

Graph Filters

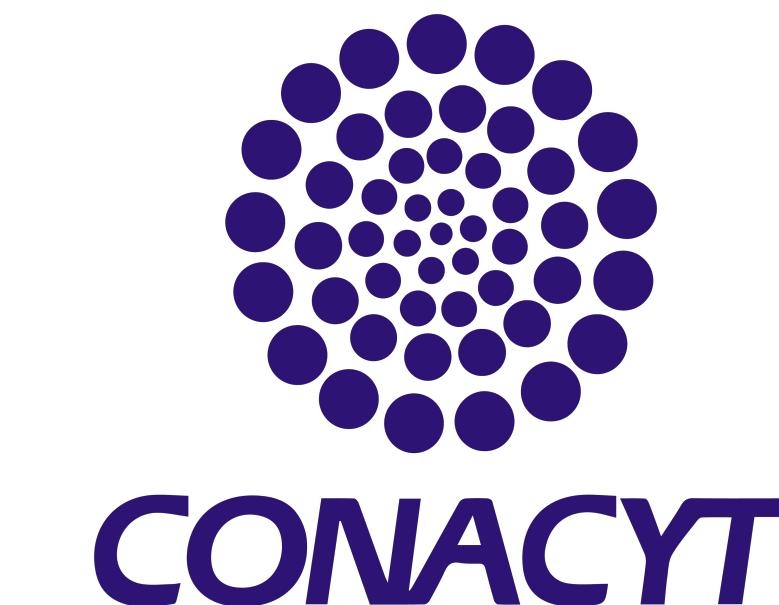
with applications to
Distributed Optimization
and **Neural Networks**

Geert Leus, Elvin Isufi, Mario Coutino

{ g.j.t.leus; e.isufi-1; m.a.coutinominguez } @tudelft.nl

Acknowledgements

- Sundeep Chepuri (IISc)
- Paolo Di Lorenzo (Sapienza)
- Fernando Gamma (UPenn)
- Bianca Iancu (TU Delft)
- Jiani Liu (TU Delft)
- Andreas Loukas (EPFL)
- Antonio Marques (URJC)
- Matthew Morency (TU Delft)
- Alberto Natali (TU Delft)
- Alejandro Ribeiro (UPenn)
- Santiago Segarra (Rice)
- Andrea Simonetto (IBM)
- Tomas Sipco (TU Delft)



Tutorial break down

VIDEO 1:

○ Part I Graph Signal Processing and Graph Filters

- Introduction to GSP
- Graph filters, applications, design and implementation aspects

○ Part II Graph Filters for Distributed Optimization 1

- Motivation and general concept
- Applications and clarifying examples

Tutorial break down

VIDEO 1:

○ Part I Graph Signal Processing and Graph Filters

- Introduction to GSP
- Graph filters, applications, design and implementation aspects

○ Part II Graph Filters for Distributed Optimization 1

- Motivation and general concept
- Applications and clarifying examples

VIDEO 2:

○ Part III Graph Filters for Distributed Optimization 2

- Asynchronous implementation
- Cascaded implementation

○ Part IV Graph Filters for Neural Networks

- Motivation and general concept
- Applications and clarifying examples

part 1

graph signal processing

and graph filters

part 1 :: overview

○ Introduction to graph signal processing

- Motivation
- Mathematical formulation
- Graph Fourier transform
- Time-domain as a graph

part 1 :: overview

○ Introduction to graph signal processing

- Motivation
- Mathematical formulation
- Graph Fourier transform
- Time-domain as a graph

○ Graph filters

- Definition and motivating applications
- Design and implementation
- FIR graph filters
- ARMA graph filters

part 1 :: overview

○ Introduction to graph signal processing

- Motivation
- Mathematical formulation
- Graph Fourier transform
- Time-domain as a graph

○ Graph filters

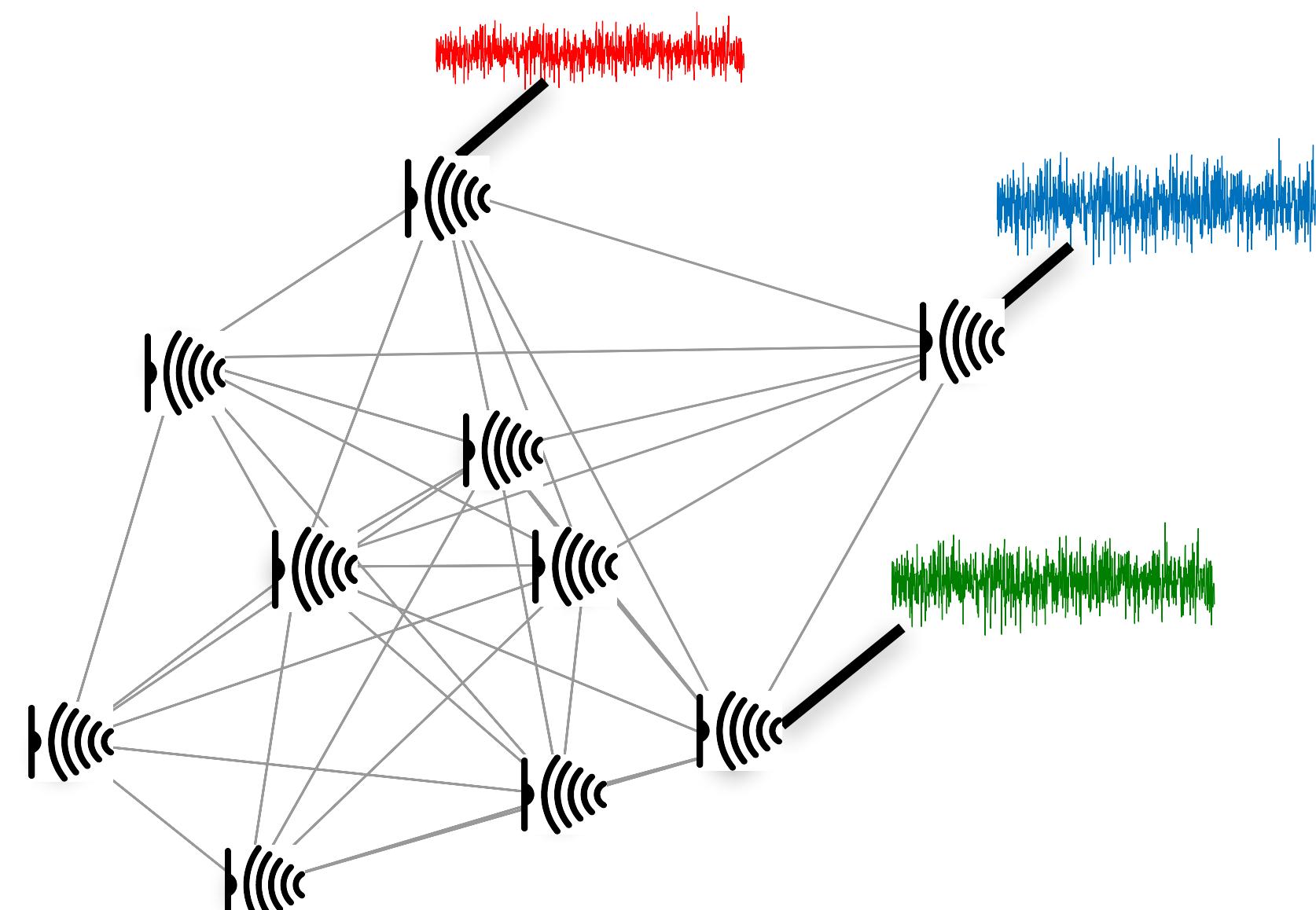
- Definition and motivating applications
- Design and implementation
- FIR graph filters
- ARMA graph filters

○ Advanced graph filters (focus on FIR filters)

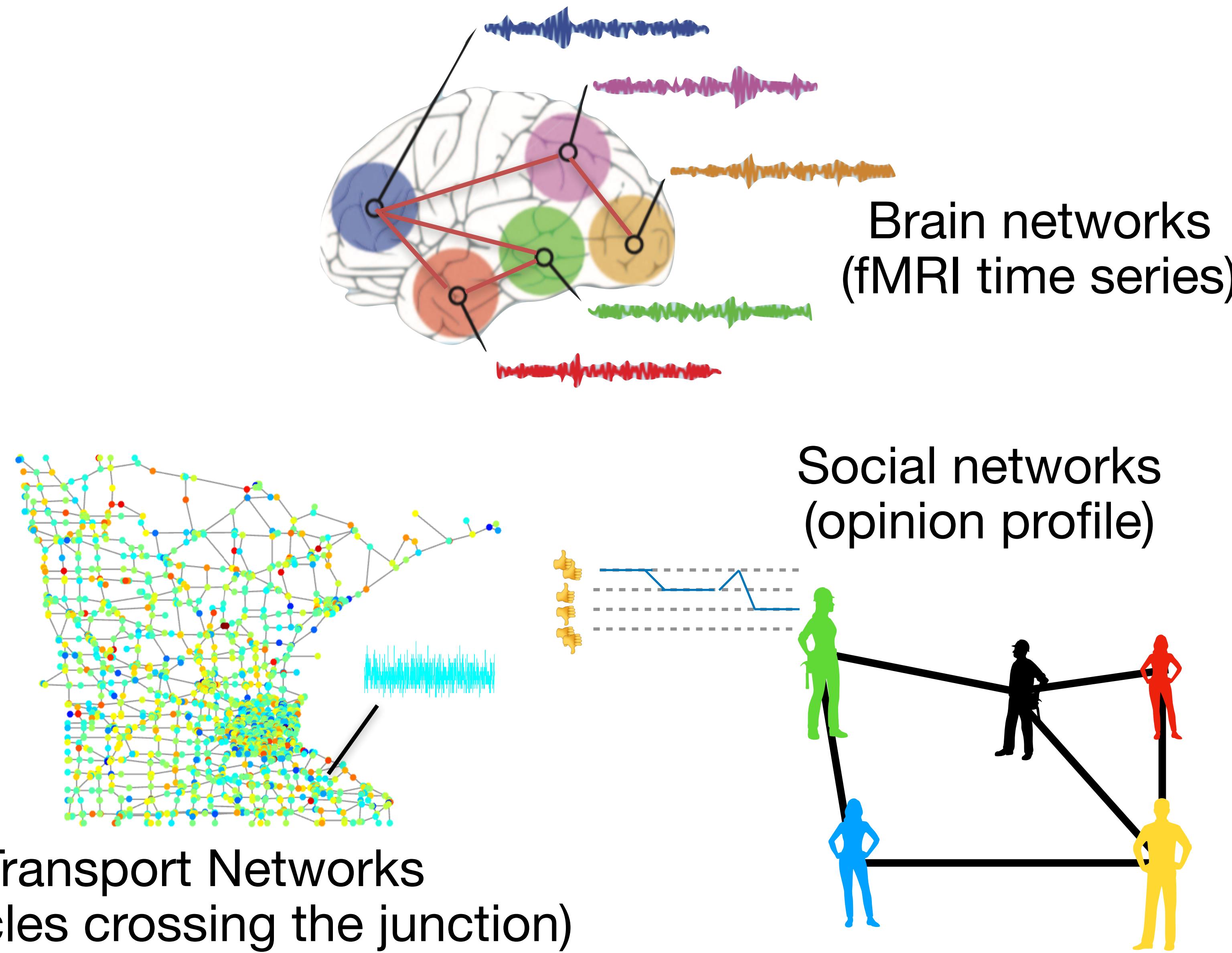
- Node-varying graph filters
- Edge-varying graph filters

Signals on graphs?

Motivation



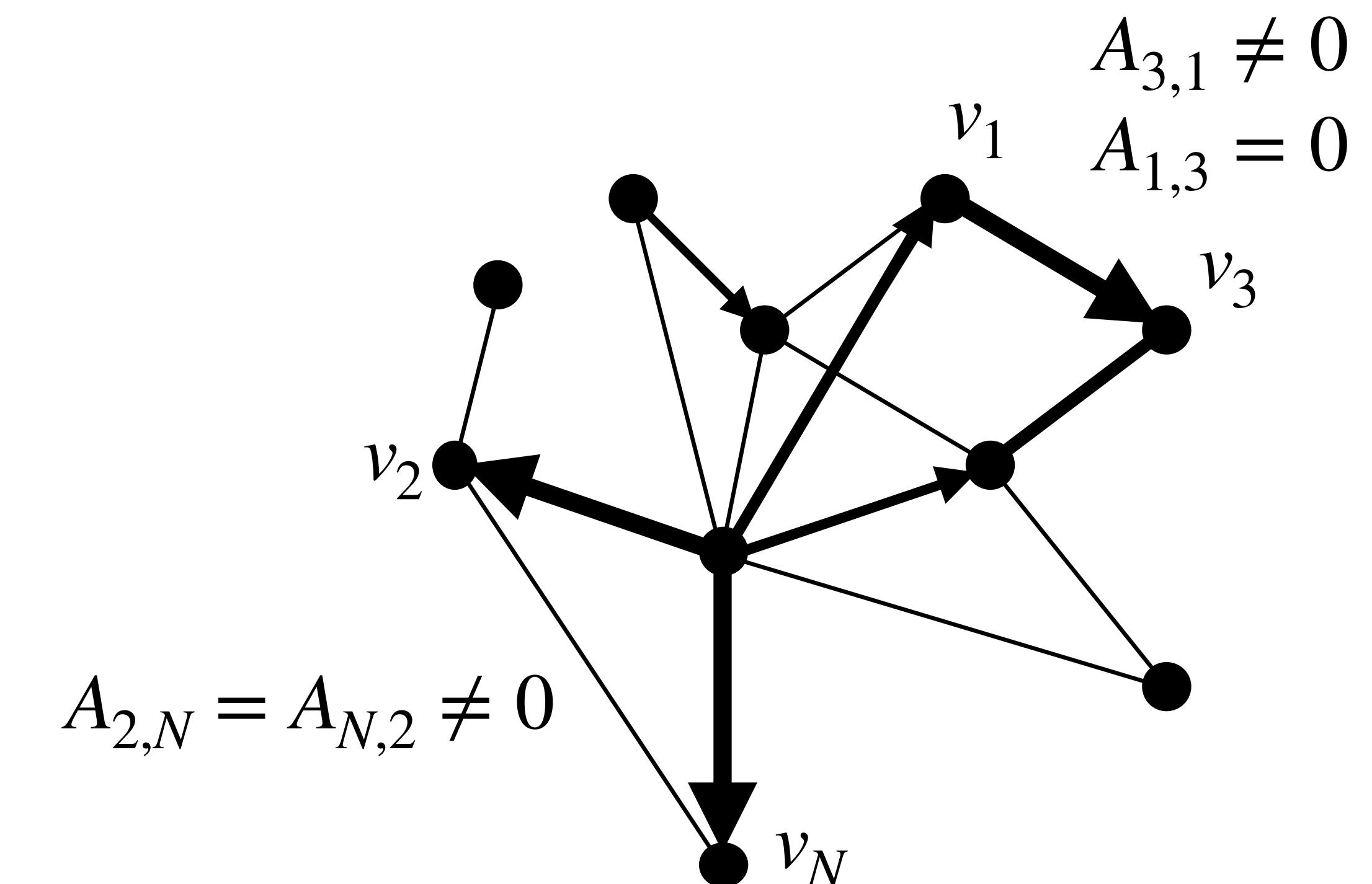
Sensor networks
(temperatures)



Signal processing on graphs

Datasets with **irregular support** can be represented using a graph

- Graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- \mathcal{V} is set of nodes $|\mathcal{V}| = N$
- \mathcal{E} is the set of edges $|\mathcal{E}| = M$
- $\mathbf{A} \in \mathbb{R}_+^{N \times N}$ is the adjacency matrix

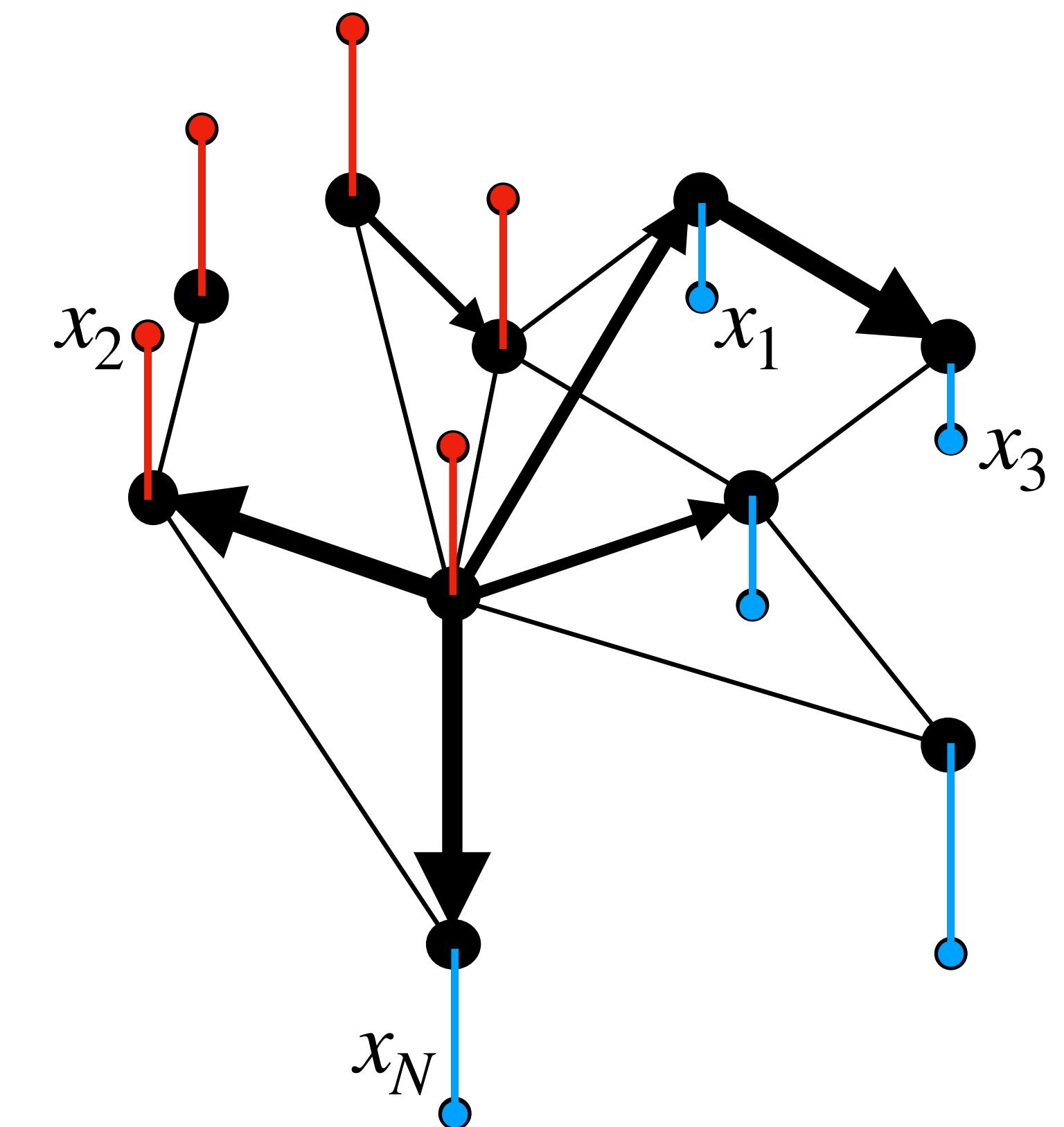


Signal processing on graphs

Datasets with **irregular support** can be represented using a graph

- Graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- \mathcal{V} is set of nodes $|\mathcal{V}| = N$
- \mathcal{E} is the set of edges $|\mathcal{E}| = M$
- $\mathbf{A} \in \mathbb{R}_+^{N \times N}$ is the adjacency matrix

- $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{bmatrix} \in \mathbb{R}^N$ is the graph signal



Signal processing on graphs

- Local structure of the graph is captured by the **graph-shift** operator $\mathbf{S} \in \mathbb{R}^{N \times N}$
 $[\mathbf{S}]_{j,i}$ is nonzero only if $(i,j) \in \mathcal{E}$ and/or $i = j$.
 \mathbf{S} could be the **adjacency matrix**, **graph Laplacian**, or **modifications**, ...

