
Delft University of Technology

Graph Filters

Geert Leus, Elvin Isufi, Mario Coutino

with applications to  
Distributed Optimization 
and Neural Networks

{ g.j.t.leus; e.isufi-1; m.a.coutinominguez } @tudelft.nl

• Sundeep Chepuri (IISc)
• Paolo Di Lorenzo (Sapienza)
• Fernando Gamma (UPenn)
• Bianca Iancu (TU Delft)
• Jiani Liu (TU Delft)
• Andreas Loukas (EPFL)
• Antonio Marques (URJC)
• Matthew Morency (TU Delft)
• Alberto Natali (TU Delft)
• Alejandro Ribeiro (UPenn)
• Santiago Segarra (Rice)
• Andrea Simonetto (IBM)
• Tomas Sipco (TU Delft)

Acknowledgements

Delft University of Technology

Tutorial break down
VIDEO 1:
๏ Part I Graph Signal Processing and Graph Filters

- Introduction to GSP

- Graph filters, applications, design and implementation aspects

๏ Part II Graph Filters for Distributed Optimization 1

- Motivation and general concept

- Applications and clarifying examples

Delft University of Technology

Tutorial break down
VIDEO 1:
๏ Part I Graph Signal Processing and Graph Filters

- Introduction to GSP

- Graph filters, applications, design and implementation aspects

๏ Part II Graph Filters for Distributed Optimization 1

- Motivation and general concept

- Applications and clarifying examples

VIDEO 2:
๏Part III Graph Filters for Distributed Optimization 2

- Asynchronous implementation

- Cascaded implementation

๏Part IV Graph Filters for Neural Networks

- Motivation and general concept

- Applications and clarifying examples

Delft University of Technology

part 1
graph signal processing

and graph filters

Delft University of Technology

part 1 :: overview
๏ Introduction to graph signal processing

- Motivation

- Mathematical formulation

- Graph Fourier transform

- Time-domain as a graph

Delft University of Technology

part 1 :: overview
๏ Introduction to graph signal processing

- Motivation

- Mathematical formulation

- Graph Fourier transform

- Time-domain as a graph

๏Graph filters

- Definition and motivating applications

- Design and implementation

- FIR graph filters

- ARMA graph filters

Delft University of Technology

๏ Introduction to graph signal processing

- Motivation

- Mathematical formulation

- Graph Fourier transform

- Time-domain as a graph

๏Graph filters

- Definition and motivating applications

- Design and implementation

- FIR graph filters

- ARMA graph filters

๏Advanced graph filters (focus on FIR filters)

- Node-varying graph filters

- Edge-varying graph filters

part 1 :: overview

Delft University of Technology 9

Signals on graphs?

Delft University of Technology

Motivation

10

Sensor networks 
(temperatures)

Transport Networks 
(# vehicles crossing the junction)

Brain networks 
(fMRI time series)

Social networks 
(opinion profile)

Delft University of Technology

Signal processing on graphs

11

Datasets with irregular support can be represented using a graph

v2

A2,N = AN,2 ≠ 0

vN

A3,1 ≠ 0
A1,3 = 0v1

v3

๏Graph

๏ is set of nodes

๏ is the set of edges

๏ is the adjacency matrix

𝒢 = (𝒱, ℰ)
𝒱
ℰ
A ∈ ℝN×N

+

|𝒱 | = N

|ℰ | = M

Delft University of Technology

Signal processing on graphs

12

Datasets with irregular support can be represented using a graph

x2

xN

x3

x1

๏Graph

๏ is set of nodes

๏ is the set of edges

๏ is the adjacency matrix

๏ is the graph signal

𝒢 = (𝒱, ℰ)
𝒱
ℰ
A ∈ ℝN×N

+

x =

x1
x2
⋮
xN

∈ ℝN

|𝒱 | = N

|ℰ | = M

Delft University of Technology

๏Local structure of the graph is captured by the graph-shift operator	  
 
 

Signal processing on graphs

13

S ∈ ℝN×N

 could be the adjacency matrix, graph Laplacian, or modifications, …S
i = j[S]j,i (i, j) ∈ ℰis nonzero only if and/or .

Delft University of Technology

๏Local structure of the graph is captured by the graph-shift operator	  
 
 

๏Adjacency matrix:

Signal processing on graphs

14

S ∈ ℝN×N

 could be the adjacency matrix, graph Laplacian, or modifications, …S
i = j[S]j,i (i, j) ∈ ℰis nonzero only if and/or .

S = A

Delft University of Technology

๏Local structure of the graph is captured by the graph-shift operator	  
 
 

๏Adjacency matrix:

๏Graph Laplacian: 
 

Signal processing on graphs

15

S ∈ ℝN×N

S = Lin/out = Din/out − A
[Din]i,i =

N

∑
j=1

[Ai,j] [Dout]i,i =
N

∑
j=1

[Aj,i]

 could be the adjacency matrix, graph Laplacian, or modifications, …S
i = j[S]j,i (i, j) ∈ ℰis nonzero only if and/or .

S = A

Delft University of Technology

๏Local structure of the graph is captured by the graph-shift operator	  
 
 

๏Adjacency matrix:

๏Graph Laplacian: 
 

๏Symmetric graph Laplacian:

Signal processing on graphs

16

S ∈ ℝN×N

S = Lin/out = Din/out − A
[Din]i,i =

N

∑
j=1

[Ai,j] [Dout]i,i =
N

∑
j=1

[Aj,i]

S = L = D − A, D = Din = Dout

 could be the adjacency matrix, graph Laplacian, or modifications, …S
i = j[S]j,i (i, j) ∈ ℰis nonzero only if and/or .

S = A

Delft University of Technology

๏Local structure of the graph is captured by the graph-shift operator	  
 
 

๏Adjacency matrix:

๏Graph Laplacian: 
 

๏Symmetric graph Laplacian:

Signal processing on graphs

17

S ∈ ℝN×N

S = Lin/out = Din/out − A
[Din]i,i =

N

∑
j=1

[Ai,j] [Dout]i,i =
N

∑
j=1

[Aj,i]

S = L = D − A, D = Din = Dout

x⊤Lx =
N

∑
i,j=1

[A]i,j(xi − xj)2

 could be the adjacency matrix, graph Laplacian, or modifications, …S
i = j[S]j,i (i, j) ∈ ℰis nonzero only if and/or .

๏Smoothness:

S = A

Delft University of Technology 18

Spectral analysis of graph signals

Delft University of Technology

Graph Fourier basis

19

Eigenvectors of graph shift represent frequency modes (assumed to be normal)S

S = UΛUH

Delft University of Technology

Graph Fourier basis

20

Eigenvectors of graph shift represent frequency modes (assumed to be normal)S

Example: Laplacian of undirected graph

S = UΛUH

S = D − A =

2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 1

−

0 1 0 1 0
1 0 1 0 0
0 1 0 1 0
1 0 1 0 1
0 0 0 1 0

v1 v2 v3 v4 v5
v1
v2
v3
v4
v5

v1

v5

v4 v3

v2

diagonal degree matrix adjacency matrix

Delft University of Technology

Graph Fourier basis

21

Individual eigenvectors of Laplacian of undirected graph

u1

v1

v5 v4 v3

v2

DC (no zero crossings) two zero crossings five zero crossings

u2 u5

⋯

u⊤
1 Su1 = λ1 = 0 u⊤

2 Su2 = λ2 = 0.8299 u⊤
3 Su3 = λ5 = 4.4812

Delft University of Technology

Time-domain as a graph

22

S =

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0

The DFT matrix and the traditional frequency grid is obtained by the adjacency
matrix of the cycle graph

S = F−1ΩF : [Ω]i,i = e2jπ(i−1)/N

Delft University of Technology

Time-domain as a graph

23

Any circulant graph (directed or not) in principle leads to the DFT as the matrix
that diagonalises the shift operator

S =

0 1 1 0 0 0 1 1
1 0 1 1 0 0 0 1
1 1 0 1 1 0 0 0
0 1 1 0 1 1 0 0
0 0 1 1 0 1 1 0
0 0 0 1 1 0 1 1
1 0 0 0 1 1 0 1
1 1 0 0 0 1 1 0

Delft University of Technology 24

How do we “spectrally” shape signals?

Delft University of Technology

Graph Fourier transform and graph filters

25

x̂ = UHx ⟺ x = Ux̂

The graph Fourier transform is defined as 

Delft University of Technology

Graph Fourier transform and graph filters

26

̂yn = h(λn) ̂xn

ŷ = h(Λ)x̂

h(Λ) = diag{h(λn)}

y = Uh(Λ)UHx = Hx

HS = SH

The graph Fourier transform is defined as 

Graph filters can be used to modify the frequency content of graph signals

Shift invariance:
0

0.2

0.4

0.6

0.8

1

Va
lu

e
in

 th
e

fre
qu

en
cy

 d
om

ai
n

0 5 10 15 20 25 30

Signal content
Graph filter

λ

x̂ = UHx ⟺ x = Ux̂

Delft University of Technology

Applications of graph filters

27

Interpolation (e.g., semi-supervised learning)

Delft University of Technology

Applications of graph filters

28

Denoising signals	(e.g.,	Tikhonov)
Denoising signals (e.g., Tikhonov)Interpolation (e.g., semi-supervised learning)

Delft University of Technology

Applications of graph filters

29

Denoising signals	(e.g.,	Tikhonov)

Distributed optimization

Denoising signals (e.g., Tikhonov)Interpolation (e.g., semi-supervised learning)

min
x

f(x) =
N

∑
i=1

fi(x)

Delft University of Technology

Applications of graph filters

30

Denoising signals	(e.g.,	Tikhonov)

Distributed optimization Graph convolutional neural networks

Denoising signals (e.g., Tikhonov)Interpolation (e.g., semi-supervised learning)

min
x

f(x) =
N

∑
i=1

fi(x)

Delft University of Technology

Graph filter design and implementation

31

y = Uh(Λ)UHx = Hx ⟺ HS = SH

Delft University of Technology

Graph filter design and implementation

32

y = Uh(Λ)UHx = Hx ⟺ HS = SH

Graph-dependent vs graph-independent (universal) filter design

graph dependent
graph independent

[Shuman’11, DCOSS] 
[Sandryhaila’13, TSP] 
Shuman’13, SPM] 
[Segarra’18, TSP]

Delft University of Technology

Graph filter design and implementation

33

y = Uh(Λ)UHx = Hx ⟺ HS = SH

Frequency-domain vs vertex-domain implementation

๏No fast GFT implementations

๏Need for parametrized filters in the vertex domain

Delft University of Technology

FIR graph filters

34

y = HFIRx HFIR =
K

∑
k=0

ϕkSk

hFIR(λn) =
K

∑
k=0

ϕkλk
n

Finite impulse response graph filters are expressible as matrix polynomials of the
shift operator

for

with frequency response given by

Delft University of Technology

FIR graph filters

35

y = HFIRx HFIR =
K

∑
k=0

ϕkSk

hFIR(λn) =
K

∑
k=0

ϕkλk
n

Finite impulse response graph filters are expressible as matrix polynomials of the
shift operator

for

with frequency response given by

number of parameters:

computational complexity:

𝒪(K)

𝒪(MK)

Delft University of Technology

FIR graph filters

36

x(k) = Skx

x(t − τ) = z−τx(t)
time-delayed signal

shifted graph signal

Delft University of Technology

FIR graph filters

37

y =
K

∑
k=0

ϕkx(k)

y(t) =
L

∑
τ=0

h(τ)x(t − τ)

FIR graph filter

FIR time-domain filter

x(k) = Skx

x(t − τ) = z−τx(t)
time-delayed signal

shifted graph signal

Delft University of Technology

FIR graph filters

38

y =
K

∑
k=0

ϕkx(k)

y(t) =
L

∑
τ=0

h(τ)x(t − τ)

FIR graph filter

FIR time-domain filter

x(k) = Skx

x(t − τ) = z−τx(t)
time-delayed signal

shifted graph signal carries the notion of  
convolution

(shift-and-sum)
[graph convolution neural networks]

Delft University of Technology

FIR graph filters

39

y = HFIRx =
K

∑
k=0

ϕkSkx =
K

∑
k=0

ϕkx(k)

Delft University of Technology

FIR graph filters

40

y = HFIRx =
K

∑
k=0

ϕkSkx =
K

∑
k=0

ϕkx(k)

sum of shifted versions of
graph signal

Delft University of Technology

FIR graph filters

41

y = HFIRx =
K

∑
k=0

ϕkSkx =
K

∑
k=0

ϕkx(k)

sum of shifted versions of
graph signalExample: y = ϕ0x + ϕ1Sx + ϕ2S2x

Delft University of Technology 4242

FIR graph filters

๏ Efficient and distributed implementation 😁

๏Computational and communication cost of 😁

๏Good approximation requires high filter orders ☹

𝒪(MK)

HFIR ≜
K

∑
k=0

ϕkSk

Delft University of Technology

FIR design

43

en = ĥn −
K

∑
k=0

ϕkλk
n

Minimization of error frequency-domain 
design

Delft University of Technology

FIR design

44

en = ĥn −
K

∑
k=0

ϕkλk
n

e = ĥ − ΞK+1ϕ

min
ϕ

∥ĥ − ΞK+1ϕ∥2
2

[ΞK+1]n,k = λk−1
n ΞK+1 ∈ ℝN×(K+1)

Minimization of error

๏Least squares [Sandryhaila’13,	TSP]

frequency-domain 
design

Delft University of Technology

FIR design

45

en = ĥn −
K

∑
k=0

ϕkλk
n

e = ĥ − ΞK+1ϕ

min
ϕ

∥ĥ − ΞK+1ϕ∥2
2

[ΞK+1]n,k = λk−1
n ΞK+1 ∈ ℝN×(K+1)

Minimization of error

๏Least squares [Sandryhaila’13,	TSP]

frequency-domain 
design

alternative data-driven 
design

min
{ϕk} ∑

i

∥yi − H({ϕk})xi∥2
2

Delft University of Technology

FIR design

46

ĥ(λ) =
∞

∑
k=0

ckTk(λ) ≈
K

∑
k=0

ckTk(λ)

๏Chebyshev [Shuman’11,	DCOSS]

✦ : modified Chebyshev polynomials; orthogonal over desired range

✦ Closed form expression for {ck}K
k=0

Tk(λ)

Delft University of Technology

ARMA graph filters

47

y = HARMAx HARMA = (I −
P

∑
p=1

ψpSp)
−1

(
Q

∑
q=0

φqSq)

hARMA(λn) =
∑Q

q=0 φqλq
n

1 + ∑P
p=1 ψpλp

n

Autoregresive moving average graph filters implement a fractional matrix
polynomial of the shift operator

for

with frequency response given by

Isufi, Loukas, Simonetto, Leus, Autoregressive Moving Average Graph Filtering, IEEE Transactions on Signal Processing, 2017

Delft University of Technology

ARMA graph filters

48

y = HARMAx HARMA = (I −
P

∑
p=1

ψpSp)
−1

(
Q

∑
q=0

φqSq)

hARMA(λn) =
∑Q

q=0 φqλq
n

1 + ∑P
p=1 ψpλp

n

Autoregresive moving average graph filters implement a fractional matrix
polynomial of the shift operator

for

with frequency response given by

number of parameters:

computational complexity: per it.

𝒪(P + Q)

𝒪(M)
Isufi, Loukas, Simonetto, Leus, Autoregressive Moving Average Graph Filtering, IEEE Transactions on Signal Processing, 2017

Delft University of Technology

ARMA graph filters

49

x(k) = Skx
shifted graph signal

x(t − τ) = z−τx(t)
time-delayed input signal

Delft University of Technology

ARMA graph filters

50

y(0) =
Q

∑
q=0

φkx(q) +
P

∑
p=1

ψpy(p)

y(t) =
L

∑
τ=0

h(τ)x(t − τ) +
R

∑
κ=1

g(κ)y(t − κ)

ARMA graph filter

ARMA time-domain filter

x(k) = Skx

x(t − τ) = z−τx(t)
time-delayed input signal

shifted graph signal

Delft University of Technology

ARMA graph filters

51

y(0) =
Q

∑
q=0

φkx(q) +
P

∑
p=1

ψpy(p)

y(t) =
L

∑
τ=0

h(τ)x(t − τ) +
R

∑
κ=1

g(κ)y(t − κ)

ARMA graph filter

ARMA time-domain filter

requires shifted 
version of the output

x(k) = Skx
shifted graph signal

not easy  
to implement

easy to implement

x(t − τ) = z−τx(t)
time-delayed input signal

Delft University of Technology

ARMA graph filters

52

HARMA = (I −
P

∑
p=1

ψpSp)
−1

(
Q

∑
q=0

φqSq)
๏Stability is guaranteed by invertibility 😁

๏Good approximation for low filter orders 😁

๏Exact solution for denoising/interpolation/diffusion 😁

๏Filter design is more involved than for FIR ☹

๏Does not admit trivial efficient/distributed implementation ☹

Delft University of Technology

๏ Moving average part: similar to FIR

๏Autoregressive part:

✦Gradient descent

✦Conjugate gradient

✦Any other Krylov-based inversion can be used

ARMA implementation

53

HARMA = (I −
P

∑
p=1

ψpSp)
−1

(
Q

∑
q=0

φqSq)

[Shi’15,	SPL]

[Liu’17,	GlobalSIP]

[Loukas’15,	SPL],	[Shi’15,	SPL],	[Isufi’17,	TSP]

Liu, Isufi, Leus, Filter Design for Autoregressive Moving Average Graph Filters, IEEETransactions on Signal and Information Processing over Networks, 2019

Delft University of Technology

๏Distributed methods: (Jacobi)

๏Parallel or serial implementation of heat kernel

๏Direct implementation

ARMA implementation

54

yt+1 = ψSyt + φx

yt = −
P

∑
p=1

ψpSpyt−1 +
Q

∑
q=0

φqSqx

HARMA = (I −
P

∑
p=1

ψpSp)
−1

(
Q

∑
q=0

φqSq)

Isufi, Loukas, Leus, Autoregressive moving average graph filters a stable distributed implementation, IEEE ICASSP, 2017

Delft University of Technology

๏Distributed methods: (Jacobi)

๏Parallel or serial implementation of heat kernel

๏Direct implementation

ARMA implementation

55

yt+1 = ψSyt + φx

yt = −
P

∑
p=1

ψpSpyt−1 +
Q

∑
q=0

φqSqx

HARMA = (I −
P

∑
p=1

ψpSp)
−1

(
Q

∑
q=0

φqSq)

𝒪(max{P, Q}M)

𝒪(M)

cost per iteration

Isufi, Loukas, Leus, Autoregressive moving average graph filters a stable distributed implementation, IEEE ICASSP, 2017

Delft University of Technology

ARMA design

56

Minimization of error

Liu, Isufi, Leus, Filter Design for Autoregressive Moving Average Graph Filters, IEEE Transactions on Signal and Information Processing over Networks, 2019

en = ĥn −
∑Q

q=0 φqλq
n

1 + ∑P
p=1 ψpλp

n

βn

αn

frequency-domain 
design

Delft University of Technology

ARMA design

57

e′ n = ĥnαn − βn

Minimization of error

๏Prony’s method

modified error

en = ĥn −
∑Q

q=0 φqλq
n

1 + ∑P
p=1 ψpλp

n

βn

αn

frequency-domain 
design

Liu, Isufi, Leus, Filter Design for Autoregressive Moving Average Graph Filters, IEEE Transactions on Signal and Information Processing over Networks, 2019

Delft University of Technology

ARMA design

58

e′ n = ĥnαn − βn

Liu, Isufi, Leus, Autoregressive moving average graph filter design, IEEE GlobalSIP, 2017

Delft University of Technology

ARMA design

59

e′ = ĥ ∘ α − β

e′ n = ĥnαn − βn
modified error is linear 

in {ψ, φ}

Liu, Isufi, Leus, Autoregressive moving average graph filter design, IEEE GlobalSIP, 2017

Delft University of Technology

ARMA design

60

e′ = ĥ ∘ α − β

min
ψ,φ

∥ĥ ∘ (ΞP+1ψ) − ΞQ+1φ∥2
2

e′ n = ĥnαn − βn

α = ΞP+1ψ, ψ0 = 1

β = ΞQ+1φ

[ΞP+1]n,p = λp−1
n

[ΞQ+1]n,q = λq−1
n

modified error is linear 
in {ψ, φ}

Liu, Isufi, Leus, Autoregressive moving average graph filter design, IEEE GlobalSIP, 2017

Delft University of Technology

ARMA design

61

e′ = ĥ ∘ α − β

min
ψ,φ

∥ĥ ∘ (ΞP+1ψ) − ΞQ+1φ∥2
2

e′ n = ĥnαn − βn
modified error is linear 

in {ψ, φ}

Liu, Isufi, Leus, Autoregressive moving average graph filter design, IEEE GlobalSIP, 2017

alternative data-driven 
design

min
{ψp,φq} ∑

i

∥A({ψp})yi − B({ϕq}xi∥2
2

α = ΞP+1ψ, ψ0 = 1

β = ΞQ+1φ

[ΞP+1]n,p = λp−1
n

[ΞQ+1]n,q = λq−1
n

Delft University of Technology

ARMA design

62

Liu, Isufi, Leus, Filter Design for Autoregressive Moving Average Graph Filters, IEEE Transactions on Signal and Information Processing over Networks, 2019

๏ Iterative method

en = (ĥnαn − βn)γn, γn = 1/αn

ARMA design

Delft University of Technology

ARMA design

63

Liu, Isufi, Leus, Filter Design for Autoregressive Moving Average Graph Filters, IEEE Transactions on Signal and Information Processing over Networks, 2019

๏ Iterative method

en = (ĥnαn − βn)γn, γn = 1/αn

e = (ĥ ∘ α − β) ∘ γ

α = ΞP+1ψ, ψ0 = 1

β = ΞQ+1φ

[ΞP+1]n,p = λp−1
n

[ΞQ+1]n,q = λq−1
n

ARMA design

for known ,  
error is linear in

γ
{ψ, φ}

Delft University of Technology

ARMA design

64

Liu, Isufi, Leus, Filter Design for Autoregressive Moving Average Graph Filters, IEEE Transactions on Signal and Information Processing over Networks, 2019

๏ Iterative method

en = (ĥnαn − βn)γn, γn = 1/αn

e = (ĥ ∘ α − β) ∘ γ

min
ψi,φi

∥γi−1 ∘ [ĥ ∘ (ΞP+1ψi − ΞQ+1φi)]∥2
2

α = ΞP+1ψ, ψ0 = 1

β = ΞQ+1φ

[ΞP+1]n,p = λp−1
n

[ΞQ+1]n,q = λq−1
n

ARMA design

for known ,  
error is linear in

γ
{ψ, φ}

Delft University of Technology

ARMA design results

65

Approximate an ideal filter with S = Ln, λc = 1, P + Q ≤ K

Q

e.g., graph spectral clustering [Tremblay’16, ICASSP]

Delft University of Technology 66

Beyond classical graph filtering

Delft University of Technology

๏ Node-varying graph filters and edge-varying graph filters

FIR and IIR extensions

67

[Segarra’15,	arXiv],	[Segarra’17,	TSP] [Coutino’17,	CAMSAP][Segarra’15,	arXiv],	[Segarra’17,	TSP] [Coutino’17,	CAMSAP]

Delft University of Technology

๏ Node-varying graph filters and edge-varying graph filters

๏Edge-varying for both FIR and ARMA graph filters

FIR and IIR extensions

68

[Segarra’15,	arXiv],	[Segarra’17,	TSP] [Coutino’17,	CAMSAP][Segarra’15,	arXiv],	[Segarra’17,	TSP] [Coutino’17,	CAMSAP]

[Coutino’19,	TSP]

Delft University of Technology

๏ Node-varying graph filters and edge-varying graph filters

๏Edge-varying for both FIR and ARMA graph filters

FIR and IIR extensions

69

[Segarra’15,	arXiv],	[Segarra’17,	TSP] [Coutino’17,	CAMSAP][Segarra’15,	arXiv],	[Segarra’17,	TSP] [Coutino’17,	CAMSAP]

[Coutino’19,	TSP]

๏Nonlinear graph filters

✦Weighted median graph filters

✦Activation functions (graph CNNs) [Bruna’13]

[Segarra’16,	GlobalSIP]

Delft University of Technology 7070

Example: y = ϕ0x + ϕ1Sx + ϕ2S2x

FIR graph filters

Delft University of Technology 7171

Example: y = ϕ0x + ϕ1Sx + ϕ2S2x

FIR graph filters

Delft University of Technology 7272

FIR graph filters

๏ Efficient and distributed implementation 😁

๏Computational and communication cost of 😁

๏ Linear in scalar coefficients 😁

๏ Good approximation requires high filter orders ☹

𝒪(MK)

{ϕk}

HC ≜
K

∑
k=0

ϕkSk

Delft University of Technology 7373

Node-varying graph filters
Example: y = diag(ϕ0)x + diag(ϕ1)Sx + diag(ϕ2)S2x

Delft University of Technology 7474

Node-varying graph filters
Example: y = diag(ϕ0)x + diag(ϕ1)Sx + diag(ϕ2)S2x

Delft University of Technology 7575

Node-varying graph filters

๏ Efficient and distributed implementation 😁

๏Computational and communication cost of 😁

๏Specializes to classical graph filter 😁

๏ Linear in vector coefficients 😁

𝒪(MK)

{ϕk}

HNV ≜
K

∑
k=0

diag{ϕk}Sk

Segarra, Marques, Ribeiro, Optimal Graph-Filter Design and Applications to Distributed Linear Network Operators, IEEE Transactions on Signal Processing, 2017

Delft University of Technology 7676

Edge-varying graph filters
Example: y = Φ1x + Φ2Φ1x + Φ3Φ2Φ1x

 same support as Φk S + I

Delft University of Technology 7777

Edge-varying graph filters
Example: y = Φ1x + Φ2Φ1x + Φ3Φ2Φ1x

Coutino, Isufi, Leus, Advances in Distributed Graph Filtering, IEEE Transactions on Signal Processing, 2019

 same support as Φk S + I

Delft University of Technology 7878

Edge-varying graph filters

๏ Efficient and distributed implementation 😁

๏Computational and communication cost of 😁

๏Specializes to classical and node-varying graph filter 😁

๏ Non-linear in matrix coefficients ☹

𝒪(MK)

{Φk}

HEV ≜
K

∑
k=1

k

∏
l=1

Φl

Delft University of Technology 79

Constrained edge-varying graph filter

79

Example: y = Φ1x + Φ2Sx + Φ3S2x
 same support as Φk S + I

Delft University of Technology 80

Constrained edge-varying graph filter

80
Coutino, Isufi, Leus, Distributed edge-variant graph filters, IEEE CAMSAP, 2017

Example: y = Φ1x + Φ2Sx + Φ3S2x
 same support as Φk S + I

Delft University of Technology 81

Constrained edge-varying graph filter
HCEV ≜

K

∑
k=1

ΦkSk−1

๏ Efficient and distributed implementation 😁

81

๏Computational and communication cost of 😁

๏Specializes to classical and node-varying graph filter 😁

๏ Linear in matrix coefficients 😁

𝒪(MK)

{Φk}

Delft University of Technology

Node-domain graph filter design
Filter response fitting

82

min
Θ

∥H̃ − Hfit(Θ)∥2

Hfit(Θ) =
HC, Θ = {ϕk}
HNV, Θ = {ϕk}
HCEV, Θ = {Φk}

where
๏ is he desired filter response

๏ appropriate norm, e.g., Frobenius norm, spectral radius, etc.,

H̃

∥ ⋅ ∥

and

Delft University of Technology

Node-domain graph filter design
Filter response fitting

83

min
Θ

∥H̃ − Hfit(Θ)∥2

where
๏ is he desired filter response

๏ appropriate norm, e.g., Frobenius norm, spectral radius, etc.,

H̃

∥ ⋅ ∥

and

alternative data-driven 
design

min
Θ ∑

i

∥yi − Hfit(Θ)xi∥2

Hfit(Θ) =
HC, Θ = {ϕk}
HNV, Θ = {ϕk}
HCEV, Θ = {Φk}

Delft University of Technology

Fitting graph frequency response

84

h̃(λ) = e−3(λ−0.75)2

h̃(λ) = {1 0 ≤ λ ≤ λc

0 otw

en = ∥H̃ − Hfit∥2
F/∥H̃∥2

F

Exponential kernel

Ideal low-pass filter

Delft University of Technology

part 1 :: conclusions
๏Graph signal processing is an exciting new tool set for processing

unstructured data

Delft University of Technology

part 1 :: conclusions
๏Graph signal processing is an exciting new tool set for processing

unstructured data

๏Graph filtering

- Applications: denoising, interpolation, distributed optimization, neural networks

- FIR and ARMA versions: simple (iterative) least squares design, efficient and/or

distributed implementations

Delft University of Technology

part 1 :: conclusions
๏Graph signal processing is an exciting new tool set for processing

unstructured data

๏Graph filtering

- Applications: denoising, interpolation, distributed optimization, neural networks

- FIR and ARMA versions: simple (iterative) least squares design, efficient and/or

distributed implementations

๏Advanced graph filters (discussed for FIR)

- Node-varying, edge-varying, constrained edge-varying

Delft University of Technology

part 1 :: conclusions
๏Graph signal processing is an exciting new tool set for processing

unstructured data

๏Graph filtering

- Applications: denoising, interpolation, distributed optimization, neural networks

- FIR and ARMA versions: simple (iterative) least squares design, efficient and/or

distributed implementations

๏Advanced graph filters (discussed for FIR)

- Node-varying, edge-varying, constrained edge-varying

๏Edge-varying graph filters

- Most general form

- Reduction in communication and computational cost

- Constrained form allows for easy least squares design

Delft University of Technology

optimization

part 2
graph filters for distributed

[1]

Delft University of Technology

part 2 :: overview

Delft University of Technology

part 2 :: overview
๏Introduction

- Distributed optimization

- Connection to graph filtering

Delft University of Technology

part 2 :: overview
๏Introduction

- Distributed optimization

- Connection to graph filtering

๏Applications

- Average consensus

- Distributed imaging

- Distributed beamforming

Delft University of Technology 93

Distributed optimization

Delft University of Technology

Distributed optimization

94

min
x

f (x) =
N

∑
i=1

fi (x)

Delft University of Technology

Distributed optimization

95

requires data exchanges within the network

min
x

f (x) =
N

∑
i=1

fi (x)

Delft University of Technology

Distributed optimization

96

requires data exchanges within the network

diffusions over the graph

min
x

f (x) =
N

∑
i=1

fi (x)

Delft University of Technology

Distributed optimization

97

x* ≜ arg min
x

N

∑
i=1

fi(y; x)

We focus on problems input data

Delft University of Technology

Distributed optimization

98

x* ≜ arg min
x

N

∑
i=1

fi(y; x)

We focus on problems

where

x* = H̃y
solution is a linear transformation  

of the input data

input data

Delft University of Technology

Distributed optimization

99

min
x ∑

i

(yi − x)2

Average consensus

Delft University of Technology

Distributed optimization

100

min
x ∑

i

(yi − x)2 min
x ∑

i

(yi − g⊤
i x)2

Average consensus Distributed imaging
[Naghibzadeh, ’19]

Delft University of Technology

Distributed optimization

101

min
x ∑

i

(yi − x)2 min
x ∑

i

(yi − g⊤
i x)2

WHy

Average consensus Distributed imaging Distributed Beamforming
[Naghibzadeh, ’19]

min
x

∥y − (WH)†x∥2
2

Delft University of Technology 102

How to leverage graph filters for
distributed optimization?

Delft University of Technology

Connection with graph filters

103

x* = H̃y

Goal: Implement known operation

Delft University of Technology

Connection with graph filters

104

x* = H̃y

Goal: Implement known operation

in a distributed manner.

Delft University of Technology

Connection with graph filters

105

x* = H̃y

Goal: Implement known operation

in a distributed manner.

Approach: Approximate by means of graph filtersH̃

distributable 
 by nature

Delft University of Technology

Global operator fitting

106

min
Θ

∥H̃ − Hfit(Θ)∥2

where is the solution of a centralized optimization problemH̃

Delft University of Technology

Global operator fitting

107

min
Θ

∥H̃ − Hfit(Θ)∥2

where is the solution of a centralized optimization problemH̃

๏Only works if global solution is linear (quadratic problems)

Delft University of Technology

Global operator fitting

108

min
Θ

∥H̃ − Hfit(Θ)∥2

where is the solution of a centralized optimization problemH̃

๏Only works if global solution is linear (quadratic problems)

๏Two possible design approaches

✦A fusion centre designs the filter and distributes the coefficients

✦The nodes themselves carry out the filter design which requires 

knowledge of the global operator and the total graph

Coutino, Isufi, Leus, Advances in Distributed Graph Filtering, IEEE Transactions on Signal Processing, 2019

Delft University of Technology 109

Some applications

Delft University of Technology

Average consensus

110

H̃ = 11⊤/N

N = 256

Consensus matrix
∥H̃

−
H

fit
(Θ

)∥
2 F

Community graph

Delft University of Technology

Distributed imaging

111

min
x

∥y − Gx∥2
2

Delft University of Technology 112

min
x

∥y − Gx∥2
2

min
x ∑ | [y]i − g⊤

i x |2

G⊤ = [g1, g2, …, gN]

Distributed optimization approach

Distributed imaging

Delft University of Technology 113

min
x

∥y − Gx∥2
2

min
x ∑ | [y]i − g⊤

i x |2

G⊤ = [g1, g2, …, gN]

min
Θ

∥1g̃⊤
i − Hi(Θ)∥2

F

(G†)⊤ = [g̃1, g̃2, …, g̃d]

Distributed optimization approach

Graph filtering approach

Distributed imaging

Delft University of Technology 114

min
x

∥y − Gx∥2
2

min
x ∑ | [y]i − g⊤

i x |2

G⊤ = [g1, g2, …, gN]

min
Θ

∥1g̃⊤
i − Hi(Θ)∥2

F

(G†)⊤ = [g̃1, g̃2, …, g̃d]
0 100 200 300 400 500 600 700 800 900 1000

Number of Iterations

10-3

10-2

10-1

100

101

O
bj

ec
tiv

e
Er

ro
r G

ap

Objective Error Versus Iterations

Dist. CVX Opt.
CEV-GF
NV-GF

10 20 30 40 50

1

1.5

2

2.5

Distributed optimization approach

Graph filtering approach

Distributed imaging

Delft University of Technology

Distributed beamforming

115

sensor array

x = WHy
Applying beaforming matrix

Delft University of Technology

Distributed beamforming

116

sensor array

x = WHy min
x

∥y − (WH)†x∥2
2

Applying beaforming matrix Distributed optimization approach

Delft University of Technology

Distributed beamforming

117

sensor array

x = WHy min
x

∥y − (WH)†x∥2
2

min
Θ

∥WH − H(Θ)∥F

Applying beaforming matrix Distributed optimization approach

Graph filtering approach

Delft University of Technology

Distributed beamforming

118

-200 -150 -100 -50 0 50 100 150 200
10-3

10-2

10-1

100

Desired Beampattern
Beampattern Hev
Beampattern Hnv

DoA [o]

po
w

er
[d

B
]

Delft University of Technology

intermedio

Delft University of Technology

part 3
graph filters for distributed

optimization [2]

Delft University of Technology

part 3 :: overview

Delft University of Technology

part 3 :: overview
๏Asynchronous implementation

- Classical results

- Results for classical graph filters

- Extension to more advanced graph filters

- Results

Delft University of Technology

part 3 :: overview
๏Asynchronous implementation

- Classical results

- Results for classical graph filters

- Extension to more advanced graph filters

- Results

๏Cascaded implementation

- Motivation

- Cascaded problem formulation

- Right-left iterative fitting (RELIEF)

- Results for average consensus

Delft University of Technology 124

What about unsynchronized
networks?

Delft University of Technology

Gdistributed	
asynchronous	
sensor	array

desired	
response

target
Asynchronous graph filtering

125

๏ Many applications require to compute, e.g., the beamforming

y = WHx ≈ H(Θ)x

distributively over an unsynchronised network.

Delft University of Technology

Gdistributed	
asynchronous	
sensor	array

desired	
response

target
Asynchronous graph filtering

126

๏ Many applications require to compute, e.g., the beamforming

y = WHx ≈ H(Θ)x

distributively over an unsynchronised network.

๏ Suppose we want to use general graph filter operations

yGF = H(Θ)x = HBHA

HB , I�
QX

k=1

�k,bS
k�1

HA ,
✓
I�

KX

k=1

�k,aS
k�1

◆�1

Delft University of Technology

Gdistributed	
asynchronous	
sensor	array

desired	
response

target
Asynchronous graph filtering

127

๏ Many applications require to compute, e.g., the beamforming

y = WHx ≈ H(Θ)x

distributively over an unsynchronised network.

๏ Suppose we want to use general graph filter operations

yGF = H(Θ)x = HBHA

HB , I�
QX

k=1

�k,bS
k�1

HA ,
✓
I�

KX

k=1

�k,aS
k�1

◆�1

Under which conditions is possible to implement the operator in the network?

Delft University of Technology 128

Asynchronous graph filtering
๏ Classical results. Asynchronous implementation of the recurrence

convergence under mild conditions on .C

(splitting method)yt+1 = yt + (x − Cyt)

[D. Chazan,’69][D. Bertsekas,’83][Y.Saad,’03]

Delft University of Technology 129

Asynchronous graph filtering
๏ Classical results. Asynchronous implementation of the recurrence

convergence under mild conditions on .C

๏ Recent results for classical GF. Asynchronous implementation of a GF

(splitting method)

y = p(�S)(q(�S))�1x p(x) =
K�1X

k=0

pkx
k

q(x) = 1 +
KX

k=1

qkx
kconvergence under mild conditions on matrices involved.

yt+1 = yt + (x − Cyt)

[D. Chazan,’69][D. Bertsekas,’83][Y.Saad,’03]

[O. Teke, ’19]

Delft University of Technology 130

Asynchronous graph filtering
๏ From the model

yGF = H(Θ)x = HBHAx

Delft University of Technology 131

Asynchronous graph filtering
๏ From the model

consider the partial output of the graph filter operation

yGF = H(Θ)x = HBHAx

yA = HAx

Delft University of Technology 132

Asynchronous graph filtering
๏ From the model

consider the partial output of the graph filter operation

yGF = H(Θ)x = HBHAx

yA = HAx

(I −
K

∑
k=1

ΦkSk−1)yA = x

which can be written as the solution to the linear system

Delft University of Technology 133

yt+1 = x + Byt

This system can be solved with the recursion

Asynchronous graph filtering

Delft University of Technology 134

yt+1 = x + Byt

y∞ → HAx

ρ(B) < 1

This system can be solved with the recursion

if

Asynchronous graph filtering

which converges to

Delft University of Technology 135

yt+1 = x + Byt

y∞ → HAx

ρ(B) < 1

B ≜
K

∑
k=0

ΦkSk

This system can be solved with the recursion

if

Asynchronous graph filtering

which converges to

However, is not suitable for asynchronous operation.

Requires several
exchanges before update!

Delft University of Technology 136

Instead, consider the shift of the recurrence vectorkth

Asynchronous graph filtering

y(k)
t = Sy(k−1)

t

Delft University of Technology 137

Instead, consider the shift of the recurrence vectorkth

Asynchronous graph filtering

y(k)
t = Sy(k−1)

t

ȳl+1 =

2

6664

x
0
...
0

3

7775
+

2

6664

�1 �2 · · · �K

S 0
. . .

...
S 0

3

7775
ȳl

= x̄+ B̄ȳl

stacking the vectors in we obtain the extended recurrence equation{y(k)
t }K−1

k=0 ȳt

ȳt+1 ȳt+1

ȳt+1

Analogous to
companion matrix for

linear recursive
sequences

Delft University of Technology 138

Instead, consider the shift of the recurrence vectorkth

Asynchronous graph filtering

y(k)
t = Sy(k−1)

t

ȳl+1 =

2

6664

x
0
...
0

3

7775
+

2

6664

�1 �2 · · · �K

S 0
. . .

