∣ you declare constant) =
2−kP (f is balanced)

1 − P (f is balanced)

k→∞
→ 0.

67/1

Known algorithms on Classical Computers

Worst Case Analysis with guaranteed correctness

Must poll ≥ 2n−1 + 1 sequences in {0,1}n

Performance of Probabilistic (Randomized) Algorithms

Algorithm : Pick k boolean inputs uniformly and randomly.

Poll f−values for chosen random inputs.

If all f−values for chosen random inputs are same, declare f is constant, (Category 1).

Otherwise, declare f is balanced, i.e., Category 2.

Performance : If you declare f is balanced, f is definitely balanced.

⇒ P (f is constant ∣ you declare balanced) = 0.

P (f is balanced ∣ you declare constant) =
2−kP (f is balanced)

1 − P (f is balanced)

k→∞
→ 0.

67/1

Problem in BPP.

2n−1
+ 1 computations for certain answer.

68/1

Deustch Jozsa discovered an efficient quantum algorithm

What is the idea?

Prepare a (n + 1)− qubit state ∣φ⟩ based on the function f such that is

(a) if f is constant state ∣φ⟩ lies in subspace W and

(b) if f is balanced, then ∣φ⟩ lies in subspace W ⊥.

(c) Preparation of ∣φ⟩ has low quantum complexity.

69/1

Our Quantum Oracle

T
f

x| 1 x…
n
⟩

y| ⟩

x| 1 x…
n
⟩

f x| (1 x…
n
)⊕ y⟩

How many times will we need poll this quantum oracle?

70/1

Deutsch Jozsa Algorithm

H⊗n

Step 1 : Design
appropriate qubits

|θ1⟩

|0⟩⊗n

H|1⟩

∣θ1⟩ =H
⊗(n+1)

∣0⟩⊗n ∣1⟩ =H⊗n
(∣0⟩⊗n)⊗H(∣1⟩)

Ignoring 1
√

2
factors

= ∑
bn∈{0,1}n

∣b1⋯bn 0⟩ − ∑
bn∈{0,1}n

∣b1⋯bn 1⟩

∣θ2⟩ = ∑
bn∈{0,1}n

∣b1⋯bn f(b1⋯bn)⟩ − ∑
bn∈{0,1}n

∣b1⋯bn 1⊕ f(b1⋯bn)⟩

Suppose f were a constant

f(bn) = for all bn

Suppose f were a balanced

∣θ2⟩blncd = ∑
bn ∶f(bn)=0

∣b1⋯bn⟩⊗ (∣0⟩ − ∣1⟩) − ∑
bn ∶f(bn)=1

∣b1⋯bn⟩⊗ (∣0⟩ − ∣1⟩)

71/1

Deutsch Jozsa Algorithm

H⊗n

Step 1 : Design
appropriate qubits

|θ1⟩

|0⟩⊗n

H|1⟩

∣θ1⟩ =H
⊗(n+1)

∣0⟩⊗n ∣1⟩ =H⊗n
(∣0⟩⊗n)⊗H(∣1⟩) Ignoring 1

√
2

factors

= ∑
bn∈{0,1}n

∣b1⋯bn 0⟩ − ∑
bn∈{0,1}n

∣b1⋯bn 1⟩

∣θ2⟩ = ∑
bn∈{0,1}n

∣b1⋯bn f(b1⋯bn)⟩ − ∑
bn∈{0,1}n

∣b1⋯bn 1⊕ f(b1⋯bn)⟩

Suppose f were a constant

f(bn) = for all bn

Suppose f were a balanced

∣θ2⟩blncd = ∑
bn ∶f(bn)=0

∣b1⋯bn⟩⊗ (∣0⟩ − ∣1⟩) − ∑
bn ∶f(bn)=1

∣b1⋯bn⟩⊗ (∣0⟩ − ∣1⟩)

71/1

Deutsch Jozsa Algorithm

H⊗n

Step 1 : Design
appropriate qubits

T
f

|θ1⟩

|0⟩⊗n

H|1⟩

|θ2⟩Step 2 : Orient the
n (+1) qubits

T
f

x| 1 x…
n
⟩

y| ⟩

x| 1 x…
n
⟩

f x| (1 x…
n
)⊕ y⟩

∣θ1⟩ =H
⊗(n+1)

∣0⟩⊗n ∣1⟩ =H⊗n
(∣0⟩⊗n)⊗H(∣1⟩) Ignoring 1

√
2

factors

= ∑
bn∈{0,1}n

∣b1⋯bn 0⟩ − ∑
bn∈{0,1}n

∣b1⋯bn 1⟩

∣θ2⟩ = ∑
bn∈{0,1}n

∣b1⋯bn f(b1⋯bn)⟩ − ∑
bn∈{0,1}n

∣b1⋯bn 1⊕ f(b1⋯bn)⟩

Suppose f were a constant f(bn) = 0 for all bn

Suppose f were a balanced

∣θ2⟩blncd = ∑
bn ∶f(bn)=0

∣b1⋯bn⟩⊗ (∣0⟩ − ∣1⟩) − ∑
bn ∶f(bn)=1

∣b1⋯bn⟩⊗ (∣0⟩ − ∣1⟩)

71/1

Deutsch Jozsa Algorithm

H⊗n

Step 1 : Design
appropriate qubits

T
f

|θ1⟩

|0⟩⊗n

H|1⟩

|θ2⟩Step 2 : Orient the
n (+1) qubits

T
f

x| 1 x…
n
⟩

y| ⟩

x| 1 x…
n
⟩

f x| (1 x…
n
)⊕ y⟩

∣θ1⟩ =H
⊗(n+1)

∣0⟩⊗n ∣1⟩ =H⊗n
(∣0⟩⊗n)⊗H(∣1⟩) Ignoring 1

√
2

factors

= ∑
bn∈{0,1}n

∣b1⋯bn 0⟩ − ∑
bn∈{0,1}n

∣b1⋯bn 1⟩

∣θ2⟩ = ∑
bn∈{0,1}n

∣b1⋯bn f(b1⋯bn)⟩ − ∑
bn∈{0,1}n

∣b1⋯bn 1⊕ f(b1⋯bn)⟩

Suppose f were a constant f(bn) = 0 for all bn

∣θ2⟩ = ∑
bn∈{0,1}n

∣b1⋯bn 0⟩ − ∑
bn∈{0,1}n

∣b1⋯bn 1⟩

Suppose f were a balanced

∣θ2⟩blncd = ∑
bn ∶f(bn)=0

∣b1⋯bn⟩⊗ (∣0⟩ − ∣1⟩) − ∑
bn ∶f(bn)=1

∣b1⋯bn⟩⊗ (∣0⟩ − ∣1⟩)