Signal processing on graphs

- Local structure of the graph is captured by the **graph-shift** operator $\mathbf{S} \in \mathbb{R}^{N \times N}$
 $[\mathbf{S}]_{j,i}$ is nonzero only if $(i,j) \in \mathcal{E}$ and/or $i = j$.
 \mathbf{S} could be the **adjacency matrix**, **graph Laplacian**, or **modifications**, ...
- Adjacency matrix: $\mathbf{S} = \mathbf{A}$

Signal processing on graphs

- Local structure of the graph is captured by the **graph-shift** operator $\mathbf{S} \in \mathbb{R}^{N \times N}$
 $[\mathbf{S}]_{j,i}$ is nonzero only if $(i,j) \in \mathcal{E}$ and/or $i = j$.
 \mathbf{S} could be the **adjacency matrix, graph Laplacian, or modifications, ...**
- Adjacency matrix: $\mathbf{S} = \mathbf{A}$
- Graph Laplacian: $\mathbf{S} = \mathbf{L}_{\text{in/out}} = \mathbf{D}_{\text{in/out}} - \mathbf{A}$

$$[\mathbf{D}_{\text{in}}]_{i,i} = \sum_{j=1}^N [\mathbf{A}_{i,j}] \quad [\mathbf{D}_{\text{out}}]_{i,i} = \sum_{j=1}^N [\mathbf{A}_{j,i}]$$

Signal processing on graphs

- Local structure of the graph is captured by the **graph-shift** operator $\mathbf{S} \in \mathbb{R}^{N \times N}$
 $[\mathbf{S}]_{j,i}$ is nonzero only if $(i,j) \in \mathcal{E}$ and/or $i = j$.
 \mathbf{S} could be the **adjacency matrix, graph Laplacian, or modifications, ...**
- Adjacency matrix: $\mathbf{S} = \mathbf{A}$
- Graph Laplacian: $\mathbf{S} = \mathbf{L}_{\text{in/out}} = \mathbf{D}_{\text{in/out}} - \mathbf{A}$
$$[\mathbf{D}_{\text{in}}]_{i,i} = \sum_{j=1}^N [\mathbf{A}_{i,j}] \quad [\mathbf{D}_{\text{out}}]_{i,i} = \sum_{j=1}^N [\mathbf{A}_{j,i}]$$
- Symmetric graph Laplacian: $\mathbf{S} = \mathbf{L} = \mathbf{D} - \mathbf{A}, \quad \mathbf{D} = \mathbf{D}_{\text{in}} = \mathbf{D}_{\text{out}}$

Signal processing on graphs

- Local structure of the graph is captured by the **graph-shift** operator $\mathbf{S} \in \mathbb{R}^{N \times N}$
 $[\mathbf{S}]_{j,i}$ is nonzero only if $(i, j) \in \mathcal{E}$ and/or $i = j$.

\mathbf{S} could be the **adjacency matrix**, **graph Laplacian**, or **modifications**, ...

- Adjacency matrix: $\mathbf{S} = \mathbf{A}$
- Graph Laplacian: $\mathbf{S} = \mathbf{L}_{\text{in/out}} = \mathbf{D}_{\text{in/out}} - \mathbf{A}$
$$[\mathbf{D}_{\text{in}}]_{i,i} = \sum_{j=1}^N [\mathbf{A}_{i,j}] \quad [\mathbf{D}_{\text{out}}]_{i,i} = \sum_{j=1}^N [\mathbf{A}_{j,i}]$$
- Symmetric graph Laplacian: $\mathbf{S} = \mathbf{L} = \mathbf{D} - \mathbf{A}$, $\mathbf{D} = \mathbf{D}_{\text{in}} = \mathbf{D}_{\text{out}}$
- Smoothness: $\mathbf{x}^\top \mathbf{L} \mathbf{x} = \sum_{i,j=1}^N [\mathbf{A}]_{i,j} (x_i - x_j)^2$

Spectral analysis of graph signals

Graph Fourier basis

Eigenvectors of graph shift represent frequency modes (\mathbf{S} assumed to be normal)

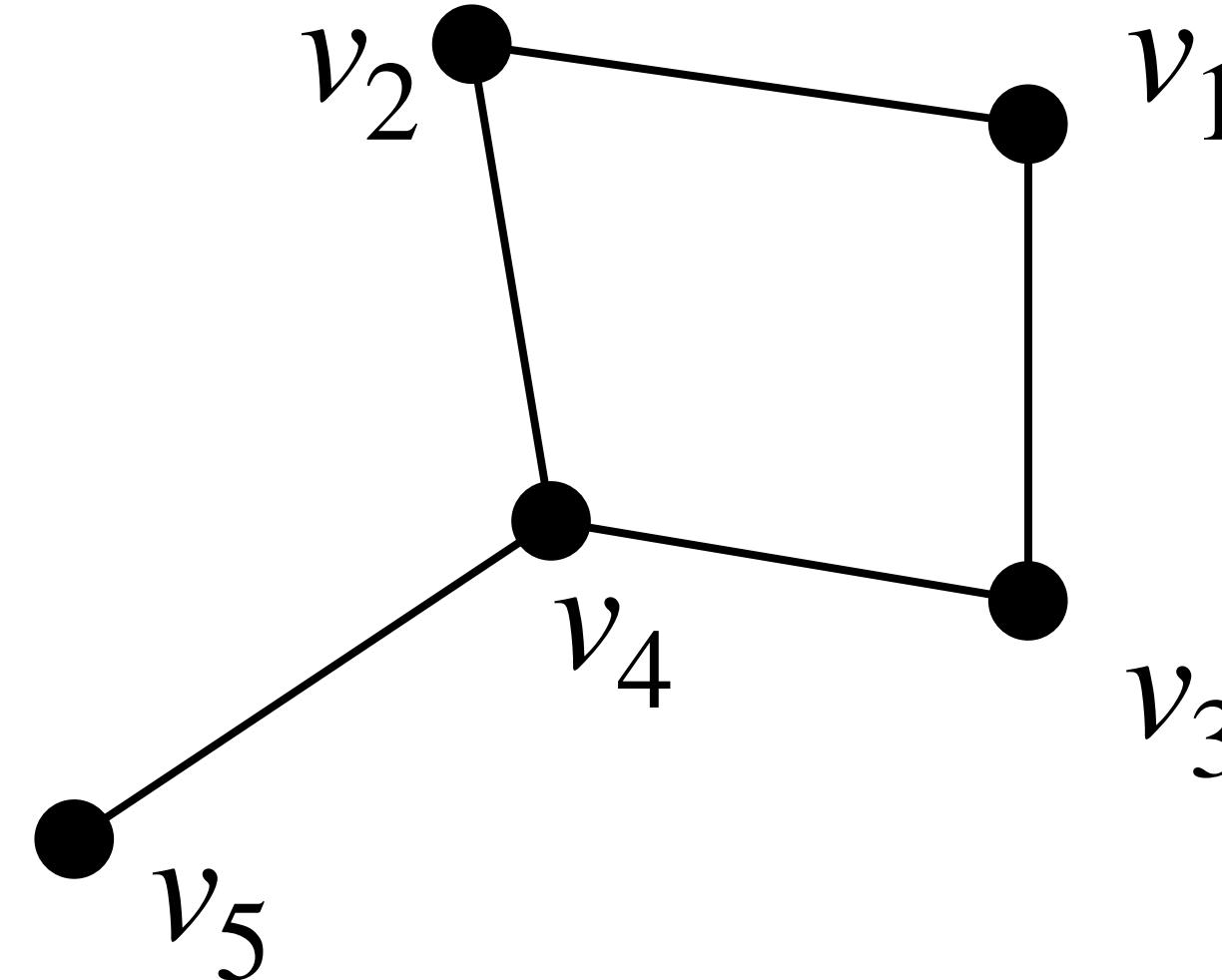
$$\mathbf{S} = \mathbf{U}\Lambda\mathbf{U}^H$$

Graph Fourier basis

Eigenvectors of graph shift represent frequency modes (\mathbf{S} assumed to be normal)

$$\mathbf{S} = \mathbf{U}\Lambda\mathbf{U}^H$$

Example: Laplacian of undirected graph



$$\mathbf{S} = \mathbf{D} - \mathbf{A} =$$

$$\begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

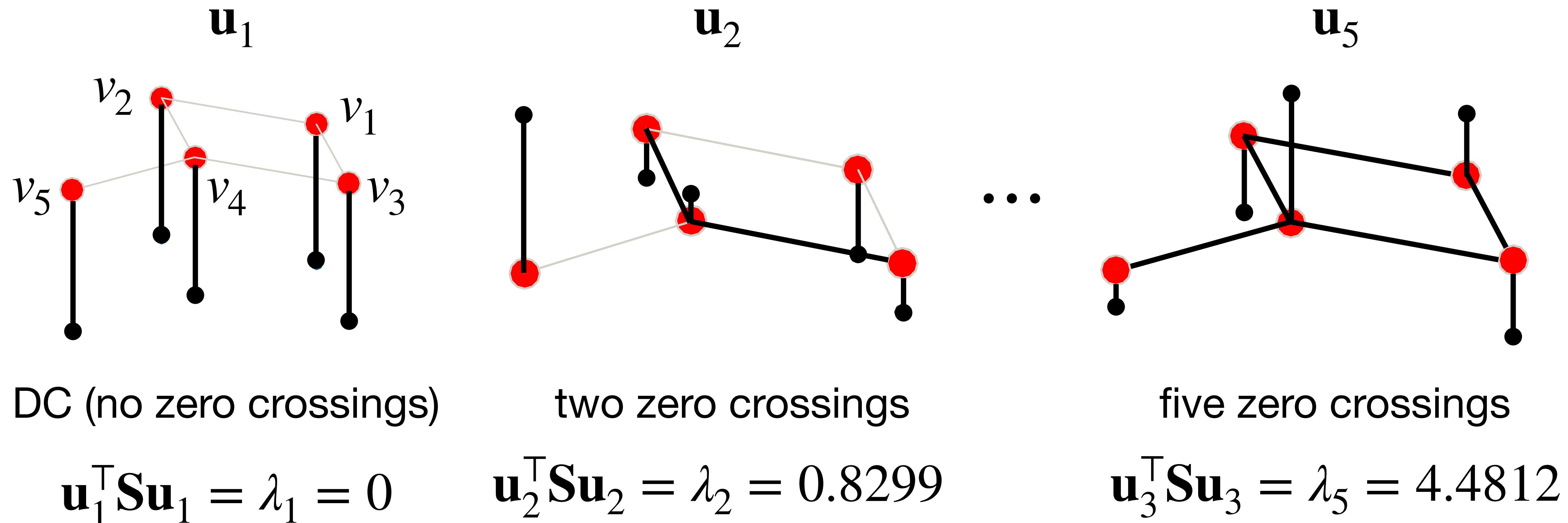
diagonal degree matrix

$$\begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

adjacency matrix

Graph Fourier basis

Individual eigenvectors of Laplacian of undirected graph



DC (no zero crossings)

$$u_1^\top \mathbf{S} u_1 = \lambda_1 = 0$$

two zero crossings

$$u_2^\top \mathbf{S} u_2 = \lambda_2 = 0.8299$$

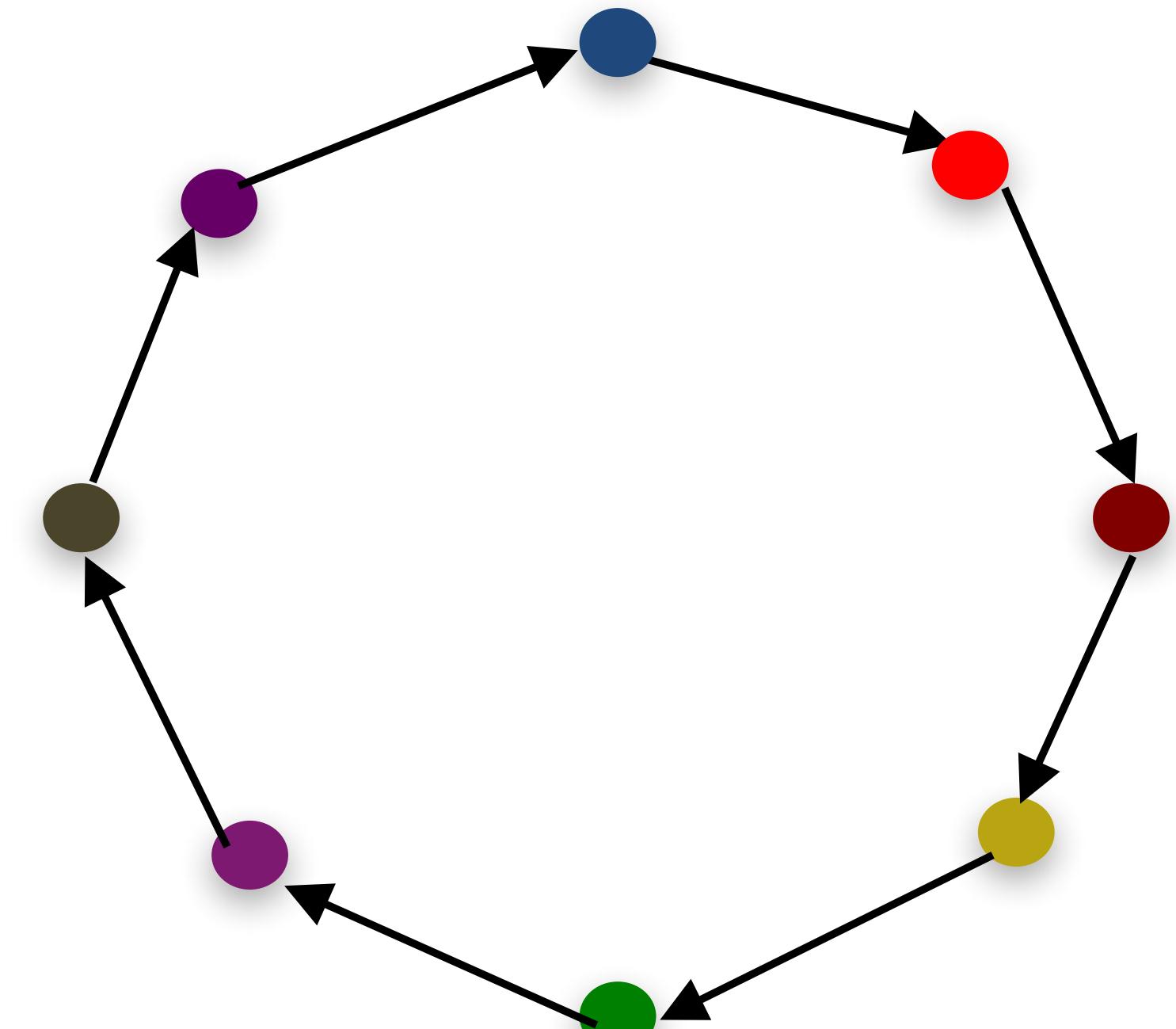
five zero crossings

$$u_5^\top \mathbf{S} u_5 = \lambda_5 = 4.4812$$

Time-domain as a graph

The DFT matrix and the traditional frequency grid is obtained by the **adjacency matrix** of the **cycle graph**

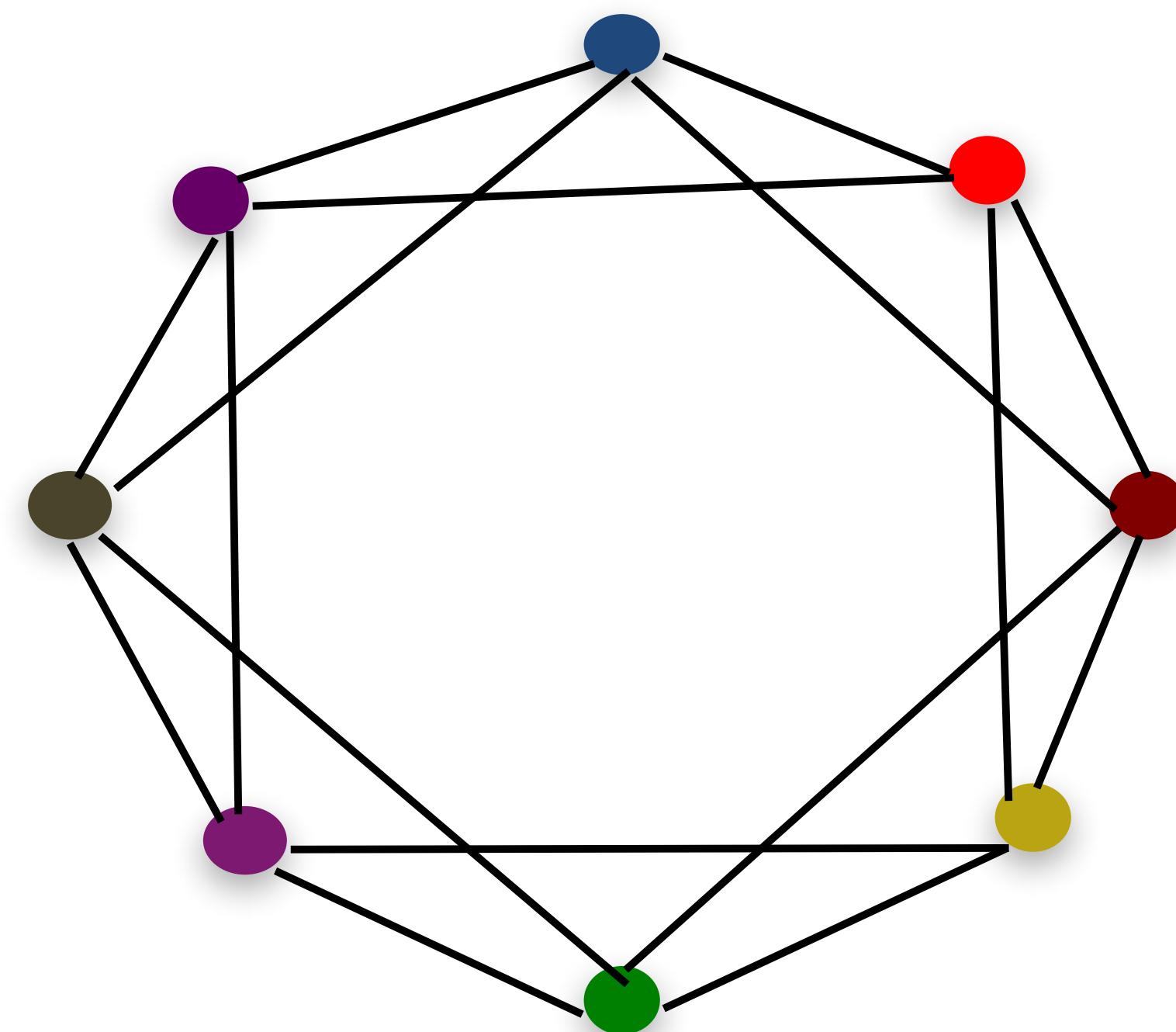
$$\mathbf{S} = \mathbf{F}^{-1} \mathbf{\Omega} \mathbf{F} : [\mathbf{\Omega}]_{i,i} = e^{2j\pi(i-1)/N}$$



$$\mathbf{S} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Time-domain as a graph

Any **circulant graph** (directed or not) in principle leads to the DFT as the matrix that diagonalises the shift operator



$$S = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

How do we “spectrally” shape signals?