...
S 0

3

7775
ȳl

= x̄+ B̄ȳl

stacking the vectors in we obtain the extended recurrence equation{y(k)
t }K−1

k=0 ȳt

the recurrence asymptotically converges if .ρ(B̄) < 1

ȳt+1 ȳt+1

ȳt+1

Delft University of Technology 139

Asynchronous graph filtering
๏ For the inexact synchronous recurrence

ȳin
t+1 = x̄ + B̄ȳt + vt

Delft University of Technology 140

Asynchronous graph filtering
๏ For the inexact synchronous recurrence

∥vl∥ ≤ β, ∀ l ∈ ℕ

bounded
perturbations, e.g.,

fixed-precision

ȳin
t+1 = x̄ + B̄ȳt + vt

Delft University of Technology 141

Asynchronous graph filtering
๏ For the inexact synchronous recurrence

under conditions

⇢  1, � := a
1� ⇢K

1� ⇢
< 1 a := max

k2{1,...,K}
k�kkC.⇤

∥vl∥ ≤ β, ∀ l ∈ ℕ

bounded
perturbations, e.g.,

fixed-precision

ȳin
t+1 = x̄ + B̄ȳt + vt

C

Delft University of Technology 142

Asynchronous graph filtering
๏ For the inexact synchronous recurrence

under conditions

⇢  1, � := a
1� ⇢K

1� ⇢
< 1 a := max

k2{1,...,K}
k�kkC.⇤

lim
l→∞

∥(ȳin
l)(0) − yA∥ ≤

β
1 − γ

recurrence asymptotically converges within a norm ball

∥vl∥ ≤ β, ∀ l ∈ ℕ

bounded
perturbations, e.g.,

fixed-precision

ȳin
t+1 = x̄ + B̄ȳt + vt

C

Delft University of Technology 143

Asynchronous graph filtering
๏ For the inexact synchronous recurrence

under conditions

⇢  1, � := a
1� ⇢K

1� ⇢
< 1 a := max

k2{1,...,K}
k�kkC.⇤

lim
l→∞

∥(ȳin
l)(0) − yA∥ ≤

β
1 − γ

recurrence asymptotically converges within a norm ball

∥vl∥ ≤ β, ∀ l ∈ ℕ

bounded
perturbations, e.g.,

fixed-precision

exact convergence
in noise-free case

ȳin
t+1 = x̄ + B̄ȳt + vt

C

Delft University of Technology 144

Asynchronous graph filtering
๏ For the asynchronous recurrence

(updated entries) (unchanged entries)

ȳa
t+1 = [Ztx̄ + ZtB̄ȳa

t] + [(I − Zt)ȳa
t]

Delft University of Technology 145

Asynchronous graph filtering
๏ For the asynchronous recurrence

Zt ≜ diag(wt) ∈ {0,1}KN×KN

(updated entries) (unchanged entries)

(update-selection matrix)

ȳa
t+1 = [Ztx̄ + ZtB̄ȳa

t] + [(I − Zt)ȳa
t]

Delft University of Technology 146

Asynchronous graph filtering
๏ For the asynchronous recurrence

Zt ≜ diag(wt) ∈ {0,1}KN×KN wt = [(w(0)
t)⊤, …, (w(K−1)

t)⊤]⊤

(updated entries) (unchanged entries)

(update-selection matrix) (shift update selection)kth

ȳa
t+1 = [Ztx̄ + ZtB̄ȳa

t] + [(I − Zt)ȳa
t]

Delft University of Technology 147

Asynchronous graph filtering
๏ For the asynchronous recurrence

Zt ≜ diag(wt) ∈ {0,1}KN×KN wt = [(w(0)
t)⊤, …, (w(K−1)

t)⊤]⊤

(updated entries) (unchanged entries)

(update-selection matrix) (shift update selection)kth

not all memory
entries are
updated

ȳa
t+1 = [Ztx̄ + ZtB̄ȳa

t] + [(I − Zt)ȳa
t]

Delft University of Technology 148

Asynchronous graph filtering
๏ For the asynchronous recurrence

∞

∑
t=0

[Zt]i,i ≫ 0

Zt ≜ diag(wt) ∈ {0,1}KN×KN wt = [(w(0)
t)⊤, …, (w(K−1)

t)⊤]⊤

(updated entries) (unchanged entries)

(update-selection matrix) (shift update selection)kth

with

& C

(sufficiently exciting condition)

not all memory
entries are
updated

ȳa
t+1 = [Ztx̄ + ZtB̄ȳa

t] + [(I − Zt)ȳa
t]

Delft University of Technology 149

Asynchronous graph filtering
๏ For the asynchronous recurrence

∞

∑
t=0

[Zt]i,i ≫ 0

Zt ≜ diag(wt) ∈ {0,1}KN×KN wt = [(w(0)
t)⊤, …, (w(K−1)

t)⊤]⊤

(updated entries) (unchanged entries)

(update-selection matrix) (shift update selection)kth

lim
l→∞

(ȳa
l)

(0) = yA

with
recurrence  

asymptotically converges& C

(sufficiently exciting condition)

not all memory
entries are
updated

Coutino, Leus, Asynchronous Distributed Edge-Variant Graph Filters, IEEE DSW, 2019

ȳa
t+1 = [Ztx̄ + ZtB̄ȳa

t] + [(I − Zt)ȳa
t]

Delft University of Technology 150

Asynchronous graph filtering
๏ Let a network perform the filtering operation

yGF = H(Θ)x = HBHAx

Delft University of Technology 151

Asynchronous graph filtering
๏ Let a network perform the filtering operation

yGF = H(Θ)x = HBHAx

if conditions

are met for the matrices involved in HA

∞

∑
t=0

[Zt]i,i ≫ 0 & C

Delft University of Technology 152

Asynchronous graph filtering
๏ Let a network perform the filtering operation

yGF = H(Θ)x = HBHAx

if conditions

are met for the matrices involved in HA

then the asynchronous implementation of converges to .H(Θ) yGF

Coutino, Leus, Asynchronous Distributed Edge-Variant Graph Filters, IEEE DSW, 2019

∞

∑
t=0

[Zt]i,i ≫ 0 & C

Delft University of Technology

0 200 400 600 800 1000
10-15

10-10

10-5

100
Sync (Ext)
Async : =0.1
Async (Ext) =0.3
Async (Ext) =0.5
Async (Ext) =0.7
Async (Ext) =0.9
JSync (Simple)

153

Asynchronous graph filtering
Example: ARMA CEV-GF

ρ(H) = 2.048

H = HBHA = [
1

∑
l=0

ϕlSl][
3

∑
k=1

ΦkSk−1]−1

 : synchronization rateτ

Delft University of Technology

0 200 400 600 800 1000
10-15

10-10

10-5

100
Sync (Ext)
Async : =0.1
Async (Ext) =0.3
Async (Ext) =0.5
Async (Ext) =0.7
Async (Ext) =0.9
JSync (Simple)

154

Asynchronous graph filtering
Example: ARMA CEV-GF

ρ(H) = 2.048

H = HBHA = [
1

∑
l=0

ϕlSl][
3

∑
k=1

ΦkSk−1]−1

non monotone
convergence

 : synchronization rateτ

Delft University of Technology 155

How to deal with large
graph filter orders?

Delft University of Technology

Cascaded graph filter implementation

156

๏ For large graph filter orders K

finding for becomes severely ill-conditioned.Θ H(Θ)

Delft University of Technology

Cascaded graph filter implementation

157

๏ For large graph filter orders K

finding for becomes severely ill-conditioned.Θ H(Θ)

[most shift operators have poor spectral qualities]

Delft University of Technology

Cascaded graph filter implementation

158

๏ For large graph filter orders K

finding for becomes severely ill-conditioned.Θ H(Θ)

[most shift operators have poor spectral qualities]

Cascaded Graph filters
Limits order of GF and use it as a building block (module)

ℋ(S; Θ) ≜
Q

∏
i=1

H(Θi)

Coutino, Leus, On Distributed Consensus by a Cascade Of Generalized Graph Filters, Asilomar, 2019

Delft University of Technology

Cascaded graph filter implementation

159

๏ For large graph filter orders K

finding for becomes severely ill-conditioned.Θ H(Θ)

[most shift operators have poor spectral qualities]

Cascaded Graph filters
Limits order of GF and use it as a building block (module)

ℋ(S; Θ) ≜
Q

∏
i=1

H(Θi)

Connections
with GNNs

Coutino, Leus, On Distributed Consensus by a Cascade Of Generalized Graph Filters, Asilomar, 2019

Delft University of Technology 160

H(⇥1) H(⇥2) H(⇥Q)

ℋ(S; Θ) ≜
Q

∏
i=1

H(Θi)

Cascaded graph filter implementation

Delft University of Technology 161

H(⇥1) H(⇥2) H(⇥Q)

ℋ(S; Θ) ≜
Q

∏
i=1

H(Θi)

• improve conditioning of design problem

• reduced-sized optimization problems

• obtain better performance with a reduced order

✦ This implementation aims to

Cascaded graph filter implementation

Delft University of Technology 162

H(⇥1) H(⇥2) H(⇥Q)

ℋ(S; Θ) ≜
Q

∏
i=1

H(Θi)

• improve conditioning of design problem

• reduced-sized optimization problems

• obtain better performance with a reduced order

✦ This implementation aims to
However, this leads to a  

non convex design problem 
☹

Cascaded graph filter implementation

Delft University of Technology 163

Cascaded graph filter implementation
๏ Cascaded graph filter parameters can be found by the nonconvex problem

{⇥
⇤
i }

Q
i=1 = argmin

{⇥i}Q
i=1

kH(S,⇥)�H
⇤
k

s.t. ⇥i 2 Ci, 8 i 2 {1, . . . , Q}

similar to the approach for learning parameters of GNNs.

Delft University of Technology 164

Cascaded graph filter implementation
๏ Cascaded graph filter parameters can be found by the nonconvex problem

{⇥
⇤
i }

Q
i=1 = argmin

{⇥i}Q
i=1

kH(S,⇥)�H
⇤
k

s.t. ⇥i 2 Ci, 8 i 2 {1, . . . , Q}

similar to the approach for learning parameters of GNNs.

coefficients
constraints, e.g.,

interval

Delft University of Technology 165

Cascaded graph filter implementation
๏ Cascaded graph filter parameters can be found by the nonconvex problem

{⇥
⇤
i }

Q
i=1 = argmin

{⇥i}Q
i=1

kH(S,⇥)�H
⇤
k

s.t. ⇥i 2 Ci, 8 i 2 {1, . . . , Q}

similar to the approach for learning parameters of GNNs.

๏ Alternatively, we can perform a sequential refitting process using a partition

H(S;⇥) = HlMHr

which exploits the sparsity of the involved matrices.

M ,
Q�1Y

q=2

H(⇥q)

coefficients
constraints, e.g.,

interval

Hl ≜ H(ΘQ) Hr ≜ H(Θ1)

Delft University of Technology 166

๏ For fixed and the design for is given byHr M Hl

argmin
✓q

k⌦l✓q � vec(H⇤)k2

⌦l , (H>
r M

> ⌦ I)

 , [(I⌦ I)J, (S> ⌦ I)J, · · · , ((S>)K ⌦ I)J] : J

[linSparseSolve]

selection matrix for  
nonzero entries of Φk

Cascaded graph filter implementation

Delft University of Technology 167

๏ For fixed and the design for is given byHr M Hl

argmin
✓q

k⌦l✓q � vec(H⇤)k2

⌦l , (H>
r M

> ⌦ I)

 , [(I⌦ I)J, (S> ⌦ I)J, · · · , ((S>)K ⌦ I)J] : J

[linSparseSolve]

selection matrix for  
nonzero entries of Φk

✦ accepts efficient memory storageΩl

✦ Otherwise, can be computed as an operator, i.e., matrix-vector operationΩl

✦ preconditioner for can be obtained if its constructed explicitlyΩl

Cascaded graph filter implementation

Delft University of Technology 168

๏ For fixed and the design for is given byHr M Hl

argmin
✓q

k⌦l✓q � vec(H⇤)k2

⌦l , (H>
r M

> ⌦ I)

 , [(I⌦ I)J, (S> ⌦ I)J, · · · , ((S>)K ⌦ I)J] : J

[linSparseSolve]

selection matrix for  
nonzero entries of Φk

✦ accepts efficient memory storageΩl

✦ Otherwise, can be computed as an operator, i.e., matrix-vector operationΩl

✦ preconditioner for can be obtained if its constructed explicitlyΩl

Cascaded graph filter implementation

Linear solver exploiting such characteristics are readily available [Paige, ’82] [Fong, ’11]

Delft University of Technology 169

๏ Borrowing ideas from RELAX we fit until convergence.{Hr, Hl}

✦ as is not included, sparsity of the system is preserved.M
✦ efficient sparse solvers can be used for each matrix
✦ under mild conditions, two-block coordinate descent converges.

Cascaded graph filter implementation
[Li, ’96]

Delft University of Technology 170

๏ Borrowing ideas from RELAX we fit until convergence.{Hr, Hl}

✦ as is not included, sparsity of the system is preserved.M
✦ efficient sparse solvers can be used for each matrix
✦ under mild conditions, two-block coordinate descent converges.

Cascaded graph filter implementation
[Li, ’96]

Delft University of Technology 171

๏ Summary of the procedure :: Right-Left Iterative Fitting [RELIEF]

Cascaded graph filter implementation

Coutino, Leus, On Distributed Consensus by a Cascade Of Generalized Graph Filters, Asilomar, 2019

Delft University of Technology 172

Example: Consensus over a network with nodes500

Cascaded graph filter implementation

Delft University of Technology

part 2 & 3 :: conclusions
๏Graph signal processing arises as an alternative for distributed optimization

- Significant benefits in terms of communication efficiency

- Applications: distributed consensus, distributed imaging, beamforming

- Requires knowledge of the data transformation

- Data transform must be linear and data independent

Delft University of Technology

part 2 & 3 :: conclusions
๏Graph signal processing arises as an alternative for distributed optimization

- Significant benefits in terms of communication efficiency

- Applications: distributed consensus, distributed imaging, beamforming

- Requires knowledge of the data transformation

- Data transform must be linear and data independent

๏Asynchronous graph filter is possible under mild conditions

- Results hold for classical, node-varying, constrained edge-varying graph filters

- For node-varying and constrained edge-varying filter order is critical

Delft University of Technology

๏Graph signal processing arises as an alternative for distributed optimization

- Significant benefits in terms of communication efficiency

- Applications: distributed consensus, distributed imaging, beamforming

- Requires knowledge of the data transformation

- Data transform must be linear and data independent

๏Asynchronous graph filter is possible under mild conditions

- Results hold for classical, node-varying, constrained edge-varying graph filters

- For node-varying and constrained edge-varying filter order is critical

๏Cascaded graph filters alleviates ill-conditioning of large filter orders

- Allows for an efficient sparse least squares design

- Reduction in communication and computational cost

- Implements only linear data transformations

part 2 & 3 :: conclusions

Delft University of Technology

๏ Role of graph filters in graph neural networks (GNNs)

✦ GNNs ~ nonlinear graph filters

๏ For simplicity will discuss supervised learning

๏ How to go from neural networks to GNNs?

๏ Types of GNNs

✦What are graph convolutional neural networks?

✦How use edge varying GNNs?

๏How to use GNNs for graph signal processing applications?

๏ For GNN pooling, transferability, and applications in control and resource allocation

✦ T-9: Graph Neural Networks (F. Gama and A. Ribeiro)

176

part 4:: overview

Delft University of Technology 177

Why we use filters in neural networks?

Delft University of Technology

Supervised learning

178

๏Relies on a dataset of training examples 

✦ the th input data in space

✦ the th output data in space (labels)

R
ℛ = {(x1, y1), (x2, y2), …, (xR, yR)}

xr r 𝒳

yr r 𝒴

๏Goal: learn a function that maps to

๏we want parametric:

f xr yr

f f(θ) : 𝒳 → 𝒴

Delft University of Technology

Supervised learning

179

๏Deign parameters such that

✦minimize a cost distance between and (e.g., MSE)

✦generalize well for test data

θ

f(θ, xr) yr

xr ∉ ℛ

minimize
θ

1
R

R

∑
r=1

(f(θ, xr) − yr)2

Delft University of Technology

Neural networks

180

๏Express function as a cascade of layered functions

๏No structure in the data; perceptron

f

x1
<latexit sha1_base64="Ysd2OMAc2D9pWw1Im7PZmrdWMuQ=">AAAB7HicdVBNS8NAEJ34WetX1aOXxSJ4Kkka2norePFYwbSFNpTNdtsu3WzC7kYsob/BiwdFvPqDvPlv3LQVVPTBwOO9GWbmhQlnStv2h7W2vrG5tV3YKe7u7R8clo6O2ypOJaE+iXksuyFWlDNBfc00p91EUhyFnHbC6VXud+6oVCwWt3qW0CDCY8FGjGBtJP9+kDnzQalsVy4bNderIbti23XHdXLi1r2qhxyj5CjDCq1B6b0/jEkaUaEJx0r1HDvRQYalZoTTebGfKppgMsVj2jNU4IiqIFscO0fnRhmiUSxNCY0W6veJDEdKzaLQdEZYT9RvLxf/8nqpHjWCjIkk1VSQ5aJRypGOUf45GjJJieYzQzCRzNyKyARLTLTJp2hC+PoU/U/absWpVtwbr9x0V3EU4BTO4AIcqEMTrqEFPhBg8ABP8GwJ69F6sV6XrWvWauYEfsB6+wQs4o7i</latexit>

x2
<latexit sha1_base64="FZ/KUT53P/zu7dLYl/5acb1HyxA=">AAAB7HicdVBNS8NAEJ34WetX1aOXxSJ4Kkka2norePFYwbSFNpTNdtsu3WzC7kYsob/BiwdFvPqDvPlv3LQVVPTBwOO9GWbmhQlnStv2h7W2vrG5tV3YKe7u7R8clo6O2ypOJaE+iXksuyFWlDNBfc00p91EUhyFnHbC6VXud+6oVCwWt3qW0CDCY8FGjGBtJP9+kLnzQalsVy4bNderIbti23XHdXLi1r2qhxyj5CjDCq1B6b0/jEkaUaEJx0r1HDvRQYalZoTTebGfKppgMsVj2jNU4IiqIFscO0fnRhmiUSxNCY0W6veJDEdKzaLQdEZYT9RvLxf/8nqpHjWCjIkk1VSQ5aJRypGOUf45GjJJieYzQzCRzNyKyARLTLTJp2hC+PoU/U/absWpVtwbr9x0V3EU4BTO4AIcqEMTrqEFPhBg8ABP8GwJ69F6sV6XrWvWauYEfsB6+wQuZ47j</latexit>

x3
<latexit sha1_base64="yzU7wSCqZ86+UJXbNllPz5xOb2g=">AAAB7HicdVBNS8NAEJ34WetX1aOXxSJ4Kkka2norePFYwbSFNpTNdtsu3WzC7kYsob/BiwdFvPqDvPlv3LQVVPTBwOO9GWbmhQlnStv2h7W2vrG5tV3YKe7u7R8clo6O2ypOJaE+iXksuyFWlDNBfc00p91EUhyFnHbC6VXud+6oVCwWt3qW0CDCY8FGjGBtJP9+kFXng1LZrlw2aq5XQ3bFtuuO6+TErXtVDzlGyVGGFVqD0nt/GJM0okITjpXqOXaigwxLzQin82I/VTTBZIrHtGeowBFVQbY4do7OjTJEo1iaEhot1O8TGY6UmkWh6YywnqjfXi7+5fVSPWoEGRNJqqkgy0WjlCMdo/xzNGSSEs1nhmAimbkVkQmWmGiTT9GE8PUp+p+03YpTrbg3XrnpruIowCmcwQU4UIcmXEMLfCDA4AGe4NkS1qP1Yr0uW9es1cwJ/ID19gkv7I7k</latexit>

x4
<latexit sha1_base64="TxnAdb8RooRHwAwJpSRpUPq+7QU=">AAAB7HicdVBNS8NAEJ34WetX1aOXxSJ4Kkka2norePFYwbSFNpTNdtsu3WzC7kYsob/BiwdFvPqDvPlv3LQVVPTBwOO9GWbmhQlnStv2h7W2vrG5tV3YKe7u7R8clo6O2ypOJaE+iXksuyFWlDNBfc00p91EUhyFnHbC6VXud+6oVCwWt3qW0CDCY8FGjGBtJP9+kHnzQalsVy4bNderIbti23XHdXLi1r2qhxyj5CjDCq1B6b0/jEkaUaEJx0r1HDvRQYalZoTTebGfKppgMsVj2jNU4IiqIFscO0fnRhmiUSxNCY0W6veJDEdKzaLQdEZYT9RvLxf/8nqpHjWCjIkk1VSQ5aJRypGOUf45GjJJieYzQzCRzNyKyARLTLTJp2hC+PoU/U/absWpVtwbr9x0V3EU4BTO4AIcqEMTrqEFPhBg8ABP8GwJ69F6sV6XrWvWauYEfsB6+wQxcY7l</latexit>

y1
<latexit sha1_base64="n+7SxNNW8m8DrM5UvhQtZ6879DE=">AAAB7HicdVBNS8NAEJ3Ur1q/qh69LBbBU0jSau2t4MVjBdMW2lA22027dLMJuxuhhP4GLx4U8eoP8ua/cfshqOiDgcd7M8zMC1POlHacD6uwtr6xuVXcLu3s7u0flA+P2irJJKE+SXgiuyFWlDNBfc00p91UUhyHnHbCyfXc79xTqVgi7vQ0pUGMR4JFjGBtJH86yN3ZoFxxbKfqNS4vkGO7ddcwQ5ya12hUkWs7C1Rghdag/N4fJiSLqdCEY6V6rpPqIMdSM8LprNTPFE0xmeAR7RkqcExVkC+OnaEzowxRlEhTQqOF+n0ix7FS0zg0nTHWY/Xbm4t/eb1MR1dBzkSaaSrIclGUcaQTNP8cDZmkRPOpIZhIZm5FZIwlJtrkUzIhfH2K/idtz3artndbqzS9VRxFOIFTOAcX6tCEG2iBDwQYPMATPFvCerRerNdla8FazRzDD1hvnz71ju8=</latexit>

y2
<latexit sha1_base64="i0JGCrJUqxxmWu7rkxCgURe4698=">AAAB7HicdVBNS8NAEJ3Ur1q/qh69LBbBU0jSau2t4MVjBdMW2lA22027dLMJuxuhhP4GLx4U8eoP8ua/cfshqOiDgcd7M8zMC1POlHacD6uwtr6xuVXcLu3s7u0flA+P2irJJKE+SXgiuyFWlDNBfc00p91UUhyHnHbCyfXc79xTqVgi7vQ0pUGMR4JFjGBtJH86yL3ZoFxxbKfqNS4vkGO7ddcwQ5ya12hUkWs7C1Rghdag/N4fJiSLqdCEY6V6rpPqIMdSM8LprNTPFE0xmeAR7RkqcExVkC+OnaEzowxRlEhTQqOF+n0ix7FS0zg0nTHWY/Xbm4t/eb1MR1dBzkSaaSrIclGUcaQTNP8cDZmkRPOpIZhIZm5FZIwlJtrkUzIhfH2K/idtz3artndbqzS9VRxFOIFTOAcX6tCEG2iBDwQYPMATPFvCerRerNdla8FazRzDD1hvn0B6jvA=</latexit>

y3
<latexit sha1_base64="RtuKIf4Vx+5kNaxtUMN9Og7IT8Y=">AAAB7HicdVDLSsNAFJ3UV62vqks3g0VwFSZJtXZXcOOygmkLbSiT6aQdOpmEmYkQQr/BjQtF3PpB7vwbpw9BRQ9cOJxzL/feE6acKY3Qh1VaW9/Y3CpvV3Z29/YPqodHHZVkklCfJDyRvRArypmgvmaa014qKY5DTrvh9Hrud++pVCwRdzpPaRDjsWARI1gbyc+HhTcbVmvIRp7bvLyAyHYajmGGoLrbbHrQsdECNbBCe1h9H4wSksVUaMKxUn0HpToosNSMcDqrDDJFU0ymeEz7hgocUxUUi2Nn8MwoIxgl0pTQcKF+nyhwrFQeh6Yzxnqifntz8S+vn+noKiiYSDNNBVkuijIOdQLnn8MRk5RonhuCiWTmVkgmWGKiTT4VE8LXp/B/0nFtx7Pd23qt5a7iKIMTcArOgQMaoAVuQBv4gAAGHsATeLaE9Wi9WK/L1pK1mjkGP2C9fQJB/47x</latexit>

f(θ, x) = f3(θ3, f2(θ2, f1(θ1, x)))
layer 1: parameters  
layer 2: parameters  
layer 3: parameters

θ1

θ2

θ3

y = σ(Wx + b)

ReLU(x) = {x x > 0
0 otw

๏Parameters

๏Pointwise nonlinearity

θ = {W, b}
σ(⋅)

Delft University of Technology

Neural networks

181

๏No structure in the data: multi-layer perceptron

✦Improves expressivity

x0 x1 x2

๏ Input features

๏Output features

๏Propagation rule at layer

x0 = xr
xL

l

xl = σ(Wlxl−1 + bl)
 : input layer = output layer xl−1 l l − 1

 : output layer

: parameters layer

xl l
θl = {Wl, bl} l

Delft University of Technology

Neural networks

182

๏Unrolling recursion

xL = σ(WLxL−1 + bL)
= σ(WLσ(WL−1xL−2 + bL−1) + bL)
= σ(WLσ(WL−1σ(…σ(W1x0 + b0) + bL−1) + bL)

x0 x1 x2

xL = σ(WLxL−1 + bL)

๏ depends on through a composition of

 linear functions and pointwise nonlinearities

xL x0

Delft University of Technology

Neural networks

183

๏MLP fails in high dimensional data

✦ if layers have dimensions

• parameters, e.g.,

• complexity

๏ need to exploit structure in data

xl = σ(Wlxl−1 + bl)
dim(xl) = dim(xl−1) ∼ 𝒪(N)

dim(Wl) ∼ 𝒪(N2) N = 1000 → 𝒪(106)

𝒪(N2)

Delft University of Technology

Neural networks

184

๏structure in data

✦spatial data: pixel neighbors

✦temporal data: signal proximity

๏reduce parameters by effective sharing

๏reduce complexity by efficient implementation

๏use spatial and temporal filters

✦no loose of discriminatory power

Delft University of Technology

Filters in spatial convolutional layer

185

๏ MLP propagation rule

๏ Spatial data: spatial convolution filter bank substitutes

✦ filters apply the same parameters to different locations

✦ bias can be ignored or shared

xl = σ(Wlxl−1 + bl)
Wl

bl bl = bl1filter	layer	 l
<latexit sha1_base64="NP6+yU/ThMFzsO5IeayfnQ4Ijyk=">AAAB6HicdVDLSsNAFJ3UV62vqks3g0VwFZI0tHVXcOOyBfuANpTJ9KYdO3kwMxFK6Be4caGIWz/JnX/jpK2gogcuHM65l3vv8RPOpLKsD6Owsbm1vVPcLe3tHxwelY9PujJOBYUOjXks+j6RwFkEHcUUh34igIQ+h54/u8793j0IyeLoVs0T8EIyiVjAKFFaavNRuWKZV42a49awZVpW3XbsnDh1t+piWys5KmiN1qj8PhzHNA0hUpQTKQe2lSgvI0IxymFRGqYSEkJnZAIDTSMSgvSy5aELfKGVMQ5ioStSeKl+n8hIKOU89HVnSNRU/vZy8S9vkKqg4WUsSlIFEV0tClKOVYzzr/GYCaCKzzUhVDB9K6ZTIghVOpuSDuHrU/w/6TqmXTWdtltpOus4iugMnaNLZKM6aqIb1EIdRBGgB/SEno0749F4MV5XrQVjPXOKfsB4+wQwpY0m</latexit>

l
<latexit sha1_base64="qM8OPbE68be/Ba6xVyTSrFcwPi0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20a1XvqlprXlfqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4A0IeM5A==</latexit>input	 layer l

<latexit sha1_base64="qM8OPbE68be/Ba6xVyTSrFcwPi0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20a1XvqlprXlfqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4A0IeM5A==</latexit>

output	 layer

�l
11

<latexit sha1_base64="dQZWRH+LUm3QIj+F0BfEIP/WlgE=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7rrzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFN9kTw=</latexit>

�l
12

<latexit sha1_base64="YKYf5nN57bSWw43LbKPumL8tbN0=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7nrzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFUEkT0=</latexit>

�l
21

<latexit sha1_base64="SCnrSH1kETCUMx6vy2K+ephFm7U=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7rnzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFUFkT0=</latexit>

�l
22

<latexit sha1_base64="Q8YGBpqA8uIWInUV8H/WHc4OXUw=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7nnzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFaMkT4=</latexit>

input later l output later l

filter later l

input later l output later l

�l
11

<latexit sha1_base64="dQZWRH+LUm3QIj+F0BfEIP/WlgE=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7rrzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFN9kTw=</latexit>

�l
12

<latexit sha1_base64="YKYf5nN57bSWw43LbKPumL8tbN0=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7nrzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFUEkT0=</latexit>

�l
21

<latexit sha1_base64="SCnrSH1kETCUMx6vy2K+ephFm7U=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7rnzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFUFkT0=</latexit>

�l
22

<latexit sha1_base64="Q8YGBpqA8uIWInUV8H/WHc4OXUw=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7nnzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFaMkT4=</latexit>

filter	layer	 l
<latexit sha1_base64="NP6+yU/ThMFzsO5IeayfnQ4Ijyk=">AAAB6HicdVDLSsNAFJ3UV62vqks3g0VwFZI0tHVXcOOyBfuANpTJ9KYdO3kwMxFK6Be4caGIWz/JnX/jpK2gogcuHM65l3vv8RPOpLKsD6Owsbm1vVPcLe3tHxwelY9PujJOBYUOjXks+j6RwFkEHcUUh34igIQ+h54/u8793j0IyeLoVs0T8EIyiVjAKFFaavNRuWKZV42a49awZVpW3XbsnDh1t+piWys5KmiN1qj8PhzHNA0hUpQTKQe2lSgvI0IxymFRGqYSEkJnZAIDTSMSgvSy5aELfKGVMQ5ioStSeKl+n8hIKOU89HVnSNRU/vZy8S9vkKqg4WUsSlIFEV0tClKOVYzzr/GYCaCKzzUhVDB9K6ZTIghVOpuSDuHrU/w/6TqmXTWdtltpOus4iugMnaNLZKM6aqIb1EIdRBGgB/SEno0749F4MV5XrQVjPXOKfsB4+wQwpY0m</latexit>

l
<latexit sha1_base64="qM8OPbE68be/Ba6xVyTSrFcwPi0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20a1XvqlprXlfqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4A0IeM5A==</latexit>input	 layer l

<latexit sha1_base64="qM8OPbE68be/Ba6xVyTSrFcwPi0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20a1XvqlprXlfqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4A0IeM5A==</latexit>

output	 layer

�l
11

<latexit sha1_base64="dQZWRH+LUm3QIj+F0BfEIP/WlgE=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7rrzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFN9kTw=</latexit>

�l
12

<latexit sha1_base64="YKYf5nN57bSWw43LbKPumL8tbN0=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7nrzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFUEkT0=</latexit>

�l
21

<latexit sha1_base64="SCnrSH1kETCUMx6vy2K+ephFm7U=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7rnzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFUFkT0=</latexit>

�l
22

<latexit sha1_base64="Q8YGBpqA8uIWInUV8H/WHc4OXUw=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7nnzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFaMkT4=</latexit>

filter later l

Delft University of Technology

Filters in spatial convolutional layer

186

๏shift-and-sum convolves filter with input image

๏ spatial FIR convolutional filtering

vertical and horizontal 
input shifts

�l
11

<latexit sha1_base64="dQZWRH+LUm3QIj+F0BfEIP/WlgE=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7rrzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFN9kTw=</latexit>

�l
12

<latexit sha1_base64="YKYf5nN57bSWw43LbKPumL8tbN0=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7nrzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFUEkT0=</latexit>

�l
21

<latexit sha1_base64="SCnrSH1kETCUMx6vy2K+ephFm7U=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7rnzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFUFkT0=</latexit>

�l
22

<latexit sha1_base64="Q8YGBpqA8uIWInUV8H/WHc4OXUw=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7nnzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFaMkT4=</latexit>

filter	layer	 l
<latexit sha1_base64="NP6+yU/ThMFzsO5IeayfnQ4Ijyk=">AAAB6HicdVDLSsNAFJ3UV62vqks3g0VwFZI0tHVXcOOyBfuANpTJ9KYdO3kwMxFK6Be4caGIWz/JnX/jpK2gogcuHM65l3vv8RPOpLKsD6Owsbm1vVPcLe3tHxwelY9PujJOBYUOjXks+j6RwFkEHcUUh34igIQ+h54/u8793j0IyeLoVs0T8EIyiVjAKFFaavNRuWKZV42a49awZVpW3XbsnDh1t+piWys5KmiN1qj8PhzHNA0hUpQTKQe2lSgvI0IxymFRGqYSEkJnZAIDTSMSgvSy5aELfKGVMQ5ioStSeKl+n8hIKOU89HVnSNRU/vZy8S9vkKqg4WUsSlIFEV0tClKOVYzzr/GYCaCKzzUhVDB9K6ZTIghVOpuSDuHrU/w/6TqmXTWdtltpOus4iugMnaNLZKM6aqIb1EIdRBGgB/SEno0749F4MV5XrQVjPXOKfsB4+wQwpY0m</latexit>

l
<latexit sha1_base64="qM8OPbE68be/Ba6xVyTSrFcwPi0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20a1XvqlprXlfqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4A0IeM5A==</latexit>input	 layer l

<latexit sha1_base64="qM8OPbE68be/Ba6xVyTSrFcwPi0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20a1XvqlprXlfqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4A0IeM5A==</latexit>

output	 layer

�l
11

<latexit sha1_base64="dQZWRH+LUm3QIj+F0BfEIP/WlgE=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7rrzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFN9kTw=</latexit>

�l
12

<latexit sha1_base64="YKYf5nN57bSWw43LbKPumL8tbN0=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7nrzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFUEkT0=</latexit>

�l
21

<latexit sha1_base64="SCnrSH1kETCUMx6vy2K+ephFm7U=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7rnzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFUFkT0=</latexit>

�l
22

<latexit sha1_base64="Q8YGBpqA8uIWInUV8H/WHc4OXUw=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7nnzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFaMkT4=</latexit>

input later l output later l

filter later l

yl
ij =

R

∑
r=1

C

∑
c=1

ϕl
rcxl−1

i−r,j−c

Delft University of Technology

Convolutional neural networks

187

๏ CNNs increase descriptive power with a parallel filter bank

l
<latexit sha1_base64="qM8OPbE68be/Ba6xVyTSrFcwPi0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20a1XvqlprXlfqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4A0IeM5A==</latexit>input	 layer

has	4	inputs
l

<latexit sha1_base64="qM8OPbE68be/Ba6xVyTSrFcwPi0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20a1XvqlprXlfqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4A0IeM5A==</latexit>output	 layer
has	2	outputs

✦ input images

✦process each with a parallel bank of filters

✦ sum filter outputs to obtain higher-level features

✦parameters are filter coefficients

✦ train with back propagation

F

Delft University of Technology

CNN full stack

188

๏ Cascade of spatial filter bank and nonlinearities

.	.	.	

bird

cat

…

dog

convolution	 +	pooling fully	connected

๏ Parameters - independent on the image dimensions

๏ Complexity - spatial convolution (efficient)

Benefits

Delft University of Technology 189

What about data on graphs?

Delft University of Technology

Learning from (ir)regular graph data

190

๏Training samples are graph signals

๏Non-Euclidean structure

✦conventional CNNs are inapplicable

๏MLP can apply

✦ignores the structure

✦data demanding

xr ∈ ℝN

xl = σ(Wlxl−1 + bl)

Delft University of Technology

Learning from (ir)regular graph data

191

๏Need a neural network solution to account

 to account for coupling signal-topology

๏Graph as prior to estimate a parametric function

✦ is the graph shift operator

✦ trainable parameters (i.e., filter coefficients)

S

θ

Gama, Isufi, Leus, Ribeiro, Graphs, Convolutions, and Neural Networks, IEEE Signal Processing Magazine, under review, arXiv: 2003.03777

f(θ, S) : 𝒳 → 𝒴

Delft University of Technology

Graph neural networks

192

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

๏ Graph neural networks substitute with graph filter bankWl

๏ Propagation rule through graph filters
xl = σ(Hlxl−1)

✦Edge-variant filter: EdgeNets

✦Node-variant filter: Node-variant GNNs

✦FIR filters: Graph convolutional neural networks

• Chebyshev form: ChebNets

✦ARMA filters: ARMANets

• Direct, parallel, cascade

• Cayley form: CayleyNets

๏ graph filter at layer for any shift operator Hl l S

[Gama’18 - DSW]

[Gama’18 - TSP]

[Defferrard’16 - NeurIPS]

[Wijesinghe’19 - NeurIPS] [Bianchi’19-arXiv]

[Levie’18 - TSP]

Delft University of Technology

Graph convolutional neural networks

193

๏ Graph convolutional neural networks use a graph convolutional filter  
(FIR - ARMA)

Example: FIR

xl = σ(
K

∑
k=0

ϕl
kS

kxl−1)

๏ parameters shared among all nodes and edges

๏ shift-and-sum convolves filter with graph signal

Gama, Marques, Leus, Ribeiro, Convolutional Neural Networks Architectures for Signals Supported on Graphs, IEEE Transactions on Signal Processing, 2018

Delft University of Technology

Graph convolutional neural networks

194

๏ GCNN: shift-and-sum & shared parameters

xl = σ(ϕl
oxl−1 + ϕl

1Sxl−1 + ϕl
2S

2xl−1)

xl
i = σ(ϕl

oxl−1
i + ϕl

1[Sxl−1]i + ϕl
2[S

2xl−1]i)

shift over the nodes

Delft University of Technology

Graph convolutional neural networks

195

๏ GCNN: shift-and-sum & shared parameters

xl = σ(ϕl
oxl−1 + ϕl

1Sxl−1 + ϕl
2S

2xl−1)

xl
i = σ(ϕl

oxl−1
i + ϕl

1[Sxl−1]i + ϕl
2[S

2xl−1]i)

shift over the nodes

Delft University of Technology

Graph convolutional neural networks

196

๏ GCNN: shift-and-sum & shared parameters

xl = σ(ϕl
oxl−1 + ϕl

1Sxl−1 + ϕl
2S

2xl−1)

xl
i = σ(ϕl

oxl−1
i + ϕl

1[Sxl−1]i + ϕl
2[S

2xl−1]i)

shift over the nodes

Delft University of Technology

Graph convolutional neural networks

197

๏ GCNNs increase descriptive power with a parallel filter bank

l
<latexit sha1_base64="qM8OPbE68be/Ba6xVyTSrFcwPi0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20a1XvqlprXlfqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4A0IeM5A==</latexit>input layer

has 4 inputs
l

<latexit sha1_base64="qM8OPbE68be/Ba6xVyTSrFcwPi0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20a1XvqlprXlfqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4A0IeM5A==</latexit>output layer
has 2 outputs

{xl�1
g }4g=1

<latexit sha1_base64="Uk3ezDjbueBya7V994u2j8zAnwc=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0VwY0lqQTdCwY3LCvYBTRom00k7dDIJMxOxhGzd+CtuXCji1j9w5984abPQ1gMXDufcy733+DGjUlnWt1FaWV1b3yhvVra2d3b3zP2DjowSgUkbRywSPR9JwignbUUVI71YEBT6jHT9yXXud++JkDTid2oaEzdEI04DipHSkmdCJ3VCpMZ+kD5kg5Sd2Zk3cjIvHcEraGeDhmdWrZo1A1wmdkGqoEDLM7+cYYSTkHCFGZKyb1uxclMkFMWMZBUnkSRGeIJGpK8pRyGRbjr7JIMnWhnCIBK6uIIz9fdEikIpp6GvO/Or5aKXi/95/UQFl25KeZwowvF8UZAwqCKYxwKHVBCs2FQThAXVt0I8RgJhpcOr6BDsxZeXSades89r9dtGtVkv4iiDI3AMToENLkAT3IAWaAMMHsEzeAVvxpPxYrwbH/PWklHMHII/MD5/ANI9mbE=</latexit>

{xl
f}2f=1

<latexit sha1_base64="xFMtawzqI+EPnAiE6laUqef2uc8=">AAACBXicbVDLSsNAFJ34rPUVdamLwSK4KkkUdCMU3LisYB/QpGEynbRDJ5MwMxFLyMaNv+LGhSJu/Qd3/o2TNgttPXDhcM693HtPkDAqlWV9G0vLK6tr65WN6ubW9s6uubfflnEqMGnhmMWiGyBJGOWkpahipJsIgqKAkU4wvi78zj0Rksb8Tk0S4kVoyGlIMVJa8s0jN3MjpEZBmD3kfthnbu5nIbyCdt53fLNm1a0p4CKxS1IDJZq++eUOYpxGhCvMkJQ920qUlyGhKGYkr7qpJAnCYzQkPU05ioj0sukXOTzRygCGsdDFFZyqvycyFEk5iQLdWVws571C/M/rpSq89DLKk1QRjmeLwpRBFcMiEjiggmDFJpogLKi+FeIREggrHVxVh2DPv7xI2k7dPqs7t+e1hlPGUQGH4BicAhtcgAa4AU3QAhg8gmfwCt6MJ+PFeDc+Zq1LRjlzAP7A+PwBBG+YLw==</latexit>

H
l
1

<latexit sha1_base64="8HyBMRbr5D28XJQNjMjsU3Htnxw=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSJmZDm3dFdx0WcE+oJ2WTJppQzMPkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8WLOpDLND2NtfWNzazu3k9/d2z84LBwdt2WUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm15nfueOCsmi8FbNYuoGeBwynxGstDToB1hNPD9tzIfWgA8LRbN0VavYTgWZJdOsWraVEbvqlB1kaSVDEVZoDgvv/VFEkoCGinAsZc8yY+WmWChGOJ3n+4mkMSZTPKY9TUMcUOmmi9RzdK6VEfIjoV+o0EL9vpHiQMpZ4OnJLKX87WXiX14vUX7NTVkYJ4qGZHnITzhSEcoqQCMmKFF8pgkmgumsiEywwETpovK6hK+fov9J2y5Z5ZJ94xTrl6s6cnAKZ3ABFlShDg1oQgsICHiAJ3g27o1H48V4XY6uGaudE/gB4+0TwZaSng==</latexit>

H
l
2

<latexit sha1_base64="5KuD1Jia2HpP651kuvepQY+uWq8=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSJmZDm3dFdx0WcE+oJ2WTJppQzMPkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8WLOpDLND2NtfWNzazu3k9/d2z84LBwdt2WUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm15nfueOCsmi8FbNYuoGeBwynxGstDToB1hNPD9tzIf2gA8LRbN0VavYTgWZJdOsWraVEbvqlB1kaSVDEVZoDgvv/VFEkoCGinAsZc8yY+WmWChGOJ3n+4mkMSZTPKY9TUMcUOmmi9RzdK6VEfIjoV+o0EL9vpHiQMpZ4OnJLKX87WXiX14vUX7NTVkYJ4qGZHnITzhSEcoqQCMmKFF8pgkmgumsiEywwETpovK6hK+fov9J2y5Z5ZJ94xTrl6s6cnAKZ3ABFlShDg1oQgsICHiAJ3g27o1H48V4XY6uGaudE/gB4+0TwxySnw==</latexit>

H
l
3

<latexit sha1_base64="C/5AfJL0ybTsw90lAC1b/JRCA/E=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSJmZDm3dFdx0WcE+oJ2WTJppQzMPkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8WLOpDLND2NtfWNzazu3k9/d2z84LBwdt2WUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm15nfueOCsmi8FbNYuoGeBwynxGstDToB1hNPD9tzIflAR8WimbpqlaxnQoyS6ZZtWwrI3bVKTvI0kqGIqzQHBbe+6OIJAENFeFYyp5lxspNsVCMcDrP9xNJY0ymeEx7moY4oNJNF6nn6FwrI+RHQr9QoYX6fSPFgZSzwNOTWUr528vEv7xeovyam7IwThQNyfKQn3CkIpRVgEZMUKL4TBNMBNNZEZlggYnSReV1CV8/Rf+Ttl2yyiX7xinWL1d15OAUzuACLKhCHRrQhBYQEPAAT/Bs3BuPxovxuhxdM1Y7J/ADxtsnxKKSoA==</latexit>

H
l
4

<latexit sha1_base64="XPB4xsUEk3v0AxJj6fbD9KaWYcQ=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSJmZDm3dFdx0WcE+oJ2WTJppQzMPkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8WLOpDLND2NtfWNzazu3k9/d2z84LBwdt2WUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm15nfueOCsmi8FbNYuoGeBwynxGstDToB1hNPD9tzIfOgA8LRbN0VavYTgWZJdOsWraVEbvqlB1kaSVDEVZoDgvv/VFEkoCGinAsZc8yY+WmWChGOJ3n+4mkMSZTPKY9TUMcUOmmi9RzdK6VEfIjoV+o0EL9vpHiQMpZ4OnJLKX87WXiX14vUX7NTVkYJ4qGZHnITzhSEcoqQCMmKFF8pgkmgumsiEywwETpovK6hK+fov9J2y5Z5ZJ94xTrl6s6cnAKZ3ABFlShDg1oQgsICHiAJ3g27o1H48V4XY6uGaudE/gB4+0TxiiSoQ==</latexit>

✦ input graph signals

✦ process each signal with a graph filter

๏

F {xl−1
g }F

g=1 ✦sum filter outputs

✦parameter are filter coefficients (backprop.)