71/1

Deutsch Jozsa Algorithm

H⊗n

Step 1 : Design
appropriate qubits

T
f

|θ1⟩

|0⟩⊗n

H|1⟩

|θ2⟩Step 2 : Orient the
n (+1) qubits

T
f

x| 1 x…
n
⟩

y| ⟩

x| 1 x…
n
⟩

f x| (1 x…
n
)⊕ y⟩

∣θ1⟩ =H
⊗(n+1)

∣0⟩⊗n ∣1⟩ =H⊗n
(∣0⟩⊗n)⊗H(∣1⟩) Ignoring 1

√
2

factors

= ∑
bn∈{0,1}n

∣b1⋯bn 0⟩ − ∑
bn∈{0,1}n

∣b1⋯bn 1⟩

∣θ2⟩ = ∑
bn∈{0,1}n

∣b1⋯bn f(b1⋯bn)⟩ − ∑
bn∈{0,1}n

∣b1⋯bn 1⊕ f(b1⋯bn)⟩

Suppose f were a constant f(bn) = 1 for all bn

∣θ2⟩ = ∑
bn∈{0,1}n

∣b1⋯bn 1⟩ − ∑
bn∈{0,1}n

∣b1⋯bn 0⟩

Suppose f were a balanced

∣θ2⟩blncd = ∑
bn ∶f(bn)=0

∣b1⋯bn⟩⊗ (∣0⟩ − ∣1⟩) − ∑
bn ∶f(bn)=1

∣b1⋯bn⟩⊗ (∣0⟩ − ∣1⟩)

71/1

Deutsch Jozsa Algorithm

H⊗n

Step 1 : Design
appropriate qubits

T
f

|θ1⟩

|0⟩⊗n

H|1⟩

|θ2⟩Step 2 : Orient the
n (+1) qubits

T
f

x| 1 x…
n
⟩

y| ⟩

x| 1 x…
n
⟩

f x| (1 x…
n
)⊕ y⟩

∣θ1⟩ =H
⊗(n+1)

∣0⟩⊗n ∣1⟩ =H⊗n
(∣0⟩⊗n)⊗H(∣1⟩) Ignoring 1

√
2

factors

= ∑
bn∈{0,1}n

∣b1⋯bn 0⟩ − ∑
bn∈{0,1}n

∣b1⋯bn 1⟩

∣θ2⟩ = ∑
bn∈{0,1}n

∣b1⋯bn f(b1⋯bn)⟩ − ∑
bn∈{0,1}n

∣b1⋯bn 1⊕ f(b1⋯bn)⟩

Suppose f were a constant

f(bn) = for all bn

∣θ2⟩cnst = ± ∑
bn∈{0,1}n

∣b1⋯bn⟩⊗ (∣0⟩ − ∣1⟩)

Suppose f were a balanced

∣θ2⟩blncd = ∑
bn ∶f(bn)=0

∣b1⋯bn⟩⊗ (∣0⟩ − ∣1⟩) − ∑
bn ∶f(bn)=1

∣b1⋯bn⟩⊗ (∣0⟩ − ∣1⟩)

71/1

Deutsch Jozsa Algorithm

H⊗n

Step 1 : Design
appropriate qubits

T
f

|θ1⟩

|0⟩⊗n

H|1⟩

|θ2⟩Step 2 : Orient the
n (+1) qubits

T
f

x| 1 x…
n
⟩

y| ⟩

x| 1 x…
n
⟩

f x| (1 x…
n
)⊕ y⟩

∣θ1⟩ =H
⊗(n+1)

∣0⟩⊗n ∣1⟩ =H⊗n
(∣0⟩⊗n)⊗H(∣1⟩) Ignoring 1

√
2

factors

= ∑
bn∈{0,1}n

∣b1⋯bn 0⟩ − ∑
bn∈{0,1}n

∣b1⋯bn 1⟩

∣θ2⟩ = ∑
bn∈{0,1}n

∣b1⋯bn f(b1⋯bn)⟩ − ∑
bn∈{0,1}n

∣b1⋯bn 1⊕ f(b1⋯bn)⟩

Suppose f were a constant

f(bn) = for all bn

∣θ2⟩cnst = ± ∑
bn∈{0,1}n

∣b1⋯bn⟩⊗ (∣0⟩ − ∣1⟩)

Suppose f were a balanced

∣θ2⟩blncd = ∑
bn ∶f(bn)=0

∣b1⋯bn⟩⊗ (∣0⟩ − ∣1⟩) − ∑
bn ∶f(bn)=1

∣b1⋯bn⟩⊗ (∣0⟩ − ∣1⟩)

71/1

Deutsch Jozsa Algorithm

H⊗n

Step 1 : Design
appropriate qubits

T
f

|θ1⟩

|0⟩⊗n

H|1⟩

|θ2⟩Step 2 : Orient the
n (+1) qubits

|θ2⟩cnst and |θ2⟩blncd

are orthogonal!!!