Graph Fourier transform and graph filters

The graph Fourier transform is defined as

$$\hat{\mathbf{x}} = \mathbf{U}^H \mathbf{x} \iff \mathbf{x} = \mathbf{U} \hat{\mathbf{x}}$$

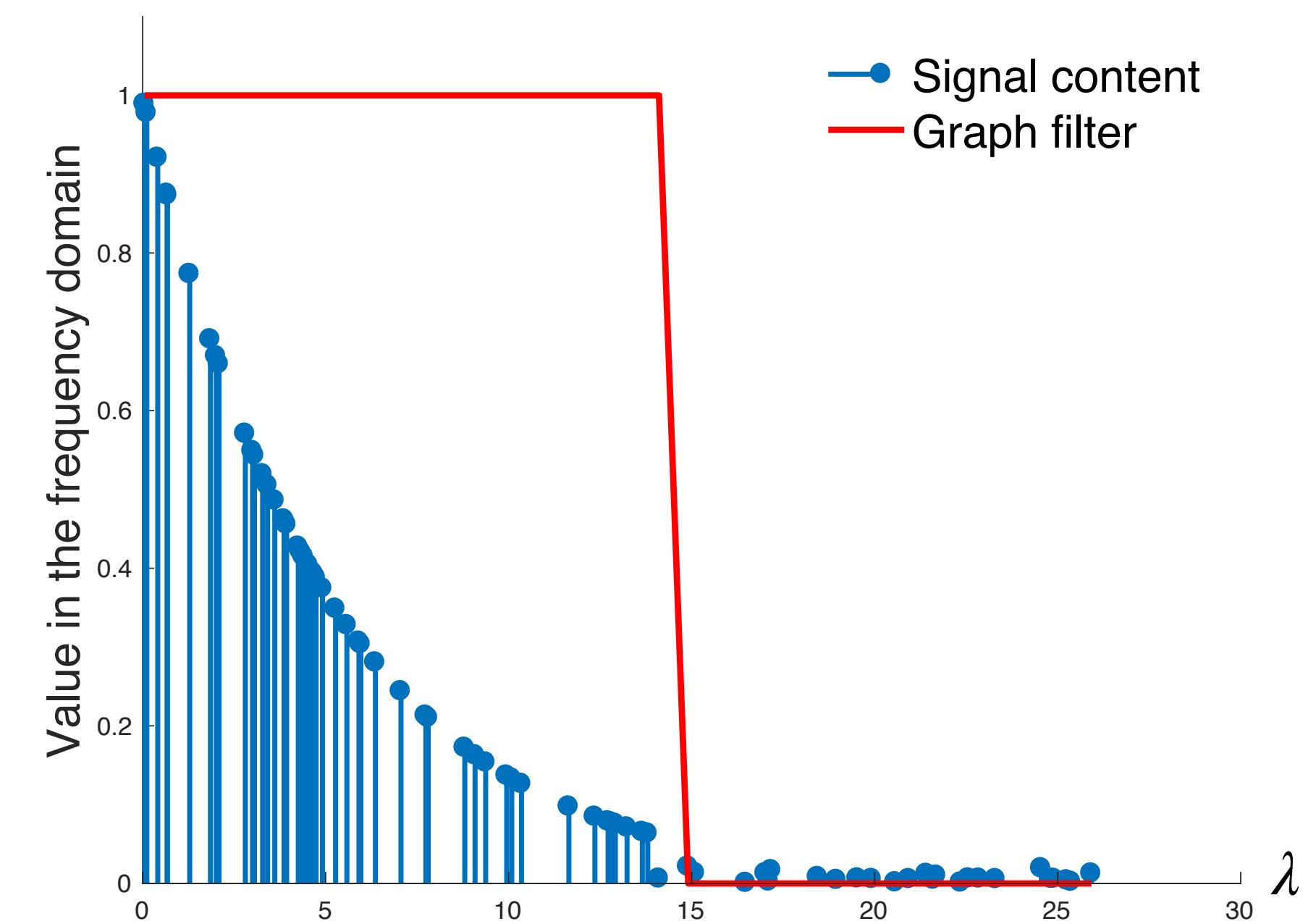
Graph Fourier transform and graph filters

The graph Fourier transform is defined as

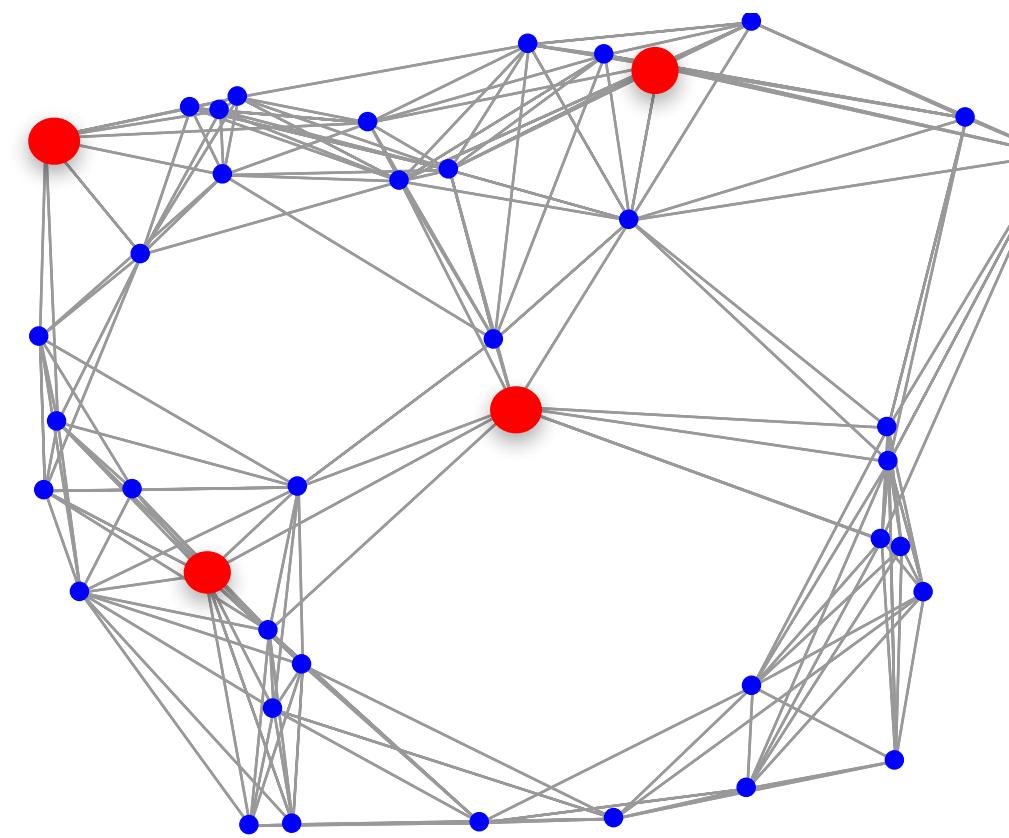
$$\hat{\mathbf{x}} = \mathbf{U}^H \mathbf{x} \iff \mathbf{x} = \mathbf{U} \hat{\mathbf{x}}$$

Graph filters can be used to modify the frequency content of graph signals

- $\hat{y}_n = h(\lambda_n) \hat{x}_n$
- $\hat{\mathbf{y}} = h(\Lambda) \hat{\mathbf{x}}$
- $h(\Lambda) = \text{diag}\{h(\lambda_n)\}$
- $\mathbf{y} = \mathbf{U} h(\Lambda) \mathbf{U}^H \mathbf{x} = \mathbf{H} \mathbf{x}$
- Shift invariance: $\mathbf{H} \mathbf{S} = \mathbf{S} \mathbf{H}$

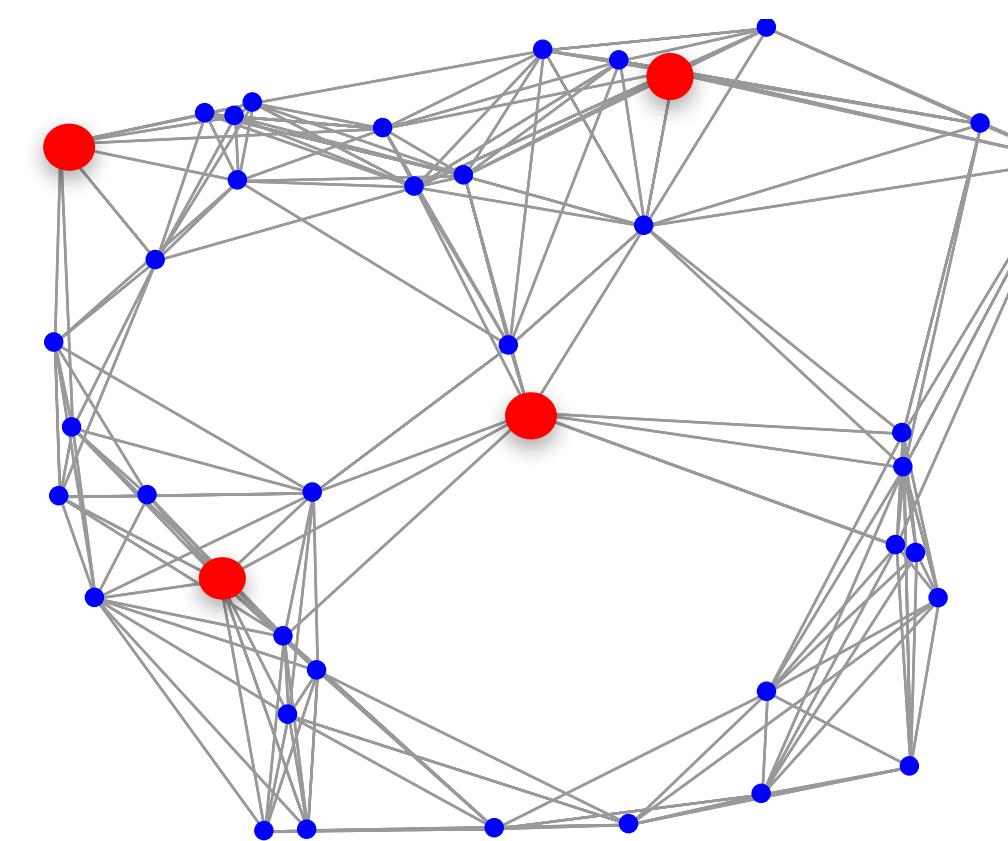


Applications of graph filters

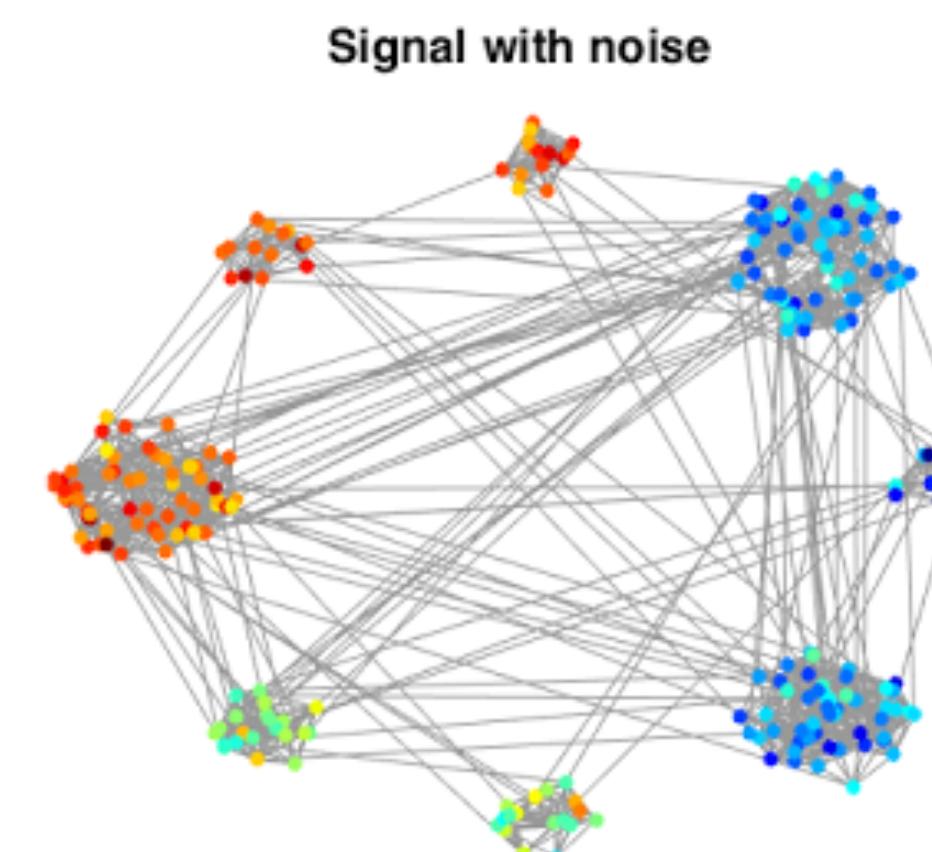


Interpolation (e.g., semi-supervised learning)

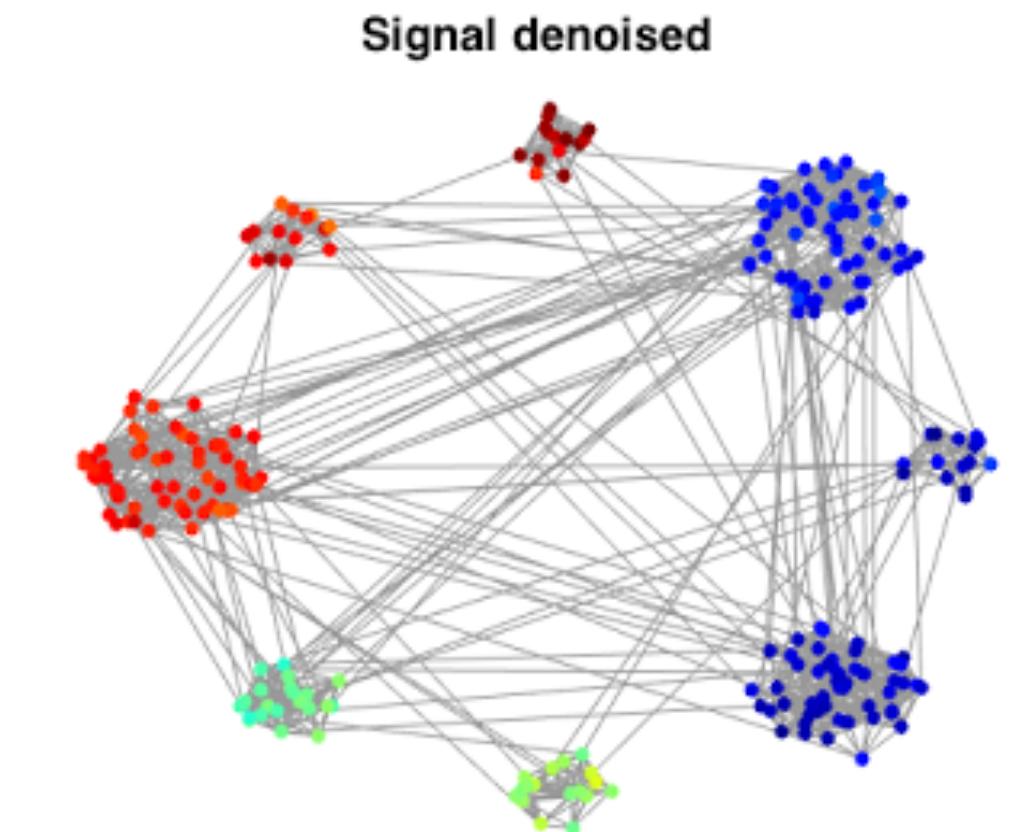
Applications of graph filters



Interpolation (e.g., semi-supervised learning)