๏

Delft University of Technology

Graph convolutional neural networks

198

๏ GCNNs increase descriptive power with a parallel filter bank

{xl�1
g }4g=1

<latexit sha1_base64="Uk3ezDjbueBya7V994u2j8zAnwc=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0VwY0lqQTdCwY3LCvYBTRom00k7dDIJMxOxhGzd+CtuXCji1j9w5984abPQ1gMXDufcy733+DGjUlnWt1FaWV1b3yhvVra2d3b3zP2DjowSgUkbRywSPR9JwignbUUVI71YEBT6jHT9yXXud++JkDTid2oaEzdEI04DipHSkmdCJ3VCpMZ+kD5kg5Sd2Zk3cjIvHcEraGeDhmdWrZo1A1wmdkGqoEDLM7+cYYSTkHCFGZKyb1uxclMkFMWMZBUnkSRGeIJGpK8pRyGRbjr7JIMnWhnCIBK6uIIz9fdEikIpp6GvO/Or5aKXi/95/UQFl25KeZwowvF8UZAwqCKYxwKHVBCs2FQThAXVt0I8RgJhpcOr6BDsxZeXSades89r9dtGtVkv4iiDI3AMToENLkAT3IAWaAMMHsEzeAVvxpPxYrwbH/PWklHMHII/MD5/ANI9mbE=</latexit>

{xl
f}2f=1

<latexit sha1_base64="xFMtawzqI+EPnAiE6laUqef2uc8=">AAACBXicbVDLSsNAFJ34rPUVdamLwSK4KkkUdCMU3LisYB/QpGEynbRDJ5MwMxFLyMaNv+LGhSJu/Qd3/o2TNgttPXDhcM693HtPkDAqlWV9G0vLK6tr65WN6ubW9s6uubfflnEqMGnhmMWiGyBJGOWkpahipJsIgqKAkU4wvi78zj0Rksb8Tk0S4kVoyGlIMVJa8s0jN3MjpEZBmD3kfthnbu5nIbyCdt53fLNm1a0p4CKxS1IDJZq++eUOYpxGhCvMkJQ920qUlyGhKGYkr7qpJAnCYzQkPU05ioj0sukXOTzRygCGsdDFFZyqvycyFEk5iQLdWVws571C/M/rpSq89DLKk1QRjmeLwpRBFcMiEjiggmDFJpogLKi+FeIREggrHVxVh2DPv7xI2k7dPqs7t+e1hlPGUQGH4BicAhtcgAa4AU3QAhg8gmfwCt6MJ+PFeDc+Zq1LRjlzAP7A+PwBBG+YLw==</latexit>

H
l
4

<latexit sha1_base64="x7SGffiL4yzeEqU4cl88+3uP7A4=">AAAB9XicdVDLSgMxFM3UV62vqks3wSK4kJLUYttdwU2XFewD2mnJpJk2NJMZkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8SLBtUHow8msrW9sbmW3czu7e/sH+cOjtg5jRVmLhiJUXY9oJrhkLcONYN1IMRJ4gnW86XXqd+6Y0jyUt2YWMTcgY8l9Tomx0qAfEDPx/KQxH5YHYpgvoCJCCGMMU4IrV8iSWq1awlWIU8uiAFZoDvPv/VFI44BJQwXRuodRZNyEKMOpYPNcP9YsInRKxqxnqSQB026ySD2HZ1YZQT9U9kkDF+r3jYQEWs8Cz06mKfVvLxX/8nqx8atuwmUUGybp8pAfC2hCmFYAR1wxasTMEkIVt1khnRBFqLFF5WwJXz+F/5N2qYgvi6WbcqF+saojC07AKTgHGFRAHTRAE7QABQo8gCfw7Nw7j86L87oczTirnWPwA87bJ7MPkpU=</latexit>

H
l
3

<latexit sha1_base64="xmmOHl8xrAH/ozPOn/JcFYR90gk=">AAAB9XicdVDLSgMxFM3UV62vqks3wSK4kJK0YttdwU2XFewD2mnJpJk2NJMZkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8SLBtUHow8msrW9sbmW3czu7e/sH+cOjtg5jRVmLhiJUXY9oJrhkLcONYN1IMRJ4gnW86XXqd+6Y0jyUt2YWMTcgY8l9Tomx0qAfEDPx/KQxH5YHYpgvoCJCCGMMU4IrV8iSWq1awlWIU8uiAFZoDvPv/VFI44BJQwXRuodRZNyEKMOpYPNcP9YsInRKxqxnqSQB026ySD2HZ1YZQT9U9kkDF+r3jYQEWs8Cz06mKfVvLxX/8nqx8atuwmUUGybp8pAfC2hCmFYAR1wxasTMEkIVt1khnRBFqLFF5WwJXz+F/5N2qYjLxdLNZaF+saojC07AKTgHGFRAHTRAE7QABQo8gCfw7Nw7j86L87oczTirnWPwA87bJ7GJkpQ=</latexit>

H
l
2

<latexit sha1_base64="+8Y9nHfgVyPkP9NgooEVqpn7VZk=">AAAB9XicdVDLSgMxFM34rPVVdekmWAQXUpJRbLsruOmygn1AOy2ZNNOGZjJDklHK0P9w40IRt/6LO//GTFtBRQ8EDufcyz05fiy4Ngh9OCura+sbm7mt/PbO7t5+4eCwpaNEUdakkYhUxyeaCS5Z03AjWCdWjIS+YG1/cp357TumNI/krZnGzAvJSPKAU2Ks1O+FxIz9IK3PBm5fDApFVEIIYYxhRnD5CllSrVZcXIE4syyKYInGoPDeG0Y0CZk0VBCtuxjFxkuJMpwKNsv3Es1iQidkxLqWShIy7aXz1DN4apUhDCJlnzRwrn7fSEmo9TT07WSWUv/2MvEvr5uYoOKlXMaJYZIuDgWJgCaCWQVwyBWjRkwtIVRxmxXSMVGEGltU3pbw9VP4P2m5JXxRcm8ui7XzZR05cAxOwBnAoAxqoA4aoAkoUOABPIFn5955dF6c18XoirPcOQI/4Lx9ArADkpM=</latexit>

H
l
1

<latexit sha1_base64="KXlB7KGfOnTBpgRnX5O3g4LoOXU=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSEmq2HZXcNNlBfuAvsikmTY08yDJKGXof7hxoYhb/8Wdf2OmraCiBwKHc+7lnhw3kkIbjD+cldW19Y3NzFZ2e2d3bz93cNjUYawYb7BQhqrtUs2lCHjDCCN5O1Kc+q7kLXdynfqtO660CINbM414z6ejQHiCUWOlftenZux6SW02IH05yOVxAWNMCEEpIaUrbEmlUi6SMiKpZZGHJeqD3Ht3GLLY54FhkmrdITgyvYQqI5jks2w31jyibEJHvGNpQH2ue8k89QydWmWIvFDZFxg0V79vJNTXeuq7djJNqX97qfiX14mNV+4lIohiwwO2OOTFEpkQpRWgoVCcGTm1hDIlbFbExlRRZmxRWVvC10/R/6RZLJCLQvHmMl89X9aRgWM4gTMgUIIq1KAODWCg4AGe4Nm5dx6dF+d1MbriLHeO4Aect0+ufZKS</latexit>

{xl�1
g }4g=1

<latexit sha1_base64="Uk3ezDjbueBya7V994u2j8zAnwc=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0VwY0lqQTdCwY3LCvYBTRom00k7dDIJMxOxhGzd+CtuXCji1j9w5984abPQ1gMXDufcy733+DGjUlnWt1FaWV1b3yhvVra2d3b3zP2DjowSgUkbRywSPR9JwignbUUVI71YEBT6jHT9yXXud++JkDTid2oaEzdEI04DipHSkmdCJ3VCpMZ+kD5kg5Sd2Zk3cjIvHcEraGeDhmdWrZo1A1wmdkGqoEDLM7+cYYSTkHCFGZKyb1uxclMkFMWMZBUnkSRGeIJGpK8pRyGRbjr7JIMnWhnCIBK6uIIz9fdEikIpp6GvO/Or5aKXi/95/UQFl25KeZwowvF8UZAwqCKYxwKHVBCs2FQThAXVt0I8RgJhpcOr6BDsxZeXSades89r9dtGtVkv4iiDI3AMToENLkAT3IAWaAMMHsEzeAVvxpPxYrwbH/PWklHMHII/MD5/ANI9mbE=</latexit>

{xl
f}2f=1

<latexit sha1_base64="xFMtawzqI+EPnAiE6laUqef2uc8=">AAACBXicbVDLSsNAFJ34rPUVdamLwSK4KkkUdCMU3LisYB/QpGEynbRDJ5MwMxFLyMaNv+LGhSJu/Qd3/o2TNgttPXDhcM693HtPkDAqlWV9G0vLK6tr65WN6ubW9s6uubfflnEqMGnhmMWiGyBJGOWkpahipJsIgqKAkU4wvi78zj0Rksb8Tk0S4kVoyGlIMVJa8s0jN3MjpEZBmD3kfthnbu5nIbyCdt53fLNm1a0p4CKxS1IDJZq++eUOYpxGhCvMkJQ920qUlyGhKGYkr7qpJAnCYzQkPU05ioj0sukXOTzRygCGsdDFFZyqvycyFEk5iQLdWVws571C/M/rpSq89DLKk1QRjmeLwpRBFcMiEjiggmDFJpogLKi+FeIREggrHVxVh2DPv7xI2k7dPqs7t+e1hlPGUQGH4BicAhtcgAa4AU3QAhg8gmfwCt6MJ+PFeDc+Zq1LRjlzAP7A+PwBBG+YLw==</latexit>

H
l
1

<latexit sha1_base64="8HyBMRbr5D28XJQNjMjsU3Htnxw=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSJmZDm3dFdx0WcE+oJ2WTJppQzMPkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8WLOpDLND2NtfWNzazu3k9/d2z84LBwdt2WUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm15nfueOCsmi8FbNYuoGeBwynxGstDToB1hNPD9tzIfWgA8LRbN0VavYTgWZJdOsWraVEbvqlB1kaSVDEVZoDgvv/VFEkoCGinAsZc8yY+WmWChGOJ3n+4mkMSZTPKY9TUMcUOmmi9RzdK6VEfIjoV+o0EL9vpHiQMpZ4OnJLKX87WXiX14vUX7NTVkYJ4qGZHnITzhSEcoqQCMmKFF8pgkmgumsiEywwETpovK6hK+fov9J2y5Z5ZJ94xTrl6s6cnAKZ3ABFlShDg1oQgsICHiAJ3g27o1H48V4XY6uGaudE/gB4+0TwZaSng==</latexit>

H
l
2

<latexit sha1_base64="5KuD1Jia2HpP651kuvepQY+uWq8=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSJmZDm3dFdx0WcE+oJ2WTJppQzMPkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8WLOpDLND2NtfWNzazu3k9/d2z84LBwdt2WUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm15nfueOCsmi8FbNYuoGeBwynxGstDToB1hNPD9tzIf2gA8LRbN0VavYTgWZJdOsWraVEbvqlB1kaSVDEVZoDgvv/VFEkoCGinAsZc8yY+WmWChGOJ3n+4mkMSZTPKY9TUMcUOmmi9RzdK6VEfIjoV+o0EL9vpHiQMpZ4OnJLKX87WXiX14vUX7NTVkYJ4qGZHnITzhSEcoqQCMmKFF8pgkmgumsiEywwETpovK6hK+fov9J2y5Z5ZJ94xTrl6s6cnAKZ3ABFlShDg1oQgsICHiAJ3g27o1H48V4XY6uGaudE/gB4+0TwxySnw==</latexit>

H
l
3

<latexit sha1_base64="C/5AfJL0ybTsw90lAC1b/JRCA/E=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSJmZDm3dFdx0WcE+oJ2WTJppQzMPkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8WLOpDLND2NtfWNzazu3k9/d2z84LBwdt2WUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm15nfueOCsmi8FbNYuoGeBwynxGstDToB1hNPD9tzIflAR8WimbpqlaxnQoyS6ZZtWwrI3bVKTvI0kqGIqzQHBbe+6OIJAENFeFYyp5lxspNsVCMcDrP9xNJY0ymeEx7moY4oNJNF6nn6FwrI+RHQr9QoYX6fSPFgZSzwNOTWUr528vEv7xeovyam7IwThQNyfKQn3CkIpRVgEZMUKL4TBNMBNNZEZlggYnSReV1CV8/Rf+Ttl2yyiX7xinWL1d15OAUzuACLKhCHRrQhBYQEPAAT/Bs3BuPxovxuhxdM1Y7J/ADxtsnxKKSoA==</latexit>

H
l
4

<latexit sha1_base64="XPB4xsUEk3v0AxJj6fbD9KaWYcQ=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSJmZDm3dFdx0WcE+oJ2WTJppQzMPkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8WLOpDLND2NtfWNzazu3k9/d2z84LBwdt2WUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm15nfueOCsmi8FbNYuoGeBwynxGstDToB1hNPD9tzIfOgA8LRbN0VavYTgWZJdOsWraVEbvqlB1kaSVDEVZoDgvv/VFEkoCGinAsZc8yY+WmWChGOJ3n+4mkMSZTPKY9TUMcUOmmi9RzdK6VEfIjoV+o0EL9vpHiQMpZ4OnJLKX87WXiX14vUX7NTVkYJ4qGZHnITzhSEcoqQCMmKFF8pgkmgumsiEywwETpovK6hK+fov9J2y5Z5ZJ94xTrl6s6cnAKZ3ABFlShDg1oQgsICHiAJ3g27o1H48V4XY6uGaudE/gB4+0TxiiSoQ==</latexit>

xl = σ(
F

∑
g=1

Hl
fgx

l−1
g) = σ(

F

∑
g=1

K

∑
k=0

ϕl
kfgS

lxl−1
g)∀f ∈ {1,…, F}

for all output featuresoutput feature

input feature

FIR filtersum over all inputs

Delft University of Technology

GCNN full stack

199

๏ Cascade graph filters and nonlinearities

.	.	.	

Austen

Poe

…
Stevenson

๏ Parameters - independent on the graph dimensions

๏ Complexity - linear in number of edges

𝒪(KF2L)

𝒪(KMF2L)

graph convolution fully connected
Benefits

Delft University of Technology

EdgeNet

200

๏ Substitutes FIR filters with edge-variant graph filter

๏ Propagation rule

xl
f = σ(

F

∑
g=1

Hl
EVfgx

l−1
g)∀ f ∈ {1,…, F}

๏ The most general GNN

✦ Includes all GCNN, all ARMANet, GIN, GAT

Isufi, Gama, Ribeiro, Generalizing Graph Convolutional Neural Networks with Edge-Variant Recursions on Graphs, EUSIPCO, 2019.

Edge-variant filter

Delft University of Technology

EdgeNet properties

201

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

๏ Different parameters per edge and node

✦ Order

✦ More flexibility

✦ Requires only the support of

• Adapts the edge weights to the task

• Robust to uncertainties in edge weights

✦ Requires fewer parallel filters and shallower networks

✦ Can overfit and require more data than GCNN (FIR-filters)

๏ Complexity - depends on edges

𝒪(MKF2L)

S

𝒪(MKF2L)

for th iterationk

Φkx(k−1)

Delft University of Technology

How to use EdgeNets?

202

๏ The full form may sometimes overfit

✦ Penalize coefficients to sparse (i.e.,)

✦ Impose parameter sharing

• FIR : all nodes all edges same parameter

• Node-variant : all edges same parameter for a node

• Attention mechanism [Velickovic’18 - ICLR]

• Hybrid : FIR + EV to particular nodes

∥Φ∥1

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

Delft University of Technology

How to use EdgeNets?

203

• Nodes and use EV filter2 7

Example: Hybrid (FIR + EV)

• All other nodes use FIR filter

• More flexibility than GCNN

• Parameters independent on the graph dimensions

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

6

1

2

3

4

5

6

7

8

[�k]21

[�k]31

[�k]41

[�k]74
[�k]51

[�k]75

[�k]76

[�k]78

Fig. 3. Hybrid Edge Varying Filter [cf. (18)]. The nodes in set I = {2, 7}
are highlighted. Nodes 2 and 7 have edge varying parameters associ-
ated with their incident edges. All nodes, including 2 and 7, also use the
global parameter ak as in a regular convolutional graph filter.

of nodes —see Figure 3. Formally, let I ⇢ V denote an
important subset of I = |I| nodes and define the shift
matrices �(k)

I such that the diagonal matrix �
(0)
I has entries

[�(0)
I]ii 6= 0 for all i 2 I and [�(k)

I]ij = 0 for all i /2 I or
(i, j) /2 E and k � 1. That is, the coefficient matrices �

(k)
I

may contain nonzero elements only at rows i that belong to
set I and with the node j being a neighbor of i. We define
hybrid filters as those of the form

A(S) =
KX

k=0

✓ kY

k0=0

�
(k0)
I + akS

k

◆
. (18)

Substituting (18) in (5) generates hybrid GNNs. In essence,
nodes i 2 I learn edge dependent parameters which may
also be different at different nodes, while nodes i /2 I learn
global parameters.

Hybrid filters are defined by a number of parameters
that depends on the total neighbors of all nodes in the
importance set I . Define then MI =

P
i2I Ni and observe

�
(0)
I has I nonzero entries since it is a diagonal matrix,

while �
(k)
I for k � 1 have respectively MI nonzero values.

We then have KMI + I parameters in the edge varying
filters and K +1 parameters in the convolutional filters. We
therefore have a total of (I +KMI +K + 1)F 2 parameters
per layer in a hybrid GNN. The implementation cost of a
hybrid GNN layer is of order O(KF 2(M + N)) since both
terms in (18) respect the graph sparsity.

Block GNNs depend on the choice of blocks B and
hybrid GNNs on the choice of the importance set I . We
explore the use of different heuristics based on centrality
and clustering measures in Section 6 where we will see that
the choice of B and I is in general problem specific.

4.2 Spectral Graph Convolutional Neural Networks
The convolutional operation of the graph filter in (15) can be
represented in the spectral domain. To do so, consider the
input-output relationship u = A(S)x along with the eigen-
vector decomposition of the shift operator S = V⇤V

�1.
Projecting the input and output signals in the eigenvector
space of S creates the so-called graph Fourier transforms
x̃ := V

�1
x and ũ := V

�1
u [37] which allow us to write

ũ :=

✓ KX

k=0

ak⇤
k
◆
x̃. (19)

Eq. (19) reveals convolutional graph filters are pointwise
in the spectral domain, due to the diagonal nature of the

eigenvalue matrix ⇤. We can, therefore, define the filter’s
spectral response a : R ! R as the function

a(�) =
KX

k=0

ak�
k (20)

which is a single-variable polynomial characterizing the
graph filter A(S). If we allow for filters of order K = N�1,
there is always a set of parameters ak such that a(�i) = ãi
for any set of spectral response ãi [25]. Thus, training
over the set of spectral coefficients a(�1), . . . , a(�N) is
equivalent to training over the space of (nodal) parameters
a0, . . . , aN�1. GCNNs were first introduced in [8] using the
spectral representation of graph filters in (20).

By using edge varying graph filters [cf. (5)], we can pro-
pose an alternative parameterization of the space of filters of
order N which we will see may have some advantages. To
explain this better let J be the index set defining the zero
entries of S + IN and let CJ 2 {0, 1}|J |⇥N2

be a binary
selection matrix whose rows are those of IN2 indexed by J .
Let also B be a basis matrix that spans the null space of

CJ vec(V�1
⇤V) (21)

where vec(·) is the column-wise vectorization operator and
“⇤” is the Khatri-Rao product. Then, the following proposi-
tion from [32] quantifies the spectral response of a particular
class of the edge varying graph filter in (5).

Proposition 2. Consider the subclass of the edge varying graph
filters in (5) where the parameter matrices

⇥
�

(0) + �
(1)⇤ and

�
(k) for all k = 2, . . . ,K are restricted to the ones that share

the eigenvectors with S, i.e.,
⇥
�

(0) + �
(1)⇤ = V⇤

(1)
V

�1 and
�

(k) = V⇤
(k)

V
�1 for all k = 2, . . . ,K . The spectral response

of this subclass of edge varying filter has the form

a(⇤) =
KX

k=1

✓ kY

k0=1

⇤
(k0)

◆
=

KX

k=1

kY

k0=1

diag
⇣
Bµ(k0)

⌘
(22)

where B is an N ⇥ b basis kernel matrix that spans the null
space of (21) and µ(k) is a b⇥ 1 vector containing the expansion
coefficients of ⇤(k) into B.

Proof. See Appendix B.

Proposition 2 provides a subclass of the edge varying
graph filters where, instead of learning K(M + N) + N
parameters, they learn the Kb entries µ(1), . . . ,µ(K) in
(22). These filters build the output features as a pointwise
multiplication between the filter spectral response a(⇤) and
the input spectral transform x̃ = V

�1
x, i.e., u = Va(⇤)x̃ =

Va(⇤)V�1
x. Following then the analogies with conven-

tional signal processing, (22) represents the spectral re-
sponse of a convolutional edge varying graph filter. Spectral
GCNNs are a particular case of (22) with order K = 1 and
kernel B independent from the graph (e.g., a spline kernel).
Besides generalizing [8], a graph-dependent kernel allows to
implement (22) in the vertex domain through an edge vary-
ing filter of the form (5); hence, having a complexity of order
O(K(M +N)) in contrast to O(N2) required for the graph-
independent kernels [8]. The edge varying implementation
captures also local detail up to a region of radius K from
a node; yet, having a spectral interpretation. Nevertheless,

Delft University of Technology 204

Where are GNNs useful?

Delft University of Technology 205

Applications
๏Distributed finite-time consensus

๏Distributed regression

๏Authorship attribution

๏Recommender systems

๏For control, resource allocation and other SP applications [T-9]

๏For semi-supervised learning, graph classification [Wu’20 -TNNLS]

Delft University of Technology

Graph signal:
x = [x1, ͙, xN]

σ(·)

Fig. 1: Distributed GCNN architecture for finite-time consensus. The input is a graph signal x, which is filtered by a filter
bank of F FIR graph filters [cf. (1)] and then passed through and activation function �(·). This forms a graph convolutional
layer, which is cascaded L times. The final convolutional features are concatenated per node and passed to a per-node fully
connected layer to compute the final output. This output is used during training the minimze the mean squared error (MSE).

[x1
Li, . . . , x

F
Li]

>. Each node locally combines the features �Li

with a one-layer perceptron1 to build the final scalar output

yi = h
>
FC�Li (4)

where hFC = [h1, . . . , hF]> is the F ⇥ 1 vector of parameters
in the local fully connected layer. Vector hFC is shared
among all nodes to keep the number of trainable parameters
independent from the graph dimensions.
Activation functions. If the activation functions in the con-
volutional layers were local, the GCNN would be readily
distributable. In fact, all filters {Hfg

l (S)}fgl are distributable,
as discussed in Section II-B. The last fully connected layer
leaves unaffected the distributed implementation since it is
local over the nodes. In this work, we study the effect of three
activation functions for distributed consensus: the pointwise
ReLU , the pointwise kernel [22], and the local max [23].

ReLU: The rectified linear unit is poinwise on each scalar
entry xi of the feature vector x and it is defined as

�(x) = max(0,x). (5)

Kernel: The pointwise kernel activation function considers
an one-dimensional dictionary d = [d1, . . . , dD]> of D atoms
sampled uniformly around zero. Any scalar feature xi of node
vi is combined with all elements of d to build the parametric
nonlinear features

�(xi) =
DX

j=1

hj(xi, dj) (6)

where h� = [h1, . . . , hD]> is an D ⇥ 1 vector of trainable
parameters and (xi, dj) is a one-dimensional kernel between
feature value xi and dictionary atom dj . Following [22], we
employ the Gaussian kernel function (xi, dj) = exp

�
��(xi�

dj)2
�
, where � is a tuneable parameter.

Max local: Differently from the above two, the max local
activation function is not pointwise at node vi but takes into
account also the feature values at neighboring nodes Ni. Let
x be a N ⇥ 1 graph signal feature on which we want to apply
the max local activation function. Then, the output of a local

1Each node can also consider a local multi-layer perceptron to combine the
features in �Li.

max operator max(S,x) applied to signal x is another graph
signal z whose i�th entry zi is the maximum value in the
neighboorhood, i.e., zi = [max(S,x)]i = max

�
{xj : vj 2

Ni}
�
. The max local activation function for the feature signal

x builds the parametric features

�(x) = h0 max(0,x) + h1max(S,x). (7)

with trainable parameters h� = [h0, h1]>. The ReLU term
nonlinearizes also the node features. In [23], the authors
extended (7) to a neighborhood of order K. This choice,
however, is not distributable and we shall not discuss it further.

The above activation functions leave unaffected the commu-
nication and computational cost of the GCNN, which remain
governed by the cost of running all graph filters [cf.(1)]. For an
architecture of F features per layer and L graph convolutional
layers the cost is of order at most O(F 2LMK).
Parameter training. If the ReLU nonlinearity is used, the
total number of parameters of the GCNN is F 2(L� 1)(K +
1)+F (K+1)+F . This divides as: i) F (K+1) parameters for
the F filters in the first graph convolutional layer; ii) F 2(K+
1)(L�1) for the parameters of the F 2 filters in the remaining
L�1 graph convolutional layers; and iii) F parameters in the
final fully-connected layer. Instead, if the kernel or the max
local activation functions are used, we should also consider
parameters h� . This adds DL or 2L parameters for the kernel
or the max local activation function, respectively.

By grouping all parameters into the set H =
{hfg

l ;h�l;hFC}lfg , we can consider the GCNN as a
mapping �(·) that takes as input a graph signal x, a GSO S,
and a set of parameters H to produce the output

�(x;S;H) := ỹ. (8)

The output (8) is computed for a training set T = {(xr,yr)}
of |T | = R pairs, where the input xr is a graph signal and
yr is the vector containing the consensus signal x̄r for all
nodes; i.e., yr = x̄r1. The goal of the GCNN is to learn
the distributed averaging function from examples in T and
extrapolating it to unseen graph signals x /2 T .

As a loss function, we considered the averaged mean
squared error (MSE) between the GCNN output ỹr and the

MSE

MSE

(·)

Fig. 1: Distributed GCNN architecture for finite-time consensus. The input is a graph signal x, which is filtered by a filter
bank of F FIR graph filters [cf. (1)] and then passed through and activation function �(·). This forms a graph convolutional
layer, which is cascaded L times. The final convolutional features are concatenated per node and passed to a per-node fully
connected layer to compute the final output. This output is used during training the minimze the mean squared error (MSE).

[x1
Li, . . . , x

F
Li]

>. Each node locally combines the features �Li

with a one-layer perceptron1 to build the final scalar output

yi = h
>
FC�Li (4)

where hFC = [h1, . . . , hF]> is the F ⇥ 1 vector of parameters
in the local fully connected layer. Vector hFC is shared
among all nodes to keep the number of trainable parameters
independent from the graph dimensions.
Activation functions. If the activation functions in the con-
volutional layers were local, the GCNN would be readily
distributable. In fact, all filters {Hfg

l (S)}fgl are distributable,
as discussed in Section II-B. The last fully connected layer
leaves unaffected the distributed implementation since it is
local over the nodes. In this work, we study the effect of three
activation functions for distributed consensus: the pointwise
ReLU , the pointwise kernel [22], and the local max [23].

ReLU: The rectified linear unit is poinwise on each scalar
entry xi of the feature vector x and it is defined as

�(x) = max(0,x). (5)

Kernel: The pointwise kernel activation function considers
an one-dimensional dictionary d = [d1, . . . , dD]> of D atoms
sampled uniformly around zero. Any scalar feature xi of node
vi is combined with all elements of d to build the parametric
nonlinear features

�(xi) =
DX

j=1

hj(xi, dj) (6)

where h� = [h1, . . . , hD]> is an D ⇥ 1 vector of trainable
parameters and (xi, dj) is a one-dimensional kernel between
feature value xi and dictionary atom dj . Following [22], we
employ the Gaussian kernel function (xi, dj) = exp

�
��(xi�

dj)2
�
, where � is a tuneable parameter.

Max local: Differently from the above two, the max local
activation function is not pointwise at node vi but takes into
account also the feature values at neighboring nodes Ni. Let
x be a N ⇥ 1 graph signal feature on which we want to apply
the max local activation function. Then, the output of a local

1Each node can also consider a local multi-layer perceptron to combine the
features in �Li.

max operator max(S,x) applied to signal x is another graph
signal z whose i�th entry zi is the maximum value in the
neighboorhood, i.e., zi = [max(S,x)]i = max

�
{xj : vj 2

Ni}
�
. The max local activation function for the feature signal

x builds the parametric features

�(x) = h0 max(0,x) + h1max(S,x). (7)

with trainable parameters h� = [h0, h1]>. The ReLU term
nonlinearizes also the node features. In [23], the authors
extended (7) to a neighborhood of order K. This choice,
however, is not distributable and we shall not discuss it further.

The above activation functions leave unaffected the commu-
nication and computational cost of the GCNN, which remain
governed by the cost of running all graph filters [cf.(1)]. For an
architecture of F features per layer and L graph convolutional
layers the cost is of order at most O(F 2LMK).
Parameter training. If the ReLU nonlinearity is used, the
total number of parameters of the GCNN is F 2(L� 1)(K +
1)+F (K+1)+F . This divides as: i) F (K+1) parameters for
the F filters in the first graph convolutional layer; ii) F 2(K+
1)(L�1) for the parameters of the F 2 filters in the remaining
L�1 graph convolutional layers; and iii) F parameters in the
final fully-connected layer. Instead, if the kernel or the max
local activation functions are used, we should also consider
parameters h� . This adds DL or 2L parameters for the kernel
or the max local activation function, respectively.

By grouping all parameters into the set H =
{hfg

l ;h�l;hFC}lfg , we can consider the GCNN as a
mapping �(·) that takes as input a graph signal x, a GSO S,
and a set of parameters H to produce the output

�(x;S;H) := ỹ. (8)

The output (8) is computed for a training set T = {(xr,yr)}
of |T | = R pairs, where the input xr is a graph signal and
yr is the vector containing the consensus signal x̄r for all
nodes; i.e., yr = x̄r1. The goal of the GCNN is to learn
the distributed averaging function from examples in T and
extrapolating it to unseen graph signals x /2 T .

As a loss function, we considered the averaged mean
squared error (MSE) between the GCNN output ỹr and the

Learning finite-time consensus

206

๏ Learn the consensus function for a specific graph

✦ EV can do the job but all nodes need to know all graph

• Feasible only in small setups

Stochastic block model
 and communities; graph signals N = 100 C = 5 x ∼ 𝒩(0, I)

 Layer, features, shared FC per node1 F = 32 (32 × 1)

Iancu, Isufi, Towards Finite-Time Consensus with Graph Convolutional Neural Networks, EUSIPCO 2020 (submitted)

Delft University of Technology

Learning finite-time consensus

207

Levie, Isufi, Kutyniok, On the Transferability of Spectral Graph Filters, SAMPTA 2019.

• Consensus is strictly low pass

• Better performance for high orders

• Machine precision needs EV

• Train and test on different graphs

• GCNN exploits better the connectivity

• GCNNs are better transferable

Delft University of Technology

Distributed regression

208

๏Retrieve signal distributively from noisy measurements

Iancu, Ruiz, Ribeiro Isufi, Distributed Localized Nonlinearities For Graph Neural Networks, MLSP 2020 (submitted)

Molene weather dataset
Build a graph between stations N = 32
Graph signal: temperature recording744
SNR = 3dB layer; features1 4 • Nonlinear architecture reduces RMSE

• Regression more challenging than
classification

• times more communications4

• Needs: more data/more graph prior

Delft University of Technology

Authorship attribution

209

๏Attribute texts to an author

[©	figure	Ruiz’19-TSP]

Build a word adjacency network
N = 190 − 211

Graph signal: word frequency count

 texts from the author of interest∼ 1000

 from others∼ 1000

[Segarra’15-TSP]

Delft University of Technology

Authorship attribution (easier)

210

%

• EV hyperparameters () taken from the FIR

• Parameter sharing is beneficial

K, F, L

 layer, , 1 K ∈ [2,10] F ∈ {16,32,64}

Delft University of Technology

Authorship attribution (difficult)

211

• EdgeNet requires its own hypertunning

• Better for more difficult scenarios

• Subclasses of the EV can perform better depending on problem difficulty

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

13

task. The ARMANet explores the best the convolutional
prior; in accordance with the former results, the Jacobi
implementation does not need to runt until convergence to
achieve impressive results. We also conclude the convolu-
tional prior helps to reduce the degrees of freedom of the
EdgeNet but requires a deeper and/or wider network to
achieve the predefined criterion. This is particularly seen
in the GAT based architectures. The GCAT architecture, in
here, explores the convolutional prior and reduces the error
compared with the edge varying prior which is unhelpful.
Finally, we remark for all approaches a substantially lower
variance can be achieved by solely increasing the features.

6.3 Authorship attribution
In this third experiment, we assess the performance of the
different GNN architectures in an authorship attribution
problem based on real data. The goal is to classify if a text
excerpt belongs to a specific author or any other of the 20
contemporary authors based on word adjacency networks
(WANs) [44]. A WAN is an author-specific directed graph
whose nodes are function words without semantic mean-
ing (e.g., prepositions, pronouns, conjunctions). A directed
edge represents the transition probability between a pair of
function words in a text written by an author. The signal
on top of this graph is the frequency count for the function
words in text excerpts of 1, 000 words. The WANs and the
word frequency count serve as author signatures and allow
learning representation patterns in their writing style. The
task translates into a binary classification problem where
one indicates the text excerpt is written by the author of
interest and zero by any other author.

The WANs of the respective authors have from N = 190
tp N = 210 function word nodes. Following [44], we built
single-author WANS for Jane Austen, Emily Brontë, and
Edgar Allan Poe. For each author, we processed the texts
to count the number of times each function word pair co-
appears in a window of ten words. These co-appearances
are imputed into an N ⇥ N matrix and normalized row-
wise. The resulting matrix is used as the shift operator,
which can also be interpreted as a Markov chain transition
matrix. We considered a train-test split of 95% � 5% of the
available texts. Around 8.7% of the training samples are
used for validation. This division leads to: (i) Austen: 1346
training samples, 118 validation samples, and 78 testing
samples; (ii) Brontë: 1192 training samples, 104 validation
samples, 68 testing samples; (iii) Poe: 740 training samples,
64 validation samples, 42 testing samples. For each author,
the sets are extended by a similar amount with texts from
the other 20 authors shared equally between them.

Architecture parameters. We considered again the eight
GNN architectures of the former section shown in the
leftmost column of Table 3. Following the setup in [10],
all architectures comprise a graph neural layer of F = 32
features with ReLU nonlinearity followed by a fully con-
nected layer. The baseline order for all filters is K = 4.
For the ARMANet this is also the number of denominator
coefficients and the order of the direct term in (33); the
number of the Jacobi iterations in (34) is one. We want
to show how much the rational part helps to improve the
performance of the GCNN (which is the direct term in the

TABLE 3
Authorship Attribution Test Error. The results show the average
classification test error and standard deviation on 10 different

training-test 95%� 5% splits.

Architecture Austen Brontë Poe
GCNN 7.2(±2.0)% 12.9(±3.5)% 14.3(±6.4)%
Edge varying 7.1(±2.2)% 13.1(±3.9)% 10.7(±4.3)%
Node varying 7.4(±2.1)% 14.6(±4.2)% 11.7(±4.9)%
Hybrid edge var. 6.9(±2.6)% 14.0(±3.7)% 11.7(±4.8)%
ARMANet 7.9(±2.3)% 11.6(±5.0)% 10.9(±3.7)%
GAT 10.9(±4.6)% 22.1(±7.4)% 12.6(±5.5)%
GCAT 8.2(±2.9)% 13.1(±3.5)% 13.6(±5.8)%
Edge varying GAT 14.5(±5.9)% 23.7(±9.0)% 18.1(±8.4)%

ARMANet [cf. (33)]). The important nodes for the node
varying and the hybrid edge varying are 20 (⇠ 10% of N)
selected with degree centrality. The GAT, GCAT, and edge
varying GAT have a single attention head to highlight the
role of the convolutional and edge varying recursion over
it. The loss function is the cross-entropy optimized over 25
epochs with a learning rate of 0.005. The performance is
averaged over ten data splits.

Table 3 shows the results of this experiment. Overall, we
see again the graph convolution is a solid prior to learning
meaningful representations. This is particularly highlighted
in the improved performance of the GCAT for Austen and
Brontë compared with the GAT even with a single attention
head. These observations also suggest the GAT and the edge
varying GAT architectures require multi-head approaches
to achieve comparable performance. An exception is the
case of Poe. In this instance, multi-head attention is also
needed for the GAT. The (approximated) rational part of the
ARMANet gives a consistent improvement of the GCNN.
Hence, we recommend considering the additional parame-
terization of the ARMANet when implementing graph con-
volutional neural networks, since the increased number of
parameters and implementation costs are minimal. Finally,
we remark the hybrid edge varying GNN improves the
accuracy of the node varying counterpart.

6.4 Recommender Systems
In this last experiment, we evaluate all former architectures
for movie rating prediction in a subset of the MovieLens
100K data set [45]. The full data set comprises U = 943
users and I = 1, 582 movies and 100K out of ⇠1, 5M po-
tential ratings. We set the missing ratings to zero. From the
incomplete U⇥I rating matrix, we consider two scenarios: a
user-based and a movie-based. In a user-based scenario, we
considered the 200 users that have rated the most movies
as the nodes of a graph whose edges represent Pearson
similarities between any two users. Each of the I = 1, 582
movies is treated as a different graph signal whose value at
a node is the rating given to that movie by a user or zero if
unrated. We are interested to predict the rating of a specific
user u with GNNs, which corresponds to completing the
uth row of the 200 ⇥ 1, 5882 sub-rating matrix. In a movie-
based scenario, we considered the 200 movies with the
largest number of ratings as nodes of a graph whose edges
represent Pearson similarities between any two movies. In
this instance, there are 943 graph signals: the ratings each
user gives to all 200 movies is one such graph signal. We are
interested to predict the rating to a specific movie i with
GNNs, which corresponds to completing the ith column

Classification error

10 % N

 layer, , 1 F = 32 K = 4

6

1

2

3

4

5

6

7

8

[�k]21

[�k]31

[�k]41

[�k]74
[�k]51

[�k]75

[�k]76

[�k]78

Fig. 3. Hybrid Edge Varying Filter [cf. (18)]. The nodes in set I = {2, 7}
are highlighted. Nodes 2 and 7 have edge varying parameters associ-
ated with their incident edges. All nodes, including 2 and 7, also use the
global parameter ak as in a regular convolutional graph filter.

of nodes —see Figure 3. Formally, let I ⇢ V denote an
important subset of I = |I| nodes and define the shift
matrices �(k)

I such that the diagonal matrix �
(0)
I has entries

[�(0)
I]ii 6= 0 for all i 2 I and [�(k)

I]ij = 0 for all i /2 I or
(i, j) /2 E and k � 1. That is, the coefficient matrices �

(k)
I

may contain nonzero elements only at rows i that belong to
set I and with the node j being a neighbor of i. We define
hybrid filters as those of the form

A(S) =
KX

k=0

✓ kY

k0=0

�
(k0)
I + akS

k

◆
. (18)

Substituting (18) in (5) generates hybrid GNNs. In essence,
nodes i 2 I learn edge dependent parameters which may
also be different at different nodes, while nodes i /2 I learn
global parameters.