∣θ1⟩ =H
⊗(n+1)

∣0⟩⊗n ∣1⟩ =H⊗n
(∣0⟩⊗n)⊗H(∣1⟩) Ignoring 1

√
2

factors

= ∑
bn∈{0,1}n

∣b1⋯bn 0⟩ − ∑
bn∈{0,1}n

∣b1⋯bn 1⟩

∣θ2⟩ = ∑
bn∈{0,1}n

∣b1⋯bn f(b1⋯bn)⟩ − ∑
bn∈{0,1}n

∣b1⋯bn 1⊕ f(b1⋯bn)⟩

Suppose f were a constant

f(bn) = for all bn

∣θ2⟩cnst = ± ∑
bn∈{0,1}n

∣b1⋯bn⟩⊗ (∣0⟩ − ∣1⟩)

Suppose f were a balanced

∣θ2⟩blncd = ∑
bn ∶f(bn)=0

∣b1⋯bn⟩⊗ (∣0⟩ − ∣1⟩) − ∑
bn ∶f(bn)=1

∣b1⋯bn⟩⊗ (∣0⟩ − ∣1⟩)

71/1

Deutsch Jozsa Algorithm

H⊗n

Step 1 : Design
appropriate qubits

T
f

|θ1⟩

|0⟩⊗n

H

H⊗n

|1⟩

|θ2⟩Step 2 : Orient the
n (+1) qubits

Step 3 : Rotate to
std. measurement |θ3⟩

∣θ1⟩ =H
⊗(n+1)

∣0⟩⊗n ∣1⟩ =H⊗n
(∣0⟩⊗n)⊗H(∣1⟩) Ignoring 1

√
2

factors

= ∑
bn∈{0,1}n

∣b1⋯bn 0⟩ − ∑
bn∈{0,1}n

∣b1⋯bn 1⟩

∣θ2⟩ = ∑
bn∈{0,1}n

∣b1⋯bn f(b1⋯bn)⟩ − ∑
bn∈{0,1}n

∣b1⋯bn 1⊕ f(b1⋯bn)⟩

Suppose f were a constant

f(bn) = for all bn

∣θ2⟩cnst = ± ∑
bn∈{0,1}n

∣b1⋯bn⟩⊗ (∣0⟩ − ∣1⟩)

Suppose f were a balanced

∣θ2⟩blncd = ∑
bn ∶f(bn)=0

∣b1⋯bn⟩⊗ (∣0⟩ − ∣1⟩) − ∑
bn ∶f(bn)=1

∣b1⋯bn⟩⊗ (∣0⟩ − ∣1⟩)

71/1

Deutsch Jozsa Algorithm

H⊗n

Step 1 : Design
appropriate qubits

T
f

|θ1⟩

|0⟩⊗n

H

H⊗n

|1⟩

|θ2⟩Step 2 : Orient the
n (+1) qubits

Step 3 : Rotate to
std. measurement

Meas
ure- -

ment

|θ3⟩

∣θ1⟩ =H
⊗(n+1)

∣0⟩⊗n ∣1⟩ =H⊗n
(∣0⟩⊗n)⊗H(∣1⟩) Ignoring 1

√
2

factors

= ∑
bn∈{0,1}n

∣b1⋯bn 0⟩ − ∑
bn∈{0,1}n

∣b1⋯bn 1⟩

∣θ2⟩ = ∑
bn∈{0,1}n

∣b1⋯bn f(b1⋯bn)⟩ − ∑
bn∈{0,1}n

∣b1⋯bn 1⊕ f(b1⋯bn)⟩

Suppose f were a constant

f(bn) = for all bn

∣θ2⟩cnst = ± ∑
bn∈{0,1}n

∣b1⋯bn⟩⊗ (∣0⟩ − ∣1⟩)

Suppose f were a balanced

∣θ2⟩blncd = ∑
bn ∶f(bn)=0

∣b1⋯bn⟩⊗ (∣0⟩ − ∣1⟩) − ∑
bn ∶f(bn)=1

∣b1⋯bn⟩⊗ (∣0⟩ − ∣1⟩)

71/1

Analyzing Quantum Complexity

H⊗n

Step 1 : Design
appropriate qubits

T
f

|θ1⟩

|0⟩⊗n

H

H⊗n

|1⟩

|θ2⟩Step 2 : Orient the
n (+1) qubits

Step 3 : Rotate to
std. measurement

Meas
ure- -

ment

|θ3⟩

Quantum Algorithm

Computes Correct Answer with CERTAINTY.

No. of Unitary Operations = O(n)!!!

Classical Computer

2n−1 + 1 computations for certain answer.

Problem in BPP.

Problem in BPP ∩ BQP. No insights on BQP ∖ BPP.

72/1

Analyzing Quantum Complexity

H⊗n

Step 1 : Design
appropriate qubits

T
f

|θ1⟩

|0⟩⊗n

H

H⊗n

|1⟩

|θ2⟩Step 2 : Orient the
n (+1) qubits

Step 3 : Rotate to
std. measurement

Meas
ure- -

ment

|θ3⟩

Quantum Algorithm

Computes Correct Answer with CERTAINTY.

No. of Unitary Operations = O(n)!!!

Classical Computer

2n−1 + 1 computations for certain answer.

Problem in BPP.

Problem in BPP ∩ BQP. No insights on BQP ∖ BPP.

72/1

Finding the Unknown Period in (Z2)
n

f ∶ {0,1}n → {0,1}n is 2 − to − 1 and periodic with unknown period (a1,⋯, an).

Exactly two n−bit sequences yield same output and f(x1,⋯, xn) = f(x1 ⊕ a1,⋯, xn ⊕ an).

On how many n−bit inputs must you poll f(⋅)−values to figure out period (a1,⋯, an)?

Classically, if you poll for 2αn n−bit sequences, you have f(⋅)−values for at most

(2αn

2
) ≤ 22αn input pairs.

P (Finding an) =
22αn

2n
= 2−n(1−2α) n→∞

→ 0 if α <
1

2

Need to poll f(⋅)−values for 2
n
2 inputs to obtain reasonable success.

73/1

Recall Property 2 of the Hadamard Gate

For x ∈ {0,1} or xn ∈ {0,1}n

∣x⟩
H
↦

1

∑
z=0

(−1)x⋅z ∣z⟩

∣x1 ⋯ xn⟩
H⊗n

↦ ∑
zn∈{0,1}n

(−1)x1 ⋅z1+⋯+⋯xnzn ∣z1 ⋯ zn⟩ = ∑
zn∈{0,1}n

(−1)x⋅z ∣z1 ⋯ zn⟩

74/1

Exploring the Versatility of the The Hadamard Gate

Problem : Prepared State :

∣φ⟩ =
1

√
2
(∣x1 ⋯ xn b1 ⋯ bn⟩ + ∣(x1 ⊕ a1) ⋯ (xn ⊕ an) b1 ⋯ bn⟩)

x1,⋯, xn, a1,⋯, an unknown. Find a1,⋯, an. !!! Cannot eye-ball A State!!!