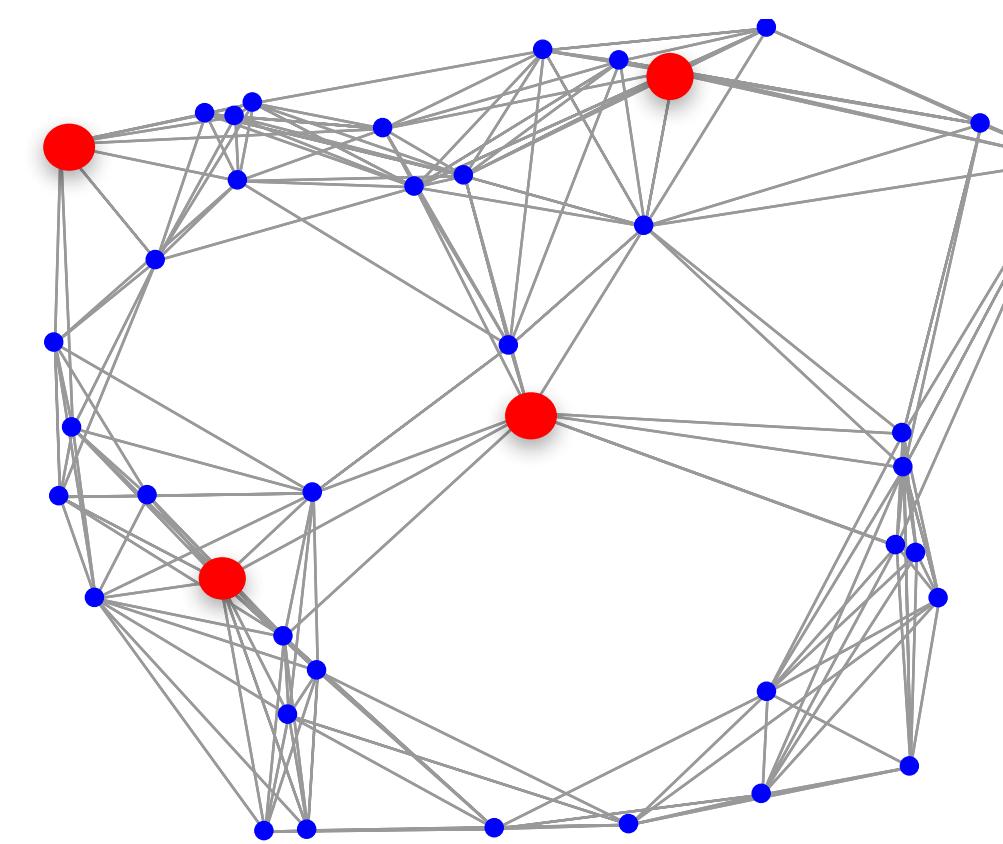
Signal with noise



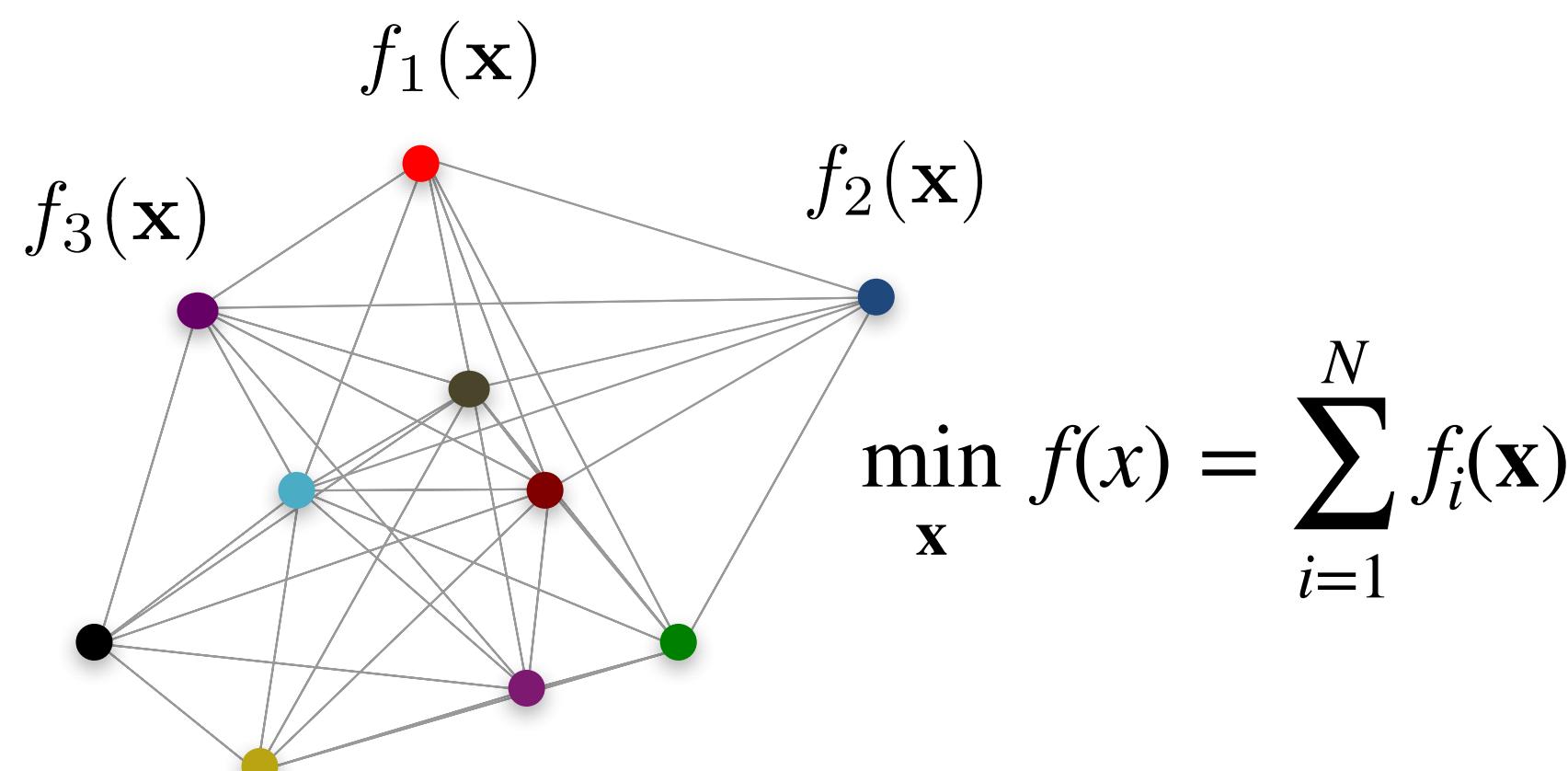
Signal denoised

Denoising signals (e.g., Tikhonov)

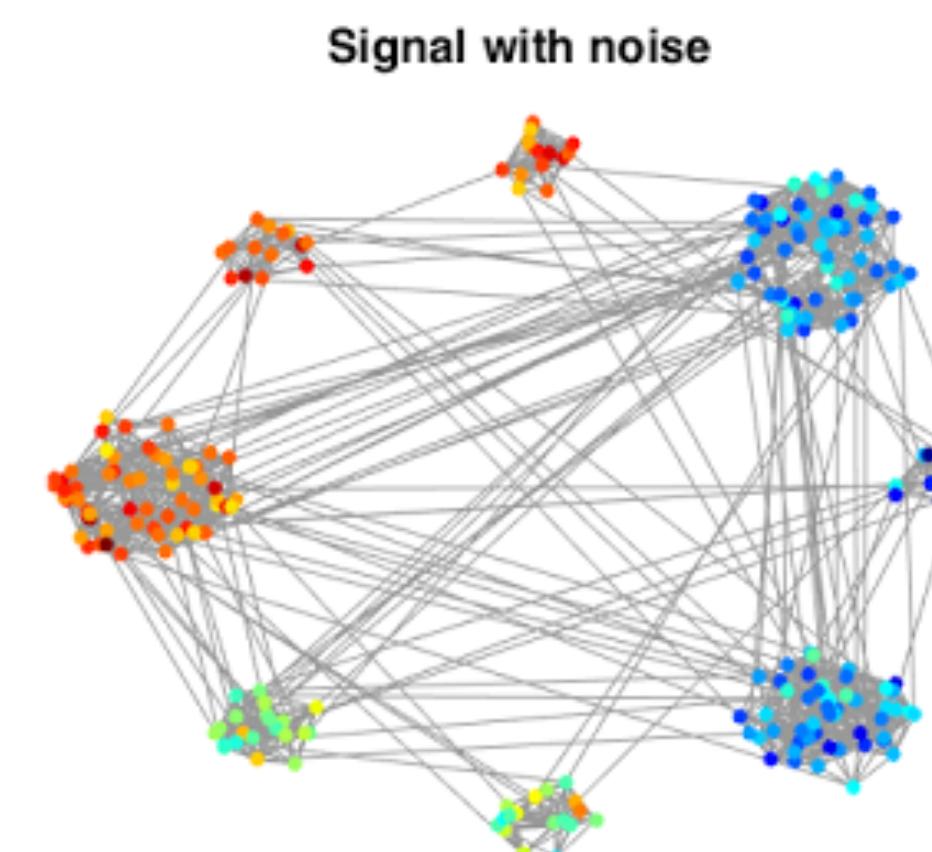
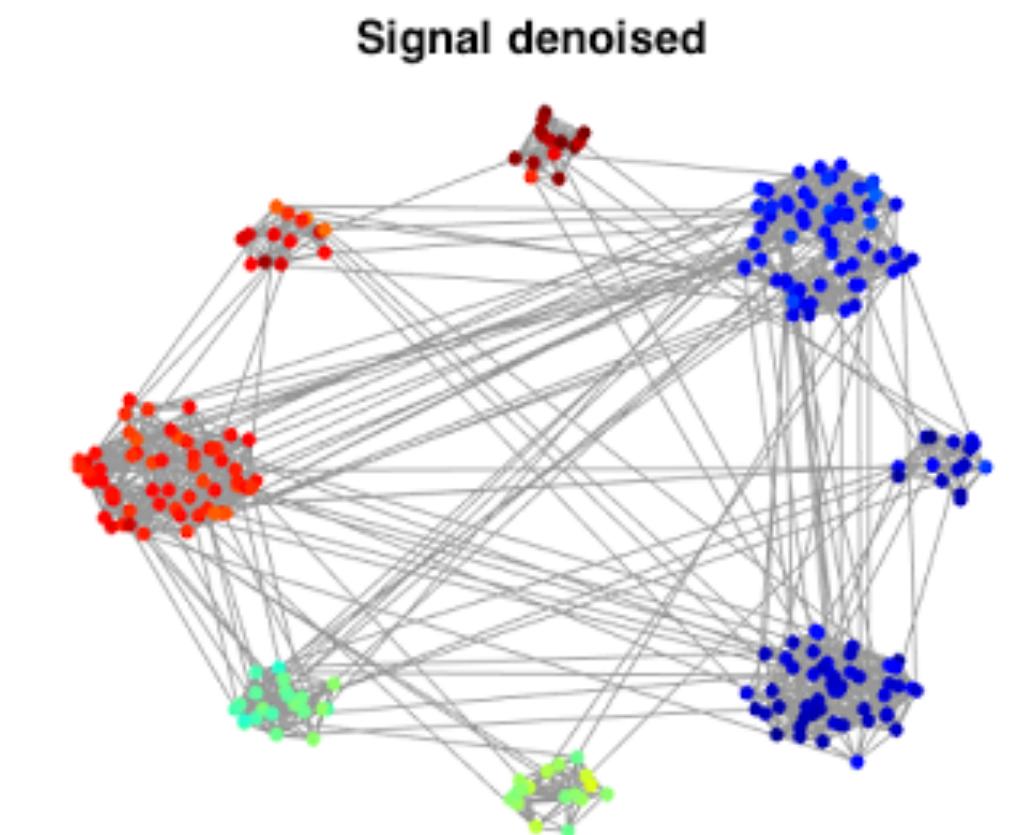
Applications of graph filters



Interpolation (e.g., semi-supervised learning)

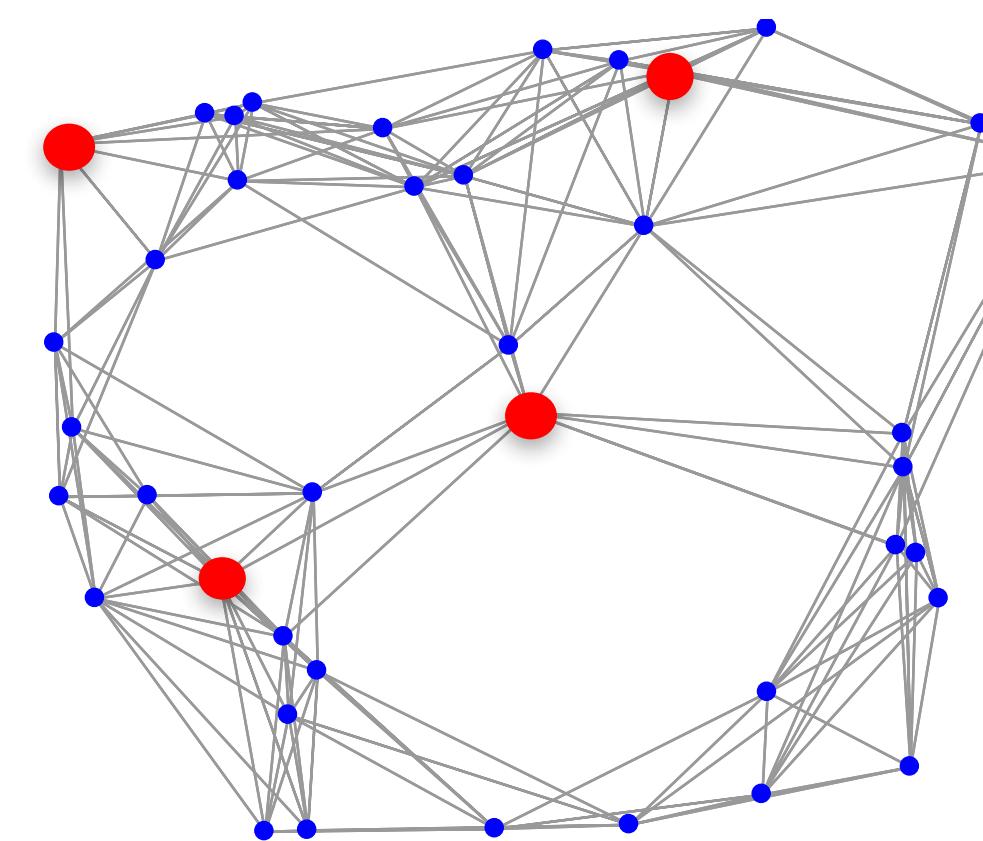


Distributed optimization

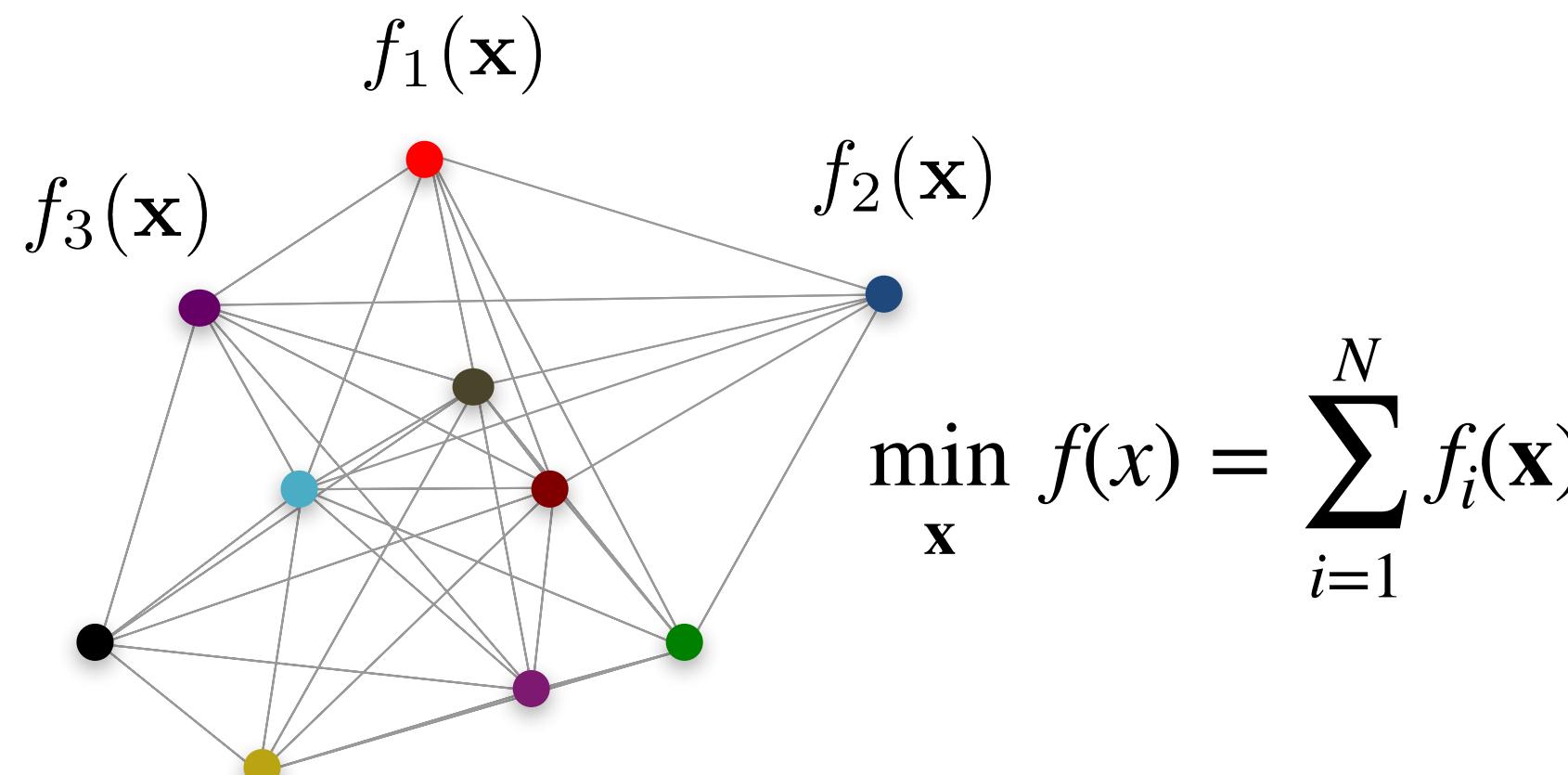


Denoising signals (e.g., Tikhonov)

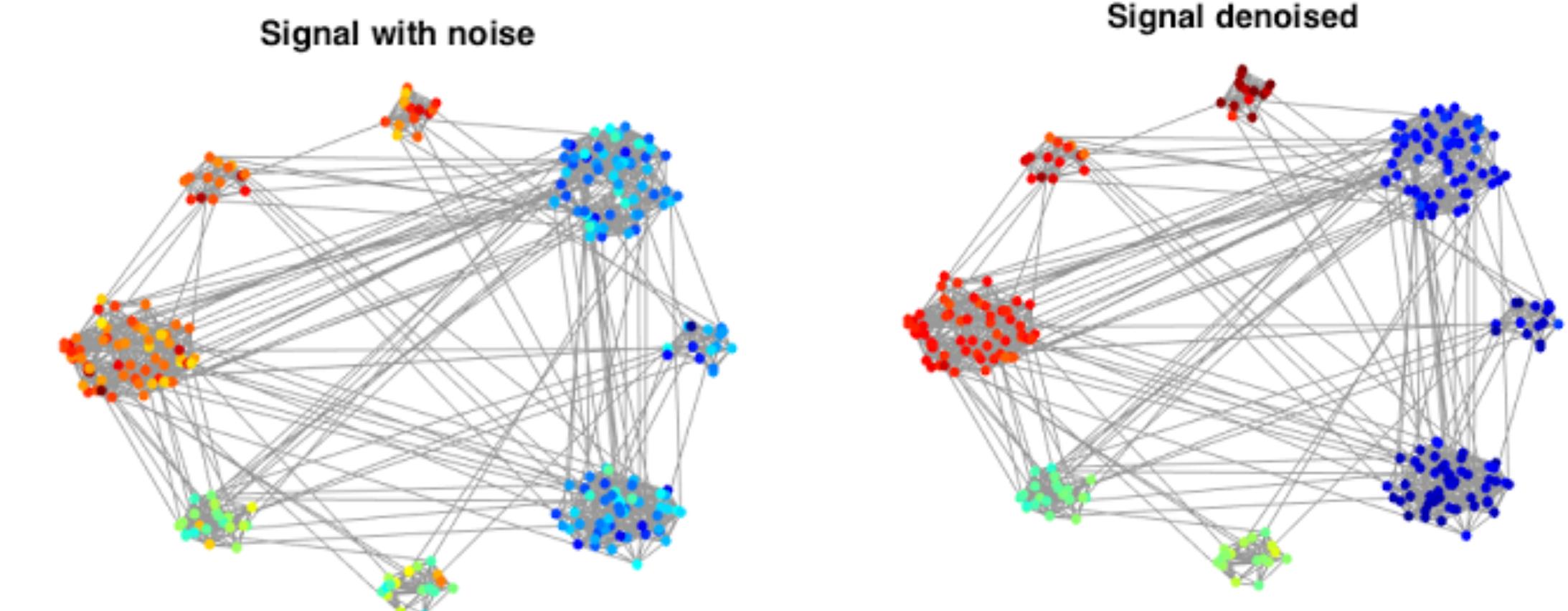
Applications of graph filters



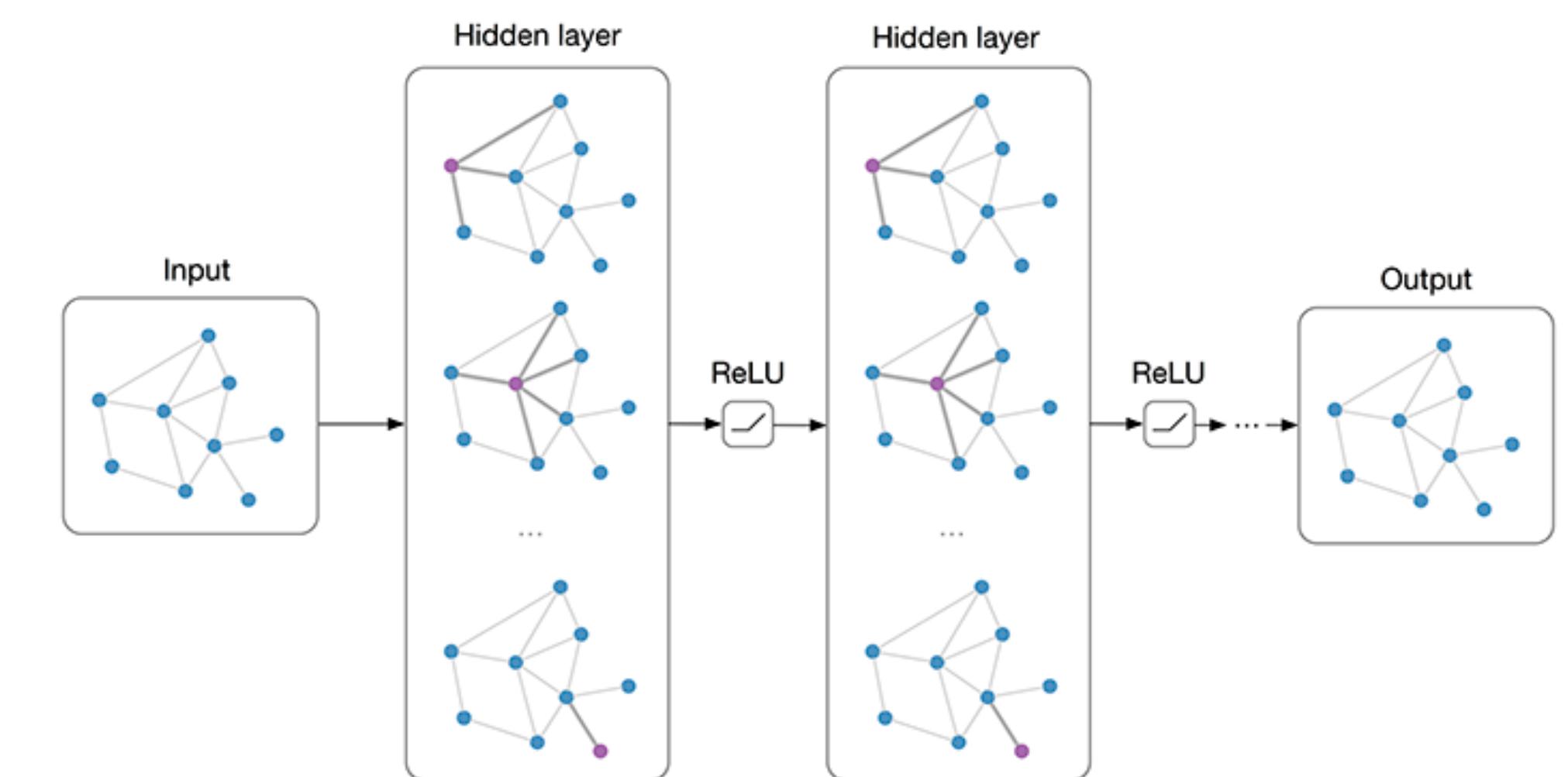
Interpolation (e.g., semi-supervised learning)