Hybrid filters are defined by a number of parameters
that depends on the total neighbors of all nodes in the
importance set I . Define then MI =

P
i2I Ni and observe

�
(0)
I has I nonzero entries since it is a diagonal matrix,

while �
(k)
I for k � 1 have respectively MI nonzero values.

We then have KMI + I parameters in the edge varying
filters and K +1 parameters in the convolutional filters. We
therefore have a total of (I +KMI +K + 1)F 2 parameters
per layer in a hybrid GNN. The implementation cost of a
hybrid GNN layer is of order O(KF 2(M + N)) since both
terms in (18) respect the graph sparsity.

Block GNNs depend on the choice of blocks B and
hybrid GNNs on the choice of the importance set I . We
explore the use of different heuristics based on centrality
and clustering measures in Section 6 where we will see that
the choice of B and I is in general problem specific.

4.2 Spectral Graph Convolutional Neural Networks
The convolutional operation of the graph filter in (15) can be
represented in the spectral domain. To do so, consider the
input-output relationship u = A(S)x along with the eigen-
vector decomposition of the shift operator S = V⇤V

�1.
Projecting the input and output signals in the eigenvector
space of S creates the so-called graph Fourier transforms
x̃ := V

�1
x and ũ := V

�1
u [37] which allow us to write

ũ :=

✓ KX

k=0

ak⇤
k
◆
x̃. (19)

Eq. (19) reveals convolutional graph filters are pointwise
in the spectral domain, due to the diagonal nature of the

eigenvalue matrix ⇤. We can, therefore, define the filter’s
spectral response a : R ! R as the function

a(�) =
KX

k=0

ak�
k (20)

which is a single-variable polynomial characterizing the
graph filter A(S). If we allow for filters of order K = N�1,
there is always a set of parameters ak such that a(�i) = ãi
for any set of spectral response ãi [25]. Thus, training
over the set of spectral coefficients a(�1), . . . , a(�N) is
equivalent to training over the space of (nodal) parameters
a0, . . . , aN�1. GCNNs were first introduced in [8] using the
spectral representation of graph filters in (20).

By using edge varying graph filters [cf. (5)], we can pro-
pose an alternative parameterization of the space of filters of
order N which we will see may have some advantages. To
explain this better let J be the index set defining the zero
entries of S + IN and let CJ 2 {0, 1}|J |⇥N2

be a binary
selection matrix whose rows are those of IN2 indexed by J .
Let also B be a basis matrix that spans the null space of

CJ vec(V�1
⇤V) (21)

where vec(·) is the column-wise vectorization operator and
“⇤” is the Khatri-Rao product. Then, the following proposi-
tion from [32] quantifies the spectral response of a particular
class of the edge varying graph filter in (5).

Proposition 2. Consider the subclass of the edge varying graph
filters in (5) where the parameter matrices

⇥
�

(0) + �
(1)⇤ and

�
(k) for all k = 2, . . . ,K are restricted to the ones that share

the eigenvectors with S, i.e.,
⇥
�

(0) + �
(1)⇤ = V⇤

(1)
V

�1 and
�

(k) = V⇤
(k)

V
�1 for all k = 2, . . . ,K . The spectral response

of this subclass of edge varying filter has the form

a(⇤) =
KX

k=1

✓ kY

k0=1

⇤
(k0)

◆
=

KX

k=1

kY

k0=1

diag
⇣
Bµ(k0)

⌘
(22)

where B is an N ⇥ b basis kernel matrix that spans the null
space of (21) and µ(k) is a b⇥ 1 vector containing the expansion
coefficients of ⇤(k) into B.

Proof. See Appendix B.

Proposition 2 provides a subclass of the edge varying
graph filters where, instead of learning K(M + N) + N
parameters, they learn the Kb entries µ(1), . . . ,µ(K) in
(22). These filters build the output features as a pointwise
multiplication between the filter spectral response a(⇤) and
the input spectral transform x̃ = V

�1
x, i.e., u = Va(⇤)x̃ =

Va(⇤)V�1
x. Following then the analogies with conven-

tional signal processing, (22) represents the spectral re-
sponse of a convolutional edge varying graph filter. Spectral
GCNNs are a particular case of (22) with order K = 1 and
kernel B independent from the graph (e.g., a spline kernel).
Besides generalizing [8], a graph-dependent kernel allows to
implement (22) in the vertex domain through an edge vary-
ing filter of the form (5); hence, having a complexity of order
O(K(M +N)) in contrast to O(N2) required for the graph-
independent kernels [8]. The edge varying implementation
captures also local detail up to a region of radius K from
a node; yet, having a spectral interpretation. Nevertheless,

Delft University of Technology

Authorship attribution (explain)

212

๏ Explain GNNs with EdgeNets

Abbott James Jewett Melvile

x1
1 = σ(Φx0

1)✦ One layer EdgeNet with order K = 1
✦ Training the EdgeNet = learning graph weights

• removed small weight edges = accuracy drop < 5 %
• identifies most relevant function words per author

• identify an author from words3

Delft University of Technology

Authorship attribution

213

๏ Identifying author gender from texts
✦ No NLP: shallow and fast training, no pretraining/corpus

✦ Graphs + signals from female and male authors in train - test

EdgeNet GCNN EV-GCNN

Mean 8.6% 10.1% 7.8%

Std 6x10-3 6x10-3 5x10^-3

 layer architectures, 1 F = 64
Sparse WANs help classification

Classification error

Sparse EV shift operator + GCNN

Delft University of Technology

Recommender systems

214

 Movielens dataset ; 100K U = 943 I = 1,582
Build a similarity graph (principle of collaborative filter)

user similarity graph

nodes : users

edges : Pearson/cosine similarity

between pairs of users

item similarity graph

nodes : items

edges : Pearson/cosine similarity

between pairs of items

Item 1 Item 2 Item 3 … Item I

User 1 5 1 ? … 2

User 2 ? ? 3 … 3

User 3 4 ? 4 … ?

… … … … … …

User U ? 4 3 … 1

๏ Fill missing entries in a user-item matrix

Delft University of Technology

Recommender systems

215

Item	1

Item	2
Item	i

Item	200
Item	j

Item	k

?

?

?

?

5

3
1

๏ Here item similarity graph

 most rated itemsN = 200
subset of user ratings

to build the graph

Graph signal : rating of user to all itemsu

Goal: find rating all users give to item (fii column of matrix)i ith
• interpolation problem on graphs

Item 1 Item 2 Item 3 … Item I

User 1 5 1 ? … 2

User 2 ? ? 3 … 3

User 3 4 ? 4 … ?

… … … … … …

User U ? 4 3 … 1

Delft University of Technology

Recommender systems

216

๏ Use locality of the filters to build a GNN specific to item I

Graph	signal	rating
x = [x1, . . . , xI]

>
<latexit sha1_base64="O3jbVGty3OUtZDrjrCxNoNXQKz4=">AAACDXicbVDLSsNAFJ34rPVVdelmsAouSklU0I0guNFdBfuAJobJZNIOTjJh5kZaQn/Ajb/ixoUibt2782+ctF34OnDhcM693HtPkAquwbY/rZnZufmFxdJSeXlldW29srHZ0jJTlDWpFFJ1AqKZ4AlrAgfBOqliJA4Eawe354XfvmNKc5lcwzBlXkx6CY84JWAkv7LrxgT6QZQPRvgUdwe+U8OuCCXoGh74l96NCzL1K1W7bo+B/xJnSqpoioZf+XBDSbOYJUAF0brr2Cl4OVHAqWCjsptplhJ6S3qsa2hCYqa9fPzNCO8ZJcSRVKYSwGP1+0ROYq2HcWA6i9v1b68Q//O6GUQnXs6TNAOW0MmiKBMYJC6iwSFXjIIYGkKo4uZWTPtEEQomwLIJwfn98l/SOqg7h/WDq6PqWW0aRwltox20jxx0jM7QBWqgJqLoHj2iZ/RiPVhP1qv1NmmdsaYzW+gHrPcv7O2aww==</latexit>

�(·)
<latexit sha1_base64="T2QtVAjuL2mAqcHMmVA3SQyCjEE=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69BItQLyWpguKp4MVjBVsLTSibzaZduh9xd1Mopb/DiwdFvPpjvPlv3LY5aOuDgcd7M8zMi1JGtfG8b6ewtr6xuVXcLu3s7u0flA+P2lpmCpMWlkyqToQ0YVSQlqGGkU6qCOIRI4/R8HbmP46I0lSKBzNOSchRX9CEYmSsFAaa9jmqBjiW5rxXrng1bw53lfg5qUCOZq/8FcQSZ5wIgxnSuut7qQknSBmKGZmWgkyTFOEh6pOupQJxosPJ/Oipe2aV2E2ksiWMO1d/T0wQ13rMI9vJkRnoZW8m/ud1M5NchxMq0swQgReLkoy5RrqzBNyYKoING1uCsKL2VhcPkELY2JxKNgR/+eVV0q7X/Ita/f6y0rjJ4yjCCZxCFXy4ggbcQRNagOEJnuEV3pyR8+K8Ox+L1oKTzxzDHzifP0HZkbw=</latexit>

Item	i

1
2
345

14

TABLE 4
Average RMSE on user graph.

Archit./User-ID 405 655 13 450 276 Average
GCNN 1.09 0.72 1.18 0.82 0.66 0.89
Edge var. 1.25 0.74 1.34 0.99 0.70 1.00
Node var. 1.17 0.68 1.19 0.83 0.67 0.91
Hybrid edge var. 1.10 0.72 1.27 0.80 0.60 0.90
ARMANet 1.13 0.69 1.24 0.80 0.65 0.90
GAT 1.27 0.74 1.44 0.92 0.80 1.03
GCAT 1.09 0.71 1.12 0.77 0.65 0.87
Edge var. GAT 1.19 0.70 1.31 0.85 0.75 0.96

of the rating matrix. We remark this task is permutation
equivariant, therefore, we expect architectures holding this
property to perform better.

Architecture parameters. We considered the same architec-
tural settings as in the authorship attribution experiments
to highlight consistent behaviors and differences. Following
[46], we chose ten 90% � 10% splits for training and test
sets and pruned the graphs to keep only the top-40 most
similar connections per node. The shift operator is again the
adjacency matrix normalized by the maximum eigenvalue.
The ADAM learning algorithm is run over 40 epochs in
batches of five and learning rate 5 ⇥ 10�3. We trained the
networks on a smooth-`1 loss and measure the accuracy
through the root mean squared error (RMSE).

Tables 4 and 5 show the results for the five users and
five movies with the largest number of ratings, respectively.
The first thing to note is that GCAT consistently improves
GAT. The latter further stresses that multi-head attentions
are more needed in the GAT than in the GCAT. Second, the
edge varying GNN yields the worst performance because
it is not a permutation equivariant architecture. In fact,
the node varying and the hybrid edge varying, which are
approaches in-between permutation equivariance and local
detail, work much better. This trend is observed also in the
edge varying GAT results, suggesting that also the number
of parameters in the edge varying is too high for this task.

7 CONCLUSION
This paper introduced EdgeNets: GNN architectures that
allow each node to collect information from its direct neigh-
bors and apply different weights to each of them. EdgeNets
preserve the state-of-the-art implementation complexity and
provide a single recursion that encompasses all state-of-
the-art architectures. By showcasing how each solution is a
particular instance of the EdgeNet, we provided guidelines
to develop more expressive GNN architectures, yet without
compromising the computational complexity. This paper, in
specific, proposed eight GNN architectures that can be read-
ily extended to scenarios containing multi-edge features.

The EdgeNet link showed a tight connection between
the graph convolutional and graph attention mechanism,
which have been so far treated as two separate approaches.
We found the graph attention network learns the weight of
a graph and then performs an order one convolution over
this learned graph. Following this link, we introduced the
concept of graph convolutional attention networks, which
is an EdgeNet that jointly learns the edge weights and the
parameters of a convolutional filter.

We advocate the EdgeNet as a more formal way to
build GNN solutions. However, further research is needed

TABLE 5
Average RMSE on movie graph.

Archit./Movie-ID 50 258 100 181 294 Average
GCNN 0.82 1.08 0.95 0.86 1.04 0.95
Edge var. 0.93 1.03 1.00 0.88 1.24 1.02
Node var. 0.78 1.04 1.00 0.87 1.00 0.94
Hybrid edge var. 0.75 1.02 0.98 0.82 1.08 0.93
ARMANet 0.81 1.05 1.02 0.87 1.09 0.97
GAT 0.98 1.24 1.28 1.00 1.30 1.16
GCAT 0.83 1.06 1.04 0.83 1.05 0.96
Edge var. GAT 0.81 1.04 1.01 0.86 1.07 0.96

in three main directions. First, research should be done to
explore the connection between the EdgeNets and receptive
fields. This will lead to different parameterizations and ar-
chitectures. Second, work needs to be done to assess the Ed-
geNet trade-offs in semi-supervised and graph classification
scenarios. Third, theoretical work is needed to characterize
how different EdgeNet parameterizations transfer to unseen
graphs.

APPENDIX A
PROOF OF PROPOSITION 1
Denote the respective graph shift operator matrices of the
graphs G and G

0 as S and S
0. For P being a permutation

matrix, S
0 and x

0 can be written as S
0 = P

T
SP and

x
0 = P

T
x. Then, the output of the convolutional filter in

(15) applied to x
0 is

u
0 =

KX

k=0

akS
0k
x
0 =

KX

k=0

ak
�
P

T
SP
�k
P

T
x. (47)

By using the properties of the permutation matrix P
k = P

and PP
T = IN , the output u0 becomes

u
0 = P

T

KX

k=0

akS
k
x

!

= P
T
u (48)

which implies the filter output operating on the permuted
graph G

0 with input x
0 is simply the permutation of the

convolutional filter in (15) applied to x. Subsequently, since
the nonlinearities of each layer are pointwise they implicitly
preserve permutation equivariance; hence, the output of a
GCNN layer is a permuted likewise. These permutations
will propagate in the cascade of the different layers yielding
the final permuted output.

APPENDIX B
PROOF OF PROPOSITION 2
To start, let �̌

(1)
= �

(0) +�
(1) and �̌

(k)
= �

(k) for all k =
2, . . . ,K be the transformed coefficient matrices. Recall also
that �(0) is a diagonal matrix; thus, �̌

(1)
shares the support

with �
(1) and with S + IN . Given the eigendecompostion

of the transformed coefficient matrices �̌
(k)

= V⇤
(k)

V
�1

for all k = 1, . . . ,K , the edge varying filter can be written
in the graph spectral domain as

a(⇤) =
KX

k=1

✓ kY

k0=1

⇤
(k0)
◆
. (49)

Subsequently, recall that J is the index set defining the
zero entries of S + IN and that CJ 2 {0, 1}|I|⇥N2

is the

Frame as signal classification problem per node layer, features1 32
EdgeNet suffers in general -requires parameterization

Delft University of Technology 217

๏ Graph filter are the building block of graph neural network (GNN)

✦ Incorporate effectively the graph signal - graph topology into learning

✦ Serve as a prior to reduce parameters and complexity

✦ Graph convolutions through graph filters

๏Different filter = different graph neural networks

✦ FIR = GCNNs

✦ ARMA = ARMANets

✦ Edge varying = EdgeNets

part 4 :: conclusions

Delft University of Technology 218

๏EdgeNets provide the broadest GNN family

✦ Particularize to all the others including GINs and GATs

✦ Help explainability

๏Applications in signal classification & regression

✦ Authorship attribution

✦Recommender systems

part 4 :: conclusions

Delft University of Technology

GNN - next challenges

219

๏ More graph prior instead of more data

๏ Explainability

✦ What topological information is more relevant?

✦ What spectral information is more relevant?

✦ EdgeNet can be a strong tool in this regard

๏ Robustness/Transferability

✦ To topological perturbations

✦ To input perturbations

๏ Distributed learning

✦ Graph filters are distributable

Delft University of Technology

part 4
graph neural networks

Delft University of Technology

๏ Role of graph filters in graph neural networks (GNNs)

✦ GNNs ~ nonlinear graph filters

๏ For simplicity will discuss supervised learning

221

part 4:: overview

Delft University of Technology

๏ Role of graph filters in graph neural networks (GNNs)

✦ GNNs ~ nonlinear graph filters

๏ For simplicity will discuss supervised learning

๏ How to go from neural networks to GNNs?

๏ Types of GNNs

✦What are graph convolutional neural networks?

✦How to use edge varying GNNs?

๏How to use GNNs for graph signal processing applications?

222

part 4:: overview

Delft University of Technology

๏ Role of graph filters in graph neural networks (GNNs)

✦ GNNs ~ nonlinear graph filters

๏ For simplicity will discuss supervised learning

๏ How to go from neural networks to GNNs?

๏ Types of GNNs

✦What are graph convolutional neural networks?

✦How to use edge varying GNNs?

๏How to use GNNs for graph signal processing applications?

๏ For GNN pooling, transferability, and applications in control and resource allocation

✦ T-9: Graph Neural Networks (F. Gama and A. Ribeiro)

223

part 4:: overview

Delft University of Technology 224

Why we use filters in neural networks?

Delft University of Technology

Supervised learning

225

๏Relies on a dataset of training examples 

✦ the th input data in space

✦ the th output data in space (labels)

R
ℛ = {(x1, y1), (x2, y2), …, (xR, yR)}

xr r 𝒳

yr r 𝒴

Delft University of Technology

Supervised learning

226

๏Relies on a dataset of training examples 

✦ the th input data in space

✦ the th output data in space (labels)

R
ℛ = {(x1, y1), (x2, y2), …, (xR, yR)}

xr r 𝒳

yr r 𝒴

๏Goal: learn a function that maps to

๏we want parametric:

f xr yr

f f(θ) : 𝒳 → 𝒴

Delft University of Technology

Supervised learning

227

๏Deign parameters such that

✦minimize a cost distance between and (e.g., MSE)

✦generalize well for test data

θ

f(θ, xr) yr

xr ∉ ℛ

minimize
θ

1
R

R

∑
r=1

(f(θ, xr) − yr)2

Delft University of Technology

Neural networks

228

๏Express function as a cascade of layered functions
f

f(θ, x) = f3(θ3, f2(θ2, f1(θ1, x)))
layer 1: parameters  
layer 2: parameters  
layer 3: parameters

θ1

θ2

θ3

Delft University of Technology

Neural networks

229

๏Express function as a cascade of layered functions

๏No structure in the data: perceptron

f

x1
<latexit sha1_base64="Ysd2OMAc2D9pWw1Im7PZmrdWMuQ=">AAAB7HicdVBNS8NAEJ34WetX1aOXxSJ4Kkka2norePFYwbSFNpTNdtsu3WzC7kYsob/BiwdFvPqDvPlv3LQVVPTBwOO9GWbmhQlnStv2h7W2vrG5tV3YKe7u7R8clo6O2ypOJaE+iXksuyFWlDNBfc00p91EUhyFnHbC6VXud+6oVCwWt3qW0CDCY8FGjGBtJP9+kDnzQalsVy4bNderIbti23XHdXLi1r2qhxyj5CjDCq1B6b0/jEkaUaEJx0r1HDvRQYalZoTTebGfKppgMsVj2jNU4IiqIFscO0fnRhmiUSxNCY0W6veJDEdKzaLQdEZYT9RvLxf/8nqpHjWCjIkk1VSQ5aJRypGOUf45GjJJieYzQzCRzNyKyARLTLTJp2hC+PoU/U/absWpVtwbr9x0V3EU4BTO4AIcqEMTrqEFPhBg8ABP8GwJ69F6sV6XrWvWauYEfsB6+wQs4o7i</latexit>

x2
<latexit sha1_base64="FZ/KUT53P/zu7dLYl/5acb1HyxA=">AAAB7HicdVBNS8NAEJ34WetX1aOXxSJ4Kkka2norePFYwbSFNpTNdtsu3WzC7kYsob/BiwdFvPqDvPlv3LQVVPTBwOO9GWbmhQlnStv2h7W2vrG5tV3YKe7u7R8clo6O2ypOJaE+iXksuyFWlDNBfc00p91EUhyFnHbC6VXud+6oVCwWt3qW0CDCY8FGjGBtJP9+kLnzQalsVy4bNderIbti23XHdXLi1r2qhxyj5CjDCq1B6b0/jEkaUaEJx0r1HDvRQYalZoTTebGfKppgMsVj2jNU4IiqIFscO0fnRhmiUSxNCY0W6veJDEdKzaLQdEZYT9RvLxf/8nqpHjWCjIkk1VSQ5aJRypGOUf45GjJJieYzQzCRzNyKyARLTLTJp2hC+PoU/U/absWpVtwbr9x0V3EU4BTO4AIcqEMTrqEFPhBg8ABP8GwJ69F6sV6XrWvWauYEfsB6+wQuZ47j</latexit>

x3
<latexit sha1_base64="yzU7wSCqZ86+UJXbNllPz5xOb2g=">AAAB7HicdVBNS8NAEJ34WetX1aOXxSJ4Kkka2norePFYwbSFNpTNdtsu3WzC7kYsob/BiwdFvPqDvPlv3LQVVPTBwOO9GWbmhQlnStv2h7W2vrG5tV3YKe7u7R8clo6O2ypOJaE+iXksuyFWlDNBfc00p91EUhyFnHbC6VXud+6oVCwWt3qW0CDCY8FGjGBtJP9+kFXng1LZrlw2aq5XQ3bFtuuO6+TErXtVDzlGyVGGFVqD0nt/GJM0okITjpXqOXaigwxLzQin82I/VTTBZIrHtGeowBFVQbY4do7OjTJEo1iaEhot1O8TGY6UmkWh6YywnqjfXi7+5fVSPWoEGRNJqqkgy0WjlCMdo/xzNGSSEs1nhmAimbkVkQmWmGiTT9GE8PUp+p+03YpTrbg3XrnpruIowCmcwQU4UIcmXEMLfCDA4AGe4NkS1qP1Yr0uW9es1cwJ/ID19gkv7I7k</latexit>

x4
<latexit sha1_base64="TxnAdb8RooRHwAwJpSRpUPq+7QU=">AAAB7HicdVBNS8NAEJ34WetX1aOXxSJ4Kkka2norePFYwbSFNpTNdtsu3WzC7kYsob/BiwdFvPqDvPlv3LQVVPTBwOO9GWbmhQlnStv2h7W2vrG5tV3YKe7u7R8clo6O2ypOJaE+iXksuyFWlDNBfc00p91EUhyFnHbC6VXud+6oVCwWt3qW0CDCY8FGjGBtJP9+kHnzQalsVy4bNderIbti23XHdXLi1r2qhxyj5CjDCq1B6b0/jEkaUaEJx0r1HDvRQYalZoTTebGfKppgMsVj2jNU4IiqIFscO0fnRhmiUSxNCY0W6veJDEdKzaLQdEZYT9RvLxf/8nqpHjWCjIkk1VSQ5aJRypGOUf45GjJJieYzQzCRzNyKyARLTLTJp2hC+PoU/U/absWpVtwbr9x0V3EU4BTO4AIcqEMTrqEFPhBg8ABP8GwJ69F6sV6XrWvWauYEfsB6+wQxcY7l</latexit>

y1
<latexit sha1_base64="n+7SxNNW8m8DrM5UvhQtZ6879DE=">AAAB7HicdVBNS8NAEJ3Ur1q/qh69LBbBU0jSau2t4MVjBdMW2lA22027dLMJuxuhhP4GLx4U8eoP8ua/cfshqOiDgcd7M8zMC1POlHacD6uwtr6xuVXcLu3s7u0flA+P2irJJKE+SXgiuyFWlDNBfc00p91UUhyHnHbCyfXc79xTqVgi7vQ0pUGMR4JFjGBtJH86yN3ZoFxxbKfqNS4vkGO7ddcwQ5ya12hUkWs7C1Rghdag/N4fJiSLqdCEY6V6rpPqIMdSM8LprNTPFE0xmeAR7RkqcExVkC+OnaEzowxRlEhTQqOF+n0ix7FS0zg0nTHWY/Xbm4t/eb1MR1dBzkSaaSrIclGUcaQTNP8cDZmkRPOpIZhIZm5FZIwlJtrkUzIhfH2K/idtz3artndbqzS9VRxFOIFTOAcX6tCEG2iBDwQYPMATPFvCerRerNdla8FazRzDD1hvnz71ju8=</latexit>

y2
<latexit sha1_base64="i0JGCrJUqxxmWu7rkxCgURe4698=">AAAB7HicdVBNS8NAEJ3Ur1q/qh69LBbBU0jSau2t4MVjBdMW2lA22027dLMJuxuhhP4GLx4U8eoP8ua/cfshqOiDgcd7M8zMC1POlHacD6uwtr6xuVXcLu3s7u0flA+P2irJJKE+SXgiuyFWlDNBfc00p91UUhyHnHbCyfXc79xTqVgi7vQ0pUGMR4JFjGBtJH86yL3ZoFxxbKfqNS4vkGO7ddcwQ5ya12hUkWs7C1Rghdag/N4fJiSLqdCEY6V6rpPqIMdSM8LprNTPFE0xmeAR7RkqcExVkC+OnaEzowxRlEhTQqOF+n0ix7FS0zg0nTHWY/Xbm4t/eb1MR1dBzkSaaSrIclGUcaQTNP8cDZmkRPOpIZhIZm5FZIwlJtrkUzIhfH2K/idtz3artndbqzS9VRxFOIFTOAcX6tCEG2iBDwQYPMATPFvCerRerNdla8FazRzDD1hvn0B6jvA=</latexit>

y3
<latexit sha1_base64="RtuKIf4Vx+5kNaxtUMN9Og7IT8Y=">AAAB7HicdVDLSsNAFJ3UV62vqks3g0VwFSZJtXZXcOOygmkLbSiT6aQdOpmEmYkQQr/BjQtF3PpB7vwbpw9BRQ9cOJxzL/feE6acKY3Qh1VaW9/Y3CpvV3Z29/YPqodHHZVkklCfJDyRvRArypmgvmaa014qKY5DTrvh9Hrud++pVCwRdzpPaRDjsWARI1gbyc+HhTcbVmvIRp7bvLyAyHYajmGGoLrbbHrQsdECNbBCe1h9H4wSksVUaMKxUn0HpToosNSMcDqrDDJFU0ymeEz7hgocUxUUi2Nn8MwoIxgl0pTQcKF+nyhwrFQeh6Yzxnqifntz8S+vn+noKiiYSDNNBVkuijIOdQLnn8MRk5RonhuCiWTmVkgmWGKiTT4VE8LXp/B/0nFtx7Pd23qt5a7iKIMTcArOgQMaoAVuQBv4gAAGHsATeLaE9Wi9WK/L1pK1mjkGP2C9fQJB/47x</latexit>

f(θ, x) = f3(θ3, f2(θ2, f1(θ1, x)))
layer 1: parameters  
layer 2: parameters  
layer 3: parameters

θ1

θ2

θ3

y = σ(Wx + b)

ReLU(x) = {x x > 0
0 otw

๏Parameters

๏Pointwise nonlinearity

θ = {W, b}
σ(⋅)

Delft University of Technology

Neural networks

230

๏No structure in the data: multi-layer perceptron

✦Improves expressivity

x0 x1 x2

๏ Input features

๏Output features

x0 = xr
xL

xl = σ(Wlxl−1 + bl)

 : input layer = output layer xl−1 l l − 1
 : output layer

: parameters layer
xl l
θl = {Wl, bl} l

Delft University of Technology

Neural networks

231

๏Unrolling recursion

xL = σ(WLxL−1 + bL)
= σ(WLσ(WL−1xL−2 + bL−1) + bL)

x0 x1 x2

xL = σ(WLxL−1 + bL)

Delft University of Technology

Neural networks

232

๏Unrolling recursion

xL = σ(WLxL−1 + bL)
= σ(WLσ(WL−1xL−2 + bL−1) + bL)
= σ(WLσ(WL−1σ(…σ(W1x0 + b1) + bL−1) + bL)

x0 x1 x2

xL = σ(WLxL−1 + bL)

๏ depends on through a composition of

 linear functions and pointwise nonlinearities

xL x0

Delft University of Technology

Neural networks

233

๏MLP fails in high dimensional data

✦ if layers have dimensions

• parameters, e.g.,

• complexity

xl = σ(Wlxl−1 + bl)
dim(xl) = dim(xl−1) ∼ 𝒪(N)

dim(Wl) ∼ 𝒪(N2) N = 1000 → 𝒪(106)

𝒪(N2)

Delft University of Technology

Neural networks

234

๏MLP fails in high dimensional data

✦ if layers have dimensions

• parameters, e.g.,

• complexity

๏ need to exploit structure in data

xl = σ(Wlxl−1 + bl)
dim(xl) = dim(xl−1) ∼ 𝒪(N)

dim(Wl) ∼ 𝒪(N2) N = 1000 → 𝒪(106)

𝒪(N2)

Delft University of Technology

Neural networks

235

๏structure in data

✦spatial data: pixel neighbors

✦temporal data: signal proximity

Delft University of Technology

Neural networks

236

๏structure in data

✦spatial data: pixel neighbors

✦temporal data: signal proximity

๏reduce parameters by effective sharing

๏reduce complexity by efficient implementation

Delft University of Technology

Neural networks

237

๏structure in data

✦spatial data: pixel neighbors

✦temporal data: signal proximity

๏reduce parameters by effective sharing

๏reduce complexity by efficient implementation

๏use spatial and temporal filters

✦no loose of discriminatory power

Delft University of Technology

Filters in spatial convolutional layer

238

๏ MLP propagation rule

๏ Spatial data: spatial convolution filter bank substitutes

✦ filters apply the same parameters to different locations

✦ bias can be ignored or shared

xl = σ(Wlxl−1 + bl)
Wl

bl bl = bl1filter	layer	 l
<latexit sha1_base64="NP6+yU/ThMFzsO5IeayfnQ4Ijyk=">AAAB6HicdVDLSsNAFJ3UV62vqks3g0VwFZI0tHVXcOOyBfuANpTJ9KYdO3kwMxFK6Be4caGIWz/JnX/jpK2gogcuHM65l3vv8RPOpLKsD6Owsbm1vVPcLe3tHxwelY9PujJOBYUOjXks+j6RwFkEHcUUh34igIQ+h54/u8793j0IyeLoVs0T8EIyiVjAKFFaavNRuWKZV42a49awZVpW3XbsnDh1t+piWys5KmiN1qj8PhzHNA0hUpQTKQe2lSgvI0IxymFRGqYSEkJnZAIDTSMSgvSy5aELfKGVMQ5ioStSeKl+n8hIKOU89HVnSNRU/vZy8S9vkKqg4WUsSlIFEV0tClKOVYzzr/GYCaCKzzUhVDB9K6ZTIghVOpuSDuHrU/w/6TqmXTWdtltpOus4iugMnaNLZKM6aqIb1EIdRBGgB/SEno0749F4MV5XrQVjPXOKfsB4+wQwpY0m</latexit>

l
<latexit sha1_base64="qM8OPbE68be/Ba6xVyTSrFcwPi0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20a1XvqlprXlfqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4A0IeM5A==</latexit>input	 layer l

<latexit sha1_base64="qM8OPbE68be/Ba6xVyTSrFcwPi0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20a1XvqlprXlfqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4A0IeM5A==</latexit>

output	 layer

�l
11

<latexit sha1_base64="dQZWRH+LUm3QIj+F0BfEIP/WlgE=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7rrzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFN9kTw=</latexit>

�l
12

<latexit sha1_base64="YKYf5nN57bSWw43LbKPumL8tbN0=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7nrzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFUEkT0=</latexit>

�l
21

<latexit sha1_base64="SCnrSH1kETCUMx6vy2K+ephFm7U=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7rnzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFUFkT0=</latexit>

�l
22

<latexit sha1_base64="Q8YGBpqA8uIWInUV8H/WHc4OXUw=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7nnzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFaMkT4=</latexit>

input layer l output layer l

filter layer l

Delft University of Technology

Filters in spatial convolutional layer

239

๏ MLP propagation rule

๏ Spatial data: spatial convolution filter bank substitutes

✦ filters apply the same parameters to different locations

✦ bias can be ignored or shared

xl = σ(Wlxl−1 + bl)
Wl

bl bl = bl1filter	layer	 l
<latexit sha1_base64="NP6+yU/ThMFzsO5IeayfnQ4Ijyk=">AAAB6HicdVDLSsNAFJ3UV62vqks3g0VwFZI0tHVXcOOyBfuANpTJ9KYdO3kwMxFK6Be4caGIWz/JnX/jpK2gogcuHM65l3vv8RPOpLKsD6Owsbm1vVPcLe3tHxwelY9PujJOBYUOjXks+j6RwFkEHcUUh34igIQ+h54/u8793j0IyeLoVs0T8EIyiVjAKFFaavNRuWKZV42a49awZVpW3XbsnDh1t+piWys5KmiN1qj8PhzHNA0hUpQTKQe2lSgvI0IxymFRGqYSEkJnZAIDTSMSgvSy5aELfKGVMQ5ioStSeKl+n8hIKOU89HVnSNRU/vZy8S9vkKqg4WUsSlIFEV0tClKOVYzzr/GYCaCKzzUhVDB9K6ZTIghVOpuSDuHrU/w/6TqmXTWdtltpOus4iugMnaNLZKM6aqIb1EIdRBGgB/SEno0749F4MV5XrQVjPXOKfsB4+wQwpY0m</latexit>

l
<latexit sha1_base64="qM8OPbE68be/Ba6xVyTSrFcwPi0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20a1XvqlprXlfqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4A0IeM5A==</latexit>input	 layer l

<latexit sha1_base64="qM8OPbE68be/Ba6xVyTSrFcwPi0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20a1XvqlprXlfqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4A0IeM5A==</latexit>

output	 layer

�l
11

<latexit sha1_base64="dQZWRH+LUm3QIj+F0BfEIP/WlgE=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7rrzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFN9kTw=</latexit>

�l
12

<latexit sha1_base64="YKYf5nN57bSWw43LbKPumL8tbN0=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7nrzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFUEkT0=</latexit>

�l
21

<latexit sha1_base64="SCnrSH1kETCUMx6vy2K+ephFm7U=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7rnzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFUFkT0=</latexit>

�l
22

<latexit sha1_base64="Q8YGBpqA8uIWInUV8H/WHc4OXUw=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7nnzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFaMkT4=</latexit>

input layer l output layer l

filter layer l

input layer l output layer l

�l
11

<latexit sha1_base64="dQZWRH+LUm3QIj+F0BfEIP/WlgE=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7rrzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFN9kTw=</latexit>

�l
12

<latexit sha1_base64="YKYf5nN57bSWw43LbKPumL8tbN0=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7nrzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFUEkT0=</latexit>

�l
21

<latexit sha1_base64="SCnrSH1kETCUMx6vy2K+ephFm7U=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7rnzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFUFkT0=</latexit>

�l
22

<latexit sha1_base64="Q8YGBpqA8uIWInUV8H/WHc4OXUw=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7nnzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFaMkT4=</latexit>

filter	layer	 l
<latexit sha1_base64="NP6+yU/ThMFzsO5IeayfnQ4Ijyk=">AAAB6HicdVDLSsNAFJ3UV62vqks3g0VwFZI0tHVXcOOyBfuANpTJ9KYdO3kwMxFK6Be4caGIWz/JnX/jpK2gogcuHM65l3vv8RPOpLKsD6Owsbm1vVPcLe3tHxwelY9PujJOBYUOjXks+j6RwFkEHcUUh34igIQ+h54/u8793j0IyeLoVs0T8EIyiVjAKFFaavNRuWKZV42a49awZVpW3XbsnDh1t+piWys5KmiN1qj8PhzHNA0hUpQTKQe2lSgvI0IxymFRGqYSEkJnZAIDTSMSgvSy5aELfKGVMQ5ioStSeKl+n8hIKOU89HVnSNRU/vZy8S9vkKqg4WUsSlIFEV0tClKOVYzzr/GYCaCKzzUhVDB9K6ZTIghVOpuSDuHrU/w/6TqmXTWdtltpOus4iugMnaNLZKM6aqIb1EIdRBGgB/SEno0749F4MV5XrQVjPXOKfsB4+wQwpY0m</latexit>

l
<latexit sha1_base64="qM8OPbE68be/Ba6xVyTSrFcwPi0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20a1XvqlprXlfqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4A0IeM5A==</latexit>input	 layer l

<latexit sha1_base64="qM8OPbE68be/Ba6xVyTSrFcwPi0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20a1XvqlprXlfqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4A0IeM5A==</latexit>

output	 layer

�l
11

<latexit sha1_base64="dQZWRH+LUm3QIj+F0BfEIP/WlgE=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7rrzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFN9kTw=</latexit>

�l
12

<latexit sha1_base64="YKYf5nN57bSWw43LbKPumL8tbN0=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7nrzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFUEkT0=</latexit>

�l
21

<latexit sha1_base64="SCnrSH1kETCUMx6vy2K+ephFm7U=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7rnzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFUFkT0=</latexit>

�l
22

<latexit sha1_base64="Q8YGBpqA8uIWInUV8H/WHc4OXUw=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7nnzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFaMkT4=</latexit>

filter layer l

Delft University of Technology

Filters in spatial convolutional layer

240

๏shift-and-sum convolves filter with input image

�l
11

<latexit sha1_base64="dQZWRH+LUm3QIj+F0BfEIP/WlgE=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7rrzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFN9kTw=</latexit>

�l
12

<latexit sha1_base64="YKYf5nN57bSWw43LbKPumL8tbN0=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7nrzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFUEkT0=</latexit>

�l
21

<latexit sha1_base64="SCnrSH1kETCUMx6vy2K+ephFm7U=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7rnzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFUFkT0=</latexit>

�l
22

<latexit sha1_base64="Q8YGBpqA8uIWInUV8H/WHc4OXUw=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7nnzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFaMkT4=</latexit>

filter	layer	 l
<latexit sha1_base64="NP6+yU/ThMFzsO5IeayfnQ4Ijyk=">AAAB6HicdVDLSsNAFJ3UV62vqks3g0VwFZI0tHVXcOOyBfuANpTJ9KYdO3kwMxFK6Be4caGIWz/JnX/jpK2gogcuHM65l3vv8RPOpLKsD6Owsbm1vVPcLe3tHxwelY9PujJOBYUOjXks+j6RwFkEHcUUh34igIQ+h54/u8793j0IyeLoVs0T8EIyiVjAKFFaavNRuWKZV42a49awZVpW3XbsnDh1t+piWys5KmiN1qj8PhzHNA0hUpQTKQe2lSgvI0IxymFRGqYSEkJnZAIDTSMSgvSy5aELfKGVMQ5ioStSeKl+n8hIKOU89HVnSNRU/vZy8S9vkKqg4WUsSlIFEV0tClKOVYzzr/GYCaCKzzUhVDB9K6ZTIghVOpuSDuHrU/w/6TqmXTWdtltpOus4iugMnaNLZKM6aqIb1EIdRBGgB/SEno0749F4MV5XrQVjPXOKfsB4+wQwpY0m</latexit>

l
<latexit sha1_base64="qM8OPbE68be/Ba6xVyTSrFcwPi0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20a1XvqlprXlfqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4A0IeM5A==</latexit>input	 layer l

<latexit sha1_base64="qM8OPbE68be/Ba6xVyTSrFcwPi0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20a1XvqlprXlfqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4A0IeM5A==</latexit>

output	 layer

�l
11

<latexit sha1_base64="dQZWRH+LUm3QIj+F0BfEIP/WlgE=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7rrzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFN9kTw=</latexit>

�l
12

<latexit sha1_base64="YKYf5nN57bSWw43LbKPumL8tbN0=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7nrzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFUEkT0=</latexit>

�l
21

<latexit sha1_base64="SCnrSH1kETCUMx6vy2K+ephFm7U=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7rnzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFUFkT0=</latexit>

�l
22

<latexit sha1_base64="Q8YGBpqA8uIWInUV8H/WHc4OXUw=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7nnzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFaMkT4=</latexit>

input layer l output layer l

filter layer l

Delft University of Technology

Filters in spatial convolutional layer

241

๏shift-and-sum convolves filter with input image

vertical and horizontal 
input shifts

yl
ij =

R

∑
r=1

C

∑
c=1

ϕl
rcxl−1

i−r,j−c
�l
11

<latexit sha1_base64="dQZWRH+LUm3QIj+F0BfEIP/WlgE=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7rrzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFN9kTw=</latexit>

�l
12

<latexit sha1_base64="YKYf5nN57bSWw43LbKPumL8tbN0=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7nrzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFUEkT0=</latexit>

�l
21

<latexit sha1_base64="SCnrSH1kETCUMx6vy2K+ephFm7U=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7rnzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFUFkT0=</latexit>

�l
22

<latexit sha1_base64="Q8YGBpqA8uIWInUV8H/WHc4OXUw=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7nnzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFaMkT4=</latexit>

filter	layer	 l
<latexit sha1_base64="NP6+yU/ThMFzsO5IeayfnQ4Ijyk=">AAAB6HicdVDLSsNAFJ3UV62vqks3g0VwFZI0tHVXcOOyBfuANpTJ9KYdO3kwMxFK6Be4caGIWz/JnX/jpK2gogcuHM65l3vv8RPOpLKsD6Owsbm1vVPcLe3tHxwelY9PujJOBYUOjXks+j6RwFkEHcUUh34igIQ+h54/u8793j0IyeLoVs0T8EIyiVjAKFFaavNRuWKZV42a49awZVpW3XbsnDh1t+piWys5KmiN1qj8PhzHNA0hUpQTKQe2lSgvI0IxymFRGqYSEkJnZAIDTSMSgvSy5aELfKGVMQ5ioStSeKl+n8hIKOU89HVnSNRU/vZy8S9vkKqg4WUsSlIFEV0tClKOVYzzr/GYCaCKzzUhVDB9K6ZTIghVOpuSDuHrU/w/6TqmXTWdtltpOus4iugMnaNLZKM6aqIb1EIdRBGgB/SEno0749F4MV5XrQVjPXOKfsB4+wQwpY0m</latexit>

l
<latexit sha1_base64="qM8OPbE68be/Ba6xVyTSrFcwPi0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20a1XvqlprXlfqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4A0IeM5A==</latexit>input	 layer l

<latexit sha1_base64="qM8OPbE68be/Ba6xVyTSrFcwPi0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20a1XvqlprXlfqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4A0IeM5A==</latexit>

output	 layer

�l
11

<latexit sha1_base64="dQZWRH+LUm3QIj+F0BfEIP/WlgE=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7rrzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFN9kTw=</latexit>

�l
12

<latexit sha1_base64="YKYf5nN57bSWw43LbKPumL8tbN0=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7nrzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFUEkT0=</latexit>

�l
21

<latexit sha1_base64="SCnrSH1kETCUMx6vy2K+ephFm7U=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7rnzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFUFkT0=</latexit>

�l
22

<latexit sha1_base64="Q8YGBpqA8uIWInUV8H/WHc4OXUw=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7nnzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFaMkT4=</latexit>

input layer l output layer l

filter layer l

Delft University of Technology

Filters in spatial convolutional layer

242

๏shift-and-sum convolves filter with input image

๏ spatial FIR convolutional filtering

vertical and horizontal 
input shifts

yl
ij =

R

∑
r=1

C

∑
c=1

ϕl
rcxl−1

i−r,j−c
�l
11

<latexit sha1_base64="dQZWRH+LUm3QIj+F0BfEIP/WlgE=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7rrzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFN9kTw=</latexit>

�l
12

<latexit sha1_base64="YKYf5nN57bSWw43LbKPumL8tbN0=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7nrzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFUEkT0=</latexit>

�l
21

<latexit sha1_base64="SCnrSH1kETCUMx6vy2K+ephFm7U=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7rnzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFUFkT0=</latexit>

�l
22

<latexit sha1_base64="Q8YGBpqA8uIWInUV8H/WHc4OXUw=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7nnzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFaMkT4=</latexit>

filter	layer	 l
<latexit sha1_base64="NP6+yU/ThMFzsO5IeayfnQ4Ijyk=">AAAB6HicdVDLSsNAFJ3UV62vqks3g0VwFZI0tHVXcOOyBfuANpTJ9KYdO3kwMxFK6Be4caGIWz/JnX/jpK2gogcuHM65l3vv8RPOpLKsD6Owsbm1vVPcLe3tHxwelY9PujJOBYUOjXks+j6RwFkEHcUUh34igIQ+h54/u8793j0IyeLoVs0T8EIyiVjAKFFaavNRuWKZV42a49awZVpW3XbsnDh1t+piWys5KmiN1qj8PhzHNA0hUpQTKQe2lSgvI0IxymFRGqYSEkJnZAIDTSMSgvSy5aELfKGVMQ5ioStSeKl+n8hIKOU89HVnSNRU/vZy8S9vkKqg4WUsSlIFEV0tClKOVYzzr/GYCaCKzzUhVDB9K6ZTIghVOpuSDuHrU/w/6TqmXTWdtltpOus4iugMnaNLZKM6aqIb1EIdRBGgB/SEno0749F4MV5XrQVjPXOKfsB4+wQwpY0m</latexit>

l
<latexit sha1_base64="qM8OPbE68be/Ba6xVyTSrFcwPi0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20a1XvqlprXlfqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4A0IeM5A==</latexit>input	 layer l

<latexit sha1_base64="qM8OPbE68be/Ba6xVyTSrFcwPi0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20a1XvqlprXlfqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4A0IeM5A==</latexit>

output	 layer

�l
11

<latexit sha1_base64="dQZWRH+LUm3QIj+F0BfEIP/WlgE=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7rrzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFN9kTw=</latexit>

�l
12

<latexit sha1_base64="YKYf5nN57bSWw43LbKPumL8tbN0=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7nrzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFUEkT0=</latexit>

�l
21

<latexit sha1_base64="SCnrSH1kETCUMx6vy2K+ephFm7U=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7rnzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFUFkT0=</latexit>

�l
22

<latexit sha1_base64="Q8YGBpqA8uIWInUV8H/WHc4OXUw=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW0lg22027dLMbdjdCCf0ZXjwo4tVf481/46atoKIPBh7vzTAzL0oZVdpxPqzS2vrG5lZ5u7Kzu7d/UD086imRSUy6WDAh+xFShFFOuppqRvqpJCiJGLmNppeFf3tPpKKC3+hZSsIEjTmNKUbaSMEgndBh7nnzOzas1hz7otXw/AZ0bMdpup5bEK/p133oGqVADazQGVbfByOBs4RwjRlSKnCdVIc5kppiRuaVQaZIivAUjUlgKEcJUWG+OHkOz4wygrGQpriGC/X7RI4SpWZJZDoTpCfqt1eIf3lBpuNWmFOeZppwvFwUZwxqAYv/4YhKgjWbGYKwpOZWiCdIIqxNShUTwten8H/S82y3bnvXfq3trOIogxNwCs6BC5qgDa5AB3QBBgI8gCfwbGnr0XqxXpetJWs1cwx+wHr7BFaMkT4=</latexit>

input layer l output layer l

filter layer l

Delft University of Technology

Convolutional neural networks

243

๏ CNNs increase descriptive power with a parallel filter bank

l
<latexit sha1_base64="qM8OPbE68be/Ba6xVyTSrFcwPi0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20a1XvqlprXlfqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4A0IeM5A==</latexit>input	 layer

has	4	inputs
l

<latexit sha1_base64="qM8OPbE68be/Ba6xVyTSrFcwPi0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20a1XvqlprXlfqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4A0IeM5A==</latexit>output	 layer
has	2	outputs

✦ input images

✦process each with a parallel bank of filters

✦sum filter outputs to obtain higher-level features

✦parameters are filter coefficients (backprop.)