Step 1: Apply H⊗n ⊗ I⊗n2

∣φ⟩ ↦ ∑
z1,⋯,zn∈{0,1}n

[(−1)x⋅z + (−1)x⋅z⊕a⋅z] ∣z1 ⋯ zn b1 ⋯ bn⟩

= ∑
z1,⋯,zn ∶

a1z1⊕⋯⊕anzn=0

∣z1 ⋯ zn b1 ⋯ bn⟩

For any (a1,⋯, an) there are 2n−1 terms in above sum.

Step 2: Apply Measurement : {∣0⋯0⟩ ⟨0⋯0∣⊗ I,⋯, ∣1⋯1⟩ ⟨1⋯1∣⊗ I}.

Outcome provides one choice of z1, z2,⋯, zn for which a1z1 ⊕⋯⊕ anzn = 0.

75/1

Exploring the Versatility of the The Hadamard Gate

Problem : Prepared State : x1 ⊕ a1 = y1,⋯, xn ⊕ an = yn

∣φ⟩ =
1

√
2
(∣x1 ⋯ xn b1 ⋯ bn⟩ + ∣y1 ⋯ yn b1 ⋯ bn⟩

x1,⋯, xn, a1,⋯, an unknown. Find a1,⋯, an. !!! Cannot eye-ball A State!!!

Step 1: Apply H⊗n ⊗ I⊗n2

∣φ⟩ ↦ ∑
z1,⋯,zn∈{0,1}n

[(−1)x⋅z + (−1)x⋅z⊕a⋅z] ∣z1 ⋯ zn b1 ⋯ bn⟩

= ∑
z1,⋯,zn ∶

a1z1⊕⋯⊕anzn=0

∣z1 ⋯ zn b1 ⋯ bn⟩

For any (a1,⋯, an) there are 2n−1 terms in above sum.

Step 2: Apply Measurement : {∣0⋯0⟩ ⟨0⋯0∣⊗ I,⋯, ∣1⋯1⟩ ⟨1⋯1∣⊗ I}.

Outcome provides one choice of z1, z2,⋯, zn for which a1z1 ⊕⋯⊕ anzn = 0.

75/1

Exploring the Versatility of the The Hadamard Gate

Problem : Prepared State : x1 ⊕ a1 = y1,⋯, xn ⊕ an = yn

∣φ⟩ =
1

√
2
(∣x1 ⋯ xn b1 ⋯ bn⟩ + ∣y1 ⋯ yn b1 ⋯ bn⟩

x1,⋯, xn, a1,⋯, an unknown. Find a1,⋯, an.

!!! Cannot eye-ball A State!!!

Step 1: Apply H⊗n ⊗ I⊗n2

∣φ⟩ ↦ ∑
z1,⋯,zn∈{0,1}n

[(−1)x⋅z + (−1)x⋅z⊕a⋅z] ∣z1 ⋯ zn b1 ⋯ bn⟩

= ∑
z1,⋯,zn ∶

a1z1⊕⋯⊕anzn=0

∣z1 ⋯ zn b1 ⋯ bn⟩

For any (a1,⋯, an) there are 2n−1 terms in above sum.

Step 2: Apply Measurement : {∣0⋯0⟩ ⟨0⋯0∣⊗ I,⋯, ∣1⋯1⟩ ⟨1⋯1∣⊗ I}.

Outcome provides one choice of z1, z2,⋯, zn for which a1z1 ⊕⋯⊕ anzn = 0.

75/1

Exploring the Versatility of the The Hadamard Gate

Problem : Prepared State : x1 ⊕ a1 = y1,⋯, xn ⊕ an = yn

∣φ⟩ =
1

√
2
(∣x1 ⋯ xn b1 ⋯ bn⟩ + ∣y1 ⋯ yn b1 ⋯ bn⟩

x1,⋯, xn, a1,⋯, an unknown. Find a1,⋯, an.

!!! Cannot eye-ball A State!!!

Step 1: Apply H⊗n ⊗ I⊗n2

∣φ⟩ ↦ ∑
z1,⋯,zn∈{0,1}n

[(−1)x⋅z + (−1)x⋅z⊕a⋅z] ∣z1 ⋯ zn b1 ⋯ bn⟩

= ∑
z1,⋯,zn ∶

a1z1⊕⋯⊕anzn=0

∣z1 ⋯ zn b1 ⋯ bn⟩

For any (a1,⋯, an) there are 2n−1 terms in above sum.

Step 2: Apply Measurement : {∣0⋯0⟩ ⟨0⋯0∣⊗ I,⋯, ∣1⋯1⟩ ⟨1⋯1∣⊗ I}.

Outcome provides one choice of z1, z2,⋯, zn for which a1z1 ⊕⋯⊕ anzn = 0.

75/1

Quantum Oracle for our period finding function

T
f

x| 1 x…
n
⟩ x| 1 x…

n
⟩

f x| (n)⊕ yn⟩y| 1 y…
n
⟩

∣x1⋯xn y1⋯yn⟩
Tf
↦ ∣x1⋯xn f(x

n
)⊕ (y1⋯yn)⟩

76/1

Simon’s circuit for period finding

H⊗n

Step 1 : Design
appropriate qubits

|θ1⟩

|0⟩⊗n

|0⟩⊗n

∣θ1⟩ =H
⊗(n)

∣0⟩⊗n ⊗ I ∣0⟩⊗n

Ignoring 1
√

2
factors

= ∑
xn∈{0,1}n

∣x1⋯xn 0⋯0⟩

∣θ2⟩ = ∑
xn∈{0,1}n

∣x1⋯xn f(x1⋯xn)⟩

Suppose outcome of the measurement were b1,⋯, bn

∣θ3⟩ =
1

√
2
(∣x1 ⋯ xn b1 ⋯ bn⟩ + ∣(x1 ⊕ a1) ⋯ (xn ⊕ an) b1 ⋯ bn⟩)

∣θ4⟩ = ∑
z1,⋯,zn ∶

a1z1⊕⋯⊕anzn=0

∣z1 ⋯ zn b1 ⋯ bn⟩

77/1

Simon’s circuit for period finding

H⊗n

Step 1 : Design
appropriate qubits

|θ1⟩

|0⟩⊗n

|0⟩⊗n

∣θ1⟩ =H
⊗(n)