Distributed optimization



Denoising signals (e.g., Tikhonov)



Graph convolutional neural networks

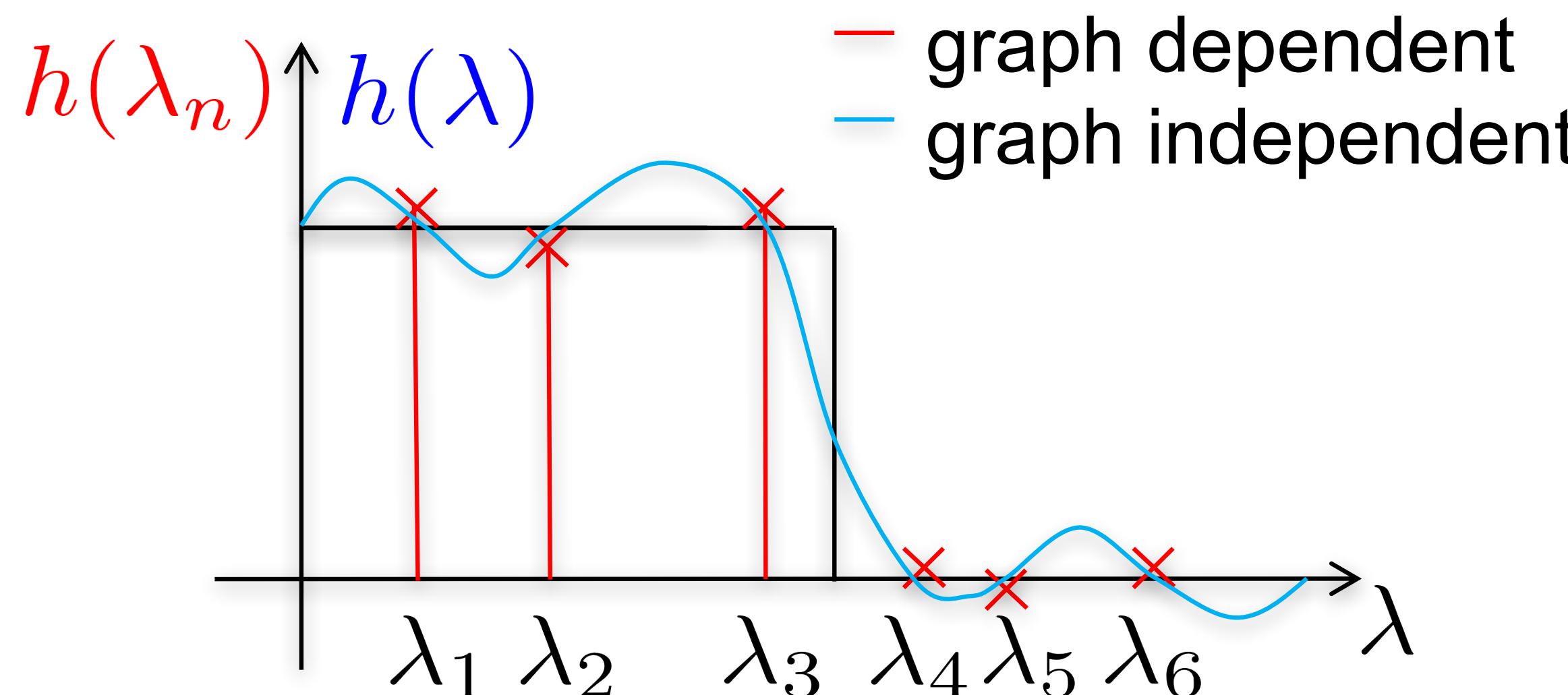
Graph filter design and implementation

$$\mathbf{y} = \mathbf{U}h(\Lambda)\mathbf{U}^H\mathbf{x} = \mathbf{H}\mathbf{x} \iff \mathbf{H}\mathbf{S} = \mathbf{S}\mathbf{H}$$

Graph filter design and implementation

$$\mathbf{y} = \mathbf{U}h(\Lambda)\mathbf{U}^H\mathbf{x} = \mathbf{H}\mathbf{x} \iff \mathbf{H}\mathbf{S} = \mathbf{S}\mathbf{H}$$

Graph-dependent vs graph-independent (universal) filter design



[Shuman'11, DCOSS]
[Sandryhaila'13, TSP]
Shuman'13, SPM]
[Segarra'18, TSP]

Graph filter design and implementation

$$\mathbf{y} = \mathbf{U}h(\Lambda)\mathbf{U}^H\mathbf{x} = \mathbf{H}\mathbf{x} \iff \mathbf{H}\mathbf{S} = \mathbf{S}\mathbf{H}$$

Frequency-domain vs vertex-domain implementation

- No fast GFT implementations
- Need for parametrized filters in the vertex domain

FIR graph filters

Finite impulse response graph filters are expressible as matrix polynomials of the shift operator

$$\mathbf{y} = \mathbf{H}_{\text{FIR}} \mathbf{x} \quad \text{for} \quad \mathbf{H}_{\text{FIR}} = \sum_{k=0}^K \phi_k \mathbf{S}^k$$

with frequency response given by

$$h_{\text{FIR}}(\lambda_n) = \sum_{k=0}^K \phi_k \lambda_n^k$$

FIR graph filters

Finite impulse response graph filters are expressible as matrix polynomials of the shift operator

$$\mathbf{y} = \mathbf{H}_{\text{FIR}} \mathbf{x} \quad \text{for} \quad \mathbf{H}_{\text{FIR}} = \sum_{k=0}^K \phi_k \mathbf{S}^k$$

with frequency response given by

$$h_{\text{FIR}}(\lambda_n) = \sum_{k=0}^K \phi_k \lambda_n^k$$

number of parameters: $\mathcal{O}(K)$

computational complexity: $\mathcal{O}(MK)$

FIR graph filters

$$\mathbf{x}^{(k)} = \mathbf{S}^k \mathbf{x}$$

shifted graph signal

$$x(t - \tau) = z^{-\tau} x(t)$$

time-delayed signal

FIR graph filters

$$\mathbf{x}^{(k)} = \mathbf{S}^k \mathbf{x}$$

shifted graph signal

FIR graph filter

$$\mathbf{y} = \sum_{k=0}^K \phi_k \mathbf{x}^{(k)}$$

$$x(t - \tau) = z^{-\tau} x(t)$$

time-delayed signal

$$y(t) = \sum_{\tau=0}^L h(\tau) x(t - \tau)$$

FIR time-domain filter

FIR graph filters

$$\mathbf{x}^{(k)} = \mathbf{S}^k \mathbf{x}$$

shifted graph signal

$$x(t - \tau) = z^{-\tau} x(t)$$

time-delayed signal

FIR graph filter

$$\mathbf{y} = \sum_{k=0}^K \phi_k \mathbf{x}^{(k)}$$

FIR time-domain filter

$$y(t) = \sum_{\tau=0}^L h(\tau) x(t - \tau)$$

carries the notion of
convolution

(shift-and-sum)

[graph convolution neural networks]

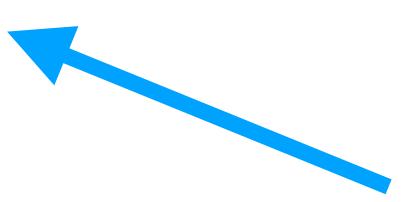
FIR graph filters

$$\mathbf{y} = \mathbf{H}_{\text{FIR}} \mathbf{x} = \sum_{k=0}^K \phi_k \mathbf{S}^k \mathbf{x} = \sum_{k=0}^K \phi_k \mathbf{x}^{(k)}$$

FIR graph filters

$$\mathbf{y} = \mathbf{H}_{\text{FIR}} \mathbf{x} = \sum_{k=0}^K \phi_k \mathbf{S}^k \mathbf{x} = \sum_{k=0}^K \phi_k \mathbf{x}^{(k)}$$

sum of shifted versions of graph signal

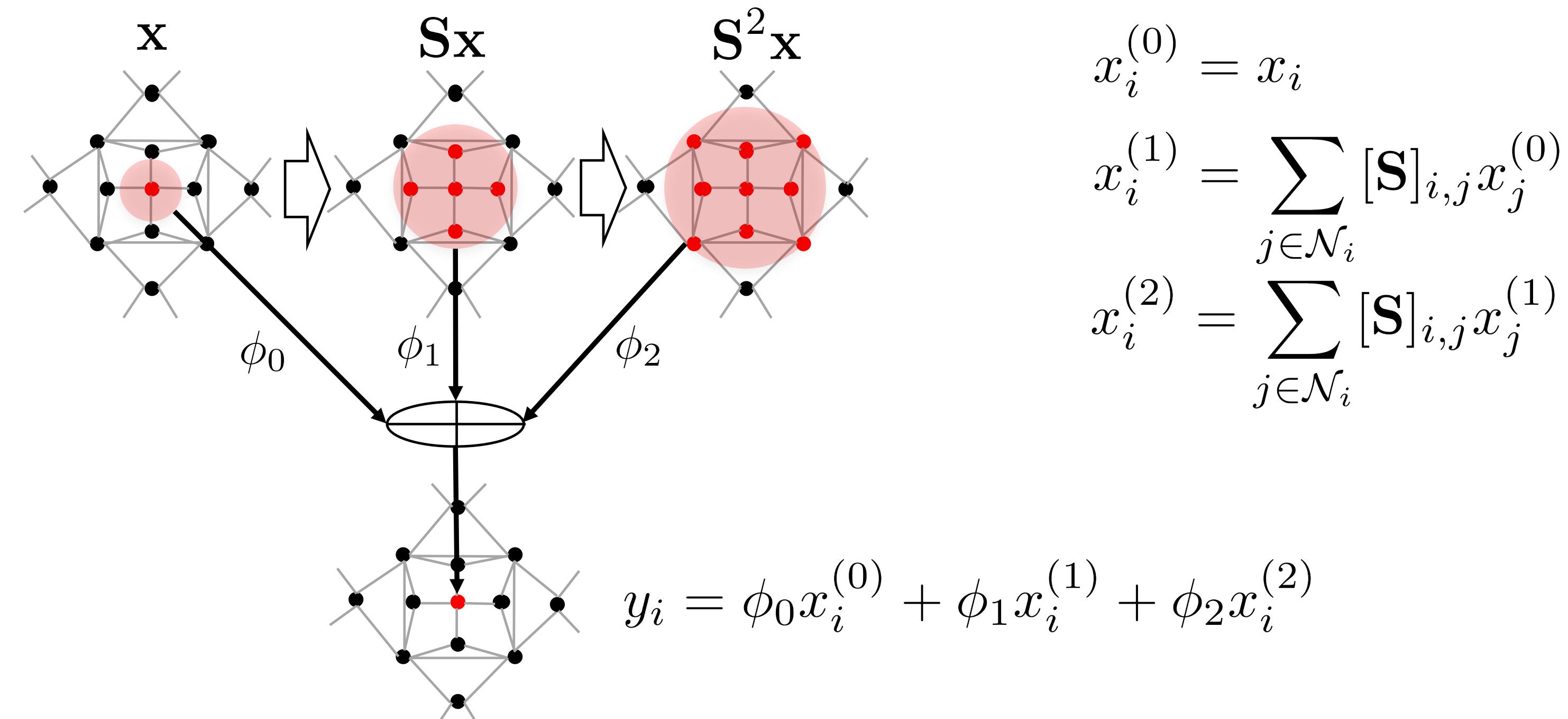


FIR graph filters

$$\mathbf{y} = \mathbf{H}_{\text{FIR}} \mathbf{x} = \sum_{k=0}^K \phi_k \mathbf{S}^k \mathbf{x} = \sum_{k=0}^K \phi_k \mathbf{x}^{(k)}$$

sum of **shifted versions** of
graph signal

Example: $\mathbf{y} = \phi_0 \mathbf{x} + \phi_1 \mathbf{Sx} + \phi_2 \mathbf{S}^2 \mathbf{x}$



FIR graph filters

$$\mathbf{H}_{\text{FIR}} \triangleq \sum_{k=0}^K \phi_k \mathbf{S}^k$$

- Efficient and distributed implementation 😊

$$\begin{cases} x_i^{(0)} = x_i \\ x_i^{(k)} = \sum_{j \in \mathcal{N}_i} [\mathbf{S}]_{i,j} x_j^{(k-1)}, \quad k = 1, 2, \dots, K \\ y_i = \sum_{k=0}^K \phi_k x_i^{(k)} \end{cases}$$

- Computational and communication cost of $\mathcal{O}(MK)$ 😊
- Good approximation requires high filter orders 😞

FIR design

Minimization of error

$$e_n = \hat{h}_n - \sum_{k=0}^K \phi_k \lambda_n^k$$

frequency-domain
design

FIR design

Minimization of error

$$e_n = \hat{h}_n - \sum_{k=0}^K \phi_k \lambda_n^k$$

frequency-domain
design

○ Least squares [Sandryhaila'13, TSP]

$$\mathbf{e} = \hat{\mathbf{h}} - \mathbf{\Xi}_{K+1} \boldsymbol{\phi}$$

$$\min_{\boldsymbol{\phi}} \|\hat{\mathbf{h}} - \mathbf{\Xi}_{K+1} \boldsymbol{\phi}\|_2^2$$

$$[\mathbf{\Xi}_{K+1}]_{n,k} = \lambda_n^{k-1} \quad \mathbf{\Xi}_{K+1} \in \mathbb{R}^{N \times (K+1)}$$

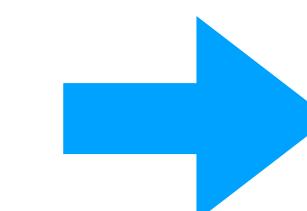
FIR design

Minimization of error

$$e_n = \hat{h}_n - \sum_{k=0}^K \phi_k \lambda_n^k$$

frequency-domain
design

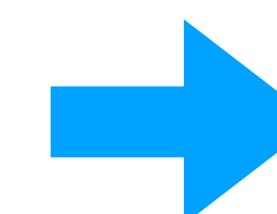
● Least squares [Sandryhaila'13, TSP]



$$\mathbf{e} = \hat{\mathbf{h}} - \mathbf{\Xi}_{K+1} \boldsymbol{\phi}$$

alternative data-driven
design

$$\min_{\{\phi_k\}} \sum_i \|\mathbf{y}_i - \mathbf{H}(\{\phi_k\})\mathbf{x}_i\|_2^2$$



$$\min_{\boldsymbol{\phi}} \|\hat{\mathbf{h}} - \mathbf{\Xi}_{K+1} \boldsymbol{\phi}\|_2^2$$

$$[\mathbf{\Xi}_{K+1}]_{n,k} = \lambda_n^{k-1} \quad \mathbf{\Xi}_{K+1} \in \mathbb{R}^{N \times (K+1)}$$

FIR design

○ Chebyshev [Shuman'11, DCOSS]

$$\hat{h}(\lambda) = \sum_{k=0}^{\infty} c_k T_k(\lambda) \approx \sum_{k=0}^K c_k T_k(\lambda)$$

- ◆ $T_k(\lambda)$: modified Chebyshev polynomials; orthogonal over desired range
- ◆ Closed form expression for $\{c_k\}_{k=0}^K$

ARMA graph filters

Autoregressive moving average graph filters implement a fractional matrix polynomial of the shift operator

$$\mathbf{y} = \mathbf{H}_{\text{ARMA}} \mathbf{x} \quad \text{for} \quad \mathbf{H}_{\text{ARMA}} = \left(\mathbf{I} - \sum_{p=1}^P \psi_p \mathbf{S}^p \right)^{-1} \left(\sum_{q=0}^Q \varphi_q \mathbf{S}^q \right)$$

with frequency response given by

$$h_{\text{ARMA}}(\lambda_n) = \frac{\sum_{q=0}^Q \varphi_q \lambda_n^q}{1 + \sum_{p=1}^P \psi_p \lambda_n^p}$$

ARMA graph filters

Autoregressive moving average graph filters implement a fractional matrix polynomial of the shift operator

$$\mathbf{y} = \mathbf{H}_{\text{ARMA}} \mathbf{x} \quad \text{for} \quad \mathbf{H}_{\text{ARMA}} = \left(\mathbf{I} - \sum_{p=1}^P \psi_p \mathbf{S}^p \right)^{-1} \left(\sum_{q=0}^Q \varphi_q \mathbf{S}^q \right)$$

with frequency response given by

$$h_{\text{ARMA}}(\lambda_n) = \frac{\sum_{q=0}^Q \varphi_q \lambda_n^q}{1 + \sum_{p=1}^P \psi_p \lambda_n^p}$$

number of parameters: $\mathcal{O}(P + Q)$
 computational complexity: $\mathcal{O}(M)$ per it.