F

Delft University of Technology

CNN full stack

244

๏ Cascade of spatial filter bank and nonlinearities

.	.	.	

bird

cat

…

dog

convolution	 +	pooling fully	connected

๏ Parameters - independent on the image dimensions

๏ Complexity - spatial convolution

Benefits

Delft University of Technology 245

What about data on graphs?

Delft University of Technology

Learning from (ir)regular graph data

246

๏Training samples are graph signals

๏Non-Euclidean structure

✦conventional CNNs are inapplicable

xr ∈ ℝN

Delft University of Technology

Learning from (ir)regular graph data

247

๏Training samples are graph signals

๏Non-Euclidean structure

✦conventional CNNs are inapplicable

๏MLP can apply

✦ignores the structure

✦data demanding

xr ∈ ℝN

xl = σ(Wlxl−1 + bl)

Delft University of Technology

Learning from (ir)regular graph data

248

๏Need a neural network solution

to account for coupling signal-topology

Delft University of Technology

Learning from (ir)regular graph data

249

๏Need a neural network solution

to account for coupling signal-topology

๏Graph as prior to estimate a parametric function

✦ is the graph shift operator

✦ trainable parameters (i.e., filter coefficients)

S

θ

Gama, Isufi, Leus, Ribeiro, Graphs, Convolutions, and Neural Networks, IEEE Signal Processing Magazine, under review, arXiv: 2003.03777

f(θ, S) : 𝒳 → 𝒴

Delft University of Technology

Graph neural networks

250

๏ Graph neural networks substitute with graph filter bankWl

Delft University of Technology

Graph neural networks

251

๏ Graph neural networks substitute with graph filter bankWl

๏ Propagation rule through graph filters
xl = σ(Hlxl−1)

๏ graph filter at layer for any shift operator Hl l S

Delft University of Technology

Graph neural networks

252

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

๏ Graph neural networks substitute with graph filter bankWl

๏ Propagation rule through graph filters
xl = σ(Hlxl−1)

✦Edge-variant filter: EdgeNets

✦Node-variant filter: Node-variant GNNs

๏ graph filter at layer for any shift operator Hl l S

[Gama’18 - DSW]

Delft University of Technology

Graph neural networks

253

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

๏ Graph neural networks substitute with graph filter bankWl

๏ Propagation rule through graph filters
xl = σ(Hlxl−1)

✦Edge-variant filter: EdgeNets

✦Node-variant filter: Node-variant GNNs

✦FIR filters: Graph convolutional neural networks

• Chebyshev form: ChebNets

๏ graph filter at layer for any shift operator Hl l S

[Gama’18 - DSW]

[Gama’18 - TSP]

[Defferrard’16 - NeurIPS]

Delft University of Technology

Graph neural networks

254

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

๏ Graph neural networks substitute with graph filter bankWl

๏ Propagation rule through graph filters
xl = σ(Hlxl−1)

✦Edge-variant filter: EdgeNets

✦Node-variant filter: Node-variant GNNs

✦FIR filters: Graph convolutional neural networks

• Chebyshev form: ChebNets

✦ARMA filters: ARMANets

• Direct, parallel, cascade

• Cayley form: CayleyNets

๏ graph filter at layer for any shift operator Hl l S

[Gama’18 - DSW]

[Gama’18 - TSP]

[Defferrard’16 - NeurIPS]

[Wijesinghe’19 - NeurIPS] [Bianchi’19-arXiv]

[Levie’18 - TSP]

Delft University of Technology

Graph convolutional neural networks

255

๏ Graph convolutional neural networks use a graph convolutional filter  
(FIR - ARMA)

Example: FIR

xl = σ(
K

∑
k=0

ϕl
kS

kxl−1)

Gama, Marques, Leus, Ribeiro, Convolutional Neural Networks Architectures for Signals Supported on Graphs, IEEE Transactions on Signal Processing, 2018

Delft University of Technology

Graph convolutional neural networks

256

๏ Graph convolutional neural networks use a graph convolutional filter  
(FIR - ARMA)

Example: FIR

xl = σ(
K

∑
k=0

ϕl
kS

kxl−1)

๏ parameters shared among all nodes and edges

๏ shift-and-sum convolves filter with graph signal

Gama, Marques, Leus, Ribeiro, Convolutional Neural Networks Architectures for Signals Supported on Graphs, IEEE Transactions on Signal Processing, 2018

Delft University of Technology

Graph convolutional neural networks

257

๏ GCNN: shift-and-sum & shared parameters

xl = σ(ϕl
0x

l−1 + ϕl
1Sxl−1 + ϕl

2S
2xl−1)

ϕl
0

ϕl
1 ϕl

2

Delft University of Technology

Graph convolutional neural networks

258

๏ GCNN: shift-and-sum & shared parameters

xl = σ(ϕl
0x

l−1 + ϕl
1Sxl−1 + ϕl

2S
2xl−1)

ϕl
0

ϕl
1 ϕl

2

Delft University of Technology

Graph convolutional neural networks

259

๏ GCNN: shift-and-sum & shared parameters

xl = σ(ϕl
0x

l−1 + ϕl
1Sxl−1 + ϕl

2S
2xl−1)

xl
i = σ(ϕl

0xl−1
i + ϕl

1[Sxl−1]i + ϕl
2[S

2xl−1]i)

shift over the nodes

ϕl
0

ϕl
1 ϕl

2

Delft University of Technology

Graph convolutional neural networks

260

๏ GCNNs increase descriptive power with a parallel filter bank

✦ input graph signals

✦ process each signal with a graph filter

๏

F {xl−1
g }F

g=1 ✦sum filter outputs

✦parameter are filter coefficients (backprop.)

๏

l
<latexit sha1_base64="qM8OPbE68be/Ba6xVyTSrFcwPi0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20a1XvqlprXlfqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4A0IeM5A==</latexit>input layer

has 4 inputs
l

<latexit sha1_base64="qM8OPbE68be/Ba6xVyTSrFcwPi0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20a1XvqlprXlfqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4A0IeM5A==</latexit>output layer
has 2 outputs

{xl�1
g }4g=1

<latexit sha1_base64="Uk3ezDjbueBya7V994u2j8zAnwc=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0VwY0lqQTdCwY3LCvYBTRom00k7dDIJMxOxhGzd+CtuXCji1j9w5984abPQ1gMXDufcy733+DGjUlnWt1FaWV1b3yhvVra2d3b3zP2DjowSgUkbRywSPR9JwignbUUVI71YEBT6jHT9yXXud++JkDTid2oaEzdEI04DipHSkmdCJ3VCpMZ+kD5kg5Sd2Zk3cjIvHcEraGeDhmdWrZo1A1wmdkGqoEDLM7+cYYSTkHCFGZKyb1uxclMkFMWMZBUnkSRGeIJGpK8pRyGRbjr7JIMnWhnCIBK6uIIz9fdEikIpp6GvO/Or5aKXi/95/UQFl25KeZwowvF8UZAwqCKYxwKHVBCs2FQThAXVt0I8RgJhpcOr6BDsxZeXSades89r9dtGtVkv4iiDI3AMToENLkAT3IAWaAMMHsEzeAVvxpPxYrwbH/PWklHMHII/MD5/ANI9mbE=</latexit>

{xl
f}2f=1

<latexit sha1_base64="xFMtawzqI+EPnAiE6laUqef2uc8=">AAACBXicbVDLSsNAFJ34rPUVdamLwSK4KkkUdCMU3LisYB/QpGEynbRDJ5MwMxFLyMaNv+LGhSJu/Qd3/o2TNgttPXDhcM693HtPkDAqlWV9G0vLK6tr65WN6ubW9s6uubfflnEqMGnhmMWiGyBJGOWkpahipJsIgqKAkU4wvi78zj0Rksb8Tk0S4kVoyGlIMVJa8s0jN3MjpEZBmD3kfthnbu5nIbyCdt53fLNm1a0p4CKxS1IDJZq++eUOYpxGhCvMkJQ920qUlyGhKGYkr7qpJAnCYzQkPU05ioj0sukXOTzRygCGsdDFFZyqvycyFEk5iQLdWVws571C/M/rpSq89DLKk1QRjmeLwpRBFcMiEjiggmDFJpogLKi+FeIREggrHVxVh2DPv7xI2k7dPqs7t+e1hlPGUQGH4BicAhtcgAa4AU3QAhg8gmfwCt6MJ+PFeDc+Zq1LRjlzAP7A+PwBBG+YLw==</latexit>

H
l
1

<latexit sha1_base64="8HyBMRbr5D28XJQNjMjsU3Htnxw=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSJmZDm3dFdx0WcE+oJ2WTJppQzMPkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8WLOpDLND2NtfWNzazu3k9/d2z84LBwdt2WUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm15nfueOCsmi8FbNYuoGeBwynxGstDToB1hNPD9tzIfWgA8LRbN0VavYTgWZJdOsWraVEbvqlB1kaSVDEVZoDgvv/VFEkoCGinAsZc8yY+WmWChGOJ3n+4mkMSZTPKY9TUMcUOmmi9RzdK6VEfIjoV+o0EL9vpHiQMpZ4OnJLKX87WXiX14vUX7NTVkYJ4qGZHnITzhSEcoqQCMmKFF8pgkmgumsiEywwETpovK6hK+fov9J2y5Z5ZJ94xTrl6s6cnAKZ3ABFlShDg1oQgsICHiAJ3g27o1H48V4XY6uGaudE/gB4+0TwZaSng==</latexit>

H
l
2

<latexit sha1_base64="5KuD1Jia2HpP651kuvepQY+uWq8=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSJmZDm3dFdx0WcE+oJ2WTJppQzMPkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8WLOpDLND2NtfWNzazu3k9/d2z84LBwdt2WUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm15nfueOCsmi8FbNYuoGeBwynxGstDToB1hNPD9tzIf2gA8LRbN0VavYTgWZJdOsWraVEbvqlB1kaSVDEVZoDgvv/VFEkoCGinAsZc8yY+WmWChGOJ3n+4mkMSZTPKY9TUMcUOmmi9RzdK6VEfIjoV+o0EL9vpHiQMpZ4OnJLKX87WXiX14vUX7NTVkYJ4qGZHnITzhSEcoqQCMmKFF8pgkmgumsiEywwETpovK6hK+fov9J2y5Z5ZJ94xTrl6s6cnAKZ3ABFlShDg1oQgsICHiAJ3g27o1H48V4XY6uGaudE/gB4+0TwxySnw==</latexit>

H
l
3

<latexit sha1_base64="C/5AfJL0ybTsw90lAC1b/JRCA/E=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSJmZDm3dFdx0WcE+oJ2WTJppQzMPkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8WLOpDLND2NtfWNzazu3k9/d2z84LBwdt2WUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm15nfueOCsmi8FbNYuoGeBwynxGstDToB1hNPD9tzIflAR8WimbpqlaxnQoyS6ZZtWwrI3bVKTvI0kqGIqzQHBbe+6OIJAENFeFYyp5lxspNsVCMcDrP9xNJY0ymeEx7moY4oNJNF6nn6FwrI+RHQr9QoYX6fSPFgZSzwNOTWUr528vEv7xeovyam7IwThQNyfKQn3CkIpRVgEZMUKL4TBNMBNNZEZlggYnSReV1CV8/Rf+Ttl2yyiX7xinWL1d15OAUzuACLKhCHRrQhBYQEPAAT/Bs3BuPxovxuhxdM1Y7J/ADxtsnxKKSoA==</latexit>

H
l
4

<latexit sha1_base64="XPB4xsUEk3v0AxJj6fbD9KaWYcQ=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSJmZDm3dFdx0WcE+oJ2WTJppQzMPkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8WLOpDLND2NtfWNzazu3k9/d2z84LBwdt2WUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm15nfueOCsmi8FbNYuoGeBwynxGstDToB1hNPD9tzIfOgA8LRbN0VavYTgWZJdOsWraVEbvqlB1kaSVDEVZoDgvv/VFEkoCGinAsZc8yY+WmWChGOJ3n+4mkMSZTPKY9TUMcUOmmi9RzdK6VEfIjoV+o0EL9vpHiQMpZ4OnJLKX87WXiX14vUX7NTVkYJ4qGZHnITzhSEcoqQCMmKFF8pgkmgumsiEywwETpovK6hK+fov9J2y5Z5ZJ94xTrl6s6cnAKZ3ABFlShDg1oQgsICHiAJ3g27o1H48V4XY6uGaudE/gB4+0TxiiSoQ==</latexit>

xl−1
1

xl−1
2

xl−1
3

xl−1
4

xl
1

Delft University of Technology

Graph convolutional neural networks

261

๏ GCNNs increase descriptive power with a parallel filter bank

{xl�1
g }4g=1

<latexit sha1_base64="Uk3ezDjbueBya7V994u2j8zAnwc=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0VwY0lqQTdCwY3LCvYBTRom00k7dDIJMxOxhGzd+CtuXCji1j9w5984abPQ1gMXDufcy733+DGjUlnWt1FaWV1b3yhvVra2d3b3zP2DjowSgUkbRywSPR9JwignbUUVI71YEBT6jHT9yXXud++JkDTid2oaEzdEI04DipHSkmdCJ3VCpMZ+kD5kg5Sd2Zk3cjIvHcEraGeDhmdWrZo1A1wmdkGqoEDLM7+cYYSTkHCFGZKyb1uxclMkFMWMZBUnkSRGeIJGpK8pRyGRbjr7JIMnWhnCIBK6uIIz9fdEikIpp6GvO/Or5aKXi/95/UQFl25KeZwowvF8UZAwqCKYxwKHVBCs2FQThAXVt0I8RgJhpcOr6BDsxZeXSades89r9dtGtVkv4iiDI3AMToENLkAT3IAWaAMMHsEzeAVvxpPxYrwbH/PWklHMHII/MD5/ANI9mbE=</latexit>

{xl
f}2f=1

<latexit sha1_base64="xFMtawzqI+EPnAiE6laUqef2uc8=">AAACBXicbVDLSsNAFJ34rPUVdamLwSK4KkkUdCMU3LisYB/QpGEynbRDJ5MwMxFLyMaNv+LGhSJu/Qd3/o2TNgttPXDhcM693HtPkDAqlWV9G0vLK6tr65WN6ubW9s6uubfflnEqMGnhmMWiGyBJGOWkpahipJsIgqKAkU4wvi78zj0Rksb8Tk0S4kVoyGlIMVJa8s0jN3MjpEZBmD3kfthnbu5nIbyCdt53fLNm1a0p4CKxS1IDJZq++eUOYpxGhCvMkJQ920qUlyGhKGYkr7qpJAnCYzQkPU05ioj0sukXOTzRygCGsdDFFZyqvycyFEk5iQLdWVws571C/M/rpSq89DLKk1QRjmeLwpRBFcMiEjiggmDFJpogLKi+FeIREggrHVxVh2DPv7xI2k7dPqs7t+e1hlPGUQGH4BicAhtcgAa4AU3QAhg8gmfwCt6MJ+PFeDc+Zq1LRjlzAP7A+PwBBG+YLw==</latexit>

H
l
4

<latexit sha1_base64="x7SGffiL4yzeEqU4cl88+3uP7A4=">AAAB9XicdVDLSgMxFM3UV62vqks3wSK4kJLUYttdwU2XFewD2mnJpJk2NJMZkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8SLBtUHow8msrW9sbmW3czu7e/sH+cOjtg5jRVmLhiJUXY9oJrhkLcONYN1IMRJ4gnW86XXqd+6Y0jyUt2YWMTcgY8l9Tomx0qAfEDPx/KQxH5YHYpgvoCJCCGMMU4IrV8iSWq1awlWIU8uiAFZoDvPv/VFI44BJQwXRuodRZNyEKMOpYPNcP9YsInRKxqxnqSQB026ySD2HZ1YZQT9U9kkDF+r3jYQEWs8Cz06mKfVvLxX/8nqx8atuwmUUGybp8pAfC2hCmFYAR1wxasTMEkIVt1khnRBFqLFF5WwJXz+F/5N2qYgvi6WbcqF+saojC07AKTgHGFRAHTRAE7QABQo8gCfw7Nw7j86L87oczTirnWPwA87bJ7MPkpU=</latexit>

H
l
3

<latexit sha1_base64="xmmOHl8xrAH/ozPOn/JcFYR90gk=">AAAB9XicdVDLSgMxFM3UV62vqks3wSK4kJK0YttdwU2XFewD2mnJpJk2NJMZkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8SLBtUHow8msrW9sbmW3czu7e/sH+cOjtg5jRVmLhiJUXY9oJrhkLcONYN1IMRJ4gnW86XXqd+6Y0jyUt2YWMTcgY8l9Tomx0qAfEDPx/KQxH5YHYpgvoCJCCGMMU4IrV8iSWq1awlWIU8uiAFZoDvPv/VFI44BJQwXRuodRZNyEKMOpYPNcP9YsInRKxqxnqSQB026ySD2HZ1YZQT9U9kkDF+r3jYQEWs8Cz06mKfVvLxX/8nqx8atuwmUUGybp8pAfC2hCmFYAR1wxasTMEkIVt1khnRBFqLFF5WwJXz+F/5N2qYjLxdLNZaF+saojC07AKTgHGFRAHTRAE7QABQo8gCfw7Nw7j86L87oczTirnWPwA87bJ7GJkpQ=</latexit>

H
l
2

<latexit sha1_base64="+8Y9nHfgVyPkP9NgooEVqpn7VZk=">AAAB9XicdVDLSgMxFM34rPVVdekmWAQXUpJRbLsruOmygn1AOy2ZNNOGZjJDklHK0P9w40IRt/6LO//GTFtBRQ8EDufcyz05fiy4Ngh9OCura+sbm7mt/PbO7t5+4eCwpaNEUdakkYhUxyeaCS5Z03AjWCdWjIS+YG1/cp357TumNI/krZnGzAvJSPKAU2Ks1O+FxIz9IK3PBm5fDApFVEIIYYxhRnD5CllSrVZcXIE4syyKYInGoPDeG0Y0CZk0VBCtuxjFxkuJMpwKNsv3Es1iQidkxLqWShIy7aXz1DN4apUhDCJlnzRwrn7fSEmo9TT07WSWUv/2MvEvr5uYoOKlXMaJYZIuDgWJgCaCWQVwyBWjRkwtIVRxmxXSMVGEGltU3pbw9VP4P2m5JXxRcm8ui7XzZR05cAxOwBnAoAxqoA4aoAkoUOABPIFn5955dF6c18XoirPcOQI/4Lx9ArADkpM=</latexit>

H
l
1

<latexit sha1_base64="KXlB7KGfOnTBpgRnX5O3g4LoOXU=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSEmq2HZXcNNlBfuAvsikmTY08yDJKGXof7hxoYhb/8Wdf2OmraCiBwKHc+7lnhw3kkIbjD+cldW19Y3NzFZ2e2d3bz93cNjUYawYb7BQhqrtUs2lCHjDCCN5O1Kc+q7kLXdynfqtO660CINbM414z6ejQHiCUWOlftenZux6SW02IH05yOVxAWNMCEEpIaUrbEmlUi6SMiKpZZGHJeqD3Ht3GLLY54FhkmrdITgyvYQqI5jks2w31jyibEJHvGNpQH2ue8k89QydWmWIvFDZFxg0V79vJNTXeuq7djJNqX97qfiX14mNV+4lIohiwwO2OOTFEpkQpRWgoVCcGTm1hDIlbFbExlRRZmxRWVvC10/R/6RZLJCLQvHmMl89X9aRgWM4gTMgUIIq1KAODWCg4AGe4Nm5dx6dF+d1MbriLHeO4Aect0+ufZKS</latexit>

{xl�1
g }4g=1

<latexit sha1_base64="Uk3ezDjbueBya7V994u2j8zAnwc=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0VwY0lqQTdCwY3LCvYBTRom00k7dDIJMxOxhGzd+CtuXCji1j9w5984abPQ1gMXDufcy733+DGjUlnWt1FaWV1b3yhvVra2d3b3zP2DjowSgUkbRywSPR9JwignbUUVI71YEBT6jHT9yXXud++JkDTid2oaEzdEI04DipHSkmdCJ3VCpMZ+kD5kg5Sd2Zk3cjIvHcEraGeDhmdWrZo1A1wmdkGqoEDLM7+cYYSTkHCFGZKyb1uxclMkFMWMZBUnkSRGeIJGpK8pRyGRbjr7JIMnWhnCIBK6uIIz9fdEikIpp6GvO/Or5aKXi/95/UQFl25KeZwowvF8UZAwqCKYxwKHVBCs2FQThAXVt0I8RgJhpcOr6BDsxZeXSades89r9dtGtVkv4iiDI3AMToENLkAT3IAWaAMMHsEzeAVvxpPxYrwbH/PWklHMHII/MD5/ANI9mbE=</latexit>

{xl
f}2f=1

<latexit sha1_base64="xFMtawzqI+EPnAiE6laUqef2uc8=">AAACBXicbVDLSsNAFJ34rPUVdamLwSK4KkkUdCMU3LisYB/QpGEynbRDJ5MwMxFLyMaNv+LGhSJu/Qd3/o2TNgttPXDhcM693HtPkDAqlWV9G0vLK6tr65WN6ubW9s6uubfflnEqMGnhmMWiGyBJGOWkpahipJsIgqKAkU4wvi78zj0Rksb8Tk0S4kVoyGlIMVJa8s0jN3MjpEZBmD3kfthnbu5nIbyCdt53fLNm1a0p4CKxS1IDJZq++eUOYpxGhCvMkJQ920qUlyGhKGYkr7qpJAnCYzQkPU05ioj0sukXOTzRygCGsdDFFZyqvycyFEk5iQLdWVws571C/M/rpSq89DLKk1QRjmeLwpRBFcMiEjiggmDFJpogLKi+FeIREggrHVxVh2DPv7xI2k7dPqs7t+e1hlPGUQGH4BicAhtcgAa4AU3QAhg8gmfwCt6MJ+PFeDc+Zq1LRjlzAP7A+PwBBG+YLw==</latexit>

H
l
1

<latexit sha1_base64="8HyBMRbr5D28XJQNjMjsU3Htnxw=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSJmZDm3dFdx0WcE+oJ2WTJppQzMPkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8WLOpDLND2NtfWNzazu3k9/d2z84LBwdt2WUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm15nfueOCsmi8FbNYuoGeBwynxGstDToB1hNPD9tzIfWgA8LRbN0VavYTgWZJdOsWraVEbvqlB1kaSVDEVZoDgvv/VFEkoCGinAsZc8yY+WmWChGOJ3n+4mkMSZTPKY9TUMcUOmmi9RzdK6VEfIjoV+o0EL9vpHiQMpZ4OnJLKX87WXiX14vUX7NTVkYJ4qGZHnITzhSEcoqQCMmKFF8pgkmgumsiEywwETpovK6hK+fov9J2y5Z5ZJ94xTrl6s6cnAKZ3ABFlShDg1oQgsICHiAJ3g27o1H48V4XY6uGaudE/gB4+0TwZaSng==</latexit>

H
l
2

<latexit sha1_base64="5KuD1Jia2HpP651kuvepQY+uWq8=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSJmZDm3dFdx0WcE+oJ2WTJppQzMPkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8WLOpDLND2NtfWNzazu3k9/d2z84LBwdt2WUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm15nfueOCsmi8FbNYuoGeBwynxGstDToB1hNPD9tzIf2gA8LRbN0VavYTgWZJdOsWraVEbvqlB1kaSVDEVZoDgvv/VFEkoCGinAsZc8yY+WmWChGOJ3n+4mkMSZTPKY9TUMcUOmmi9RzdK6VEfIjoV+o0EL9vpHiQMpZ4OnJLKX87WXiX14vUX7NTVkYJ4qGZHnITzhSEcoqQCMmKFF8pgkmgumsiEywwETpovK6hK+fov9J2y5Z5ZJ94xTrl6s6cnAKZ3ABFlShDg1oQgsICHiAJ3g27o1H48V4XY6uGaudE/gB4+0TwxySnw==</latexit>

H
l
3

<latexit sha1_base64="C/5AfJL0ybTsw90lAC1b/JRCA/E=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSJmZDm3dFdx0WcE+oJ2WTJppQzMPkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8WLOpDLND2NtfWNzazu3k9/d2z84LBwdt2WUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm15nfueOCsmi8FbNYuoGeBwynxGstDToB1hNPD9tzIflAR8WimbpqlaxnQoyS6ZZtWwrI3bVKTvI0kqGIqzQHBbe+6OIJAENFeFYyp5lxspNsVCMcDrP9xNJY0ymeEx7moY4oNJNF6nn6FwrI+RHQr9QoYX6fSPFgZSzwNOTWUr528vEv7xeovyam7IwThQNyfKQn3CkIpRVgEZMUKL4TBNMBNNZEZlggYnSReV1CV8/Rf+Ttl2yyiX7xinWL1d15OAUzuACLKhCHRrQhBYQEPAAT/Bs3BuPxovxuhxdM1Y7J/ADxtsnxKKSoA==</latexit>

H
l
4

<latexit sha1_base64="XPB4xsUEk3v0AxJj6fbD9KaWYcQ=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSJmZDm3dFdx0WcE+oJ2WTJppQzMPkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8WLOpDLND2NtfWNzazu3k9/d2z84LBwdt2WUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm15nfueOCsmi8FbNYuoGeBwynxGstDToB1hNPD9tzIfOgA8LRbN0VavYTgWZJdOsWraVEbvqlB1kaSVDEVZoDgvv/VFEkoCGinAsZc8yY+WmWChGOJ3n+4mkMSZTPKY9TUMcUOmmi9RzdK6VEfIjoV+o0EL9vpHiQMpZ4OnJLKX87WXiX14vUX7NTVkYJ4qGZHnITzhSEcoqQCMmKFF8pgkmgumsiEywwETpovK6hK+fov9J2y5Z5ZJ94xTrl6s6cnAKZ3ABFlShDg1oQgsICHiAJ3g27o1H48V4XY6uGaudE/gB4+0TxiiSoQ==</latexit>

xl−1
1

xl−1
2

xl−1
3

xl−1
4

xl−1
1

xl−1
2

xl−1
3

xl−1
4

xl
1

xl
2

Delft University of Technology

Graph convolutional neural networks

262

๏ GCNNs increase descriptive power with a parallel filter bank

xl
f = σ(

F

∑
g=1

Hl
fgx

l−1
g)

{xl�1
g }4g=1

<latexit sha1_base64="Uk3ezDjbueBya7V994u2j8zAnwc=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0VwY0lqQTdCwY3LCvYBTRom00k7dDIJMxOxhGzd+CtuXCji1j9w5984abPQ1gMXDufcy733+DGjUlnWt1FaWV1b3yhvVra2d3b3zP2DjowSgUkbRywSPR9JwignbUUVI71YEBT6jHT9yXXud++JkDTid2oaEzdEI04DipHSkmdCJ3VCpMZ+kD5kg5Sd2Zk3cjIvHcEraGeDhmdWrZo1A1wmdkGqoEDLM7+cYYSTkHCFGZKyb1uxclMkFMWMZBUnkSRGeIJGpK8pRyGRbjr7JIMnWhnCIBK6uIIz9fdEikIpp6GvO/Or5aKXi/95/UQFl25KeZwowvF8UZAwqCKYxwKHVBCs2FQThAXVt0I8RgJhpcOr6BDsxZeXSades89r9dtGtVkv4iiDI3AMToENLkAT3IAWaAMMHsEzeAVvxpPxYrwbH/PWklHMHII/MD5/ANI9mbE=</latexit>

{xl
f}2f=1

<latexit sha1_base64="xFMtawzqI+EPnAiE6laUqef2uc8=">AAACBXicbVDLSsNAFJ34rPUVdamLwSK4KkkUdCMU3LisYB/QpGEynbRDJ5MwMxFLyMaNv+LGhSJu/Qd3/o2TNgttPXDhcM693HtPkDAqlWV9G0vLK6tr65WN6ubW9s6uubfflnEqMGnhmMWiGyBJGOWkpahipJsIgqKAkU4wvi78zj0Rksb8Tk0S4kVoyGlIMVJa8s0jN3MjpEZBmD3kfthnbu5nIbyCdt53fLNm1a0p4CKxS1IDJZq++eUOYpxGhCvMkJQ920qUlyGhKGYkr7qpJAnCYzQkPU05ioj0sukXOTzRygCGsdDFFZyqvycyFEk5iQLdWVws571C/M/rpSq89DLKk1QRjmeLwpRBFcMiEjiggmDFJpogLKi+FeIREggrHVxVh2DPv7xI2k7dPqs7t+e1hlPGUQGH4BicAhtcgAa4AU3QAhg8gmfwCt6MJ+PFeDc+Zq1LRjlzAP7A+PwBBG+YLw==</latexit>

H
l
4

<latexit sha1_base64="x7SGffiL4yzeEqU4cl88+3uP7A4=">AAAB9XicdVDLSgMxFM3UV62vqks3wSK4kJLUYttdwU2XFewD2mnJpJk2NJMZkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8SLBtUHow8msrW9sbmW3czu7e/sH+cOjtg5jRVmLhiJUXY9oJrhkLcONYN1IMRJ4gnW86XXqd+6Y0jyUt2YWMTcgY8l9Tomx0qAfEDPx/KQxH5YHYpgvoCJCCGMMU4IrV8iSWq1awlWIU8uiAFZoDvPv/VFI44BJQwXRuodRZNyEKMOpYPNcP9YsInRKxqxnqSQB026ySD2HZ1YZQT9U9kkDF+r3jYQEWs8Cz06mKfVvLxX/8nqx8atuwmUUGybp8pAfC2hCmFYAR1wxasTMEkIVt1khnRBFqLFF5WwJXz+F/5N2qYgvi6WbcqF+saojC07AKTgHGFRAHTRAE7QABQo8gCfw7Nw7j86L87oczTirnWPwA87bJ7MPkpU=</latexit>

H
l
3

<latexit sha1_base64="xmmOHl8xrAH/ozPOn/JcFYR90gk=">AAAB9XicdVDLSgMxFM3UV62vqks3wSK4kJK0YttdwU2XFewD2mnJpJk2NJMZkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8SLBtUHow8msrW9sbmW3czu7e/sH+cOjtg5jRVmLhiJUXY9oJrhkLcONYN1IMRJ4gnW86XXqd+6Y0jyUt2YWMTcgY8l9Tomx0qAfEDPx/KQxH5YHYpgvoCJCCGMMU4IrV8iSWq1awlWIU8uiAFZoDvPv/VFI44BJQwXRuodRZNyEKMOpYPNcP9YsInRKxqxnqSQB026ySD2HZ1YZQT9U9kkDF+r3jYQEWs8Cz06mKfVvLxX/8nqx8atuwmUUGybp8pAfC2hCmFYAR1wxasTMEkIVt1khnRBFqLFF5WwJXz+F/5N2qYjLxdLNZaF+saojC07AKTgHGFRAHTRAE7QABQo8gCfw7Nw7j86L87oczTirnWPwA87bJ7GJkpQ=</latexit>

H
l
2

<latexit sha1_base64="+8Y9nHfgVyPkP9NgooEVqpn7VZk=">AAAB9XicdVDLSgMxFM34rPVVdekmWAQXUpJRbLsruOmygn1AOy2ZNNOGZjJDklHK0P9w40IRt/6LO//GTFtBRQ8EDufcyz05fiy4Ngh9OCura+sbm7mt/PbO7t5+4eCwpaNEUdakkYhUxyeaCS5Z03AjWCdWjIS+YG1/cp357TumNI/krZnGzAvJSPKAU2Ks1O+FxIz9IK3PBm5fDApFVEIIYYxhRnD5CllSrVZcXIE4syyKYInGoPDeG0Y0CZk0VBCtuxjFxkuJMpwKNsv3Es1iQidkxLqWShIy7aXz1DN4apUhDCJlnzRwrn7fSEmo9TT07WSWUv/2MvEvr5uYoOKlXMaJYZIuDgWJgCaCWQVwyBWjRkwtIVRxmxXSMVGEGltU3pbw9VP4P2m5JXxRcm8ui7XzZR05cAxOwBnAoAxqoA4aoAkoUOABPIFn5955dF6c18XoirPcOQI/4Lx9ArADkpM=</latexit>

H
l
1

<latexit sha1_base64="KXlB7KGfOnTBpgRnX5O3g4LoOXU=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSEmq2HZXcNNlBfuAvsikmTY08yDJKGXof7hxoYhb/8Wdf2OmraCiBwKHc+7lnhw3kkIbjD+cldW19Y3NzFZ2e2d3bz93cNjUYawYb7BQhqrtUs2lCHjDCCN5O1Kc+q7kLXdynfqtO660CINbM414z6ejQHiCUWOlftenZux6SW02IH05yOVxAWNMCEEpIaUrbEmlUi6SMiKpZZGHJeqD3Ht3GLLY54FhkmrdITgyvYQqI5jks2w31jyibEJHvGNpQH2ue8k89QydWmWIvFDZFxg0V79vJNTXeuq7djJNqX97qfiX14mNV+4lIohiwwO2OOTFEpkQpRWgoVCcGTm1hDIlbFbExlRRZmxRWVvC10/R/6RZLJCLQvHmMl89X9aRgWM4gTMgUIIq1KAODWCg4AGe4Nm5dx6dF+d1MbriLHeO4Aect0+ufZKS</latexit>

{xl�1
g }4g=1

<latexit sha1_base64="Uk3ezDjbueBya7V994u2j8zAnwc=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0VwY0lqQTdCwY3LCvYBTRom00k7dDIJMxOxhGzd+CtuXCji1j9w5984abPQ1gMXDufcy733+DGjUlnWt1FaWV1b3yhvVra2d3b3zP2DjowSgUkbRywSPR9JwignbUUVI71YEBT6jHT9yXXud++JkDTid2oaEzdEI04DipHSkmdCJ3VCpMZ+kD5kg5Sd2Zk3cjIvHcEraGeDhmdWrZo1A1wmdkGqoEDLM7+cYYSTkHCFGZKyb1uxclMkFMWMZBUnkSRGeIJGpK8pRyGRbjr7JIMnWhnCIBK6uIIz9fdEikIpp6GvO/Or5aKXi/95/UQFl25KeZwowvF8UZAwqCKYxwKHVBCs2FQThAXVt0I8RgJhpcOr6BDsxZeXSades89r9dtGtVkv4iiDI3AMToENLkAT3IAWaAMMHsEzeAVvxpPxYrwbH/PWklHMHII/MD5/ANI9mbE=</latexit>

{xl
f}2f=1

<latexit sha1_base64="xFMtawzqI+EPnAiE6laUqef2uc8=">AAACBXicbVDLSsNAFJ34rPUVdamLwSK4KkkUdCMU3LisYB/QpGEynbRDJ5MwMxFLyMaNv+LGhSJu/Qd3/o2TNgttPXDhcM693HtPkDAqlWV9G0vLK6tr65WN6ubW9s6uubfflnEqMGnhmMWiGyBJGOWkpahipJsIgqKAkU4wvi78zj0Rksb8Tk0S4kVoyGlIMVJa8s0jN3MjpEZBmD3kfthnbu5nIbyCdt53fLNm1a0p4CKxS1IDJZq++eUOYpxGhCvMkJQ920qUlyGhKGYkr7qpJAnCYzQkPU05ioj0sukXOTzRygCGsdDFFZyqvycyFEk5iQLdWVws571C/M/rpSq89DLKk1QRjmeLwpRBFcMiEjiggmDFJpogLKi+FeIREggrHVxVh2DPv7xI2k7dPqs7t+e1hlPGUQGH4BicAhtcgAa4AU3QAhg8gmfwCt6MJ+PFeDc+Zq1LRjlzAP7A+PwBBG+YLw==</latexit>