∣0⟩⊗n ⊗ I ∣0⟩⊗n Ignoring 1
√

2
factors

= ∑
xn∈{0,1}n

∣x1⋯xn 0⋯0⟩

∣θ2⟩ = ∑
xn∈{0,1}n

∣x1⋯xn f(x1⋯xn)⟩

Suppose outcome of the measurement were b1,⋯, bn

∣θ3⟩ =
1

√
2
(∣x1 ⋯ xn b1 ⋯ bn⟩ + ∣(x1 ⊕ a1) ⋯ (xn ⊕ an) b1 ⋯ bn⟩)

∣θ4⟩ = ∑
z1,⋯,zn ∶

a1z1⊕⋯⊕anzn=0

∣z1 ⋯ zn b1 ⋯ bn⟩

77/1

Simon’s circuit for period finding

H⊗n

Step 1 : Design
appropriate qubits

T
f

|θ1⟩

|0⟩⊗n

|θ2⟩Step 2 : Invoke the
oracle

|0⟩⊗n

T
f

x| 1 x…
n
⟩ x| 1 x…

n
⟩

f x| (n)⊕ yn⟩y| 1 y…
n
⟩

∣θ1⟩ =H
⊗(n)

∣0⟩⊗n ⊗ I ∣0⟩⊗n Ignoring 1
√

2
factors

= ∑
xn∈{0,1}n

∣x1⋯xn 0⋯0⟩

∣θ2⟩ = ∑
xn∈{0,1}n

∣x1⋯xn f(x1⋯xn)⟩

Suppose outcome of the measurement were b1,⋯, bn

∣θ3⟩ =
1

√
2
(∣x1 ⋯ xn b1 ⋯ bn⟩ + ∣(x1 ⊕ a1) ⋯ (xn ⊕ an) b1 ⋯ bn⟩)

∣θ4⟩ = ∑
z1,⋯,zn ∶

a1z1⊕⋯⊕anzn=0

∣z1 ⋯ zn b1 ⋯ bn⟩

77/1

Simon’s circuit for period finding

H⊗n

Step 1 : Design
appropriate qubits

T
f

|θ1⟩

|0⟩⊗n

|θ2⟩Step 2 : Invoke the
oracle

Step 3 : measure
last n qubits

Meas
ure-

last n
qubits

|θ3⟩

|0⟩⊗n

∣θ1⟩ =H
⊗(n)

∣0⟩⊗n ⊗ I ∣0⟩⊗n Ignoring 1
√

2
factors

= ∑
xn∈{0,1}n

∣x1⋯xn 0⋯0⟩

∣θ2⟩ = ∑
xn∈{0,1}n

∣x1⋯xn f(x1⋯xn)⟩

Suppose outcome of the measurement were b1,⋯, bn

∣θ3⟩ =
1

√
2
(∣x1 ⋯ xn b1 ⋯ bn⟩ + ∣(x1 ⊕ a1) ⋯ (xn ⊕ an) b1 ⋯ bn⟩)

∣θ4⟩ = ∑
z1,⋯,zn ∶

a1z1⊕⋯⊕anzn=0

∣z1 ⋯ zn b1 ⋯ bn⟩

77/1

Simon’s circuit for period finding

H⊗n

Step 1 : Design
appropriate qubits

T
f

|θ1⟩

|0⟩⊗n

H⊗n

|θ2⟩Step 2 : Invoke the
oracle

Step 3 : measure
last n qubits

Meas
ure-

last n
qubits

|θ3⟩ |θ4⟩

|0⟩⊗n

Step 4 :
Hadamard

∣θ1⟩ =H
⊗(n)

∣0⟩⊗n ⊗ I ∣0⟩⊗n Ignoring 1
√

2
factors

= ∑
xn∈{0,1}n

∣x1⋯xn 0⋯0⟩

∣θ2⟩ = ∑
xn∈{0,1}n

∣x1⋯xn f(x1⋯xn)⟩

Suppose outcome of the measurement were b1,⋯, bn

∣θ3⟩ =
1

√
2
(∣x1 ⋯ xn b1 ⋯ bn⟩ + ∣(x1 ⊕ a1) ⋯ (xn ⊕ an) b1 ⋯ bn⟩)

∣θ4⟩ = ∑
z1,⋯,zn ∶

a1z1⊕⋯⊕anzn=0

∣z1 ⋯ zn b1 ⋯ bn⟩

77/1

Simon’s circuit for period finding

H⊗n

Step 1 : Design
appropriate qubits

T
f

|θ1⟩

|0⟩⊗n

H⊗n

|θ2⟩Step 2 : Invoke the
oracle

Step 3 : measure
last n qubits

Meas
ure-

last n
qubits

|θ3⟩ Step 5 : measure
first n qubits

Meas
ure-

first n
qubits

|θ4⟩

|0⟩⊗n

Step 4 :
Hadamard

∣θ1⟩ =H
⊗(n)

∣0⟩⊗n ⊗ I ∣0⟩⊗n Ignoring 1
√

2
factors

= ∑
xn∈{0,1}n

∣x1⋯xn 0⋯0⟩

∣θ2⟩ = ∑
xn∈{0,1}n

∣x1⋯xn f(x1⋯xn)⟩

Suppose outcome of the measurement were b1,⋯, bn

∣θ3⟩ =
1

√
2
(∣x1 ⋯ xn b1 ⋯ bn⟩ + ∣(x1 ⊕ a1) ⋯ (xn ⊕ an) b1 ⋯ bn⟩)

∣θ4⟩ = ∑
z1,⋯,zn ∶

a1z1⊕⋯⊕anzn=0

∣z1 ⋯ zn b1 ⋯ bn⟩

77/1

Simon’s circuit for period finding

H⊗n

Step 1 : Design
appropriate qubits

T
f

|θ1⟩

|0⟩⊗n

H⊗n

|θ2⟩Step 2 : Invoke the
oracle

Step 3 : measure
last n qubits

Meas
ure-

last n
qubits

|θ3⟩ Step 5 : measure
first n qubits

Meas
ure-

first n
qubits

|θ4⟩

|0⟩⊗n

Step 4 :
Hadamard

Suppose outcome of the measurement were b1,⋯, bn

∣θ4⟩ = ∑
z1,⋯,zn ∶

a1z1⊕⋯⊕anzn=0

∣z1 ⋯ zn b1 ⋯ bn⟩

Measure the first n registers with measurement operators
{∣0⋯00⟩ ⟨0⋯00∣⊗ I⊗n2 , ∣0⋯01⟩ ⟨0⋯01∣⊗ I⊗n2 , ∣1⋯11⟩ ⟨1⋯11∣⊗ I⊗n2 }

Every outcome gives you one linear equation o1a1 ⊕⋯⊕ onan = 0 where (o1,⋯, on) is
your outcome.