ARMA graph filters

$$\mathbf{x}^{(k)} = \mathbf{S}^k \mathbf{x}$$

shifted graph signal

$$x(t - \tau) = z^{-\tau} x(t)$$

time-delayed input signal

ARMA graph filters

$$\mathbf{x}^{(k)} = \mathbf{S}^k \mathbf{x}$$

shifted graph signal

ARMA graph filter

$$\mathbf{y}^{(0)} = \sum_{q=0}^Q \varphi_k \mathbf{x}^{(q)} + \sum_{p=1}^P \psi_p \mathbf{y}^{(p)}$$

$$x(t - \tau) = z^{-\tau} x(t)$$

time-delayed input signal

$$y(t) = \sum_{\tau=0}^L h(\tau) x(t - \tau) + \sum_{\kappa=1}^R g(\kappa) y(t - \kappa)$$

ARMA graph filters

$$\mathbf{x}^{(k)} = \mathbf{S}^k \mathbf{x}$$

shifted graph signal

ARMA graph filter

$$\mathbf{y}^{(0)} = \sum_{q=0}^Q \varphi_q \mathbf{x}^{(q)} + \sum_{p=1}^P \psi_p \mathbf{y}^{(p)}$$

not easy
to implement

$$x(t - \tau) = z^{-\tau} x(t)$$

time-delayed input signal

ARMA time-domain filter

$$y(t) = \sum_{\tau=0}^L h(\tau) x(t - \tau) + \sum_{\kappa=1}^R g(\kappa) y(t - \kappa)$$

requires shifted
version of the output

easy to implement

ARMA graph filters

$$\mathbf{H}_{\text{ARMA}} = \left(\mathbf{I} - \sum_{p=1}^P \psi_p \mathbf{S}^p \right)^{-1} \left(\sum_{q=0}^Q \varphi_q \mathbf{S}^q \right)$$

- Stability is guaranteed by invertibility 😊
- Good approximation for low filter orders 😊
- Exact solution for denoising/interpolation/diffusion 😊
- Filter design is more involved than for FIR 😞
- Does not admit trivial efficient/distributed implementation 😞

ARMA implementation

$$\mathbf{H}_{\text{ARMA}} = \left(\mathbf{I} - \sum_{p=1}^P \psi_p \mathbf{S}^p \right)^{-1} \left(\sum_{q=0}^Q \varphi_q \mathbf{S}^q \right)$$

- **Moving average part:** similar to FIR
- **Autoregressive part:**
 - ◆ Gradient descent [Shi'15, SPL][Loukas'15, SPL]
 - ◆ Conjugate gradient [Liu'17, GlobalSIP]
 - ◆ Any other Krylov-based inversion can be used

ARMA implementation

$$\mathbf{H}_{\text{ARMA}} = \left(\mathbf{I} - \sum_{p=1}^P \psi_p \mathbf{S}^p \right)^{-1} \left(\sum_{q=0}^Q \varphi_q \mathbf{S}^q \right)$$

- Distributed methods: (Jacobi)
- Parallel or serial implementation of heat kernel

$$\mathbf{y}_{t+1} = \psi \mathbf{S} \mathbf{y}_t + \varphi \mathbf{x}$$

- Direct implementation

$$\mathbf{y}_t = - \sum_{p=1}^P \psi_p \mathbf{S}^p \mathbf{y}_{t-1} + \sum_{q=0}^Q \varphi_q \mathbf{S}^q \mathbf{x}$$

ARMA implementation

$$\mathbf{H}_{\text{ARMA}} = \left(\mathbf{I} - \sum_{p=1}^P \psi_p \mathbf{S}^p \right)^{-1} \left(\sum_{q=0}^Q \varphi_q \mathbf{S}^q \right)$$

- Distributed methods: (Jacobi)
- Parallel or serial implementation of heat kernel

$$\mathbf{y}_{t+1} = \psi \mathbf{S} \mathbf{y}_t + \varphi \mathbf{x}$$

- Direct implementation

$$\mathbf{y}_t = - \sum_{p=1}^P \psi_p \mathbf{S}^p \mathbf{y}_{t-1} + \sum_{q=0}^Q \varphi_q \mathbf{S}^q \mathbf{x}$$

cost per iteration

$$\mathcal{O}(M)$$

$$\mathcal{O}(\max\{P, Q\}M)$$

ARMA design

Minimization of error

frequency-domain
design

$$e_n = \hat{h}_n - \frac{\sum_{q=0}^Q \varphi_q \lambda_n^q}{1 + \sum_{p=1}^P \psi_p \lambda_n^p}$$

β_n α_n

ARMA design

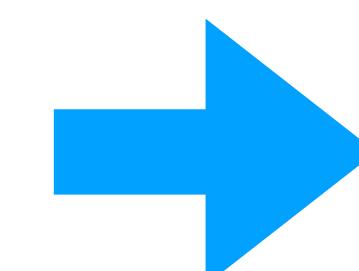
Minimization of error

frequency-domain
design

$$e_n = \hat{h}_n - \frac{\sum_{q=0}^Q \varphi_q \lambda_n^q}{1 + \sum_{p=1}^P \psi_p \lambda_n^p}$$

β_n ←
 α_n ←

○ Prony's method



$$e'_n = \hat{h}_n \alpha_n - \beta_n$$

modified error

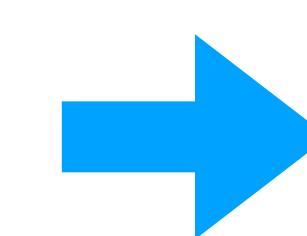
ARMA design

$$e'_n = \hat{h}_n \alpha_n - \beta_n$$

ARMA design

$$e'_n = \hat{h}_n \alpha_n - \beta_n$$

modified error is **linear**
in $\{\psi, \varphi\}$



$$e' = \hat{h} \circ \alpha - \beta$$

ARMA design

modified error is **linear**
in $\{\psi, \varphi\}$

$$e'_n = \hat{h}_n \alpha_n - \beta_n$$

$$e' = \hat{h} \circ \alpha - \beta$$

$$\alpha = \mathbf{E}_{P+1} \psi, \quad \psi_0 = 1$$

$$[\mathbf{E}_{P+1}]_{n,p} = \lambda_n^{p-1}$$

$$\beta = \mathbf{E}_{Q+1} \varphi$$

$$[\mathbf{E}_{Q+1}]_{n,q} = \lambda_n^{q-1}$$

$$\min_{\psi, \varphi} \|\hat{h} \circ (\mathbf{E}_{P+1} \psi) - \mathbf{E}_{Q+1} \varphi\|_2^2$$

ARMA design

modified error is **linear**
in $\{\psi, \varphi\}$

$$e'_n = \hat{h}_n \alpha_n - \beta_n$$

→ $e' = \hat{h} \circ \alpha - \beta$

$$\alpha = \mathbf{\Xi}_{P+1} \psi, \quad \psi_0 = 1$$

$$[\mathbf{\Xi}_{P+1}]_{n,p} = \lambda_n^{p-1}$$

$$\beta = \mathbf{\Xi}_{Q+1} \varphi$$

$$[\mathbf{\Xi}_{Q+1}]_{n,q} = \lambda_n^{q-1}$$

→
$$\min_{\psi, \varphi} \|\hat{h} \circ (\mathbf{\Xi}_{P+1} \psi) - \mathbf{\Xi}_{Q+1} \varphi\|_2^2$$

alternative data-driven
design

$$\min_{\{\psi_p, \varphi_q\}} \sum_i \|\mathbf{A}(\{\psi_p\}) \mathbf{y}_i - \mathbf{B}(\{\varphi_q\}) \mathbf{x}_i\|_2^2$$

ARMA design

- Iterative method

$$e_n = (\hat{h}_n \alpha_n - \beta_n) \gamma_n, \gamma_n = 1/\alpha_n$$

ARMA design

- Iterative method

for known γ ,
error is linear in $\{\psi, \varphi\}$

$$e_n = (\hat{h}_n \alpha_n - \beta_n) \gamma_n, \gamma_n = 1/\alpha_n$$

$$\mathbf{e} = (\hat{\mathbf{h}} \circ \boldsymbol{\alpha} - \boldsymbol{\beta}) \circ \boldsymbol{\gamma}$$

$$\boldsymbol{\alpha} = \mathbf{E}_{P+1} \boldsymbol{\psi}, \quad \psi_0 = 1$$

$$[\mathbf{E}_{P+1}]_{n,p} = \lambda_n^{p-1}$$

$$\boldsymbol{\beta} = \mathbf{E}_{Q+1} \boldsymbol{\varphi}$$

$$[\mathbf{E}_{Q+1}]_{n,q} = \lambda_n^{q-1}$$

ARMA design

- Iterative method

for **known** γ ,
error is **linear** in $\{\psi, \varphi\}$

$$e_n = (\hat{h}_n \alpha_n - \beta_n) \gamma_n, \gamma_n = 1/\alpha_n$$

$$\mathbf{e} = (\hat{\mathbf{h}} \circ \boldsymbol{\alpha} - \boldsymbol{\beta}) \circ \boldsymbol{\gamma}$$

$$\boldsymbol{\alpha} = \mathbf{\Xi}_{P+1} \boldsymbol{\psi}, \quad \psi_0 = 1$$

$$[\mathbf{\Xi}_{P+1}]_{n,p} = \lambda_n^{p-1}$$

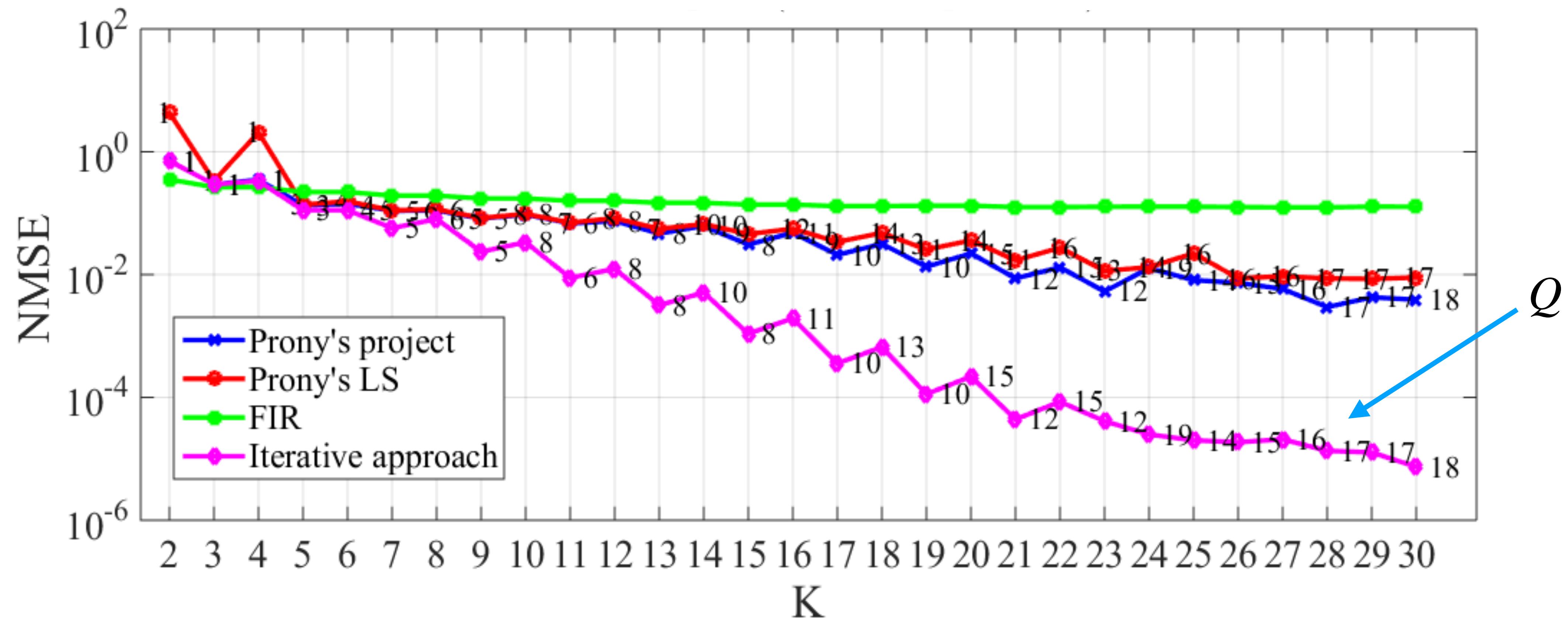
$$\boldsymbol{\beta} = \mathbf{\Xi}_{Q+1} \boldsymbol{\varphi}$$

$$[\mathbf{\Xi}_{Q+1}]_{n,q} = \lambda_n^{q-1}$$

$$\min_{\psi_i, \varphi_i} \|\boldsymbol{\gamma}_{i-1} \circ [\hat{\mathbf{h}} \circ (\mathbf{\Xi}_{P+1} \boldsymbol{\psi}_i - \mathbf{\Xi}_{Q+1} \boldsymbol{\varphi}_i)]\|_2^2$$

ARMA design results

Approximate an **ideal filter** with $\mathbf{S} = \mathbf{L}_n$, $\lambda_c = 1$, $P + Q \leq K$
 e.g., graph spectral clustering [Tremblay'16, ICASSP]



Beyond classical graph filtering

FIR and IIR extensions

- Node-varying graph filters and edge-varying graph filters

[Segarra'17, TSP]

[Coutino'17, CAMSAP]

FIR and IIR extensions

- Node-varying graph filters and edge-varying graph filters

[Segarra'17, TSP]

[Coutino'17, CAMSAP]

- Edge-varying for both FIR and ARMA graph filters [Coutino'19, TSP]

FIR and IIR extensions

- **Node-varying** graph filters and **edge-varying** graph filters

[Segarra'17, TSP]

[Coutino'17, CAMSAP]

- **Edge-varying** for both FIR and ARMA graph filters [Coutino'19, TSP]

- **Nonlinear** graph filters

◆ Weighted median graph filters [Segarra'16, GlobalSIP]

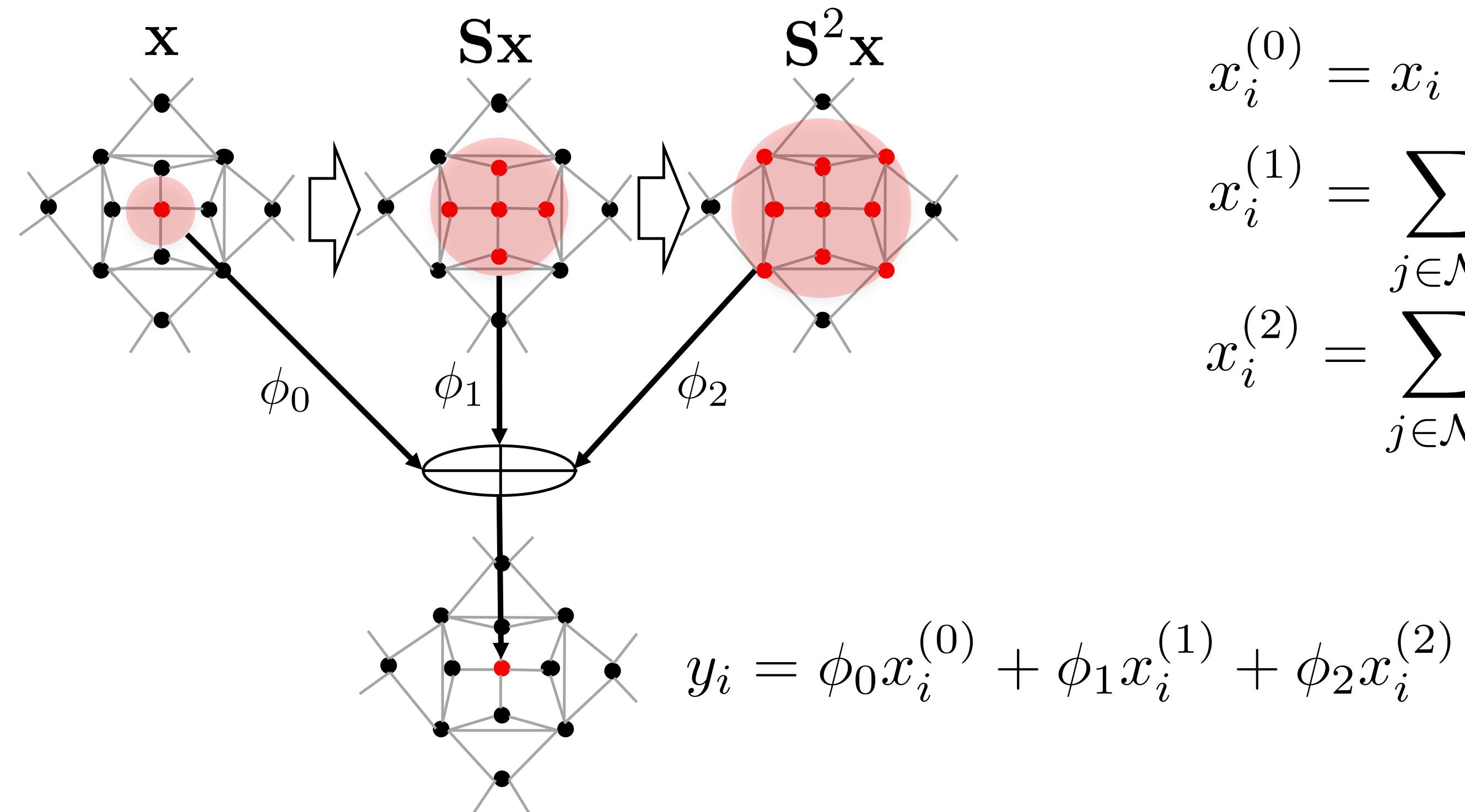
◆ Activation functions (graph CNNs) [Bruna'13]

FIR graph filters

Example: $y = \phi_0 x + \phi_1 Sx + \phi_2 S^2x$

FIR graph filters

Example: $y = \phi_0 \mathbf{x} + \phi_1 \mathbf{Sx} + \phi_2 \mathbf{S}^2 \mathbf{x}$



$$\begin{aligned} x_i^{(0)} &= x_i \\ x_i^{(1)} &= \sum_{j \in \mathcal{N}_i} [\mathbf{S}]_{i,j} x_j^{(0)} \\ x_i^{(2)} &= \sum_{j \in \mathcal{N}_i} [\mathbf{S}]_{i,j} x_j^{(1)} \end{aligned}$$

FIR graph filters

$$H_C \triangleq \sum_{k=0}^K \phi_k S^k$$

- Efficient and distributed implementation 😊

$$\begin{cases} x_i^{(0)} = x_i \\ x_i^{(k)} = \sum_{j \in \mathcal{N}_i} [S]_{i,j} x_j^{(k-1)}, \quad k = 1, 2, \dots, K \\ y_i = \sum_{k=0}^K \phi_k x_i^{(k)} \end{cases}$$