H
l
1

<latexit sha1_base64="8HyBMRbr5D28XJQNjMjsU3Htnxw=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSJmZDm3dFdx0WcE+oJ2WTJppQzMPkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8WLOpDLND2NtfWNzazu3k9/d2z84LBwdt2WUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm15nfueOCsmi8FbNYuoGeBwynxGstDToB1hNPD9tzIfWgA8LRbN0VavYTgWZJdOsWraVEbvqlB1kaSVDEVZoDgvv/VFEkoCGinAsZc8yY+WmWChGOJ3n+4mkMSZTPKY9TUMcUOmmi9RzdK6VEfIjoV+o0EL9vpHiQMpZ4OnJLKX87WXiX14vUX7NTVkYJ4qGZHnITzhSEcoqQCMmKFF8pgkmgumsiEywwETpovK6hK+fov9J2y5Z5ZJ94xTrl6s6cnAKZ3ABFlShDg1oQgsICHiAJ3g27o1H48V4XY6uGaudE/gB4+0TwZaSng==</latexit>

H
l
2

<latexit sha1_base64="5KuD1Jia2HpP651kuvepQY+uWq8=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSJmZDm3dFdx0WcE+oJ2WTJppQzMPkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8WLOpDLND2NtfWNzazu3k9/d2z84LBwdt2WUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm15nfueOCsmi8FbNYuoGeBwynxGstDToB1hNPD9tzIf2gA8LRbN0VavYTgWZJdOsWraVEbvqlB1kaSVDEVZoDgvv/VFEkoCGinAsZc8yY+WmWChGOJ3n+4mkMSZTPKY9TUMcUOmmi9RzdK6VEfIjoV+o0EL9vpHiQMpZ4OnJLKX87WXiX14vUX7NTVkYJ4qGZHnITzhSEcoqQCMmKFF8pgkmgumsiEywwETpovK6hK+fov9J2y5Z5ZJ94xTrl6s6cnAKZ3ABFlShDg1oQgsICHiAJ3g27o1H48V4XY6uGaudE/gB4+0TwxySnw==</latexit>

H
l
3

<latexit sha1_base64="C/5AfJL0ybTsw90lAC1b/JRCA/E=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSJmZDm3dFdx0WcE+oJ2WTJppQzMPkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8WLOpDLND2NtfWNzazu3k9/d2z84LBwdt2WUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm15nfueOCsmi8FbNYuoGeBwynxGstDToB1hNPD9tzIflAR8WimbpqlaxnQoyS6ZZtWwrI3bVKTvI0kqGIqzQHBbe+6OIJAENFeFYyp5lxspNsVCMcDrP9xNJY0ymeEx7moY4oNJNF6nn6FwrI+RHQr9QoYX6fSPFgZSzwNOTWUr528vEv7xeovyam7IwThQNyfKQn3CkIpRVgEZMUKL4TBNMBNNZEZlggYnSReV1CV8/Rf+Ttl2yyiX7xinWL1d15OAUzuACLKhCHRrQhBYQEPAAT/Bs3BuPxovxuhxdM1Y7J/ADxtsnxKKSoA==</latexit>

H
l
4

<latexit sha1_base64="XPB4xsUEk3v0AxJj6fbD9KaWYcQ=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSJmZDm3dFdx0WcE+oJ2WTJppQzMPkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8WLOpDLND2NtfWNzazu3k9/d2z84LBwdt2WUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm15nfueOCsmi8FbNYuoGeBwynxGstDToB1hNPD9tzIfOgA8LRbN0VavYTgWZJdOsWraVEbvqlB1kaSVDEVZoDgvv/VFEkoCGinAsZc8yY+WmWChGOJ3n+4mkMSZTPKY9TUMcUOmmi9RzdK6VEfIjoV+o0EL9vpHiQMpZ4OnJLKX87WXiX14vUX7NTVkYJ4qGZHnITzhSEcoqQCMmKFF8pgkmgumsiEywwETpovK6hK+fov9J2y5Z5ZJ94xTrl6s6cnAKZ3ABFlShDg1oQgsICHiAJ3g27o1H48V4XY6uGaudE/gB4+0TxiiSoQ==</latexit>

xl−1
1

xl−1
2

xl−1
3

xl−1
4

xl−1
1

xl−1
2

xl−1
3

xl−1
4

xl
1

xl
2

input feature

Delft University of Technology

Graph convolutional neural networks

263

๏ GCNNs increase descriptive power with a parallel filter bank

xl
f = σ(

F

∑
g=1

Hl
fgx

l−1
g)

{xl�1
g }4g=1

<latexit sha1_base64="Uk3ezDjbueBya7V994u2j8zAnwc=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0VwY0lqQTdCwY3LCvYBTRom00k7dDIJMxOxhGzd+CtuXCji1j9w5984abPQ1gMXDufcy733+DGjUlnWt1FaWV1b3yhvVra2d3b3zP2DjowSgUkbRywSPR9JwignbUUVI71YEBT6jHT9yXXud++JkDTid2oaEzdEI04DipHSkmdCJ3VCpMZ+kD5kg5Sd2Zk3cjIvHcEraGeDhmdWrZo1A1wmdkGqoEDLM7+cYYSTkHCFGZKyb1uxclMkFMWMZBUnkSRGeIJGpK8pRyGRbjr7JIMnWhnCIBK6uIIz9fdEikIpp6GvO/Or5aKXi/95/UQFl25KeZwowvF8UZAwqCKYxwKHVBCs2FQThAXVt0I8RgJhpcOr6BDsxZeXSades89r9dtGtVkv4iiDI3AMToENLkAT3IAWaAMMHsEzeAVvxpPxYrwbH/PWklHMHII/MD5/ANI9mbE=</latexit>

{xl
f}2f=1

<latexit sha1_base64="xFMtawzqI+EPnAiE6laUqef2uc8=">AAACBXicbVDLSsNAFJ34rPUVdamLwSK4KkkUdCMU3LisYB/QpGEynbRDJ5MwMxFLyMaNv+LGhSJu/Qd3/o2TNgttPXDhcM693HtPkDAqlWV9G0vLK6tr65WN6ubW9s6uubfflnEqMGnhmMWiGyBJGOWkpahipJsIgqKAkU4wvi78zj0Rksb8Tk0S4kVoyGlIMVJa8s0jN3MjpEZBmD3kfthnbu5nIbyCdt53fLNm1a0p4CKxS1IDJZq++eUOYpxGhCvMkJQ920qUlyGhKGYkr7qpJAnCYzQkPU05ioj0sukXOTzRygCGsdDFFZyqvycyFEk5iQLdWVws571C/M/rpSq89DLKk1QRjmeLwpRBFcMiEjiggmDFJpogLKi+FeIREggrHVxVh2DPv7xI2k7dPqs7t+e1hlPGUQGH4BicAhtcgAa4AU3QAhg8gmfwCt6MJ+PFeDc+Zq1LRjlzAP7A+PwBBG+YLw==</latexit>

H
l
4

<latexit sha1_base64="x7SGffiL4yzeEqU4cl88+3uP7A4=">AAAB9XicdVDLSgMxFM3UV62vqks3wSK4kJLUYttdwU2XFewD2mnJpJk2NJMZkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8SLBtUHow8msrW9sbmW3czu7e/sH+cOjtg5jRVmLhiJUXY9oJrhkLcONYN1IMRJ4gnW86XXqd+6Y0jyUt2YWMTcgY8l9Tomx0qAfEDPx/KQxH5YHYpgvoCJCCGMMU4IrV8iSWq1awlWIU8uiAFZoDvPv/VFI44BJQwXRuodRZNyEKMOpYPNcP9YsInRKxqxnqSQB026ySD2HZ1YZQT9U9kkDF+r3jYQEWs8Cz06mKfVvLxX/8nqx8atuwmUUGybp8pAfC2hCmFYAR1wxasTMEkIVt1khnRBFqLFF5WwJXz+F/5N2qYgvi6WbcqF+saojC07AKTgHGFRAHTRAE7QABQo8gCfw7Nw7j86L87oczTirnWPwA87bJ7MPkpU=</latexit>

H
l
3

<latexit sha1_base64="xmmOHl8xrAH/ozPOn/JcFYR90gk=">AAAB9XicdVDLSgMxFM3UV62vqks3wSK4kJK0YttdwU2XFewD2mnJpJk2NJMZkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8SLBtUHow8msrW9sbmW3czu7e/sH+cOjtg5jRVmLhiJUXY9oJrhkLcONYN1IMRJ4gnW86XXqd+6Y0jyUt2YWMTcgY8l9Tomx0qAfEDPx/KQxH5YHYpgvoCJCCGMMU4IrV8iSWq1awlWIU8uiAFZoDvPv/VFI44BJQwXRuodRZNyEKMOpYPNcP9YsInRKxqxnqSQB026ySD2HZ1YZQT9U9kkDF+r3jYQEWs8Cz06mKfVvLxX/8nqx8atuwmUUGybp8pAfC2hCmFYAR1wxasTMEkIVt1khnRBFqLFF5WwJXz+F/5N2qYjLxdLNZaF+saojC07AKTgHGFRAHTRAE7QABQo8gCfw7Nw7j86L87oczTirnWPwA87bJ7GJkpQ=</latexit>

H
l
2

<latexit sha1_base64="+8Y9nHfgVyPkP9NgooEVqpn7VZk=">AAAB9XicdVDLSgMxFM34rPVVdekmWAQXUpJRbLsruOmygn1AOy2ZNNOGZjJDklHK0P9w40IRt/6LO//GTFtBRQ8EDufcyz05fiy4Ngh9OCura+sbm7mt/PbO7t5+4eCwpaNEUdakkYhUxyeaCS5Z03AjWCdWjIS+YG1/cp357TumNI/krZnGzAvJSPKAU2Ks1O+FxIz9IK3PBm5fDApFVEIIYYxhRnD5CllSrVZcXIE4syyKYInGoPDeG0Y0CZk0VBCtuxjFxkuJMpwKNsv3Es1iQidkxLqWShIy7aXz1DN4apUhDCJlnzRwrn7fSEmo9TT07WSWUv/2MvEvr5uYoOKlXMaJYZIuDgWJgCaCWQVwyBWjRkwtIVRxmxXSMVGEGltU3pbw9VP4P2m5JXxRcm8ui7XzZR05cAxOwBnAoAxqoA4aoAkoUOABPIFn5955dF6c18XoirPcOQI/4Lx9ArADkpM=</latexit>

H
l
1

<latexit sha1_base64="KXlB7KGfOnTBpgRnX5O3g4LoOXU=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSEmq2HZXcNNlBfuAvsikmTY08yDJKGXof7hxoYhb/8Wdf2OmraCiBwKHc+7lnhw3kkIbjD+cldW19Y3NzFZ2e2d3bz93cNjUYawYb7BQhqrtUs2lCHjDCCN5O1Kc+q7kLXdynfqtO660CINbM414z6ejQHiCUWOlftenZux6SW02IH05yOVxAWNMCEEpIaUrbEmlUi6SMiKpZZGHJeqD3Ht3GLLY54FhkmrdITgyvYQqI5jks2w31jyibEJHvGNpQH2ue8k89QydWmWIvFDZFxg0V79vJNTXeuq7djJNqX97qfiX14mNV+4lIohiwwO2OOTFEpkQpRWgoVCcGTm1hDIlbFbExlRRZmxRWVvC10/R/6RZLJCLQvHmMl89X9aRgWM4gTMgUIIq1KAODWCg4AGe4Nm5dx6dF+d1MbriLHeO4Aect0+ufZKS</latexit>

{xl�1
g }4g=1

<latexit sha1_base64="Uk3ezDjbueBya7V994u2j8zAnwc=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0VwY0lqQTdCwY3LCvYBTRom00k7dDIJMxOxhGzd+CtuXCji1j9w5984abPQ1gMXDufcy733+DGjUlnWt1FaWV1b3yhvVra2d3b3zP2DjowSgUkbRywSPR9JwignbUUVI71YEBT6jHT9yXXud++JkDTid2oaEzdEI04DipHSkmdCJ3VCpMZ+kD5kg5Sd2Zk3cjIvHcEraGeDhmdWrZo1A1wmdkGqoEDLM7+cYYSTkHCFGZKyb1uxclMkFMWMZBUnkSRGeIJGpK8pRyGRbjr7JIMnWhnCIBK6uIIz9fdEikIpp6GvO/Or5aKXi/95/UQFl25KeZwowvF8UZAwqCKYxwKHVBCs2FQThAXVt0I8RgJhpcOr6BDsxZeXSades89r9dtGtVkv4iiDI3AMToENLkAT3IAWaAMMHsEzeAVvxpPxYrwbH/PWklHMHII/MD5/ANI9mbE=</latexit>

{xl
f}2f=1

<latexit sha1_base64="xFMtawzqI+EPnAiE6laUqef2uc8=">AAACBXicbVDLSsNAFJ34rPUVdamLwSK4KkkUdCMU3LisYB/QpGEynbRDJ5MwMxFLyMaNv+LGhSJu/Qd3/o2TNgttPXDhcM693HtPkDAqlWV9G0vLK6tr65WN6ubW9s6uubfflnEqMGnhmMWiGyBJGOWkpahipJsIgqKAkU4wvi78zj0Rksb8Tk0S4kVoyGlIMVJa8s0jN3MjpEZBmD3kfthnbu5nIbyCdt53fLNm1a0p4CKxS1IDJZq++eUOYpxGhCvMkJQ920qUlyGhKGYkr7qpJAnCYzQkPU05ioj0sukXOTzRygCGsdDFFZyqvycyFEk5iQLdWVws571C/M/rpSq89DLKk1QRjmeLwpRBFcMiEjiggmDFJpogLKi+FeIREggrHVxVh2DPv7xI2k7dPqs7t+e1hlPGUQGH4BicAhtcgAa4AU3QAhg8gmfwCt6MJ+PFeDc+Zq1LRjlzAP7A+PwBBG+YLw==</latexit>

H
l
1

<latexit sha1_base64="8HyBMRbr5D28XJQNjMjsU3Htnxw=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSJmZDm3dFdx0WcE+oJ2WTJppQzMPkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8WLOpDLND2NtfWNzazu3k9/d2z84LBwdt2WUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm15nfueOCsmi8FbNYuoGeBwynxGstDToB1hNPD9tzIfWgA8LRbN0VavYTgWZJdOsWraVEbvqlB1kaSVDEVZoDgvv/VFEkoCGinAsZc8yY+WmWChGOJ3n+4mkMSZTPKY9TUMcUOmmi9RzdK6VEfIjoV+o0EL9vpHiQMpZ4OnJLKX87WXiX14vUX7NTVkYJ4qGZHnITzhSEcoqQCMmKFF8pgkmgumsiEywwETpovK6hK+fov9J2y5Z5ZJ94xTrl6s6cnAKZ3ABFlShDg1oQgsICHiAJ3g27o1H48V4XY6uGaudE/gB4+0TwZaSng==</latexit>

H
l
2

<latexit sha1_base64="5KuD1Jia2HpP651kuvepQY+uWq8=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSJmZDm3dFdx0WcE+oJ2WTJppQzMPkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8WLOpDLND2NtfWNzazu3k9/d2z84LBwdt2WUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm15nfueOCsmi8FbNYuoGeBwynxGstDToB1hNPD9tzIf2gA8LRbN0VavYTgWZJdOsWraVEbvqlB1kaSVDEVZoDgvv/VFEkoCGinAsZc8yY+WmWChGOJ3n+4mkMSZTPKY9TUMcUOmmi9RzdK6VEfIjoV+o0EL9vpHiQMpZ4OnJLKX87WXiX14vUX7NTVkYJ4qGZHnITzhSEcoqQCMmKFF8pgkmgumsiEywwETpovK6hK+fov9J2y5Z5ZJ94xTrl6s6cnAKZ3ABFlShDg1oQgsICHiAJ3g27o1H48V4XY6uGaudE/gB4+0TwxySnw==</latexit>

H
l
3

<latexit sha1_base64="C/5AfJL0ybTsw90lAC1b/JRCA/E=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSJmZDm3dFdx0WcE+oJ2WTJppQzMPkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8WLOpDLND2NtfWNzazu3k9/d2z84LBwdt2WUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm15nfueOCsmi8FbNYuoGeBwynxGstDToB1hNPD9tzIflAR8WimbpqlaxnQoyS6ZZtWwrI3bVKTvI0kqGIqzQHBbe+6OIJAENFeFYyp5lxspNsVCMcDrP9xNJY0ymeEx7moY4oNJNF6nn6FwrI+RHQr9QoYX6fSPFgZSzwNOTWUr528vEv7xeovyam7IwThQNyfKQn3CkIpRVgEZMUKL4TBNMBNNZEZlggYnSReV1CV8/Rf+Ttl2yyiX7xinWL1d15OAUzuACLKhCHRrQhBYQEPAAT/Bs3BuPxovxuhxdM1Y7J/ADxtsnxKKSoA==</latexit>

H
l
4

<latexit sha1_base64="XPB4xsUEk3v0AxJj6fbD9KaWYcQ=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSJmZDm3dFdx0WcE+oJ2WTJppQzMPkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8WLOpDLND2NtfWNzazu3k9/d2z84LBwdt2WUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm15nfueOCsmi8FbNYuoGeBwynxGstDToB1hNPD9tzIfOgA8LRbN0VavYTgWZJdOsWraVEbvqlB1kaSVDEVZoDgvv/VFEkoCGinAsZc8yY+WmWChGOJ3n+4mkMSZTPKY9TUMcUOmmi9RzdK6VEfIjoV+o0EL9vpHiQMpZ4OnJLKX87WXiX14vUX7NTVkYJ4qGZHnITzhSEcoqQCMmKFF8pgkmgumsiEywwETpovK6hK+fov9J2y5Z5ZJ94xTrl6s6cnAKZ3ABFlShDg1oQgsICHiAJ3g27o1H48V4XY6uGaudE/gB4+0TxiiSoQ==</latexit>

xl−1
1

xl−1
2

xl−1
3

xl−1
4

xl−1
1

xl−1
2

xl−1
3

xl−1
4

xl
1

xl
2

input feature

FIR filter

Delft University of Technology

Graph convolutional neural networks

264

๏ GCNNs increase descriptive power with a parallel filter bank

xl
f = σ(

F

∑
g=1

Hl
fgx

l−1
g)

{xl�1
g }4g=1

<latexit sha1_base64="Uk3ezDjbueBya7V994u2j8zAnwc=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0VwY0lqQTdCwY3LCvYBTRom00k7dDIJMxOxhGzd+CtuXCji1j9w5984abPQ1gMXDufcy733+DGjUlnWt1FaWV1b3yhvVra2d3b3zP2DjowSgUkbRywSPR9JwignbUUVI71YEBT6jHT9yXXud++JkDTid2oaEzdEI04DipHSkmdCJ3VCpMZ+kD5kg5Sd2Zk3cjIvHcEraGeDhmdWrZo1A1wmdkGqoEDLM7+cYYSTkHCFGZKyb1uxclMkFMWMZBUnkSRGeIJGpK8pRyGRbjr7JIMnWhnCIBK6uIIz9fdEikIpp6GvO/Or5aKXi/95/UQFl25KeZwowvF8UZAwqCKYxwKHVBCs2FQThAXVt0I8RgJhpcOr6BDsxZeXSades89r9dtGtVkv4iiDI3AMToENLkAT3IAWaAMMHsEzeAVvxpPxYrwbH/PWklHMHII/MD5/ANI9mbE=</latexit>

{xl
f}2f=1

<latexit sha1_base64="xFMtawzqI+EPnAiE6laUqef2uc8=">AAACBXicbVDLSsNAFJ34rPUVdamLwSK4KkkUdCMU3LisYB/QpGEynbRDJ5MwMxFLyMaNv+LGhSJu/Qd3/o2TNgttPXDhcM693HtPkDAqlWV9G0vLK6tr65WN6ubW9s6uubfflnEqMGnhmMWiGyBJGOWkpahipJsIgqKAkU4wvi78zj0Rksb8Tk0S4kVoyGlIMVJa8s0jN3MjpEZBmD3kfthnbu5nIbyCdt53fLNm1a0p4CKxS1IDJZq++eUOYpxGhCvMkJQ920qUlyGhKGYkr7qpJAnCYzQkPU05ioj0sukXOTzRygCGsdDFFZyqvycyFEk5iQLdWVws571C/M/rpSq89DLKk1QRjmeLwpRBFcMiEjiggmDFJpogLKi+FeIREggrHVxVh2DPv7xI2k7dPqs7t+e1hlPGUQGH4BicAhtcgAa4AU3QAhg8gmfwCt6MJ+PFeDc+Zq1LRjlzAP7A+PwBBG+YLw==</latexit>

H
l
4

<latexit sha1_base64="x7SGffiL4yzeEqU4cl88+3uP7A4=">AAAB9XicdVDLSgMxFM3UV62vqks3wSK4kJLUYttdwU2XFewD2mnJpJk2NJMZkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8SLBtUHow8msrW9sbmW3czu7e/sH+cOjtg5jRVmLhiJUXY9oJrhkLcONYN1IMRJ4gnW86XXqd+6Y0jyUt2YWMTcgY8l9Tomx0qAfEDPx/KQxH5YHYpgvoCJCCGMMU4IrV8iSWq1awlWIU8uiAFZoDvPv/VFI44BJQwXRuodRZNyEKMOpYPNcP9YsInRKxqxnqSQB026ySD2HZ1YZQT9U9kkDF+r3jYQEWs8Cz06mKfVvLxX/8nqx8atuwmUUGybp8pAfC2hCmFYAR1wxasTMEkIVt1khnRBFqLFF5WwJXz+F/5N2qYgvi6WbcqF+saojC07AKTgHGFRAHTRAE7QABQo8gCfw7Nw7j86L87oczTirnWPwA87bJ7MPkpU=</latexit>

H
l
3

<latexit sha1_base64="xmmOHl8xrAH/ozPOn/JcFYR90gk=">AAAB9XicdVDLSgMxFM3UV62vqks3wSK4kJK0YttdwU2XFewD2mnJpJk2NJMZkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8SLBtUHow8msrW9sbmW3czu7e/sH+cOjtg5jRVmLhiJUXY9oJrhkLcONYN1IMRJ4gnW86XXqd+6Y0jyUt2YWMTcgY8l9Tomx0qAfEDPx/KQxH5YHYpgvoCJCCGMMU4IrV8iSWq1awlWIU8uiAFZoDvPv/VFI44BJQwXRuodRZNyEKMOpYPNcP9YsInRKxqxnqSQB026ySD2HZ1YZQT9U9kkDF+r3jYQEWs8Cz06mKfVvLxX/8nqx8atuwmUUGybp8pAfC2hCmFYAR1wxasTMEkIVt1khnRBFqLFF5WwJXz+F/5N2qYjLxdLNZaF+saojC07AKTgHGFRAHTRAE7QABQo8gCfw7Nw7j86L87oczTirnWPwA87bJ7GJkpQ=</latexit>

H
l
2

<latexit sha1_base64="+8Y9nHfgVyPkP9NgooEVqpn7VZk=">AAAB9XicdVDLSgMxFM34rPVVdekmWAQXUpJRbLsruOmygn1AOy2ZNNOGZjJDklHK0P9w40IRt/6LO//GTFtBRQ8EDufcyz05fiy4Ngh9OCura+sbm7mt/PbO7t5+4eCwpaNEUdakkYhUxyeaCS5Z03AjWCdWjIS+YG1/cp357TumNI/krZnGzAvJSPKAU2Ks1O+FxIz9IK3PBm5fDApFVEIIYYxhRnD5CllSrVZcXIE4syyKYInGoPDeG0Y0CZk0VBCtuxjFxkuJMpwKNsv3Es1iQidkxLqWShIy7aXz1DN4apUhDCJlnzRwrn7fSEmo9TT07WSWUv/2MvEvr5uYoOKlXMaJYZIuDgWJgCaCWQVwyBWjRkwtIVRxmxXSMVGEGltU3pbw9VP4P2m5JXxRcm8ui7XzZR05cAxOwBnAoAxqoA4aoAkoUOABPIFn5955dF6c18XoirPcOQI/4Lx9ArADkpM=</latexit>

H
l
1

<latexit sha1_base64="KXlB7KGfOnTBpgRnX5O3g4LoOXU=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSEmq2HZXcNNlBfuAvsikmTY08yDJKGXof7hxoYhb/8Wdf2OmraCiBwKHc+7lnhw3kkIbjD+cldW19Y3NzFZ2e2d3bz93cNjUYawYb7BQhqrtUs2lCHjDCCN5O1Kc+q7kLXdynfqtO660CINbM414z6ejQHiCUWOlftenZux6SW02IH05yOVxAWNMCEEpIaUrbEmlUi6SMiKpZZGHJeqD3Ht3GLLY54FhkmrdITgyvYQqI5jks2w31jyibEJHvGNpQH2ue8k89QydWmWIvFDZFxg0V79vJNTXeuq7djJNqX97qfiX14mNV+4lIohiwwO2OOTFEpkQpRWgoVCcGTm1hDIlbFbExlRRZmxRWVvC10/R/6RZLJCLQvHmMl89X9aRgWM4gTMgUIIq1KAODWCg4AGe4Nm5dx6dF+d1MbriLHeO4Aect0+ufZKS</latexit>

{xl�1
g }4g=1

<latexit sha1_base64="Uk3ezDjbueBya7V994u2j8zAnwc=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0VwY0lqQTdCwY3LCvYBTRom00k7dDIJMxOxhGzd+CtuXCji1j9w5984abPQ1gMXDufcy733+DGjUlnWt1FaWV1b3yhvVra2d3b3zP2DjowSgUkbRywSPR9JwignbUUVI71YEBT6jHT9yXXud++JkDTid2oaEzdEI04DipHSkmdCJ3VCpMZ+kD5kg5Sd2Zk3cjIvHcEraGeDhmdWrZo1A1wmdkGqoEDLM7+cYYSTkHCFGZKyb1uxclMkFMWMZBUnkSRGeIJGpK8pRyGRbjr7JIMnWhnCIBK6uIIz9fdEikIpp6GvO/Or5aKXi/95/UQFl25KeZwowvF8UZAwqCKYxwKHVBCs2FQThAXVt0I8RgJhpcOr6BDsxZeXSades89r9dtGtVkv4iiDI3AMToENLkAT3IAWaAMMHsEzeAVvxpPxYrwbH/PWklHMHII/MD5/ANI9mbE=</latexit>

{xl
f}2f=1

<latexit sha1_base64="xFMtawzqI+EPnAiE6laUqef2uc8=">AAACBXicbVDLSsNAFJ34rPUVdamLwSK4KkkUdCMU3LisYB/QpGEynbRDJ5MwMxFLyMaNv+LGhSJu/Qd3/o2TNgttPXDhcM693HtPkDAqlWV9G0vLK6tr65WN6ubW9s6uubfflnEqMGnhmMWiGyBJGOWkpahipJsIgqKAkU4wvi78zj0Rksb8Tk0S4kVoyGlIMVJa8s0jN3MjpEZBmD3kfthnbu5nIbyCdt53fLNm1a0p4CKxS1IDJZq++eUOYpxGhCvMkJQ920qUlyGhKGYkr7qpJAnCYzQkPU05ioj0sukXOTzRygCGsdDFFZyqvycyFEk5iQLdWVws571C/M/rpSq89DLKk1QRjmeLwpRBFcMiEjiggmDFJpogLKi+FeIREggrHVxVh2DPv7xI2k7dPqs7t+e1hlPGUQGH4BicAhtcgAa4AU3QAhg8gmfwCt6MJ+PFeDc+Zq1LRjlzAP7A+PwBBG+YLw==</latexit>

H
l
1

<latexit sha1_base64="8HyBMRbr5D28XJQNjMjsU3Htnxw=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSJmZDm3dFdx0WcE+oJ2WTJppQzMPkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8WLOpDLND2NtfWNzazu3k9/d2z84LBwdt2WUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm15nfueOCsmi8FbNYuoGeBwynxGstDToB1hNPD9tzIfWgA8LRbN0VavYTgWZJdOsWraVEbvqlB1kaSVDEVZoDgvv/VFEkoCGinAsZc8yY+WmWChGOJ3n+4mkMSZTPKY9TUMcUOmmi9RzdK6VEfIjoV+o0EL9vpHiQMpZ4OnJLKX87WXiX14vUX7NTVkYJ4qGZHnITzhSEcoqQCMmKFF8pgkmgumsiEywwETpovK6hK+fov9J2y5Z5ZJ94xTrl6s6cnAKZ3ABFlShDg1oQgsICHiAJ3g27o1H48V4XY6uGaudE/gB4+0TwZaSng==</latexit>

H
l
2

<latexit sha1_base64="5KuD1Jia2HpP651kuvepQY+uWq8=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSJmZDm3dFdx0WcE+oJ2WTJppQzMPkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8WLOpDLND2NtfWNzazu3k9/d2z84LBwdt2WUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm15nfueOCsmi8FbNYuoGeBwynxGstDToB1hNPD9tzIf2gA8LRbN0VavYTgWZJdOsWraVEbvqlB1kaSVDEVZoDgvv/VFEkoCGinAsZc8yY+WmWChGOJ3n+4mkMSZTPKY9TUMcUOmmi9RzdK6VEfIjoV+o0EL9vpHiQMpZ4OnJLKX87WXiX14vUX7NTVkYJ4qGZHnITzhSEcoqQCMmKFF8pgkmgumsiEywwETpovK6hK+fov9J2y5Z5ZJ94xTrl6s6cnAKZ3ABFlShDg1oQgsICHiAJ3g27o1H48V4XY6uGaudE/gB4+0TwxySnw==</latexit>

H
l
3

<latexit sha1_base64="C/5AfJL0ybTsw90lAC1b/JRCA/E=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSJmZDm3dFdx0WcE+oJ2WTJppQzMPkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8WLOpDLND2NtfWNzazu3k9/d2z84LBwdt2WUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm15nfueOCsmi8FbNYuoGeBwynxGstDToB1hNPD9tzIflAR8WimbpqlaxnQoyS6ZZtWwrI3bVKTvI0kqGIqzQHBbe+6OIJAENFeFYyp5lxspNsVCMcDrP9xNJY0ymeEx7moY4oNJNF6nn6FwrI+RHQr9QoYX6fSPFgZSzwNOTWUr528vEv7xeovyam7IwThQNyfKQn3CkIpRVgEZMUKL4TBNMBNNZEZlggYnSReV1CV8/Rf+Ttl2yyiX7xinWL1d15OAUzuACLKhCHRrQhBYQEPAAT/Bs3BuPxovxuhxdM1Y7J/ADxtsnxKKSoA==</latexit>

H
l
4

<latexit sha1_base64="XPB4xsUEk3v0AxJj6fbD9KaWYcQ=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSJmZDm3dFdx0WcE+oJ2WTJppQzMPkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8WLOpDLND2NtfWNzazu3k9/d2z84LBwdt2WUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm15nfueOCsmi8FbNYuoGeBwynxGstDToB1hNPD9tzIfOgA8LRbN0VavYTgWZJdOsWraVEbvqlB1kaSVDEVZoDgvv/VFEkoCGinAsZc8yY+WmWChGOJ3n+4mkMSZTPKY9TUMcUOmmi9RzdK6VEfIjoV+o0EL9vpHiQMpZ4OnJLKX87WXiX14vUX7NTVkYJ4qGZHnITzhSEcoqQCMmKFF8pgkmgumsiEywwETpovK6hK+fov9J2y5Z5ZJ94xTrl6s6cnAKZ3ABFlShDg1oQgsICHiAJ3g27o1H48V4XY6uGaudE/gB4+0TxiiSoQ==</latexit>

xl−1
1

xl−1
2

xl−1
3

xl−1
4

xl−1
1

xl−1
2

xl−1
3

xl−1
4

xl
1

xl
2

input feature

FIR filter

sum over inputs

Delft University of Technology

Graph convolutional neural networks

265

๏ GCNNs increase descriptive power with a parallel filter bank

xl
f = σ(

F

∑
g=1

Hl
fgx

l−1
g)

{xl�1
g }4g=1

<latexit sha1_base64="Uk3ezDjbueBya7V994u2j8zAnwc=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0VwY0lqQTdCwY3LCvYBTRom00k7dDIJMxOxhGzd+CtuXCji1j9w5984abPQ1gMXDufcy733+DGjUlnWt1FaWV1b3yhvVra2d3b3zP2DjowSgUkbRywSPR9JwignbUUVI71YEBT6jHT9yXXud++JkDTid2oaEzdEI04DipHSkmdCJ3VCpMZ+kD5kg5Sd2Zk3cjIvHcEraGeDhmdWrZo1A1wmdkGqoEDLM7+cYYSTkHCFGZKyb1uxclMkFMWMZBUnkSRGeIJGpK8pRyGRbjr7JIMnWhnCIBK6uIIz9fdEikIpp6GvO/Or5aKXi/95/UQFl25KeZwowvF8UZAwqCKYxwKHVBCs2FQThAXVt0I8RgJhpcOr6BDsxZeXSades89r9dtGtVkv4iiDI3AMToENLkAT3IAWaAMMHsEzeAVvxpPxYrwbH/PWklHMHII/MD5/ANI9mbE=</latexit>

{xl
f}2f=1

<latexit sha1_base64="xFMtawzqI+EPnAiE6laUqef2uc8=">AAACBXicbVDLSsNAFJ34rPUVdamLwSK4KkkUdCMU3LisYB/QpGEynbRDJ5MwMxFLyMaNv+LGhSJu/Qd3/o2TNgttPXDhcM693HtPkDAqlWV9G0vLK6tr65WN6ubW9s6uubfflnEqMGnhmMWiGyBJGOWkpahipJsIgqKAkU4wvi78zj0Rksb8Tk0S4kVoyGlIMVJa8s0jN3MjpEZBmD3kfthnbu5nIbyCdt53fLNm1a0p4CKxS1IDJZq++eUOYpxGhCvMkJQ920qUlyGhKGYkr7qpJAnCYzQkPU05ioj0sukXOTzRygCGsdDFFZyqvycyFEk5iQLdWVws571C/M/rpSq89DLKk1QRjmeLwpRBFcMiEjiggmDFJpogLKi+FeIREggrHVxVh2DPv7xI2k7dPqs7t+e1hlPGUQGH4BicAhtcgAa4AU3QAhg8gmfwCt6MJ+PFeDc+Zq1LRjlzAP7A+PwBBG+YLw==</latexit>

H
l
4

<latexit sha1_base64="x7SGffiL4yzeEqU4cl88+3uP7A4=">AAAB9XicdVDLSgMxFM3UV62vqks3wSK4kJLUYttdwU2XFewD2mnJpJk2NJMZkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8SLBtUHow8msrW9sbmW3czu7e/sH+cOjtg5jRVmLhiJUXY9oJrhkLcONYN1IMRJ4gnW86XXqd+6Y0jyUt2YWMTcgY8l9Tomx0qAfEDPx/KQxH5YHYpgvoCJCCGMMU4IrV8iSWq1awlWIU8uiAFZoDvPv/VFI44BJQwXRuodRZNyEKMOpYPNcP9YsInRKxqxnqSQB026ySD2HZ1YZQT9U9kkDF+r3jYQEWs8Cz06mKfVvLxX/8nqx8atuwmUUGybp8pAfC2hCmFYAR1wxasTMEkIVt1khnRBFqLFF5WwJXz+F/5N2qYgvi6WbcqF+saojC07AKTgHGFRAHTRAE7QABQo8gCfw7Nw7j86L87oczTirnWPwA87bJ7MPkpU=</latexit>

H
l
3

<latexit sha1_base64="xmmOHl8xrAH/ozPOn/JcFYR90gk=">AAAB9XicdVDLSgMxFM3UV62vqks3wSK4kJK0YttdwU2XFewD2mnJpJk2NJMZkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8SLBtUHow8msrW9sbmW3czu7e/sH+cOjtg5jRVmLhiJUXY9oJrhkLcONYN1IMRJ4gnW86XXqd+6Y0jyUt2YWMTcgY8l9Tomx0qAfEDPx/KQxH5YHYpgvoCJCCGMMU4IrV8iSWq1awlWIU8uiAFZoDvPv/VFI44BJQwXRuodRZNyEKMOpYPNcP9YsInRKxqxnqSQB026ySD2HZ1YZQT9U9kkDF+r3jYQEWs8Cz06mKfVvLxX/8nqx8atuwmUUGybp8pAfC2hCmFYAR1wxasTMEkIVt1khnRBFqLFF5WwJXz+F/5N2qYjLxdLNZaF+saojC07AKTgHGFRAHTRAE7QABQo8gCfw7Nw7j86L87oczTirnWPwA87bJ7GJkpQ=</latexit>

H
l
2

<latexit sha1_base64="+8Y9nHfgVyPkP9NgooEVqpn7VZk=">AAAB9XicdVDLSgMxFM34rPVVdekmWAQXUpJRbLsruOmygn1AOy2ZNNOGZjJDklHK0P9w40IRt/6LO//GTFtBRQ8EDufcyz05fiy4Ngh9OCura+sbm7mt/PbO7t5+4eCwpaNEUdakkYhUxyeaCS5Z03AjWCdWjIS+YG1/cp357TumNI/krZnGzAvJSPKAU2Ks1O+FxIz9IK3PBm5fDApFVEIIYYxhRnD5CllSrVZcXIE4syyKYInGoPDeG0Y0CZk0VBCtuxjFxkuJMpwKNsv3Es1iQidkxLqWShIy7aXz1DN4apUhDCJlnzRwrn7fSEmo9TT07WSWUv/2MvEvr5uYoOKlXMaJYZIuDgWJgCaCWQVwyBWjRkwtIVRxmxXSMVGEGltU3pbw9VP4P2m5JXxRcm8ui7XzZR05cAxOwBnAoAxqoA4aoAkoUOABPIFn5955dF6c18XoirPcOQI/4Lx9ArADkpM=</latexit>

H
l
1

<latexit sha1_base64="KXlB7KGfOnTBpgRnX5O3g4LoOXU=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSEmq2HZXcNNlBfuAvsikmTY08yDJKGXof7hxoYhb/8Wdf2OmraCiBwKHc+7lnhw3kkIbjD+cldW19Y3NzFZ2e2d3bz93cNjUYawYb7BQhqrtUs2lCHjDCCN5O1Kc+q7kLXdynfqtO660CINbM414z6ejQHiCUWOlftenZux6SW02IH05yOVxAWNMCEEpIaUrbEmlUi6SMiKpZZGHJeqD3Ht3GLLY54FhkmrdITgyvYQqI5jks2w31jyibEJHvGNpQH2ue8k89QydWmWIvFDZFxg0V79vJNTXeuq7djJNqX97qfiX14mNV+4lIohiwwO2OOTFEpkQpRWgoVCcGTm1hDIlbFbExlRRZmxRWVvC10/R/6RZLJCLQvHmMl89X9aRgWM4gTMgUIIq1KAODWCg4AGe4Nm5dx6dF+d1MbriLHeO4Aect0+ufZKS</latexit>

{xl�1
g }4g=1

<latexit sha1_base64="Uk3ezDjbueBya7V994u2j8zAnwc=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0VwY0lqQTdCwY3LCvYBTRom00k7dDIJMxOxhGzd+CtuXCji1j9w5984abPQ1gMXDufcy733+DGjUlnWt1FaWV1b3yhvVra2d3b3zP2DjowSgUkbRywSPR9JwignbUUVI71YEBT6jHT9yXXud++JkDTid2oaEzdEI04DipHSkmdCJ3VCpMZ+kD5kg5Sd2Zk3cjIvHcEraGeDhmdWrZo1A1wmdkGqoEDLM7+cYYSTkHCFGZKyb1uxclMkFMWMZBUnkSRGeIJGpK8pRyGRbjr7JIMnWhnCIBK6uIIz9fdEikIpp6GvO/Or5aKXi/95/UQFl25KeZwowvF8UZAwqCKYxwKHVBCs2FQThAXVt0I8RgJhpcOr6BDsxZeXSades89r9dtGtVkv4iiDI3AMToENLkAT3IAWaAMMHsEzeAVvxpPxYrwbH/PWklHMHII/MD5/ANI9mbE=</latexit>

{xl
f}2f=1

<latexit sha1_base64="xFMtawzqI+EPnAiE6laUqef2uc8=">AAACBXicbVDLSsNAFJ34rPUVdamLwSK4KkkUdCMU3LisYB/QpGEynbRDJ5MwMxFLyMaNv+LGhSJu/Qd3/o2TNgttPXDhcM693HtPkDAqlWV9G0vLK6tr65WN6ubW9s6uubfflnEqMGnhmMWiGyBJGOWkpahipJsIgqKAkU4wvi78zj0Rksb8Tk0S4kVoyGlIMVJa8s0jN3MjpEZBmD3kfthnbu5nIbyCdt53fLNm1a0p4CKxS1IDJZq++eUOYpxGhCvMkJQ920qUlyGhKGYkr7qpJAnCYzQkPU05ioj0sukXOTzRygCGsdDFFZyqvycyFEk5iQLdWVws571C/M/rpSq89DLKk1QRjmeLwpRBFcMiEjiggmDFJpogLKi+FeIREggrHVxVh2DPv7xI2k7dPqs7t+e1hlPGUQGH4BicAhtcgAa4AU3QAhg8gmfwCt6MJ+PFeDc+Zq1LRjlzAP7A+PwBBG+YLw==</latexit>

H
l
1

<latexit sha1_base64="8HyBMRbr5D28XJQNjMjsU3Htnxw=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSJmZDm3dFdx0WcE+oJ2WTJppQzMPkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8WLOpDLND2NtfWNzazu3k9/d2z84LBwdt2WUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm15nfueOCsmi8FbNYuoGeBwynxGstDToB1hNPD9tzIfWgA8LRbN0VavYTgWZJdOsWraVEbvqlB1kaSVDEVZoDgvv/VFEkoCGinAsZc8yY+WmWChGOJ3n+4mkMSZTPKY9TUMcUOmmi9RzdK6VEfIjoV+o0EL9vpHiQMpZ4OnJLKX87WXiX14vUX7NTVkYJ4qGZHnITzhSEcoqQCMmKFF8pgkmgumsiEywwETpovK6hK+fov9J2y5Z5ZJ94xTrl6s6cnAKZ3ABFlShDg1oQgsICHiAJ3g27o1H48V4XY6uGaudE/gB4+0TwZaSng==</latexit>