Need n linear independent eqns to solve for a1,⋯, an. Repeat whole apparatus k times.

78/1

Analysis of Simon’s period finding algorithm

79/1

Factoring a composite integer

Every composite integer is a product of powers of primes.

Example
66 = 2 ⋅ 3 ⋅ 11

Example
275 = 5 ⋅ 5 ⋅ 11

Example
277 =??

Given n−bit integer N , find primes p1,⋯, pm and integers q1,⋯, qm s.t

N = pq11 ⋯p
qm
m .

Given n−bit integer N , need a quantum algorithm that identifies prime factors
in run-time nk for some k.

80/1

Towards Shor’s Algorithm for Prime Factorization
Goal : Design a polynomial-time quantum algorithm that can identify the prime factors
of a n−bit composite number N .

Break the task down.

Efficiently identify non-trivial factor of N .

Find α such that α∣N and α ≠ 1 and α ≠ N .

No. Factors No. Computations

N = α1 ⋅ α2

2 nk

= α11 ⋅ α12 ⋅ α21 ⋅ α22 4 2(n − 1)k

= α111α112α121α122⋯α211α212α221α222 8 4(n − 2)k

= ⋮ ⋯ ⋮

= pq11 ⋅ pq22 ⋅ ⋅pqm−1
m−1 ⋅ pqmm 2l 2l−1(n − l)k

l steps ⇒ No. Computations ≤ nk + 2nk + 4nk +⋯2l−1nk ≤ 2lnk

Since pi ≥ 2, No. of factors 2l ≤ log2N ⇒ No. Computations ≤ nk log2N ≤ nk+1.

81/1

Towards Shor’s Algorithm for Prime Factorization
Goal : Design a polynomial-time quantum algorithm that can identify the prime factors
of a n−bit composite number N .

Break the task down.

Efficiently identify non-trivial factor of N .

Find α such that α∣N and α ≠ 1 and α ≠ N .

No. Factors No. Computations

N = α1 ⋅ α2

2 nk

= α11 ⋅ α12 ⋅ α21 ⋅ α22

4 2(n − 1)k

= α111α112α121α122⋯α211α212α221α222

8 4(n − 2)k

= ⋮ ⋯ ⋮

= pq11 ⋅ pq22 ⋅ ⋅pqm−1
m−1 ⋅ pqmm 2l 2l−1(n − l)k

l steps ⇒ No. Computations ≤ nk + 2nk + 4nk +⋯2l−1nk ≤ 2lnk

Since pi ≥ 2, No. of factors 2l ≤ log2N ⇒ No. Computations ≤ nk log2N ≤ nk+1.

81/1

Towards Shor’s Algorithm for Prime Factorization
Goal : Design a polynomial-time quantum algorithm that can identify the prime factors
of a n−bit composite number N .

Break the task down.

Efficiently identify non-trivial factor of N .

Find α such that α∣N and α ≠ 1 and α ≠ N .

No. Factors No. Computations

N = α1 ⋅ α2

2 nk

= α11 ⋅ α12 ⋅ α21 ⋅ α22

4 2(n − 1)k

= α111α112α121α122⋯α211α212α221α222

8 4(n − 2)k

= ⋮

⋯ ⋮

= pq11 ⋅ pq22 ⋅ ⋅pqm−1
m−1 ⋅ pqmm 2l 2l−1(n − l)k

l steps ⇒ No. Computations ≤ nk + 2nk + 4nk +⋯2l−1nk ≤ 2lnk

Since pi ≥ 2, No. of factors 2l ≤ log2N ⇒ No. Computations ≤ nk log2N ≤ nk+1.

81/1

Towards Shor’s Algorithm for Prime Factorization
Goal : Design a polynomial-time quantum algorithm that can identify the prime factors
of a n−bit composite number N .

Break the task down.

Efficiently identify non-trivial factor of N .

Find α such that α∣N and α ≠ 1 and α ≠ N .

No. Factors No. Computations

N = α1 ⋅ α2

2 nk

= α11 ⋅ α12 ⋅ α21 ⋅ α22

4 2(n − 1)k

= α111α112α121α122⋯α211α212α221α222

8 4(n − 2)k

= ⋮

⋯ ⋮

= pq11 ⋅ pq22 ⋅ ⋅pqm−1
m−1 ⋅ pqmm

2l 2l−1(n − l)k

l steps ⇒ No. Computations ≤ nk + 2nk + 4nk +⋯2l−1nk ≤ 2lnk

Since pi ≥ 2, No. of factors 2l ≤ log2N ⇒ No. Computations ≤ nk log2N ≤ nk+1.

81/1

Towards Shor’s Algorithm for Prime Factorization
Goal : Design a polynomial-time quantum algorithm that can identify the prime factors
of a n−bit composite number N .

Break the task down.

Efficiently identify non-trivial factor of N .

Find α such that α∣N and α ≠ 1 and α ≠ N .

No. Factors No. Computations

N = α1 ⋅ α2 2 nk

= α11 ⋅ α12 ⋅ α21 ⋅ α22 4 2(n − 1)k

= α111α112α121α122⋯α211α212α221α222 8 4(n − 2)k

= ⋮ ⋯ ⋮

= pq11 ⋅ pq22 ⋅ ⋅pqm−1
m−1 ⋅ pqmm 2l 2l−1(n − l)k

l steps ⇒ No. Computations ≤ nk + 2nk + 4nk +⋯2l−1nk ≤ 2lnk

Since pi ≥ 2, No. of factors 2l ≤ log2N ⇒ No. Computations ≤ nk log2N ≤ nk+1.