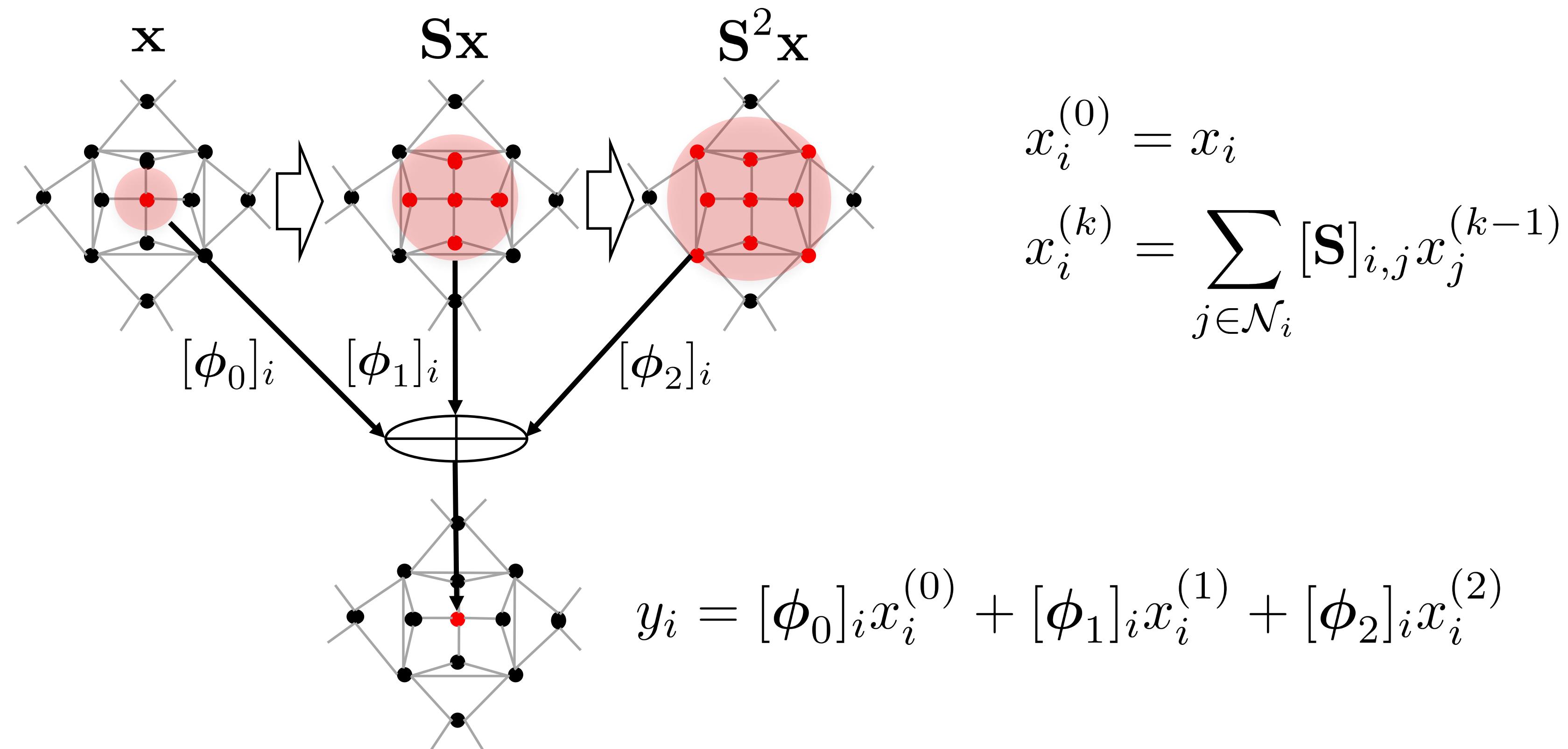
- Computational and communication cost of $\mathcal{O}(MK)$ 😊
- Linear in scalar coefficients $\{\phi_k\}$ 😊
- Good approximation requires high filter orders 😞

Node-varying graph filters

Example: $y = \text{diag}(\phi_0)x + \text{diag}(\phi_1)Sx + \text{diag}(\phi_2)S^2x$

Node-varying graph filters

Example: $\mathbf{y} = \text{diag}(\phi_0)\mathbf{x} + \text{diag}(\phi_1)\mathbf{Sx} + \text{diag}(\phi_2)\mathbf{S}^2\mathbf{x}$



Node-varying graph filters

$$\mathbf{H}_{\text{NV}} \triangleq \sum_{k=0}^K \text{diag}\{\boldsymbol{\phi}_k\} \mathbf{S}^k$$

- Efficient and distributed implementation 😊

$$\begin{cases} x_i^{(0)} = x_i \\ x_i^{(k)} = \sum_{j \in \mathcal{N}_i} [\mathbf{S}]_{i,j} x_j^{(k-1)}, \quad k = 1, 2, \dots, K \\ y_i = \sum_{k=0}^K [\boldsymbol{\phi}_k]_i x_i^{(k)} \end{cases}$$

- Computational and communication cost of $\mathcal{O}(MK)$ 😊
- Specializes to classical graph filter 😊
- Linear in vector coefficients $\{\boldsymbol{\phi}_k\}$ 😊

Edge-varying graph filters

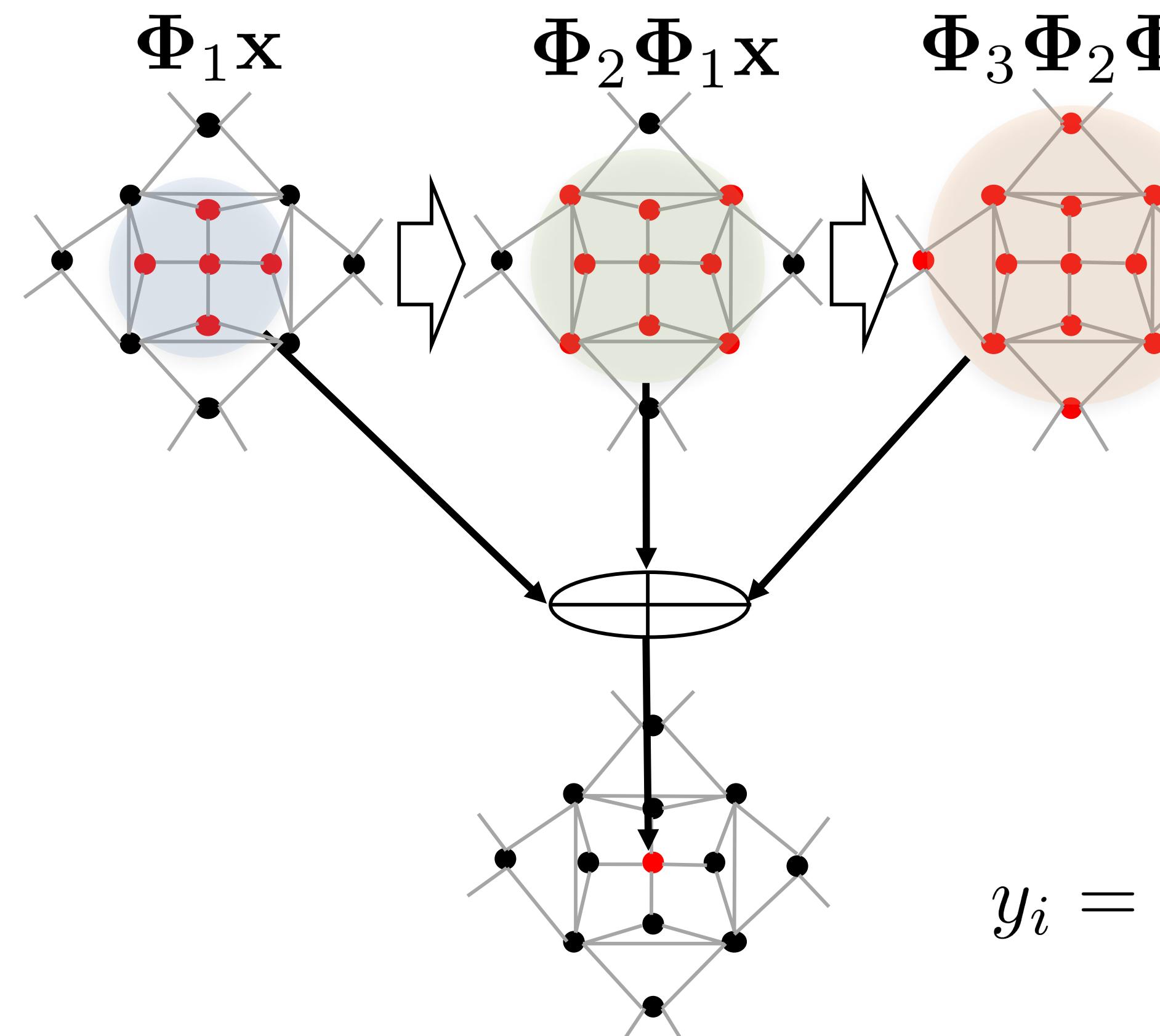
Example: $y = \Phi_1 x + \Phi_2 \Phi_1 x + \Phi_3 \Phi_2 \Phi_1 x$

Φ_k same support as $S + I$

Edge-varying graph filters

Example: $y = \Phi_1 x + \Phi_2 \Phi_1 x + \Phi_3 \Phi_2 \Phi_1 x$

Φ_k same support as $S + I$



$$x_i^{(0)} = x_i$$

$$x_i^{(k)} = \sum_{j \in \mathcal{N}_i} [\Phi_k]_{i,j} x_j^{(k-1)}$$

$$y_i = x_i^{(1)} + x_i^{(2)} + x_i^{(3)}$$

Coutino, Isufi, Leus, *Advances in Distributed Graph Filtering*, IEEE Transactions on Signal Processing, 2019

Edge-varying graph filters

$$\mathbf{H}_{\text{EV}} \triangleq \sum_{k=1}^K \prod_{l=1}^k \Phi_l$$

- Efficient and distributed implementation 😊

$$\begin{cases} x_i^{(0)} = x_i \\ x_i^{(k)} = \sum_{j \in \mathcal{N}_i} [\Phi_k]_{i,j} x_j^{(k-1)}, \quad k = 1, 2, \dots, K \\ y_i = \sum_{k=1}^K x_i^{(k)} \end{cases}$$

- Computational and communication cost of $\mathcal{O}(MK)$ 😊
- Specializes to classical and node-varying graph filter 😊
- Non-linear in matrix coefficients $\{\Phi_k\}$ 😞

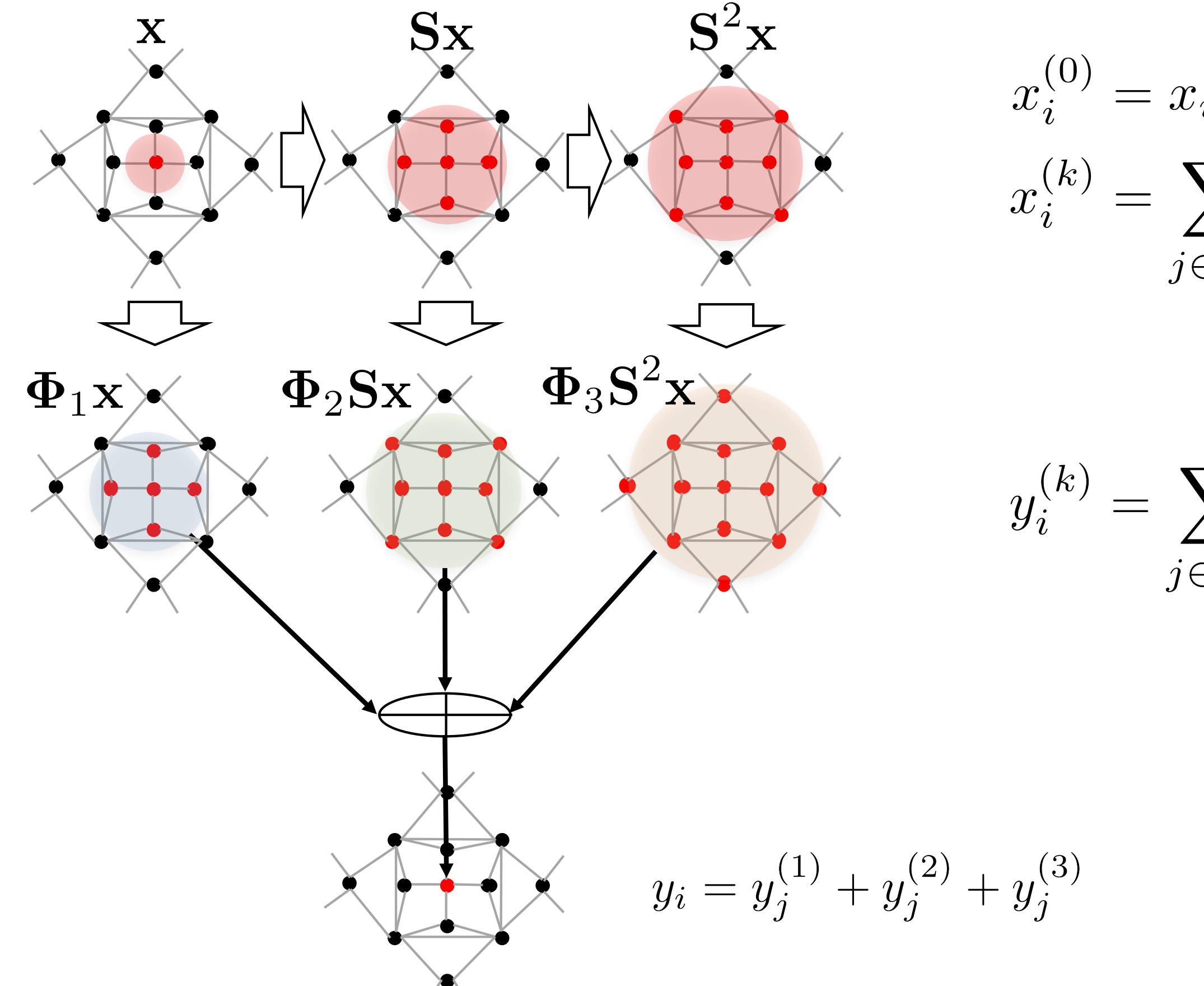
Constrained edge-varying graph filter

Example: $y = \Phi_1 x + \Phi_2 Sx + \Phi_3 S^2 x$

Φ_k same support as $S + I$

Constrained edge-varying graph filter

Example: $y = \Phi_1 x + \Phi_2 Sx + \Phi_3 S^2 x$



$$x_i^{(0)} = x_i$$

$$x_i^{(k)} = \sum_{j \in \mathcal{N}_i} [\mathbf{S}]_{i,j} x_j^{(k-1)}$$

$$y_i^{(k)} = \sum_{j \in \mathcal{N}_i} [\Phi_k]_{i,j} x_j^{(k-1)}$$

$$y_i = y_j^{(1)} + y_j^{(2)} + y_j^{(3)}$$

Coutino, Isufi, Leus, *Distributed edge-variant graph filters*, IEEE CAMSAP, 2017

Constrained edge-varying graph filter

$$\mathbf{H}_{\text{CEV}} \triangleq \sum_{k=1}^K \boldsymbol{\Phi}_k \mathbf{S}^{k-1}$$

- Efficient and distributed implementation 😊

$$\begin{cases} x_i^{(0)} = x_i \\ x_i^{(k)} = \sum_{j \in \mathcal{N}_i} [\mathbf{S}]_{i,j} x_j^{(k-1)}, \quad k = 1, 2, \dots, K-1 \\ y_i^{(k)} = \sum_{j \in \mathcal{N}_i} [\boldsymbol{\Phi}_k]_{i,j} x_j^{(k-1)}, \quad k = 1, 2, \dots, K \\ y_i = \sum_{k=1}^K y_i^{(k)} \end{cases}$$

- Computational and communication cost of $\mathcal{O}(MK)$ 😊
- Specializes to classical and node-varying graph filter 😊
- Linear in matrix coefficients $\{\boldsymbol{\Phi}_k\}$ 😊

Node-domain graph filter design

Filter response fitting

$$\min_{\Theta} \|\tilde{H} - H_{\text{fit}}(\Theta)\|^2$$

where

- \tilde{H} is the desired filter response
- $\|\cdot\|$ appropriate norm, e.g., Frobenius norm, spectral radius, etc.,

and

$$H_{\text{fit}}(\Theta) = \begin{cases} H_C, & \Theta = \{\phi_k\} \\ H_{\text{NV}}, & \Theta = \{\phi_k\} \\ H_{\text{CEV}}, & \Theta = \{\Phi_k\} \end{cases}$$

Node-domain graph filter design

Filter response fitting

$$\min_{\Theta} \|\tilde{H} - H_{\text{fit}}(\Theta)\|^2$$

alternative data-driven design

$$\min_{\Theta} \sum_i \|y_i - H_{\text{fit}}(\Theta)x_i\|^2$$

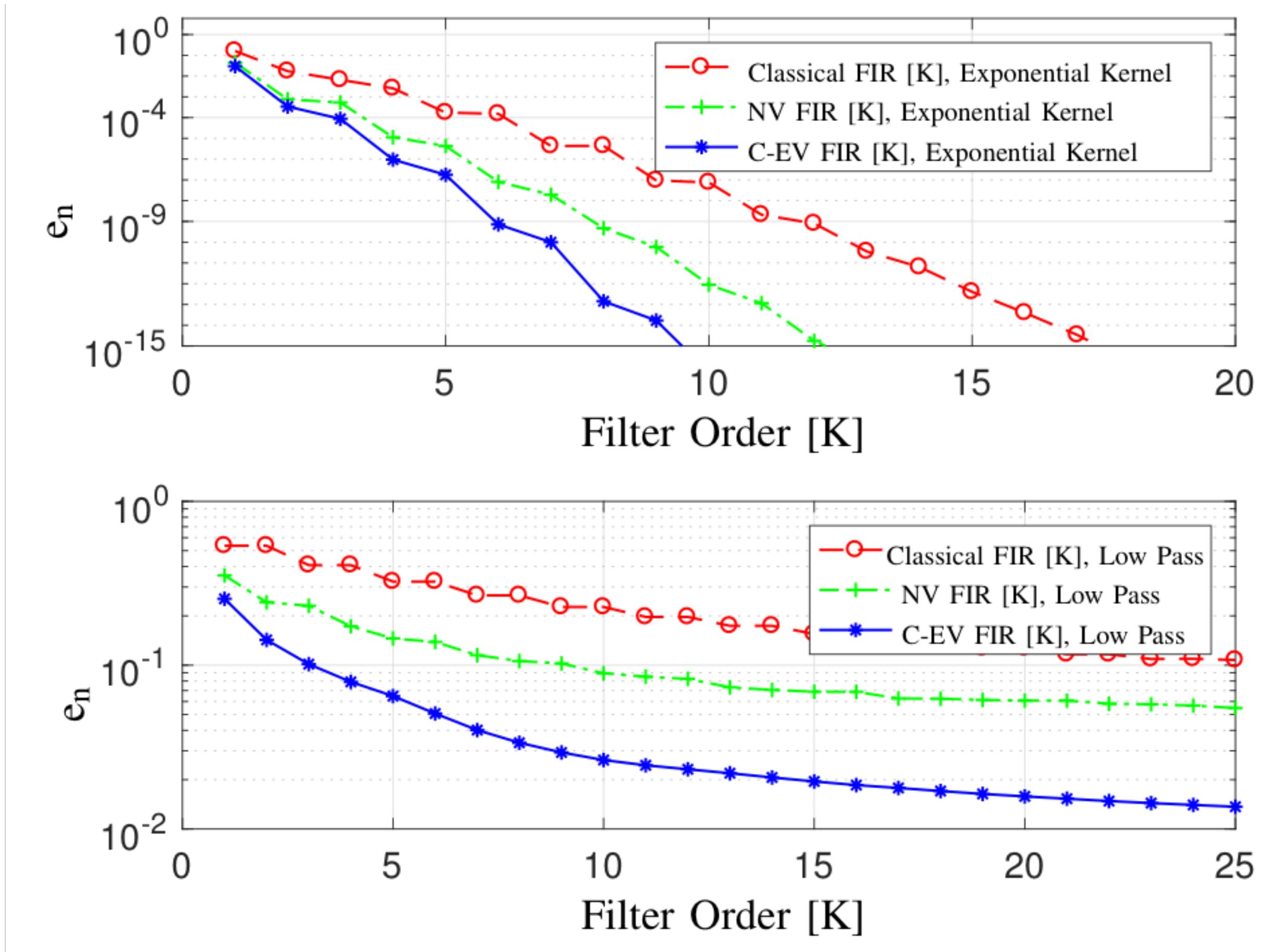
where

- \tilde{H} is the desired filter response
- $\|\cdot\|$ appropriate norm, e.g., Frobenius norm, spectral radius, etc.,

and

$$H_{\text{fit}}(\Theta) = \begin{cases} H_C, & \Theta = \{\phi_k\} \\ H_{\text{NV}}, & \Theta = \{\phi_k\} \\ H_{\text{CEV}}, & \Theta = \{\Phi_k\} \end{cases}$$