H
l
2

<latexit sha1_base64="5KuD1Jia2HpP651kuvepQY+uWq8=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSJmZDm3dFdx0WcE+oJ2WTJppQzMPkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8WLOpDLND2NtfWNzazu3k9/d2z84LBwdt2WUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm15nfueOCsmi8FbNYuoGeBwynxGstDToB1hNPD9tzIf2gA8LRbN0VavYTgWZJdOsWraVEbvqlB1kaSVDEVZoDgvv/VFEkoCGinAsZc8yY+WmWChGOJ3n+4mkMSZTPKY9TUMcUOmmi9RzdK6VEfIjoV+o0EL9vpHiQMpZ4OnJLKX87WXiX14vUX7NTVkYJ4qGZHnITzhSEcoqQCMmKFF8pgkmgumsiEywwETpovK6hK+fov9J2y5Z5ZJ94xTrl6s6cnAKZ3ABFlShDg1oQgsICHiAJ3g27o1H48V4XY6uGaudE/gB4+0TwxySnw==</latexit>

H
l
3

<latexit sha1_base64="C/5AfJL0ybTsw90lAC1b/JRCA/E=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSJmZDm3dFdx0WcE+oJ2WTJppQzMPkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8WLOpDLND2NtfWNzazu3k9/d2z84LBwdt2WUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm15nfueOCsmi8FbNYuoGeBwynxGstDToB1hNPD9tzIflAR8WimbpqlaxnQoyS6ZZtWwrI3bVKTvI0kqGIqzQHBbe+6OIJAENFeFYyp5lxspNsVCMcDrP9xNJY0ymeEx7moY4oNJNF6nn6FwrI+RHQr9QoYX6fSPFgZSzwNOTWUr528vEv7xeovyam7IwThQNyfKQn3CkIpRVgEZMUKL4TBNMBNNZEZlggYnSReV1CV8/Rf+Ttl2yyiX7xinWL1d15OAUzuACLKhCHRrQhBYQEPAAT/Bs3BuPxovxuhxdM1Y7J/ADxtsnxKKSoA==</latexit>

H
l
4

<latexit sha1_base64="XPB4xsUEk3v0AxJj6fbD9KaWYcQ=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSJmZDm3dFdx0WcE+oJ2WTJppQzMPkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8WLOpDLND2NtfWNzazu3k9/d2z84LBwdt2WUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm15nfueOCsmi8FbNYuoGeBwynxGstDToB1hNPD9tzIfOgA8LRbN0VavYTgWZJdOsWraVEbvqlB1kaSVDEVZoDgvv/VFEkoCGinAsZc8yY+WmWChGOJ3n+4mkMSZTPKY9TUMcUOmmi9RzdK6VEfIjoV+o0EL9vpHiQMpZ4OnJLKX87WXiX14vUX7NTVkYJ4qGZHnITzhSEcoqQCMmKFF8pgkmgumsiEywwETpovK6hK+fov9J2y5Z5ZJ94xTrl6s6cnAKZ3ABFlShDg1oQgsICHiAJ3g27o1H48V4XY6uGaudE/gB4+0TxiiSoQ==</latexit>

xl−1
1

xl−1
2

xl−1
3

xl−1
4

xl−1
1

xl−1
2

xl−1
3

xl−1
4

xl
1

xl
2

input feature

FIR filter

output feature
sum over inputs

Delft University of Technology

Graph convolutional neural networks

266

๏ GCNNs increase descriptive power with a parallel filter bank

xl
f = σ(

F

∑
g=1

Hl
fgx

l−1
g) ∀f ∈ {1,…, F}

output feature

{xl�1
g }4g=1

<latexit sha1_base64="Uk3ezDjbueBya7V994u2j8zAnwc=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0VwY0lqQTdCwY3LCvYBTRom00k7dDIJMxOxhGzd+CtuXCji1j9w5984abPQ1gMXDufcy733+DGjUlnWt1FaWV1b3yhvVra2d3b3zP2DjowSgUkbRywSPR9JwignbUUVI71YEBT6jHT9yXXud++JkDTid2oaEzdEI04DipHSkmdCJ3VCpMZ+kD5kg5Sd2Zk3cjIvHcEraGeDhmdWrZo1A1wmdkGqoEDLM7+cYYSTkHCFGZKyb1uxclMkFMWMZBUnkSRGeIJGpK8pRyGRbjr7JIMnWhnCIBK6uIIz9fdEikIpp6GvO/Or5aKXi/95/UQFl25KeZwowvF8UZAwqCKYxwKHVBCs2FQThAXVt0I8RgJhpcOr6BDsxZeXSades89r9dtGtVkv4iiDI3AMToENLkAT3IAWaAMMHsEzeAVvxpPxYrwbH/PWklHMHII/MD5/ANI9mbE=</latexit>

{xl
f}2f=1

<latexit sha1_base64="xFMtawzqI+EPnAiE6laUqef2uc8=">AAACBXicbVDLSsNAFJ34rPUVdamLwSK4KkkUdCMU3LisYB/QpGEynbRDJ5MwMxFLyMaNv+LGhSJu/Qd3/o2TNgttPXDhcM693HtPkDAqlWV9G0vLK6tr65WN6ubW9s6uubfflnEqMGnhmMWiGyBJGOWkpahipJsIgqKAkU4wvi78zj0Rksb8Tk0S4kVoyGlIMVJa8s0jN3MjpEZBmD3kfthnbu5nIbyCdt53fLNm1a0p4CKxS1IDJZq++eUOYpxGhCvMkJQ920qUlyGhKGYkr7qpJAnCYzQkPU05ioj0sukXOTzRygCGsdDFFZyqvycyFEk5iQLdWVws571C/M/rpSq89DLKk1QRjmeLwpRBFcMiEjiggmDFJpogLKi+FeIREggrHVxVh2DPv7xI2k7dPqs7t+e1hlPGUQGH4BicAhtcgAa4AU3QAhg8gmfwCt6MJ+PFeDc+Zq1LRjlzAP7A+PwBBG+YLw==</latexit>

H
l
4

<latexit sha1_base64="x7SGffiL4yzeEqU4cl88+3uP7A4=">AAAB9XicdVDLSgMxFM3UV62vqks3wSK4kJLUYttdwU2XFewD2mnJpJk2NJMZkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8SLBtUHow8msrW9sbmW3czu7e/sH+cOjtg5jRVmLhiJUXY9oJrhkLcONYN1IMRJ4gnW86XXqd+6Y0jyUt2YWMTcgY8l9Tomx0qAfEDPx/KQxH5YHYpgvoCJCCGMMU4IrV8iSWq1awlWIU8uiAFZoDvPv/VFI44BJQwXRuodRZNyEKMOpYPNcP9YsInRKxqxnqSQB026ySD2HZ1YZQT9U9kkDF+r3jYQEWs8Cz06mKfVvLxX/8nqx8atuwmUUGybp8pAfC2hCmFYAR1wxasTMEkIVt1khnRBFqLFF5WwJXz+F/5N2qYgvi6WbcqF+saojC07AKTgHGFRAHTRAE7QABQo8gCfw7Nw7j86L87oczTirnWPwA87bJ7MPkpU=</latexit>

H
l
3

<latexit sha1_base64="xmmOHl8xrAH/ozPOn/JcFYR90gk=">AAAB9XicdVDLSgMxFM3UV62vqks3wSK4kJK0YttdwU2XFewD2mnJpJk2NJMZkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8SLBtUHow8msrW9sbmW3czu7e/sH+cOjtg5jRVmLhiJUXY9oJrhkLcONYN1IMRJ4gnW86XXqd+6Y0jyUt2YWMTcgY8l9Tomx0qAfEDPx/KQxH5YHYpgvoCJCCGMMU4IrV8iSWq1awlWIU8uiAFZoDvPv/VFI44BJQwXRuodRZNyEKMOpYPNcP9YsInRKxqxnqSQB026ySD2HZ1YZQT9U9kkDF+r3jYQEWs8Cz06mKfVvLxX/8nqx8atuwmUUGybp8pAfC2hCmFYAR1wxasTMEkIVt1khnRBFqLFF5WwJXz+F/5N2qYjLxdLNZaF+saojC07AKTgHGFRAHTRAE7QABQo8gCfw7Nw7j86L87oczTirnWPwA87bJ7GJkpQ=</latexit>

H
l
2

<latexit sha1_base64="+8Y9nHfgVyPkP9NgooEVqpn7VZk=">AAAB9XicdVDLSgMxFM34rPVVdekmWAQXUpJRbLsruOmygn1AOy2ZNNOGZjJDklHK0P9w40IRt/6LO//GTFtBRQ8EDufcyz05fiy4Ngh9OCura+sbm7mt/PbO7t5+4eCwpaNEUdakkYhUxyeaCS5Z03AjWCdWjIS+YG1/cp357TumNI/krZnGzAvJSPKAU2Ks1O+FxIz9IK3PBm5fDApFVEIIYYxhRnD5CllSrVZcXIE4syyKYInGoPDeG0Y0CZk0VBCtuxjFxkuJMpwKNsv3Es1iQidkxLqWShIy7aXz1DN4apUhDCJlnzRwrn7fSEmo9TT07WSWUv/2MvEvr5uYoOKlXMaJYZIuDgWJgCaCWQVwyBWjRkwtIVRxmxXSMVGEGltU3pbw9VP4P2m5JXxRcm8ui7XzZR05cAxOwBnAoAxqoA4aoAkoUOABPIFn5955dF6c18XoirPcOQI/4Lx9ArADkpM=</latexit>

H
l
1

<latexit sha1_base64="KXlB7KGfOnTBpgRnX5O3g4LoOXU=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSEmq2HZXcNNlBfuAvsikmTY08yDJKGXof7hxoYhb/8Wdf2OmraCiBwKHc+7lnhw3kkIbjD+cldW19Y3NzFZ2e2d3bz93cNjUYawYb7BQhqrtUs2lCHjDCCN5O1Kc+q7kLXdynfqtO660CINbM414z6ejQHiCUWOlftenZux6SW02IH05yOVxAWNMCEEpIaUrbEmlUi6SMiKpZZGHJeqD3Ht3GLLY54FhkmrdITgyvYQqI5jks2w31jyibEJHvGNpQH2ue8k89QydWmWIvFDZFxg0V79vJNTXeuq7djJNqX97qfiX14mNV+4lIohiwwO2OOTFEpkQpRWgoVCcGTm1hDIlbFbExlRRZmxRWVvC10/R/6RZLJCLQvHmMl89X9aRgWM4gTMgUIIq1KAODWCg4AGe4Nm5dx6dF+d1MbriLHeO4Aect0+ufZKS</latexit>

{xl�1
g }4g=1

<latexit sha1_base64="Uk3ezDjbueBya7V994u2j8zAnwc=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0VwY0lqQTdCwY3LCvYBTRom00k7dDIJMxOxhGzd+CtuXCji1j9w5984abPQ1gMXDufcy733+DGjUlnWt1FaWV1b3yhvVra2d3b3zP2DjowSgUkbRywSPR9JwignbUUVI71YEBT6jHT9yXXud++JkDTid2oaEzdEI04DipHSkmdCJ3VCpMZ+kD5kg5Sd2Zk3cjIvHcEraGeDhmdWrZo1A1wmdkGqoEDLM7+cYYSTkHCFGZKyb1uxclMkFMWMZBUnkSRGeIJGpK8pRyGRbjr7JIMnWhnCIBK6uIIz9fdEikIpp6GvO/Or5aKXi/95/UQFl25KeZwowvF8UZAwqCKYxwKHVBCs2FQThAXVt0I8RgJhpcOr6BDsxZeXSades89r9dtGtVkv4iiDI3AMToENLkAT3IAWaAMMHsEzeAVvxpPxYrwbH/PWklHMHII/MD5/ANI9mbE=</latexit>

{xl
f}2f=1

<latexit sha1_base64="xFMtawzqI+EPnAiE6laUqef2uc8=">AAACBXicbVDLSsNAFJ34rPUVdamLwSK4KkkUdCMU3LisYB/QpGEynbRDJ5MwMxFLyMaNv+LGhSJu/Qd3/o2TNgttPXDhcM693HtPkDAqlWV9G0vLK6tr65WN6ubW9s6uubfflnEqMGnhmMWiGyBJGOWkpahipJsIgqKAkU4wvi78zj0Rksb8Tk0S4kVoyGlIMVJa8s0jN3MjpEZBmD3kfthnbu5nIbyCdt53fLNm1a0p4CKxS1IDJZq++eUOYpxGhCvMkJQ920qUlyGhKGYkr7qpJAnCYzQkPU05ioj0sukXOTzRygCGsdDFFZyqvycyFEk5iQLdWVws571C/M/rpSq89DLKk1QRjmeLwpRBFcMiEjiggmDFJpogLKi+FeIREggrHVxVh2DPv7xI2k7dPqs7t+e1hlPGUQGH4BicAhtcgAa4AU3QAhg8gmfwCt6MJ+PFeDc+Zq1LRjlzAP7A+PwBBG+YLw==</latexit>

H
l
1

<latexit sha1_base64="8HyBMRbr5D28XJQNjMjsU3Htnxw=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSJmZDm3dFdx0WcE+oJ2WTJppQzMPkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8WLOpDLND2NtfWNzazu3k9/d2z84LBwdt2WUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm15nfueOCsmi8FbNYuoGeBwynxGstDToB1hNPD9tzIfWgA8LRbN0VavYTgWZJdOsWraVEbvqlB1kaSVDEVZoDgvv/VFEkoCGinAsZc8yY+WmWChGOJ3n+4mkMSZTPKY9TUMcUOmmi9RzdK6VEfIjoV+o0EL9vpHiQMpZ4OnJLKX87WXiX14vUX7NTVkYJ4qGZHnITzhSEcoqQCMmKFF8pgkmgumsiEywwETpovK6hK+fov9J2y5Z5ZJ94xTrl6s6cnAKZ3ABFlShDg1oQgsICHiAJ3g27o1H48V4XY6uGaudE/gB4+0TwZaSng==</latexit>

H
l
2

<latexit sha1_base64="5KuD1Jia2HpP651kuvepQY+uWq8=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSJmZDm3dFdx0WcE+oJ2WTJppQzMPkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8WLOpDLND2NtfWNzazu3k9/d2z84LBwdt2WUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm15nfueOCsmi8FbNYuoGeBwynxGstDToB1hNPD9tzIf2gA8LRbN0VavYTgWZJdOsWraVEbvqlB1kaSVDEVZoDgvv/VFEkoCGinAsZc8yY+WmWChGOJ3n+4mkMSZTPKY9TUMcUOmmi9RzdK6VEfIjoV+o0EL9vpHiQMpZ4OnJLKX87WXiX14vUX7NTVkYJ4qGZHnITzhSEcoqQCMmKFF8pgkmgumsiEywwETpovK6hK+fov9J2y5Z5ZJ94xTrl6s6cnAKZ3ABFlShDg1oQgsICHiAJ3g27o1H48V4XY6uGaudE/gB4+0TwxySnw==</latexit>

H
l
3

<latexit sha1_base64="C/5AfJL0ybTsw90lAC1b/JRCA/E=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSJmZDm3dFdx0WcE+oJ2WTJppQzMPkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8WLOpDLND2NtfWNzazu3k9/d2z84LBwdt2WUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm15nfueOCsmi8FbNYuoGeBwynxGstDToB1hNPD9tzIflAR8WimbpqlaxnQoyS6ZZtWwrI3bVKTvI0kqGIqzQHBbe+6OIJAENFeFYyp5lxspNsVCMcDrP9xNJY0ymeEx7moY4oNJNF6nn6FwrI+RHQr9QoYX6fSPFgZSzwNOTWUr528vEv7xeovyam7IwThQNyfKQn3CkIpRVgEZMUKL4TBNMBNNZEZlggYnSReV1CV8/Rf+Ttl2yyiX7xinWL1d15OAUzuACLKhCHRrQhBYQEPAAT/Bs3BuPxovxuhxdM1Y7J/ADxtsnxKKSoA==</latexit>

H
l
4

<latexit sha1_base64="XPB4xsUEk3v0AxJj6fbD9KaWYcQ=">AAAB9XicdVDLSgMxFL3js9ZX1aWbYBFcSJmZDm3dFdx0WcE+oJ2WTJppQzMPkoxShv6HGxeKuPVf3Pk3ZtoKKnogcDjnXu7J8WLOpDLND2NtfWNzazu3k9/d2z84LBwdt2WUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm15nfueOCsmi8FbNYuoGeBwynxGstDToB1hNPD9tzIfOgA8LRbN0VavYTgWZJdOsWraVEbvqlB1kaSVDEVZoDgvv/VFEkoCGinAsZc8yY+WmWChGOJ3n+4mkMSZTPKY9TUMcUOmmi9RzdK6VEfIjoV+o0EL9vpHiQMpZ4OnJLKX87WXiX14vUX7NTVkYJ4qGZHnITzhSEcoqQCMmKFF8pgkmgumsiEywwETpovK6hK+fov9J2y5Z5ZJ94xTrl6s6cnAKZ3ABFlShDg1oQgsICHiAJ3g27o1H48V4XY6uGaudE/gB4+0TxiiSoQ==</latexit>

xl−1
1

xl−1
2

xl−1
3

xl−1
4

xl−1
1

xl−1
2

xl−1
3

xl−1
4

xl
1

xl
2

input feature
for all output features

FIR filter

sum over inputs

Delft University of Technology

GCNN full stack

267

๏ Cascade graph filters and nonlinearities

.	.	.	

Austen

Poe

…
Stevenson

๏ Parameters - independent on the graph dimensions

๏ Complexity - linear in number of edges (~nodes)

𝒪(KF2L)

𝒪(KMF2L)

graph convolution fully connected
Benefits

Delft University of Technology

EdgeNet

268

๏ Substitutes FIR filters with edge-variant graph filter

๏ Propagation rule

xl
f = σ(

F

∑
g=1

Hl
EVfgx

l−1
g)∀ f ∈ {1,…, F}

Isufi, Gama, Ribeiro, Generalizing Graph Convolutional Neural Networks with Edge-Variant Recursions on Graphs, EUSIPCO, 2019.

Edge-variant filter

Delft University of Technology

EdgeNet

269

๏ Substitutes FIR filters with edge-variant graph filter

๏ Propagation rule

xl
f = σ(

F

∑
g=1

Hl
EVfgx

l−1
g)∀ f ∈ {1,…, F}

๏ The most general GNN

✦ Includes all GCNN, all ARMANet, GIN, GAT

Isufi, Gama, Ribeiro, Generalizing Graph Convolutional Neural Networks with Edge-Variant Recursions on Graphs, EUSIPCO, 2019.

Edge-variant filter

Delft University of Technology

EdgeNet properties

270

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

๏ Different parameters per edge and node

for th iterationk

Φkx(k−1)

Delft University of Technology

EdgeNet properties

271

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

๏ Different parameters per edge and node

✦ Order

✦ More flexibility

𝒪(MKF2L)

for th iterationk

Φkx(k−1)

Delft University of Technology

EdgeNet properties

272

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

๏ Different parameters per edge and node

✦ Order

✦ More flexibility

✦ Requires only the support of

• Adapts the edge weights to the task

• Robust to uncertainties in edge weights

𝒪(MKF2L)

S

for th iterationk

Φkx(k−1)

Delft University of Technology

EdgeNet properties

273

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

๏ Different parameters per edge and node

✦ Order

✦ More flexibility

✦ Requires only the support of

• Adapts the edge weights to the task

• Robust to uncertainties in edge weights

✦ Requires fewer parallel filters and shallower networks

✦ Can overfit and require more data than GCNN (FIR-filters)

𝒪(MKF2L)

S

for th iterationk

Φkx(k−1)

Delft University of Technology

EdgeNet properties

274

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

๏ Different parameters per edge and node

✦ Order

✦ More flexibility

✦ Requires only the support of

• Adapts the edge weights to the task

• Robust to uncertainties in edge weights

✦ Requires fewer parallel filters and shallower networks

✦ Can overfit and require more data than GCNN (FIR-filters)

๏ Complexity - depends on edges (like GCNN)

𝒪(MKF2L)

S

𝒪(MKF2L)

for th iterationk

Φkx(k−1)

Delft University of Technology

How to use EdgeNets?

275

๏ The full form may sometimes overfit

✦ Penalize coefficients to sparse (i.e.,)∥Φ∥1

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

Delft University of Technology

How to use EdgeNets?

276

๏ The full form may sometimes overfit

✦ Penalize coefficients to sparse (i.e.,)

✦ Impose parameter sharing

• FIR : all nodes all edges same parameter

∥Φ∥1

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

Delft University of Technology

How to use EdgeNets?

277

๏ The full form may sometimes overfit

✦ Penalize coefficients to sparse (i.e.,)

✦ Impose parameter sharing

• FIR : all nodes all edges same parameter

• Node-variant : all edges same parameter for a node

∥Φ∥1

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

Delft University of Technology

How to use EdgeNets?

278

๏ The full form may sometimes overfit

✦ Penalize coefficients to sparse (i.e.,)

✦ Impose parameter sharing

• FIR : all nodes all edges same parameter

• Node-variant : all edges same parameter for a node

• Attention mechanism [Velickovic’18 - ICLR]

∥Φ∥1

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

Delft University of Technology

How to use EdgeNets?

279

๏ The full form may sometimes overfit

✦ Penalize coefficients to sparse (i.e.,)

✦ Impose parameter sharing

• FIR : all nodes all edges same parameter

• Node-variant : all edges same parameter for a node

• Attention mechanism [Velickovic’18 - ICLR]

• Hybrid : FIR + EV to particular nodes

∥Φ∥1

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

Delft University of Technology

How to use EdgeNets?

280

• Nodes and use EV filter2 7

Example: Hybrid (FIR + EV)

• All other nodes use FIR filter

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

6

1

2

3

4

5

6

7

8

[�k]21

[�k]31

[�k]41

[�k]74
[�k]51

[�k]75

[�k]76

[�k]78

Fig. 3. Hybrid Edge Varying Filter [cf. (18)]. The nodes in set I = {2, 7}
are highlighted. Nodes 2 and 7 have edge varying parameters associ-
ated with their incident edges. All nodes, including 2 and 7, also use the
global parameter ak as in a regular convolutional graph filter.

of nodes —see Figure 3. Formally, let I ⇢ V denote an
important subset of I = |I| nodes and define the shift
matrices �(k)

I such that the diagonal matrix �
(0)
I has entries

[�(0)
I]ii 6= 0 for all i 2 I and [�(k)

I]ij = 0 for all i /2 I or
(i, j) /2 E and k � 1. That is, the coefficient matrices �

(k)
I

may contain nonzero elements only at rows i that belong to
set I and with the node j being a neighbor of i. We define
hybrid filters as those of the form

A(S) =
KX

k=0

✓ kY

k0=0

�
(k0)
I + akS

k

◆
. (18)

Substituting (18) in (5) generates hybrid GNNs. In essence,
nodes i 2 I learn edge dependent parameters which may
also be different at different nodes, while nodes i /2 I learn
global parameters.

Hybrid filters are defined by a number of parameters
that depends on the total neighbors of all nodes in the
importance set I . Define then MI =

P
i2I Ni and observe

�
(0)
I has I nonzero entries since it is a diagonal matrix,

while �
(k)
I for k � 1 have respectively MI nonzero values.

We then have KMI + I parameters in the edge varying
filters and K +1 parameters in the convolutional filters. We
therefore have a total of (I +KMI +K + 1)F 2 parameters
per layer in a hybrid GNN. The implementation cost of a
hybrid GNN layer is of order O(KF 2(M + N)) since both
terms in (18) respect the graph sparsity.

Block GNNs depend on the choice of blocks B and
hybrid GNNs on the choice of the importance set I . We
explore the use of different heuristics based on centrality
and clustering measures in Section 6 where we will see that
the choice of B and I is in general problem specific.

4.2 Spectral Graph Convolutional Neural Networks
The convolutional operation of the graph filter in (15) can be
represented in the spectral domain. To do so, consider the
input-output relationship u = A(S)x along with the eigen-
vector decomposition of the shift operator S = V⇤V

�1.
Projecting the input and output signals in the eigenvector
space of S creates the so-called graph Fourier transforms
x̃ := V

�1
x and ũ := V

�1
u [37] which allow us to write

ũ :=

✓ KX

k=0

ak⇤
k
◆
x̃. (19)

Eq. (19) reveals convolutional graph filters are pointwise
in the spectral domain, due to the diagonal nature of the

eigenvalue matrix ⇤. We can, therefore, define the filter’s
spectral response a : R ! R as the function

a(�) =
KX

k=0

ak�
k (20)

which is a single-variable polynomial characterizing the
graph filter A(S). If we allow for filters of order K = N�1,
there is always a set of parameters ak such that a(�i) = ãi
for any set of spectral response ãi [25]. Thus, training
over the set of spectral coefficients a(�1), . . . , a(�N) is
equivalent to training over the space of (nodal) parameters
a0, . . . , aN�1. GCNNs were first introduced in [8] using the
spectral representation of graph filters in (20).

By using edge varying graph filters [cf. (5)], we can pro-
pose an alternative parameterization of the space of filters of
order N which we will see may have some advantages. To
explain this better let J be the index set defining the zero
entries of S + IN and let CJ 2 {0, 1}|J |⇥N2

be a binary
selection matrix whose rows are those of IN2 indexed by J .
Let also B be a basis matrix that spans the null space of

CJ vec(V�1
⇤V) (21)

where vec(·) is the column-wise vectorization operator and
“⇤” is the Khatri-Rao product. Then, the following proposi-
tion from [32] quantifies the spectral response of a particular
class of the edge varying graph filter in (5).

Proposition 2. Consider the subclass of the edge varying graph
filters in (5) where the parameter matrices

⇥
�

(0) + �
(1)⇤ and

�
(k) for all k = 2, . . . ,K are restricted to the ones that share

the eigenvectors with S, i.e.,
⇥
�

(0) + �
(1)⇤ = V⇤

(1)
V

�1 and
�

(k) = V⇤
(k)

V
�1 for all k = 2, . . . ,K . The spectral response

of this subclass of edge varying filter has the form

a(⇤) =
KX

k=1

✓ kY

k0=1

⇤
(k0)

◆
=

KX

k=1

kY

k0=1

diag
⇣
Bµ(k0)

⌘
(22)

where B is an N ⇥ b basis kernel matrix that spans the null
space of (21) and µ(k) is a b⇥ 1 vector containing the expansion
coefficients of ⇤(k) into B.

Proof. See Appendix B.

Proposition 2 provides a subclass of the edge varying
graph filters where, instead of learning K(M + N) + N
parameters, they learn the Kb entries µ(1), . . . ,µ(K) in
(22). These filters build the output features as a pointwise
multiplication between the filter spectral response a(⇤) and
the input spectral transform x̃ = V

�1
x, i.e., u = Va(⇤)x̃ =

Va(⇤)V�1
x. Following then the analogies with conven-

tional signal processing, (22) represents the spectral re-
sponse of a convolutional edge varying graph filter. Spectral
GCNNs are a particular case of (22) with order K = 1 and
kernel B independent from the graph (e.g., a spline kernel).
Besides generalizing [8], a graph-dependent kernel allows to
implement (22) in the vertex domain through an edge vary-
ing filter of the form (5); hence, having a complexity of order
O(K(M +N)) in contrast to O(N2) required for the graph-
independent kernels [8]. The edge varying implementation
captures also local detail up to a region of radius K from
a node; yet, having a spectral interpretation. Nevertheless,

Delft University of Technology

How to use EdgeNets?

281

• Nodes and use EV filter2 7

Example: Hybrid (FIR + EV)

• All other nodes use FIR filter

• More flexibility than GCNN

• Parameters independent on the graph dimensions

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

6

1

2

3

4

5

6

7

8

[�k]21

[�k]31

[�k]41

[�k]74
[�k]51

[�k]75

[�k]76

[�k]78

Fig. 3. Hybrid Edge Varying Filter [cf. (18)]. The nodes in set I = {2, 7}
are highlighted. Nodes 2 and 7 have edge varying parameters associ-
ated with their incident edges. All nodes, including 2 and 7, also use the
global parameter ak as in a regular convolutional graph filter.

of nodes —see Figure 3. Formally, let I ⇢ V denote an
important subset of I = |I| nodes and define the shift
matrices �(k)

I such that the diagonal matrix �
(0)
I has entries

[�(0)
I]ii 6= 0 for all i 2 I and [�(k)

I]ij = 0 for all i /2 I or
(i, j) /2 E and k � 1. That is, the coefficient matrices �

(k)
I

may contain nonzero elements only at rows i that belong to
set I and with the node j being a neighbor of i. We define
hybrid filters as those of the form

A(S) =
KX

k=0

✓ kY

k0=0

�
(k0)
I + akS

k

◆
. (18)

Substituting (18) in (5) generates hybrid GNNs. In essence,
nodes i 2 I learn edge dependent parameters which may
also be different at different nodes, while nodes i /2 I learn
global parameters.

Hybrid filters are defined by a number of parameters
that depends on the total neighbors of all nodes in the
importance set I . Define then MI =

P
i2I Ni and observe

�
(0)
I has I nonzero entries since it is a diagonal matrix,

while �
(k)
I for k � 1 have respectively MI nonzero values.

We then have KMI + I parameters in the edge varying
filters and K +1 parameters in the convolutional filters. We
therefore have a total of (I +KMI +K + 1)F 2 parameters
per layer in a hybrid GNN. The implementation cost of a
hybrid GNN layer is of order O(KF 2(M + N)) since both
terms in (18) respect the graph sparsity.

Block GNNs depend on the choice of blocks B and
hybrid GNNs on the choice of the importance set I . We
explore the use of different heuristics based on centrality
and clustering measures in Section 6 where we will see that
the choice of B and I is in general problem specific.

4.2 Spectral Graph Convolutional Neural Networks
The convolutional operation of the graph filter in (15) can be
represented in the spectral domain. To do so, consider the
input-output relationship u = A(S)x along with the eigen-
vector decomposition of the shift operator S = V⇤V

�1.
Projecting the input and output signals in the eigenvector
space of S creates the so-called graph Fourier transforms
x̃ := V

�1
x and ũ := V

�1
u [37] which allow us to write

ũ :=

✓ KX

k=0

ak⇤
k
◆
x̃. (19)

Eq. (19) reveals convolutional graph filters are pointwise
in the spectral domain, due to the diagonal nature of the

eigenvalue matrix ⇤. We can, therefore, define the filter’s
spectral response a : R ! R as the function

a(�) =
KX

k=0

ak�
k (20)

which is a single-variable polynomial characterizing the
graph filter A(S). If we allow for filters of order K = N�1,
there is always a set of parameters ak such that a(�i) = ãi
for any set of spectral response ãi [25]. Thus, training
over the set of spectral coefficients a(�1), . . . , a(�N) is
equivalent to training over the space of (nodal) parameters
a0, . . . , aN�1. GCNNs were first introduced in [8] using the
spectral representation of graph filters in (20).

By using edge varying graph filters [cf. (5)], we can pro-
pose an alternative parameterization of the space of filters of
order N which we will see may have some advantages. To
explain this better let J be the index set defining the zero
entries of S + IN and let CJ 2 {0, 1}|J |⇥N2

be a binary
selection matrix whose rows are those of IN2 indexed by J .
Let also B be a basis matrix that spans the null space of

CJ vec(V�1
⇤V) (21)

where vec(·) is the column-wise vectorization operator and
“⇤” is the Khatri-Rao product. Then, the following proposi-
tion from [32] quantifies the spectral response of a particular
class of the edge varying graph filter in (5).

Proposition 2. Consider the subclass of the edge varying graph
filters in (5) where the parameter matrices

⇥
�

(0) + �
(1)⇤ and

�
(k) for all k = 2, . . . ,K are restricted to the ones that share

the eigenvectors with S, i.e.,
⇥
�

(0) + �
(1)⇤ = V⇤

(1)
V

�1 and
�

(k) = V⇤
(k)

V
�1 for all k = 2, . . . ,K . The spectral response

of this subclass of edge varying filter has the form

a(⇤) =
KX

k=1

✓ kY

k0=1

⇤
(k0)

◆
=

KX

k=1

kY

k0=1

diag
⇣
Bµ(k0)

⌘
(22)

where B is an N ⇥ b basis kernel matrix that spans the null
space of (21) and µ(k) is a b⇥ 1 vector containing the expansion
coefficients of ⇤(k) into B.

Proof. See Appendix B.

Proposition 2 provides a subclass of the edge varying
graph filters where, instead of learning K(M + N) + N
parameters, they learn the Kb entries µ(1), . . . ,µ(K) in
(22). These filters build the output features as a pointwise
multiplication between the filter spectral response a(⇤) and
the input spectral transform x̃ = V

�1
x, i.e., u = Va(⇤)x̃ =

Va(⇤)V�1
x. Following then the analogies with conven-

tional signal processing, (22) represents the spectral re-
sponse of a convolutional edge varying graph filter. Spectral
GCNNs are a particular case of (22) with order K = 1 and
kernel B independent from the graph (e.g., a spline kernel).
Besides generalizing [8], a graph-dependent kernel allows to
implement (22) in the vertex domain through an edge vary-
ing filter of the form (5); hence, having a complexity of order
O(K(M +N)) in contrast to O(N2) required for the graph-
independent kernels [8]. The edge varying implementation
captures also local detail up to a region of radius K from
a node; yet, having a spectral interpretation. Nevertheless,

Delft University of Technology 282

How to apply GNNs?

Delft University of Technology 283

Applications
๏Distributed finite-time consensus

๏Distributed regression

๏Authorship attribution

๏Recommender systems

Delft University of Technology 284

Applications
๏Distributed finite-time consensus

๏Distributed regression

๏Authorship attribution

๏Recommender systems

๏For control, resource allocation and other SP applications [T-9]

๏For semi-supervised learning, graph classification [Wu’20 -TNNLS]

Delft University of Technology

Learning finite-time consensus

285

๏ Learn the consensus function for a specific graph

✦ EV can do the job but all nodes need to know all graph

• Feasible only in small setups

Iancu, Isufi, Towards Finite-Time Consensus with Graph Convolutional Neural Networks, EUSIPCO 2020 (submitted)

Delft University of Technology

Graph signal:
x = [x1, ͙, xN]

σ(·)

Fig. 1: Distributed GCNN architecture for finite-time consensus. The input is a graph signal x, which is filtered by a filter
bank of F FIR graph filters [cf. (1)] and then passed through and activation function �(·). This forms a graph convolutional
layer, which is cascaded L times. The final convolutional features are concatenated per node and passed to a per-node fully
connected layer to compute the final output. This output is used during training the minimze the mean squared error (MSE).

[x1
Li, . . . , x

F
Li]

>. Each node locally combines the features �Li

with a one-layer perceptron1 to build the final scalar output

yi = h
>
FC�Li (4)

where hFC = [h1, . . . , hF]> is the F ⇥ 1 vector of parameters
in the local fully connected layer. Vector hFC is shared
among all nodes to keep the number of trainable parameters
independent from the graph dimensions.
Activation functions. If the activation functions in the con-
volutional layers were local, the GCNN would be readily
distributable. In fact, all filters {Hfg

l (S)}fgl are distributable,
as discussed in Section II-B. The last fully connected layer
leaves unaffected the distributed implementation since it is
local over the nodes. In this work, we study the effect of three
activation functions for distributed consensus: the pointwise
ReLU , the pointwise kernel [22], and the local max [23].

ReLU: The rectified linear unit is poinwise on each scalar
entry xi of the feature vector x and it is defined as

�(x) = max(0,x). (5)

Kernel: The pointwise kernel activation function considers
an one-dimensional dictionary d = [d1, . . . , dD]> of D atoms
sampled uniformly around zero. Any scalar feature xi of node
vi is combined with all elements of d to build the parametric
nonlinear features

�(xi) =
DX

j=1

hj(xi, dj) (6)

where h� = [h1, . . . , hD]> is an D ⇥ 1 vector of trainable
parameters and (xi, dj) is a one-dimensional kernel between
feature value xi and dictionary atom dj . Following [22], we
employ the Gaussian kernel function (xi, dj) = exp

�
��(xi�

dj)2
�
, where � is a tuneable parameter.

Max local: Differently from the above two, the max local
activation function is not pointwise at node vi but takes into
account also the feature values at neighboring nodes Ni. Let
x be a N ⇥ 1 graph signal feature on which we want to apply
the max local activation function. Then, the output of a local

1Each node can also consider a local multi-layer perceptron to combine the
features in �Li.

max operator max(S,x) applied to signal x is another graph
signal z whose i�th entry zi is the maximum value in the
neighboorhood, i.e., zi = [max(S,x)]i = max

�
{xj : vj 2

Ni}
�
. The max local activation function for the feature signal

x builds the parametric features

�(x) = h0 max(0,x) + h1max(S,x). (7)

with trainable parameters h� = [h0, h1]>. The ReLU term
nonlinearizes also the node features. In [23], the authors
extended (7) to a neighborhood of order K. This choice,
however, is not distributable and we shall not discuss it further.

The above activation functions leave unaffected the commu-
nication and computational cost of the GCNN, which remain
governed by the cost of running all graph filters [cf.(1)]. For an
architecture of F features per layer and L graph convolutional
layers the cost is of order at most O(F 2LMK).
Parameter training. If the ReLU nonlinearity is used, the
total number of parameters of the GCNN is F 2(L� 1)(K +
1)+F (K+1)+F . This divides as: i) F (K+1) parameters for
the F filters in the first graph convolutional layer; ii) F 2(K+
1)(L�1) for the parameters of the F 2 filters in the remaining
L�1 graph convolutional layers; and iii) F parameters in the
final fully-connected layer. Instead, if the kernel or the max
local activation functions are used, we should also consider
parameters h� . This adds DL or 2L parameters for the kernel
or the max local activation function, respectively.

By grouping all parameters into the set H =
{hfg

l ;h�l;hFC}lfg , we can consider the GCNN as a
mapping �(·) that takes as input a graph signal x, a GSO S,
and a set of parameters H to produce the output

�(x;S;H) := ỹ. (8)

The output (8) is computed for a training set T = {(xr,yr)}
of |T | = R pairs, where the input xr is a graph signal and
yr is the vector containing the consensus signal x̄r for all
nodes; i.e., yr = x̄r1. The goal of the GCNN is to learn
the distributed averaging function from examples in T and
extrapolating it to unseen graph signals x /2 T .

As a loss function, we considered the averaged mean
squared error (MSE) between the GCNN output ỹr and the

MSE

MSE

(·)

Fig. 1: Distributed GCNN architecture for finite-time consensus. The input is a graph signal x, which is filtered by a filter
bank of F FIR graph filters [cf. (1)] and then passed through and activation function �(·). This forms a graph convolutional
layer, which is cascaded L times. The final convolutional features are concatenated per node and passed to a per-node fully
connected layer to compute the final output. This output is used during training the minimze the mean squared error (MSE).

[x1
Li, . . . , x

F
Li]

>. Each node locally combines the features �Li

with a one-layer perceptron1 to build the final scalar output

yi = h
>
FC�Li (4)

where hFC = [h1, . . . , hF]> is the F ⇥ 1 vector of parameters
in the local fully connected layer. Vector hFC is shared
among all nodes to keep the number of trainable parameters
independent from the graph dimensions.
Activation functions. If the activation functions in the con-
volutional layers were local, the GCNN would be readily
distributable. In fact, all filters {Hfg

l (S)}fgl are distributable,
as discussed in Section II-B. The last fully connected layer
leaves unaffected the distributed implementation since it is
local over the nodes. In this work, we study the effect of three
activation functions for distributed consensus: the pointwise
ReLU , the pointwise kernel [22], and the local max [23].

ReLU: The rectified linear unit is poinwise on each scalar
entry xi of the feature vector x and it is defined as

�(x) = max(0,x). (5)

Kernel: The pointwise kernel activation function considers
an one-dimensional dictionary d = [d1, . . . , dD]> of D atoms
sampled uniformly around zero. Any scalar feature xi of node
vi is combined with all elements of d to build the parametric
nonlinear features

�(xi) =
DX

j=1

hj(xi, dj) (6)

where h� = [h1, . . . , hD]> is an D ⇥ 1 vector of trainable
parameters and (xi, dj) is a one-dimensional kernel between
feature value xi and dictionary atom dj . Following [22], we
employ the Gaussian kernel function (xi, dj) = exp

�
��(xi�

dj)2
�
, where � is a tuneable parameter.

Max local: Differently from the above two, the max local
activation function is not pointwise at node vi but takes into
account also the feature values at neighboring nodes Ni. Let
x be a N ⇥ 1 graph signal feature on which we want to apply
the max local activation function. Then, the output of a local

1Each node can also consider a local multi-layer perceptron to combine the
features in �Li.

max operator max(S,x) applied to signal x is another graph
signal z whose i�th entry zi is the maximum value in the
neighboorhood, i.e., zi = [max(S,x)]i = max

�
{xj : vj 2

Ni}
�
. The max local activation function for the feature signal

x builds the parametric features

�(x) = h0 max(0,x) + h1max(S,x). (7)

with trainable parameters h� = [h0, h1]>. The ReLU term
nonlinearizes also the node features. In [23], the authors
extended (7) to a neighborhood of order K. This choice,
however, is not distributable and we shall not discuss it further.

The above activation functions leave unaffected the commu-
nication and computational cost of the GCNN, which remain
governed by the cost of running all graph filters [cf.(1)]. For an
architecture of F features per layer and L graph convolutional
layers the cost is of order at most O(F 2LMK).
Parameter training. If the ReLU nonlinearity is used, the
total number of parameters of the GCNN is F 2(L� 1)(K +
1)+F (K+1)+F . This divides as: i) F (K+1) parameters for
the F filters in the first graph convolutional layer; ii) F 2(K+
1)(L�1) for the parameters of the F 2 filters in the remaining
L�1 graph convolutional layers; and iii) F parameters in the
final fully-connected layer. Instead, if the kernel or the max
local activation functions are used, we should also consider
parameters h� . This adds DL or 2L parameters for the kernel
or the max local activation function, respectively.