81/1

Towards Shor’s Algorithm for Prime Factorization
Goal : Design a polynomial-time quantum algorithm that can identify the prime factors
of a n−bit composite number N .

Break the task down.

Efficiently identify non-trivial factor of N .

Find α such that α∣N and α ≠ 1 and α ≠ N .

No. Factors No. Computations

N = α1 ⋅ α2 2 nk

= α11 ⋅ α12 ⋅ α21 ⋅ α22 4 2(n − 1)k

= α111α112α121α122⋯α211α212α221α222 8 4(n − 2)k

= ⋮ ⋯ ⋮

= pq11 ⋅ pq22 ⋅ ⋅pqm−1
m−1 ⋅ pqmm 2l 2l−1(n − l)k

l steps ⇒ No. Computations ≤ nk + 2nk + 4nk +⋯2l−1nk ≤ 2lnk

Since pi ≥ 2, No. of factors 2l ≤ log2N ⇒ No. Computations ≤ nk log2N ≤ nk+1.

81/1

Towards Shor’s Algorithm for Prime Factorization
Goal : Design a polynomial-time quantum algorithm that can identify the prime factors
of a n−bit composite number N .

Break the task down.

Efficiently identify non-trivial factor of N .

Find α such that α∣N and α ≠ 1 and α ≠ N .

No. Factors No. Computations

N = α1 ⋅ α2 2 nk

= α11 ⋅ α12 ⋅ α21 ⋅ α22 4 2(n − 1)k

= α111α112α121α122⋯α211α212α221α222 8 4(n − 2)k

= ⋮ ⋯ ⋮

= pq11 ⋅ pq22 ⋅ ⋅pqm−1
m−1 ⋅ pqmm 2l 2l−1(n − l)k

l steps ⇒ No. Computations ≤ nk + 2nk + 4nk +⋯2l−1nk ≤ 2lnk

Since pi ≥ 2, No. of factors 2l ≤ log2N ⇒ No. Computations ≤ nk log2N ≤ nk+1.

81/1

The factorization Problem

Suffices to efficiently identify non-trivial factor of n−bit integer N .

Goal : Given N , find 1 < x < N s.t, GCD(x,N) > 1.

82/1

Some Number Theoretic Preliminaries

Goal : Given N , find 1 < x < N s.t, GCD(x,N) > 1.

co-pr(N) = {a ∶ 1 < a < N − 1, s.t GCD(a,N) = 1, i.e., a,N are co-prime}

1. co-pr(N) is a finite group under mod N multiplication.

Need b s.t : ab = 1 mod N . As you sweep b, ab’s are distinct.

2. Being a finite group, each element of co-pr(N) has a finite order.

ord(a) = min{k ∶ ak = 1 mod N} = period of the fn. fa,N(k) = ak mod N.

3. Suppose r = ord(a) for a ∈ {1,⋯,N − 1}. Then

ar = θN + 1⇒ N ∣ (ar − 1) and N ∤ (a
r
2 − 1)

Case 1: r is even.
N ∣ (ar − 1) = (a

r
2 − 1)(a

r
2 + 1)

If N ∤ (a
r
2 − 1), then we are done. Indeed, a

r
2 + 1 and a

r
2 + 1 have non-trivial common

factors with N , i.e., GCD(a
r
1 − 1,N) > 1 and GCD(a

r
1 + 1,N) > 1.

83/1

Chances of this happening are HIGH

Theorem
Suppose N = pq11 ⋯pqmm is the prime factorization. Let X ∈ co-pr(N) be chosen
uniformly at random, Let R = ord(X). Then

P (R is even and N ∤ (X
R
2 − 1)) ≥ 1 −

1

2m
.

Suppose we can efficiently compute

ord(a) = min{k ∶ ak = 1 mod N} = period of the fn. fa,N(k) = ak mod N.

Pick X1,⋯,Xl unformly at random, compute R1 = ord(X1),⋯,Rl = ord(Xl)
and obtain a non-trivial factor of N with high probability.

84/1

Algorithm for Identifying Prime Factors

Efficiently identify non-trivial factor of n−bit integer N .

Algorithm

Inputs: Composite n−bit number N

Step 1 : If N is even, return 2.

Step 2 : Check if N = ab for a ≥ 1, b ≥ 2. If YES, return a.

∃ efficient classical algorithm.

Steps 1,2 are quick. Progression to Step 3 implies N is odd, non-prime power.

Step 3 : Randomly choose x ∈ {1,⋯,N − 1}. If GCD(x,N) > 1, return GCD(x,N)

Step 4 : Use quantum order finding sub-routine to find ord(x) mod N .

Step 5 : If r is even and N ∤ (x
r
2 + 1), then compute GCD(x

r
2 + 1,N),

GCD(x
r
2 − 1,N). Return if either is non-trivial factor. If none is non-trivial factor

return FAILURE

85/1

Algorithm for Identifying Prime Factors

Efficiently identify non-trivial factor of n−bit integer N .

Algorithm

Inputs: Composite n−bit number N

Step 1 : If N is even, return 2.

Step 2 : Check if N = ab for a ≥ 1, b ≥ 2. If YES, return a.

∃ efficient classical algorithm.

Steps 1,2 are quick. Progression to Step 3 implies N is odd, non-prime power.

Step 3 : Randomly choose x ∈ {1,⋯,N − 1}. If GCD(x,N) > 1, return GCD(x,N)

Step 4 : Use quantum order finding sub-routine to find ord(x) mod N .

Step 5 : If r is even and N ∤ (x
r
2 + 1), then compute GCD(x

r
2 + 1,N),

GCD(x
r
2 − 1,N). Return if either is non-trivial factor. If none is non-trivial factor

return FAILURE

85/1

Algorithm for Identifying Prime Factors

Efficiently identify non-trivial factor of n−bit integer N .

Algorithm

Inputs: Composite n−bit number N

Step 1 : If N is even, return 2.

Step 2 : Check if N = ab for a ≥ 1, b ≥ 2. If YES, return a.

∃ efficient classical algorithm.

Steps 1,2 are quick. Progression to Step 3 implies N is odd, non-prime power.

Step 3 : Randomly choose x ∈ {1,⋯,N − 1}. If GCD(x,N) > 1, return GCD(x,N)

Step 4 : Use quantum order finding sub-routine to find ord(x) mod N .

Step 5 : If r is even and N ∤ (x
r
2 + 1), then compute GCD(x

r
2 + 1,N),

GCD(x
r
2 − 1,N). Return if either is non-trivial factor. If none is non-trivial factor

return FAILURE

85/1

Algorithm for Identifying Prime Factors

Efficiently identify non-trivial factor of n−bit integer N .

Algorithm

Inputs: Composite n−bit number N

Step 1 : If N is even, return 2.

Step 2 : Check if N = ab for a ≥ 1, b ≥ 2. If YES, return a. b ≥ 2 guarantees a ≠ N .

∃

efficient classical algorithm.

Steps 1,2 are quick. Progression to Step 3 implies N is odd, non-prime power.

Step 3 : Randomly choose x ∈ {1,⋯,N − 1}. If GCD(x,N) > 1, return GCD(x,N)

Step 4 : Use quantum order finding sub-routine to find ord(x) mod N .

Step 5 : If r is even and N ∤ (x
r
2 + 1), then compute GCD(x

r
2 + 1,N),

GCD(x
r
2 − 1,N). Return if either is non-trivial factor. If none is non-trivial factor

return FAILURE

85/1

Algorithm for Identifying Prime Factors

Efficiently identify non-trivial factor of n−bit integer N .

Algorithm

Inputs: Composite n−bit number N

Step 1 : If N is even, return 2.

Step 2 : Check if N = ab for a ≥ 1, b ≥ 2. If YES, return a. ∃ efficient classical algorithm.

Steps 1,2 are quick. Progression to Step 3 implies N is odd, non-prime power.

Step 3 : Randomly choose x ∈ {1,⋯,N − 1}. If GCD(x,N) > 1, return GCD(x,N)

Step 4 : Use quantum order finding sub-routine to find ord(x) mod N .

Step 5 : If r is even and N ∤ (x
r
2 + 1), then compute GCD(x

r
2 + 1,N),

GCD(x
r
2 − 1,N). Return if either is non-trivial factor. If none is non-trivial factor

return FAILURE

85/1

Algorithm for Identifying Prime Factors

Efficiently identify non-trivial factor of n−bit integer N .

Algorithm

Inputs: Composite n−bit number N

Step 1 : If N is even, return 2.

Step 2 : Check if N = ab for a ≥ 1, b ≥ 2. If YES, return a. ∃ efficient classical algorithm.

Steps 1,2 are quick. Progression to Step 3 implies N is odd, non-prime power.

Step 3 : Randomly choose x ∈ {1,⋯,N − 1}. If GCD(x,N) > 1, return GCD(x,N)

Step 4 : Use quantum order finding sub-routine to find ord(x) mod N .

Step 5 : If r is even and N ∤ (x
r
2 + 1), then compute GCD(x

r
2 + 1,N),

GCD(x
r
2 − 1,N). Return if either is non-trivial factor. If none is non-trivial factor

return FAILURE

85/1

Algorithm for Identifying Prime Factors

Efficiently identify non-trivial factor of n−bit integer N .

Algorithm

Inputs: Composite n−bit number N

Step 1 : If N is even, return 2.

Step 2 : Check if N = ab for a ≥ 1, b ≥ 2. If YES, return a. ∃ efficient classical algorithm.

Steps 1,2 are quick. Progression to Step 3 implies N is odd, non-prime power.

Step 3 : Randomly choose x ∈ {1,⋯,N − 1}. If GCD(x,N) > 1, return GCD(x,N)

Step 4 : Use quantum order finding sub-routine to find ord(x) mod N .

Step 5 : If r is even and N ∤ (x
r
2 + 1), then compute GCD(x

r
2 + 1,N),

GCD(x
r
2 − 1,N). Return if either is non-trivial factor. If none is non-trivial factor

return FAILURE

85/1

Algorithm for Identifying Prime Factors

Efficiently identify non-trivial factor of n−bit integer N .

Algorithm

Inputs: Composite n−bit number N

Step 1 : If N is even, return 2.

Step 2 : Check if N = ab for a ≥ 1, b ≥ 2. If YES, return a. ∃ efficient classical algorithm.

Steps 1,2 are quick. Progression to Step 3 implies N is odd, non-prime power.

Step 3 : Randomly choose x ∈ {1,⋯,N − 1}. If GCD(x,N) > 1, return GCD(x,N)

Step 4 : Use quantum order finding sub-routine to find ord(x) mod N .

Step 5 : If r is even and N ∤ (x
r
2 + 1), then compute GCD(x

r
2 + 1,N),

GCD(x
r
2 − 1,N). Return if either is non-trivial factor. If none is non-trivial factor

return FAILURE

85/1

Algorithm for Identifying Prime Factors

Efficiently identify non-trivial factor of n−bit integer N .

Algorithm

Inputs: Composite n−bit number N

Step 1 : If N is even, return 2.

Step 2 : Check if N = ab for a ≥ 1, b ≥ 2. If YES, return a. ∃ efficient classical algorithm.

Steps 1,2 are quick. Progression to Step 3 implies N is odd, non-prime power.

Step 3 : Randomly choose x ∈ {1,⋯,N − 1}. If GCD(x,N) > 1, return GCD(x,N)

Step 4 : Use quantum order finding sub-routine to find ord(x) mod N .

Step 5 : If r is even and N ∤ (x
r
2 + 1), then compute GCD(x

r
2 + 1,N),

GCD(x
r
2 − 1,N). Return if either is non-trivial factor. If none is non-trivial factor

return FAILURE

85/1

Period Finding is Z2n is fundamental to Factorization

Simon’s algorithm utilized the Hadamard transform to provide us period in (Z2)
n.

Suppose f ∶ {0,1,⋯,2n − 1}→ {0,1,⋯,2m − 1} is a periodic function in Z2n , i.e,

f(x) = f(x + r) for some 0 < r < 2n − 1 and ∀x valid.

∃ efficient algo. to compute r with
high prob.

⇒
∃ efficient algo. to FACTOR
composite integer N with high. prob.

Quantum Fourier Transform in place of Hadamard transform yield period in Z2n .

86/1

87/1

88/1

89/1

90/1

91/1