By grouping all parameters into the set H =
{hfg

l ;h�l;hFC}lfg , we can consider the GCNN as a
mapping �(·) that takes as input a graph signal x, a GSO S,
and a set of parameters H to produce the output

�(x;S;H) := ỹ. (8)

The output (8) is computed for a training set T = {(xr,yr)}
of |T | = R pairs, where the input xr is a graph signal and
yr is the vector containing the consensus signal x̄r for all
nodes; i.e., yr = x̄r1. The goal of the GCNN is to learn
the distributed averaging function from examples in T and
extrapolating it to unseen graph signals x /2 T .

As a loss function, we considered the averaged mean
squared error (MSE) between the GCNN output ỹr and the

Learning finite-time consensus

286

๏ Learn the consensus function for a specific graph

✦ EV can do the job but all nodes need to know all graph

• Feasible only in small setups

Stochastic block model
 and communities; graph signals N = 100 C = 5 x ∼ 𝒩(0, I)

 Layer, features, shared FC per node1 F = 32 (32 × 1)

Iancu, Isufi, Towards Finite-Time Consensus with Graph Convolutional Neural Networks, EUSIPCO 2020 (submitted)

Delft University of Technology

Learning finite-time consensus

287

• Consensus is strictly low pass

• Better performance for high orders

• Machine precision needs EV

Delft University of Technology

Learning finite-time consensus

288

Levie, Isufi, Kutyniok, On the Transferability of Spectral Graph Filters, SAMPTA 2019.

• Consensus is strictly low pass

• Better performance for high orders

• Machine precision needs EV

• Train and test on different graphs

• GCNN exploits better the connectivity

• GCNNs are better transferable

Delft University of Technology

Distributed regression

289

๏Retrieve signal distributively from noisy measurements

Iancu, Ruiz, Ribeiro Isufi, Distributed Localized Nonlinearities For Graph Neural Networks, MLSP 2020 (submitted)

Molene weather dataset
Build a graph between stations N = 32
Graph signal: temperature recording744
SNR = 3dB layer; features1 4

Delft University of Technology

Distributed regression

290

๏Retrieve signal distributively from noisy measurements

Iancu, Ruiz, Ribeiro Isufi, Distributed Localized Nonlinearities For Graph Neural Networks, MLSP 2020 (submitted)

Molene weather dataset
Build a graph between stations N = 32
Graph signal: temperature recording744
SNR = 3dB layer; features1 4 • Nonlinear architecture reduces RMSE

• Regression more challenging than
classification

• times more communications4

• Needs: more data/more graph prior

Delft University of Technology

Authorship attribution

291

๏Attribute texts to an author

[©	figure	Ruiz’19-TSP]

Build a word adjacency network
N = 190 − 211

[Segarra’15-TSP]

Delft University of Technology

Authorship attribution

292

๏Attribute texts to an author

[©	figure	Ruiz’19-TSP]

Build a word adjacency network
N = 190 − 211

Graph signal: word frequency count

 texts from the author of interest∼ 1000

 from others∼ 1000

[Segarra’15-TSP]

Delft University of Technology

Authorship attribution (easier)

293

%

• EV hyperparameters () taken from the FIR

• Parameter sharing is beneficial

K, F, L

 layer, , 1 K ∈ [2,10] F ∈ {16,32,64}

Delft University of Technology

Authorship attribution (difficult)

294

• EdgeNet requires its own hypertunning

• Better for more difficult scenarios

• Subclasses of the EV can perform better depending on problem difficulty

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

13

task. The ARMANet explores the best the convolutional
prior; in accordance with the former results, the Jacobi
implementation does not need to runt until convergence to
achieve impressive results. We also conclude the convolu-
tional prior helps to reduce the degrees of freedom of the
EdgeNet but requires a deeper and/or wider network to
achieve the predefined criterion. This is particularly seen
in the GAT based architectures. The GCAT architecture, in
here, explores the convolutional prior and reduces the error
compared with the edge varying prior which is unhelpful.
Finally, we remark for all approaches a substantially lower
variance can be achieved by solely increasing the features.

6.3 Authorship attribution
In this third experiment, we assess the performance of the
different GNN architectures in an authorship attribution
problem based on real data. The goal is to classify if a text
excerpt belongs to a specific author or any other of the 20
contemporary authors based on word adjacency networks
(WANs) [44]. A WAN is an author-specific directed graph
whose nodes are function words without semantic mean-
ing (e.g., prepositions, pronouns, conjunctions). A directed
edge represents the transition probability between a pair of
function words in a text written by an author. The signal
on top of this graph is the frequency count for the function
words in text excerpts of 1, 000 words. The WANs and the
word frequency count serve as author signatures and allow
learning representation patterns in their writing style. The
task translates into a binary classification problem where
one indicates the text excerpt is written by the author of
interest and zero by any other author.

The WANs of the respective authors have from N = 190
tp N = 210 function word nodes. Following [44], we built
single-author WANS for Jane Austen, Emily Brontë, and
Edgar Allan Poe. For each author, we processed the texts
to count the number of times each function word pair co-
appears in a window of ten words. These co-appearances
are imputed into an N ⇥ N matrix and normalized row-
wise. The resulting matrix is used as the shift operator,
which can also be interpreted as a Markov chain transition
matrix. We considered a train-test split of 95% � 5% of the
available texts. Around 8.7% of the training samples are
used for validation. This division leads to: (i) Austen: 1346
training samples, 118 validation samples, and 78 testing
samples; (ii) Brontë: 1192 training samples, 104 validation
samples, 68 testing samples; (iii) Poe: 740 training samples,
64 validation samples, 42 testing samples. For each author,
the sets are extended by a similar amount with texts from
the other 20 authors shared equally between them.

Architecture parameters. We considered again the eight
GNN architectures of the former section shown in the
leftmost column of Table 3. Following the setup in [10],
all architectures comprise a graph neural layer of F = 32
features with ReLU nonlinearity followed by a fully con-
nected layer. The baseline order for all filters is K = 4.
For the ARMANet this is also the number of denominator
coefficients and the order of the direct term in (33); the
number of the Jacobi iterations in (34) is one. We want
to show how much the rational part helps to improve the
performance of the GCNN (which is the direct term in the

TABLE 3
Authorship Attribution Test Error. The results show the average
classification test error and standard deviation on 10 different

training-test 95%� 5% splits.

Architecture Austen Brontë Poe
GCNN 7.2(±2.0)% 12.9(±3.5)% 14.3(±6.4)%
Edge varying 7.1(±2.2)% 13.1(±3.9)% 10.7(±4.3)%
Node varying 7.4(±2.1)% 14.6(±4.2)% 11.7(±4.9)%
Hybrid edge var. 6.9(±2.6)% 14.0(±3.7)% 11.7(±4.8)%
ARMANet 7.9(±2.3)% 11.6(±5.0)% 10.9(±3.7)%
GAT 10.9(±4.6)% 22.1(±7.4)% 12.6(±5.5)%
GCAT 8.2(±2.9)% 13.1(±3.5)% 13.6(±5.8)%
Edge varying GAT 14.5(±5.9)% 23.7(±9.0)% 18.1(±8.4)%

ARMANet [cf. (33)]). The important nodes for the node
varying and the hybrid edge varying are 20 (⇠ 10% of N)
selected with degree centrality. The GAT, GCAT, and edge
varying GAT have a single attention head to highlight the
role of the convolutional and edge varying recursion over
it. The loss function is the cross-entropy optimized over 25
epochs with a learning rate of 0.005. The performance is
averaged over ten data splits.

Table 3 shows the results of this experiment. Overall, we
see again the graph convolution is a solid prior to learning
meaningful representations. This is particularly highlighted
in the improved performance of the GCAT for Austen and
Brontë compared with the GAT even with a single attention
head. These observations also suggest the GAT and the edge
varying GAT architectures require multi-head approaches
to achieve comparable performance. An exception is the
case of Poe. In this instance, multi-head attention is also
needed for the GAT. The (approximated) rational part of the
ARMANet gives a consistent improvement of the GCNN.
Hence, we recommend considering the additional parame-
terization of the ARMANet when implementing graph con-
volutional neural networks, since the increased number of
parameters and implementation costs are minimal. Finally,
we remark the hybrid edge varying GNN improves the
accuracy of the node varying counterpart.

6.4 Recommender Systems
In this last experiment, we evaluate all former architectures
for movie rating prediction in a subset of the MovieLens
100K data set [45]. The full data set comprises U = 943
users and I = 1, 582 movies and 100K out of ⇠1, 5M po-
tential ratings. We set the missing ratings to zero. From the
incomplete U⇥I rating matrix, we consider two scenarios: a
user-based and a movie-based. In a user-based scenario, we
considered the 200 users that have rated the most movies
as the nodes of a graph whose edges represent Pearson
similarities between any two users. Each of the I = 1, 582
movies is treated as a different graph signal whose value at
a node is the rating given to that movie by a user or zero if
unrated. We are interested to predict the rating of a specific
user u with GNNs, which corresponds to completing the
uth row of the 200 ⇥ 1, 5882 sub-rating matrix. In a movie-
based scenario, we considered the 200 movies with the
largest number of ratings as nodes of a graph whose edges
represent Pearson similarities between any two movies. In
this instance, there are 943 graph signals: the ratings each
user gives to all 200 movies is one such graph signal. We are
interested to predict the rating to a specific movie i with
GNNs, which corresponds to completing the ith column

Classification error

10 % N

 layer, , 1 F = 32 K = 4

6

1

2

3

4

5

6

7

8

[�k]21

[�k]31

[�k]41

[�k]74
[�k]51

[�k]75

[�k]76

[�k]78

Fig. 3. Hybrid Edge Varying Filter [cf. (18)]. The nodes in set I = {2, 7}
are highlighted. Nodes 2 and 7 have edge varying parameters associ-
ated with their incident edges. All nodes, including 2 and 7, also use the
global parameter ak as in a regular convolutional graph filter.

of nodes —see Figure 3. Formally, let I ⇢ V denote an
important subset of I = |I| nodes and define the shift
matrices �(k)

I such that the diagonal matrix �
(0)
I has entries

[�(0)
I]ii 6= 0 for all i 2 I and [�(k)

I]ij = 0 for all i /2 I or
(i, j) /2 E and k � 1. That is, the coefficient matrices �

(k)
I

may contain nonzero elements only at rows i that belong to
set I and with the node j being a neighbor of i. We define
hybrid filters as those of the form

A(S) =
KX

k=0

✓ kY

k0=0

�
(k0)
I + akS

k

◆
. (18)

Substituting (18) in (5) generates hybrid GNNs. In essence,
nodes i 2 I learn edge dependent parameters which may
also be different at different nodes, while nodes i /2 I learn
global parameters.

Hybrid filters are defined by a number of parameters
that depends on the total neighbors of all nodes in the
importance set I . Define then MI =

P
i2I Ni and observe

�
(0)
I has I nonzero entries since it is a diagonal matrix,

while �
(k)
I for k � 1 have respectively MI nonzero values.

We then have KMI + I parameters in the edge varying
filters and K +1 parameters in the convolutional filters. We
therefore have a total of (I +KMI +K + 1)F 2 parameters
per layer in a hybrid GNN. The implementation cost of a
hybrid GNN layer is of order O(KF 2(M + N)) since both
terms in (18) respect the graph sparsity.

Block GNNs depend on the choice of blocks B and
hybrid GNNs on the choice of the importance set I . We
explore the use of different heuristics based on centrality
and clustering measures in Section 6 where we will see that
the choice of B and I is in general problem specific.

4.2 Spectral Graph Convolutional Neural Networks
The convolutional operation of the graph filter in (15) can be
represented in the spectral domain. To do so, consider the
input-output relationship u = A(S)x along with the eigen-
vector decomposition of the shift operator S = V⇤V

�1.
Projecting the input and output signals in the eigenvector
space of S creates the so-called graph Fourier transforms
x̃ := V

�1
x and ũ := V

�1
u [37] which allow us to write

ũ :=

✓ KX

k=0

ak⇤
k
◆
x̃. (19)

Eq. (19) reveals convolutional graph filters are pointwise
in the spectral domain, due to the diagonal nature of the

eigenvalue matrix ⇤. We can, therefore, define the filter’s
spectral response a : R ! R as the function

a(�) =
KX

k=0

ak�
k (20)

which is a single-variable polynomial characterizing the
graph filter A(S). If we allow for filters of order K = N�1,
there is always a set of parameters ak such that a(�i) = ãi
for any set of spectral response ãi [25]. Thus, training
over the set of spectral coefficients a(�1), . . . , a(�N) is
equivalent to training over the space of (nodal) parameters
a0, . . . , aN�1. GCNNs were first introduced in [8] using the
spectral representation of graph filters in (20).

By using edge varying graph filters [cf. (5)], we can pro-
pose an alternative parameterization of the space of filters of
order N which we will see may have some advantages. To
explain this better let J be the index set defining the zero
entries of S + IN and let CJ 2 {0, 1}|J |⇥N2

be a binary
selection matrix whose rows are those of IN2 indexed by J .
Let also B be a basis matrix that spans the null space of

CJ vec(V�1
⇤V) (21)

where vec(·) is the column-wise vectorization operator and
“⇤” is the Khatri-Rao product. Then, the following proposi-
tion from [32] quantifies the spectral response of a particular
class of the edge varying graph filter in (5).

Proposition 2. Consider the subclass of the edge varying graph
filters in (5) where the parameter matrices

⇥
�

(0) + �
(1)⇤ and

�
(k) for all k = 2, . . . ,K are restricted to the ones that share

the eigenvectors with S, i.e.,
⇥
�

(0) + �
(1)⇤ = V⇤

(1)
V

�1 and
�

(k) = V⇤
(k)

V
�1 for all k = 2, . . . ,K . The spectral response

of this subclass of edge varying filter has the form

a(⇤) =
KX

k=1

✓ kY

k0=1

⇤
(k0)

◆
=

KX

k=1

kY

k0=1

diag
⇣
Bµ(k0)

⌘
(22)

where B is an N ⇥ b basis kernel matrix that spans the null
space of (21) and µ(k) is a b⇥ 1 vector containing the expansion
coefficients of ⇤(k) into B.

Proof. See Appendix B.

Proposition 2 provides a subclass of the edge varying
graph filters where, instead of learning K(M + N) + N
parameters, they learn the Kb entries µ(1), . . . ,µ(K) in
(22). These filters build the output features as a pointwise
multiplication between the filter spectral response a(⇤) and
the input spectral transform x̃ = V

�1
x, i.e., u = Va(⇤)x̃ =

Va(⇤)V�1
x. Following then the analogies with conven-

tional signal processing, (22) represents the spectral re-
sponse of a convolutional edge varying graph filter. Spectral
GCNNs are a particular case of (22) with order K = 1 and
kernel B independent from the graph (e.g., a spline kernel).
Besides generalizing [8], a graph-dependent kernel allows to
implement (22) in the vertex domain through an edge vary-
ing filter of the form (5); hence, having a complexity of order
O(K(M +N)) in contrast to O(N2) required for the graph-
independent kernels [8]. The edge varying implementation
captures also local detail up to a region of radius K from
a node; yet, having a spectral interpretation. Nevertheless,

Delft University of Technology

Authorship attribution (explain)

295

๏ Explain GNNs with EdgeNets
x1

1 = σ(Φx0
1)✦ One layer EdgeNet with order K = 1

✦ Training the EdgeNet = learning graph weights

Delft University of Technology

Authorship attribution (explain)

296

๏ Explain GNNs with EdgeNets
x1

1 = σ(Φx0
1)✦ One layer EdgeNet with order K = 1

✦ Training the EdgeNet = learning graph weights
• removed small weight edges = accuracy drop < 5 %
• identifies most relevant function words per author

Delft University of Technology

Authorship attribution (explain)

297

๏ Explain GNNs with EdgeNets

Abbott James Jewett Melvile

x1
1 = σ(Φx0

1)✦ One layer EdgeNet with order K = 1
✦ Training the EdgeNet = learning graph weights

• removed small weight edges = accuracy drop < 5 %
• identifies most relevant function words per author

• identify an author from words3

Delft University of Technology

Authorship attribution (explain)

298

๏ Explain GNNs with EdgeNets

Abbott James Jewett Melvile

x1
1 = σ(Φx0

1)✦ One layer EdgeNet with order K = 1
✦ Training the EdgeNet = learning graph weights

• removed small weight edges = accuracy drop < 5 %
• identifies most relevant function words per author

• identify an author from words3

Delft University of Technology

Authorship attribution (explain)

299

๏ Explain GNNs with EdgeNets

Abbott James Jewett Melvile

x1
1 = σ(Φx0

1)✦ One layer EdgeNet with order K = 1
✦ Training the EdgeNet = learning graph weights

• removed small weight edges = accuracy drop < 5 %
• identifies most relevant function words per author

• identify an author from words3

Delft University of Technology

Authorship attribution

300

๏ Identifying author gender from texts
✦ No NLP: shallow and fast training, no pretraining/corpus

✦ Graphs + signals from female and male authors in train - test

Delft University of Technology

Authorship attribution

301

๏ Identifying author gender from texts
✦ No NLP: shallow and fast training, no pretraining/corpus

✦ Graphs + signals from female and male authors in train - test

EdgeNet GCNN EV-GCNN

Mean 8.6% 10.1% 7.8%

Std 6x10-3 6x10-3 5x10^-3

 layer architectures, 1 F = 64
Sparse WANs help classification

Classification error

Sparse EV shift operator + GCNN

Delft University of Technology

Recommender systems

302

 Movielens dataset ; 100K U = 943 I = 1,582
Build a similarity graph (principle of collaborative filter)

Item 1 Item 2 Item 3 … Item I

User 1 5 1 ? … 2

User 2 ? ? 3 … 3

User 3 4 ? 4 … ?

… … … … … …

User U ? 4 3 … 1

๏ Fill missing entries in a user-item matrix

Delft University of Technology

Recommender systems

303

 Movielens dataset ; 100K U = 943 I = 1,582
Build a similarity graph (principle of collaborative filter)

user similarity graph

nodes : users

edges : Pearson/cosine similarity

between pairs of users

Item 1 Item 2 Item 3 … Item I

User 1 5 1 ? … 2

User 2 ? ? 3 … 3

User 3 4 ? 4 … ?

… … … … … …

User U ? 4 3 … 1

๏ Fill missing entries in a user-item matrix

Delft University of Technology

Recommender systems

304

 Movielens dataset ; 100K U = 943 I = 1,582
Build a similarity graph (principle of collaborative filter)

user similarity graph

nodes : users

edges : Pearson/cosine similarity

between pairs of users

item similarity graph

nodes : items

edges : Pearson/cosine similarity

between pairs of items

Item 1 Item 2 Item 3 … Item I

User 1 5 1 ? … 2

User 2 ? ? 3 … 3

User 3 4 ? 4 … ?

… … … … … …

User U ? 4 3 … 1

๏ Fill missing entries in a user-item matrix

Delft University of Technology

Recommender systems

305

Item	1

Item	2
Item	i

Item	200
Item	j

Item	k

?

?

?

?

5

3
1

๏ Here item similarity graph

 most rated itemsN = 200
subset of user ratings

to build the graph

Graph signal : rating of user to all itemsu
• interpolation problem on graphs

Item 1 Item 2 Item 3 … Item I

User 1 5 1 ? … 2

User 2 ? ? 3 … 3

User 3 4 ? 4 … ?

… … … … … …

User U ? 4 3 … 1

Delft University of Technology

Recommender systems

306

Item	1

Item	2
Item	i

Item	200
Item	j

Item	k

?

?

?

?

5

3
1

๏ Here item similarity graph

 most rated itemsN = 200
subset of user ratings

to build the graph

Graph signal : rating of user to all itemsu

Goal: find rating all users give to item (fii column of matrix)i ith
• interpolation problem on graphs

Item 1 Item 2 Item 3 … Item I

User 1 5 1 ? … 2

User 2 ? ? 3 … 3

User 3 4 ? 4 … ?

… … … … … …

User U ? 4 3 … 1

Delft University of Technology

Recommender systems

307

๏ Use locality of the filters to build a GNN specific to item I

Graph	signal	rating
x = [x1, . . . , xI]

>
<latexit sha1_base64="O3jbVGty3OUtZDrjrCxNoNXQKz4=">AAACDXicbVDLSsNAFJ34rPVVdelmsAouSklU0I0guNFdBfuAJobJZNIOTjJh5kZaQn/Ajb/ixoUibt2782+ctF34OnDhcM693HtPkAquwbY/rZnZufmFxdJSeXlldW29srHZ0jJTlDWpFFJ1AqKZ4AlrAgfBOqliJA4Eawe354XfvmNKc5lcwzBlXkx6CY84JWAkv7LrxgT6QZQPRvgUdwe+U8OuCCXoGh74l96NCzL1K1W7bo+B/xJnSqpoioZf+XBDSbOYJUAF0brr2Cl4OVHAqWCjsptplhJ6S3qsa2hCYqa9fPzNCO8ZJcSRVKYSwGP1+0ROYq2HcWA6i9v1b68Q//O6GUQnXs6TNAOW0MmiKBMYJC6iwSFXjIIYGkKo4uZWTPtEEQomwLIJwfn98l/SOqg7h/WDq6PqWW0aRwltox20jxx0jM7QBWqgJqLoHj2iZ/RiPVhP1qv1NmmdsaYzW+gHrPcv7O2aww==</latexit>

�(·)
<latexit sha1_base64="T2QtVAjuL2mAqcHMmVA3SQyCjEE=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69BItQLyWpguKp4MVjBVsLTSibzaZduh9xd1Mopb/DiwdFvPpjvPlv3LY5aOuDgcd7M8zMi1JGtfG8b6ewtr6xuVXcLu3s7u0flA+P2lpmCpMWlkyqToQ0YVSQlqGGkU6qCOIRI4/R8HbmP46I0lSKBzNOSchRX9CEYmSsFAaa9jmqBjiW5rxXrng1bw53lfg5qUCOZq/8FcQSZ5wIgxnSuut7qQknSBmKGZmWgkyTFOEh6pOupQJxosPJ/Oipe2aV2E2ksiWMO1d/T0wQ13rMI9vJkRnoZW8m/ud1M5NchxMq0swQgReLkoy5RrqzBNyYKoING1uCsKL2VhcPkELY2JxKNgR/+eVV0q7X/Ita/f6y0rjJ4yjCCZxCFXy4ggbcQRNagOEJnuEV3pyR8+K8Ox+L1oKTzxzDHzifP0HZkbw=</latexit>

Item	i

1
2
345

Delft University of Technology

Recommender systems

308

๏ Use locality of the filters to build a GNN specific to item I

Graph	signal	rating
x = [x1, . . . , xI]

>
<latexit sha1_base64="O3jbVGty3OUtZDrjrCxNoNXQKz4=">AAACDXicbVDLSsNAFJ34rPVVdelmsAouSklU0I0guNFdBfuAJobJZNIOTjJh5kZaQn/Ajb/ixoUibt2782+ctF34OnDhcM693HtPkAquwbY/rZnZufmFxdJSeXlldW29srHZ0jJTlDWpFFJ1AqKZ4AlrAgfBOqliJA4Eawe354XfvmNKc5lcwzBlXkx6CY84JWAkv7LrxgT6QZQPRvgUdwe+U8OuCCXoGh74l96NCzL1K1W7bo+B/xJnSqpoioZf+XBDSbOYJUAF0brr2Cl4OVHAqWCjsptplhJ6S3qsa2hCYqa9fPzNCO8ZJcSRVKYSwGP1+0ROYq2HcWA6i9v1b68Q//O6GUQnXs6TNAOW0MmiKBMYJC6iwSFXjIIYGkKo4uZWTPtEEQomwLIJwfn98l/SOqg7h/WDq6PqWW0aRwltox20jxx0jM7QBWqgJqLoHj2iZ/RiPVhP1qv1NmmdsaYzW+gHrPcv7O2aww==</latexit>

�(·)
<latexit sha1_base64="T2QtVAjuL2mAqcHMmVA3SQyCjEE=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69BItQLyWpguKp4MVjBVsLTSibzaZduh9xd1Mopb/DiwdFvPpjvPlv3LY5aOuDgcd7M8zMi1JGtfG8b6ewtr6xuVXcLu3s7u0flA+P2lpmCpMWlkyqToQ0YVSQlqGGkU6qCOIRI4/R8HbmP46I0lSKBzNOSchRX9CEYmSsFAaa9jmqBjiW5rxXrng1bw53lfg5qUCOZq/8FcQSZ5wIgxnSuut7qQknSBmKGZmWgkyTFOEh6pOupQJxosPJ/Oipe2aV2E2ksiWMO1d/T0wQ13rMI9vJkRnoZW8m/ud1M5NchxMq0swQgReLkoy5RrqzBNyYKoING1uCsKL2VhcPkELY2JxKNgR/+eVV0q7X/Ita/f6y0rjJ4yjCCZxCFXy4ggbcQRNagOEJnuEV3pyR8+K8Ox+L1oKTzxzDHzifP0HZkbw=</latexit>

Item	i

1
2
345

14

TABLE 4
Average RMSE on user graph.

Archit./User-ID 405 655 13 450 276 Average
GCNN 1.09 0.72 1.18 0.82 0.66 0.89
Edge var. 1.25 0.74 1.34 0.99 0.70 1.00
Node var. 1.17 0.68 1.19 0.83 0.67 0.91
Hybrid edge var. 1.10 0.72 1.27 0.80 0.60 0.90
ARMANet 1.13 0.69 1.24 0.80 0.65 0.90
GAT 1.27 0.74 1.44 0.92 0.80 1.03
GCAT 1.09 0.71 1.12 0.77 0.65 0.87
Edge var. GAT 1.19 0.70 1.31 0.85 0.75 0.96

of the rating matrix. We remark this task is permutation
equivariant, therefore, we expect architectures holding this
property to perform better.

Architecture parameters. We considered the same architec-
tural settings as in the authorship attribution experiments
to highlight consistent behaviors and differences. Following
[46], we chose ten 90% � 10% splits for training and test
sets and pruned the graphs to keep only the top-40 most
similar connections per node. The shift operator is again the
adjacency matrix normalized by the maximum eigenvalue.
The ADAM learning algorithm is run over 40 epochs in
batches of five and learning rate 5 ⇥ 10�3. We trained the
networks on a smooth-`1 loss and measure the accuracy
through the root mean squared error (RMSE).

Tables 4 and 5 show the results for the five users and
five movies with the largest number of ratings, respectively.
The first thing to note is that GCAT consistently improves
GAT. The latter further stresses that multi-head attentions
are more needed in the GAT than in the GCAT. Second, the
edge varying GNN yields the worst performance because
it is not a permutation equivariant architecture. In fact,
the node varying and the hybrid edge varying, which are
approaches in-between permutation equivariance and local
detail, work much better. This trend is observed also in the
edge varying GAT results, suggesting that also the number
of parameters in the edge varying is too high for this task.

7 CONCLUSION
This paper introduced EdgeNets: GNN architectures that
allow each node to collect information from its direct neigh-
bors and apply different weights to each of them. EdgeNets
preserve the state-of-the-art implementation complexity and
provide a single recursion that encompasses all state-of-
the-art architectures. By showcasing how each solution is a
particular instance of the EdgeNet, we provided guidelines
to develop more expressive GNN architectures, yet without
compromising the computational complexity. This paper, in
specific, proposed eight GNN architectures that can be read-
ily extended to scenarios containing multi-edge features.

The EdgeNet link showed a tight connection between
the graph convolutional and graph attention mechanism,
which have been so far treated as two separate approaches.
We found the graph attention network learns the weight of
a graph and then performs an order one convolution over
this learned graph. Following this link, we introduced the
concept of graph convolutional attention networks, which
is an EdgeNet that jointly learns the edge weights and the
parameters of a convolutional filter.

We advocate the EdgeNet as a more formal way to
build GNN solutions. However, further research is needed

TABLE 5
Average RMSE on movie graph.

Archit./Movie-ID 50 258 100 181 294 Average
GCNN 0.82 1.08 0.95 0.86 1.04 0.95
Edge var. 0.93 1.03 1.00 0.88 1.24 1.02
Node var. 0.78 1.04 1.00 0.87 1.00 0.94
Hybrid edge var. 0.75 1.02 0.98 0.82 1.08 0.93
ARMANet 0.81 1.05 1.02 0.87 1.09 0.97
GAT 0.98 1.24 1.28 1.00 1.30 1.16
GCAT 0.83 1.06 1.04 0.83 1.05 0.96
Edge var. GAT 0.81 1.04 1.01 0.86 1.07 0.96

in three main directions. First, research should be done to
explore the connection between the EdgeNets and receptive
fields. This will lead to different parameterizations and ar-
chitectures. Second, work needs to be done to assess the Ed-
geNet trade-offs in semi-supervised and graph classification
scenarios. Third, theoretical work is needed to characterize
how different EdgeNet parameterizations transfer to unseen
graphs.

APPENDIX A
PROOF OF PROPOSITION 1
Denote the respective graph shift operator matrices of the
graphs G and G

0 as S and S
0. For P being a permutation

matrix, S
0 and x

0 can be written as S
0 = P

T
SP and

x
0 = P

T
x. Then, the output of the convolutional filter in

(15) applied to x
0 is

u
0 =

KX

k=0

akS
0k
x
0 =

KX

k=0

ak
�
P

T
SP
�k
P

T
x. (47)

By using the properties of the permutation matrix P
k = P

and PP
T = IN , the output u0 becomes

u
0 = P

T

KX

k=0

akS
k
x

!

= P
T
u (48)

which implies the filter output operating on the permuted
graph G

0 with input x
0 is simply the permutation of the

convolutional filter in (15) applied to x. Subsequently, since
the nonlinearities of each layer are pointwise they implicitly
preserve permutation equivariance; hence, the output of a
GCNN layer is a permuted likewise. These permutations
will propagate in the cascade of the different layers yielding
the final permuted output.

APPENDIX B
PROOF OF PROPOSITION 2
To start, let �̌

(1)
= �

(0) +�
(1) and �̌

(k)
= �

(k) for all k =
2, . . . ,K be the transformed coefficient matrices. Recall also
that �(0) is a diagonal matrix; thus, �̌

(1)
shares the support

with �
(1) and with S + IN . Given the eigendecompostion

of the transformed coefficient matrices �̌
(k)

= V⇤
(k)

V
�1

for all k = 1, . . . ,K , the edge varying filter can be written
in the graph spectral domain as

a(⇤) =
KX

k=1

✓ kY

k0=1

⇤
(k0)
◆
. (49)

Subsequently, recall that J is the index set defining the
zero entries of S + IN and that CJ 2 {0, 1}|I|⇥N2

is the

Frame as signal classification problem per node layer, features1 32
EdgeNet suffers in general -requires parameterization

Delft University of Technology 309

๏ Graph filter are the building block of graph neural network (GNN)

✦ Incorporate effectively the graph signal - graph topology into learning

✦ Serve as a prior to reduce parameters and complexity

✦ Graph convolutions through graph filters

part 4 :: conclusions

Delft University of Technology 310

๏ Graph filter are the building block of graph neural network (GNN)

✦ Incorporate effectively the graph signal - graph topology into learning

✦ Serve as a prior to reduce parameters and complexity

✦ Graph convolutions through graph filters

๏Different filter = different graph neural networks

✦ FIR = GCNNs

✦ ARMA = ARMANets

✦ Edge varying = EdgeNets

part 4 :: conclusions

Delft University of Technology 311

๏EdgeNets provide the broadest GNN family

✦ Particularize to all the others including GINs and GATs

✦ Help explainability

part 4 :: conclusions

Delft University of Technology 312

๏EdgeNets provide the broadest GNN family

✦ Particularize to all the others including GINs and GATs

✦ Help explainability

๏Applications in signal classification & regression

✦ Authorship attribution

✦Recommender systems

part 4 :: conclusions

Delft University of Technology

GNN - next challenges

313

๏ More graph prior instead of more data

Delft University of Technology

GNN - next challenges

314

๏ More graph prior instead of more data

๏ Explainability

✦ What topological information is more relevant?

✦ What spectral information is more relevant?

✦ EdgeNet can be a strong tool in this regard

Delft University of Technology

GNN - next challenges

315

๏ More graph prior instead of more data

๏ Explainability

✦ What topological information is more relevant?

✦ What spectral information is more relevant?

✦ EdgeNet can be a strong tool in this regard

๏ Robustness/Transferability

✦ To topological perturbations

✦ To input perturbations

Delft University of Technology

GNN - next challenges

316

๏ More graph prior instead of more data

๏ Explainability

✦ What topological information is more relevant?

✦ What spectral information is more relevant?

✦ EdgeNet can be a strong tool in this regard

๏ Robustness/Transferability

✦ To topological perturbations

✦ To input perturbations

๏ Distributed learning

✦ Graph filters are distributable

Delft University of Technology

Conclusions

317

๏ Graph filtering for denoising, interpolation, distributed optimization, GNNs

✦ FIR graph filters

✦ IIR - ARMA graph filters

๏ Extensions of FIR filters (can be used for IIR as well)

๏ Edge-variant graph filters generalize classical graph filters

✦ reduction in communication and computation complexity

๏ Easy design using least squares

๏ Applications

✦ Design of low-order graph filters

✦ Distributed optimization solutions

✦ Graphical neural network implementations

Delft University of Technology

Questions?

318

Thank you{ g.j.t.leus; e.isufi-1; m.a.coutinominguez } @tudelft.nl

Delft University of Technology

References

319

Start with graph signal processing
• Ortega et al., Graph signal processing: Overview, challenges, and applications, Proceedings of the IEEE, 2018.
• Shuman et al., The emerging field of signal processing on graphs: Extending high-dimensional data analysis to

networks and other irregular domains, IEEE Signal Processing Magazine, 2013.
• Sandryhaila and Moura, Discrete signal processing on graphs, IEEE Transactions on Signal Processing, 2013.
• Sandryhaila and Moura, Discrete signal processing on graphs: Frequency analysis, IEEE Transactions on sSignal

Processing, 2014.

Distributed aspects of graph filters
• Shuman et al., Chebyshev polynomial approximation for distributed signal processing, International Conference on

Distributed Computing in Sensor Systems and Workshops, 2011.
• Sandryhaila et al, Finite-time distributed consensus through graph filters, IEEE International Conference on

Acoustic, Speech and Signal Processing, 2014.
• Loukas et al., Distributed autoregressive moving average graph filters, IEEE Signal Processing Letters, 2015.
• Shi et al., Infinite impulse response graph filters in wireless sensor networks, IEEE Signal Processing Letters, 2015.
• Segarra et al., Center-weighted median graph filters, IEEE Global Conference on Signal and Information

Processing, 2016.
•

Delft University of Technology

References

320

• Isufi et al., Autoregressive moving average graph filters, IEEE Transactions on Signal Processing, 2017.
• Isufi et al., Autoregressive moving average graph filters – A stable distributed implementation, IEEE International

Conference on Acoustic, Speech and Signal Processing, 2017.
• Isufi et al., Distributed sparsified graph filters for denoising and diffusion tasks, IEEE International Conference on

Acoustic, Speech and Signal Processing, 2017.
• Segarra et al., Optimal grap-filter design and applications to distributed linear network operators, IEEE Transactions

on Signal Processing, 2017.
• Coutino et al., Distributed edge-variant graph filters, IEEE International Workshop on Computational Advances in

Multi-Sensor Adaptive Processing, 2017.
• Chamon and Ribeiro, Finite-precision effects on graph filters, IEEE Global Conference on Signal Processing, 2017.
• Liu et al., Filter design for autoregressive moving average graph filters, IEEE Transaction on Signal and Information

Processing over Networks, 2018.
• Isufi et al., Distributed Wiener-based reconstruction of graph signals, IEEE Statistical Signal Processing Workshop,

2018.
• Coutino et al., On the limits of finite-time distributed consensus through successive local linear operations, Asilomar

Conference on Signals, Systems, and Computers, 2018.
• Coutino et al., Advances in distributed graph filtering, IEEE Transactions on Signal Processing, 2019.
• Ben Saad et al., Quantization analysis and robust design for distributed graph filters, IEEE Transactions on Signal

Processing, 2019.
•

Delft University of Technology

References

321

Start with graph neural networks
• Bronstein et al, Geometric deep learning: going beyond Euclidean data, IEEE Signal Processing Magazine, 2017.
• Wu et al, A comprehensive survey on graph neural networks, IEEE Transactions on Neural Networks and Learning

Systems, 2020.
• Gama et al, Graphs, Convolutions, and Neural Networks, submitted to IEEE Signal Processing Magazine, 2020,

arXiv: 2003.03777

Graph filters in graph neural networks
• Bruna et al., Spectral networks and locally connected networks on graphs, arXiv:1312.6203.
• Defferrard et al. Convolutional neural networks on graphs with fast localized spectral filtering, Conference on Neural

Information Processing Systems, 2016.
• Kipf and Welling, Semi-supervised classification with graph convolutional neural networks, International Conference

on Learning Representations, 2016.
• Velickovic et al, Graph attention networks, International Conference on Learning Representations, 2018.
• Levie et al., Cayleynets: Graph convolutional neural networks with complex rational spectral filters, IEEE

Transactions on Signal Processing, 2018.
• Gama et al., Convolutional neural network architectures for signals supported on graphs, IEEE Transactions on

Signal Processing, 2018.
• Gama et al., Convolutional neural networks via node-varying graph filters, IEEE Data Science Workshop, 2018.

Delft University of Technology

References

322

• Bianchi et al., Graph neural networks with convolutional ARMA filters, arXiv: 1901.01343, 2019.
• Wijesinghe et al., DFNets: Spectral CNNs for graphs with feedback-looped filters, Conference on Neural Information
Processing Systems, 2019.

• Ruiz et al., Invariance-preserving localized activation functions for graph neural networks, IEEE Transactions on
Signal Processing, 2019.

• Isufi et al., Generalizing graph convolutional neural networks with edge-variant recursions on graphs, European
Signal Processing Conference, 2019.

• Isufi et al., EdgeNets: Edge varying graph neural networks, arXiv: 2001.07620, 2020.
• Iancu and Isufi, Towards finite-time consensus with graph convolutional neural networks, submitted to European
Signal Processing Conference 2020.

• Iancu et al., Distributed Localized Nonlinearities For Graph Neural Networks, submitted to IEEE International
Workshop on Machine Learning for Signal Processing, 2020.

Robustness of graph filters and graph neural networks
• Isufi et al., Stochastic graph filtering on time-varying graphs, IEEE International Workshop on Computational
Advances in Multi-Sensor Adaptive Processing, 2015.

• Isufi et al., Filtering random graph processes over random time-varying graphs, IEEE Transactions on Signal
Processing, 2017.

• Levie et al., On the transferability of spectral graph filters, International Conference on Sampling Theory and
Applications, 2019.

•

Delft University of Technology

References

323

• Gama et al., Stability properties of graph neural networks, arXiv:1905.04497, 2020.
• Gao et al., Stochastic graph neural networks, IEEE International Conference on Acoustic, Speech and Signal
Processing, 2020.

• Ioannidis et al., Edge Dithering for Robust Adaptive Graph Convolutional Networks, arXiv:1910.09590, 2020

Other applications of graph filters
• Hammond et al., Wavelets on graphs via spectral graph theory, Applied and Computational Harmonic Analysis, 2011.
• Girault et al., Semi-supervised learning for graph to signal mapping: A graph signal Wiener filter interpretation, IEEE
International Conference on Acoustic, Speech and Signal Processing, 2014.

• Eglimez and Ortega, Spectral anomaly detection using graph-based filtering for wireless sensor networks, IEEE
International Conference on Acoustic, Speech and Signal Processing, 2014.

• Tremblay et al., Compressive spectral clustering, International Conference on Machine Learning, 2016.
• Isufi et al., 2-Dimensional finite impulse response graph-temporal filters, IEEE Global Conference on Signal and
Information Processing, 2016.

• Marques et al., Stationary graph processes and spectral estimation, IEEE Transactions on Signal Processing, 2017.
• Ioannidis et al., Graph Neural Networks for Predicting Protein Functions, IEEE International Workshop on
Computational Advances in Multi-Sensor Adaptive Processing, 2017.

• Berberidis et al., Adaptive Diffusions for Scalable Learning over Graphs, IEEE Transactions on Signal Processing,
2018.

• Huang et al., Rating prediction via graph signal processing, IEEE Transactions on Signal Processing, 2018.

javascript:void(0)
javascript:void(0)
javascript:void(0)

Delft University of Technology

References

324

Other referred papers
• Segarra et al., Authorship attribution through function word adjacency networks, IEEE Transactions on Signal

Processing, 2015.

• Isufi et al., Forecasting time series with VARMA recursions on graphs, IEEE Transactions on Signal Processing, 2019.
• Sun et al., A graph signal processing framework for atrial activity extraction, European Signal Processing Conference,
2019.

• Nikolakopoulos et al., Personalized Diffusions for Top-N Recommendation, International Conference on Recommender
Systems , 2019

• Sun et al., Graph-time spectral analysis for atrial fibrillation, Biomedical Signal Processing and Control, 2020.

Graph topology inference
• Segarra et al., Network topology inference from spectral templates, IEEE Transactions on Signal and Information

Processing over Networks, 2017.
• Giannakis et al., Topology identification and learning over graphs: Accounting for nonlinearities and dynamics,

Proceedings of the IEEE, 2018

• Mateos et al., Connecting the dots: Identifying network structure via graph signal processing, IEEE Signal

Processing Magazine, 2019
• Coutino et al., State-space network topology identification from partial observations, IEEE Transactions on Signal

and Information Processing over Networks, 2020.

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