Fitting graph frequency response



Exponential kernel

$$\tilde{h}(\lambda) = e^{-3(\lambda-0.75)^2}$$

Ideal low-pass filter

$$\tilde{h}(\lambda) = \begin{cases} 1 & 0 \leq \lambda \leq \lambda_c \\ 0 & \text{otw} \end{cases}$$

$$e_n = \|\tilde{\mathbf{H}} - \mathbf{H}_{\text{fit}}\|_F^2 / \|\tilde{\mathbf{H}}\|_F^2$$

part 1 :: conclusions

- Graph signal processing is an exciting new tool set for processing unstructured data

part 1 :: conclusions

- **Graph signal processing** is an exciting new tool set for processing unstructured data
- **Graph filtering**
 - Applications: denoising, interpolation, distributed optimization, neural networks
 - FIR and ARMA versions: simple (iterative) least squares design, efficient and/or distributed implementations

part 1 :: conclusions

- **Graph signal processing** is an exciting new tool set for processing unstructured data
- **Graph filtering**
 - Applications: denoising, interpolation, distributed optimization, neural networks
 - FIR and ARMA versions: simple (iterative) least squares design, efficient and/or distributed implementations
- **Advanced graph filters** (discussed for FIR)
 - Node-varying, edge-varying, constrained edge-varying

part 1 :: conclusions

● **Graph signal processing** is an exciting new tool set for processing unstructured data

● **Graph filtering**

- Applications: denoising, interpolation, distributed optimization, neural networks
- FIR and ARMA versions: simple (iterative) least squares design, efficient and/or distributed implementations

● **Advanced graph filters** (discussed for FIR)

- Node-varying, edge-varying, constrained edge-varying

● **Edge-varying graph filters**

- Most general form
- Reduction in communication and computational cost
- Constrained form allows for easy least squares design

part 2

graph filters for distributed

optimization [1]

part 2 :: overview

part 2 :: overview

● Introduction

- Distributed optimization
- Connection to graph filtering

part 2 :: overview

○ Introduction

- Distributed optimization
- Connection to graph filtering

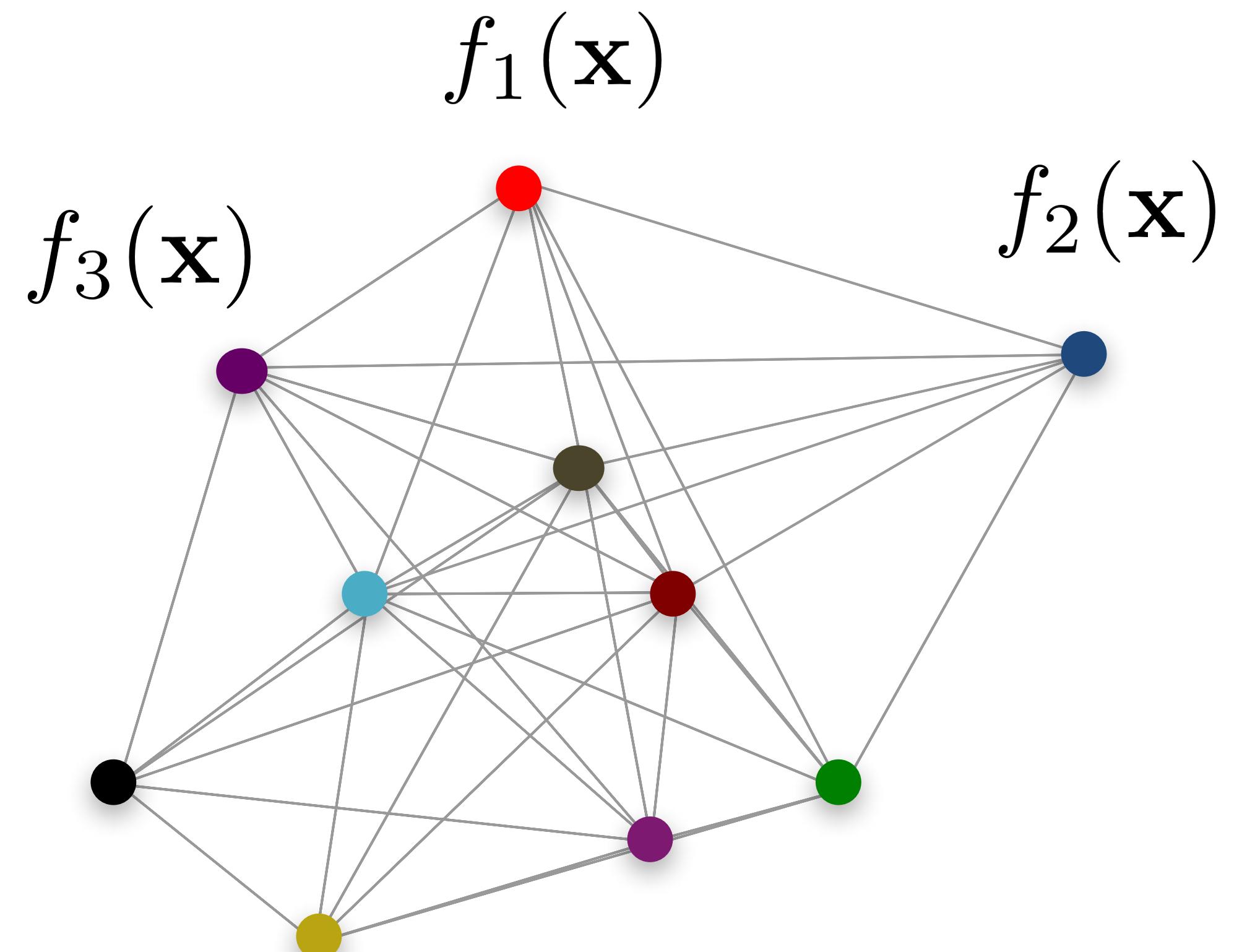
○ Applications

- Average consensus
- Distributed imaging
- Distributed beamforming

Distributed optimization

Distributed optimization

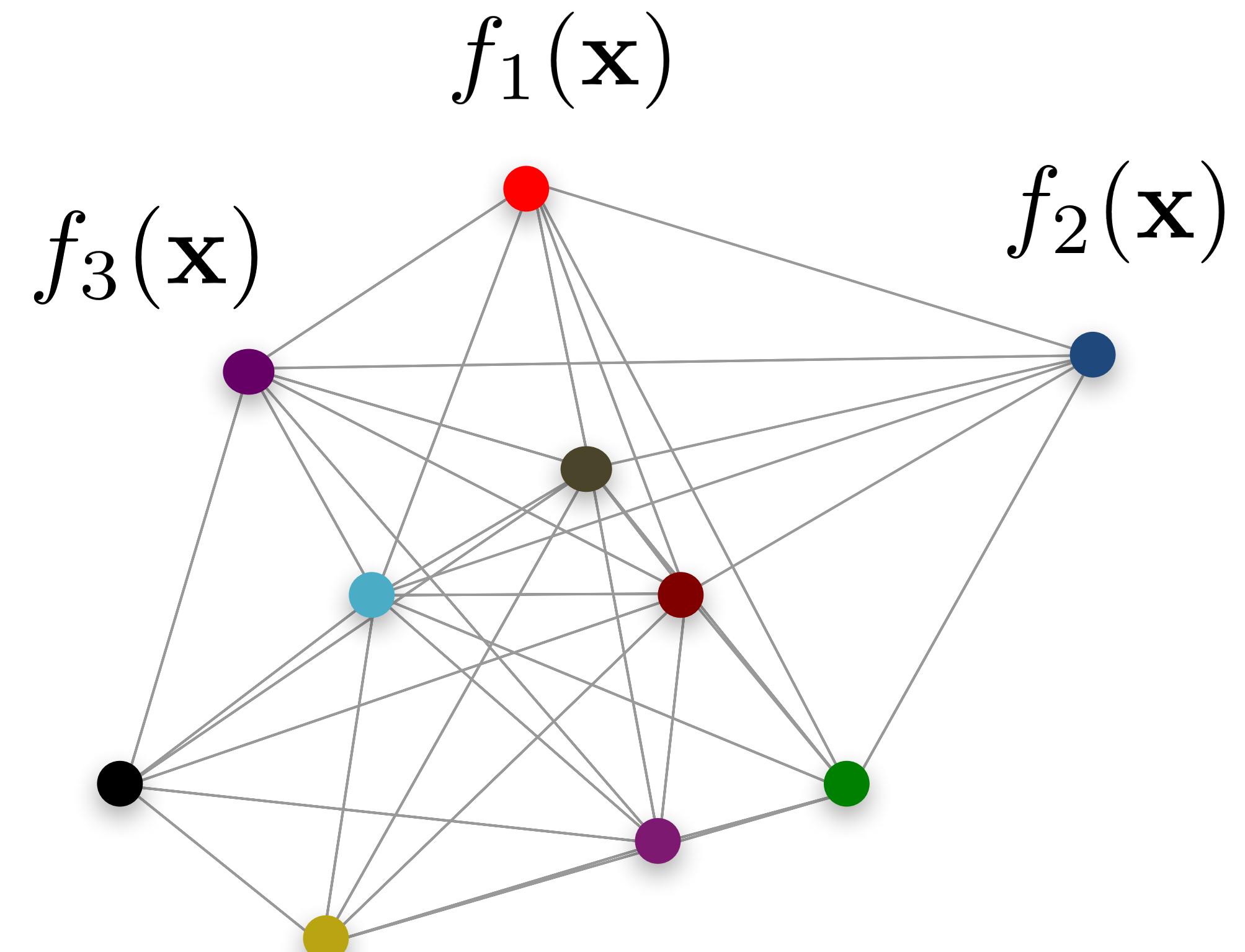
$$\min_{\mathbf{x}} f(\mathbf{x}) = \sum_{i=1}^N f_i(\mathbf{x})$$



Distributed optimization

$$\min_{\mathbf{x}} f(\mathbf{x}) = \sum_{i=1}^N f_i(\mathbf{x})$$

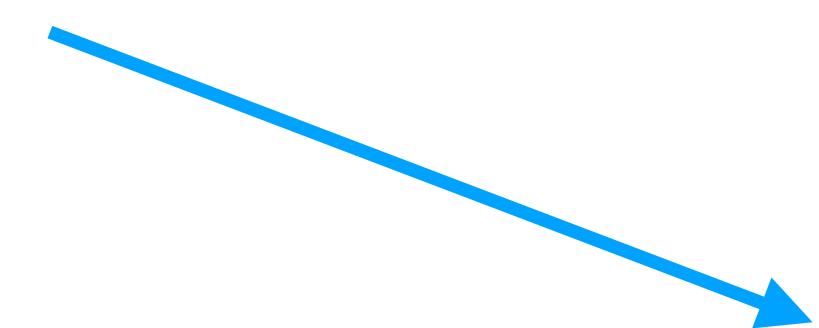
requires **data exchanges** within the network



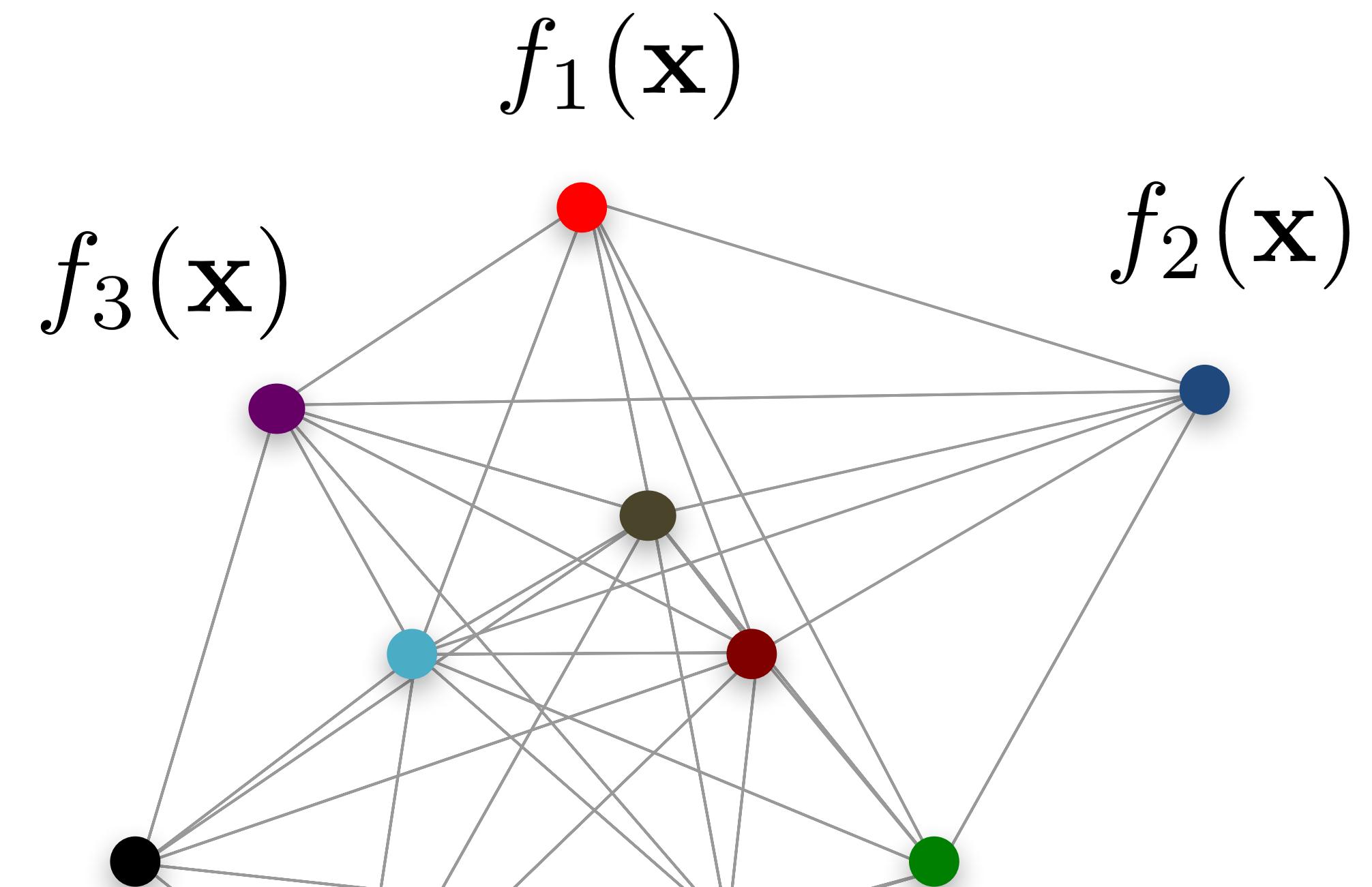
Distributed optimization

$$\min_{\mathbf{x}} f(\mathbf{x}) = \sum_{i=1}^N f_i(\mathbf{x})$$

requires **data exchanges** within the network



diffusions over the graph



Distributed optimization

We focus on problems

$$\mathbf{x}^* \triangleq \arg \min_{\mathbf{x}} \sum_{i=1}^N f_i(\mathbf{y}; \mathbf{x})$$

input data

Distributed optimization

We focus on problems

$$\mathbf{x}^* \triangleq \arg \min_{\mathbf{x}} \sum_{i=1}^N f_i(\mathbf{y}; \mathbf{x})$$

where

$$\mathbf{x}^* = \tilde{\mathbf{H}}\mathbf{y}$$

solution is a **linear transformation**
of the input data

input data

Distributed optimization

Average consensus



$$\min_x \sum_i (y_i - x)^2$$

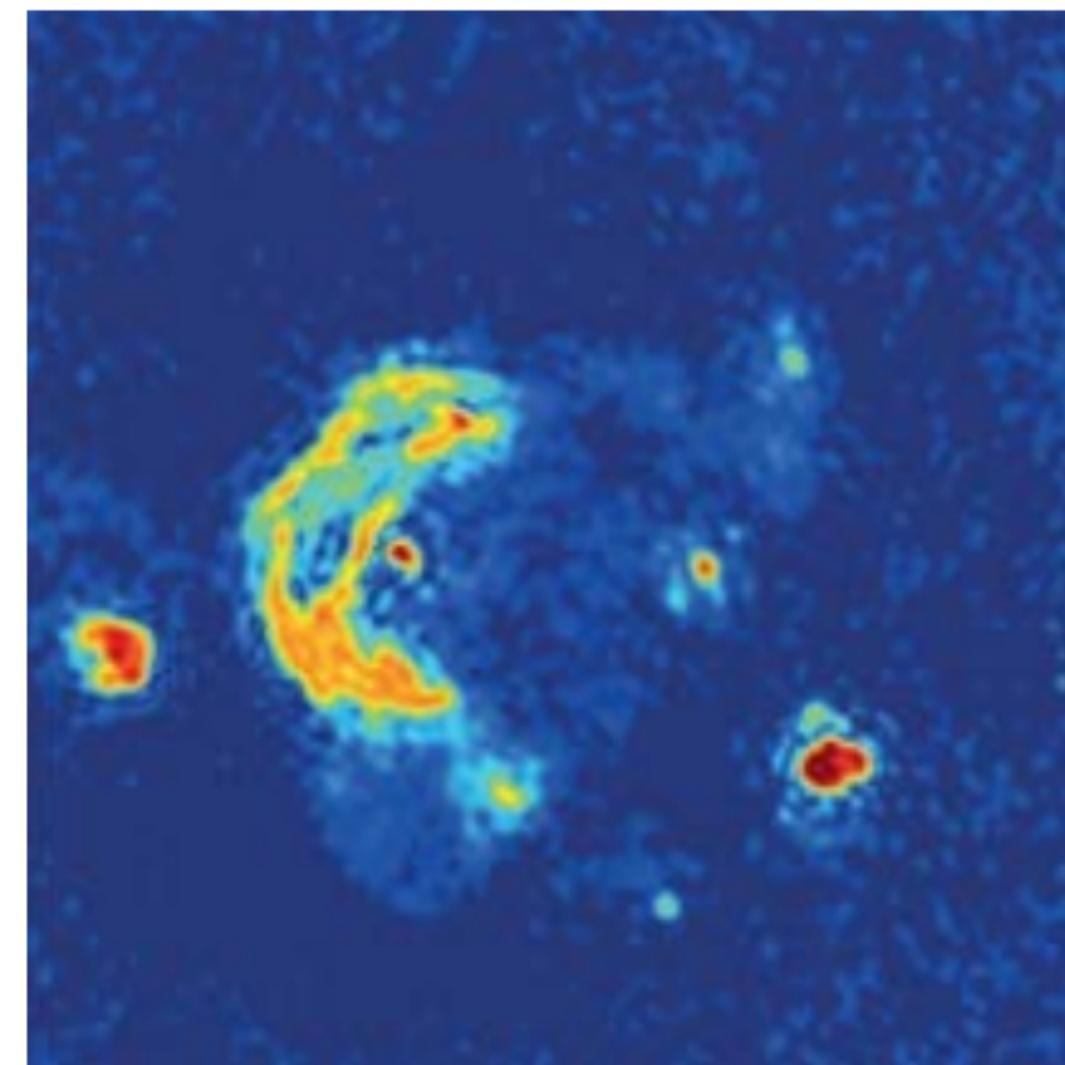
Distributed optimization

Average consensus

$$\min_x \sum_i (y_i - x)^2$$

Distributed imaging

[Naghizadeh, '19]



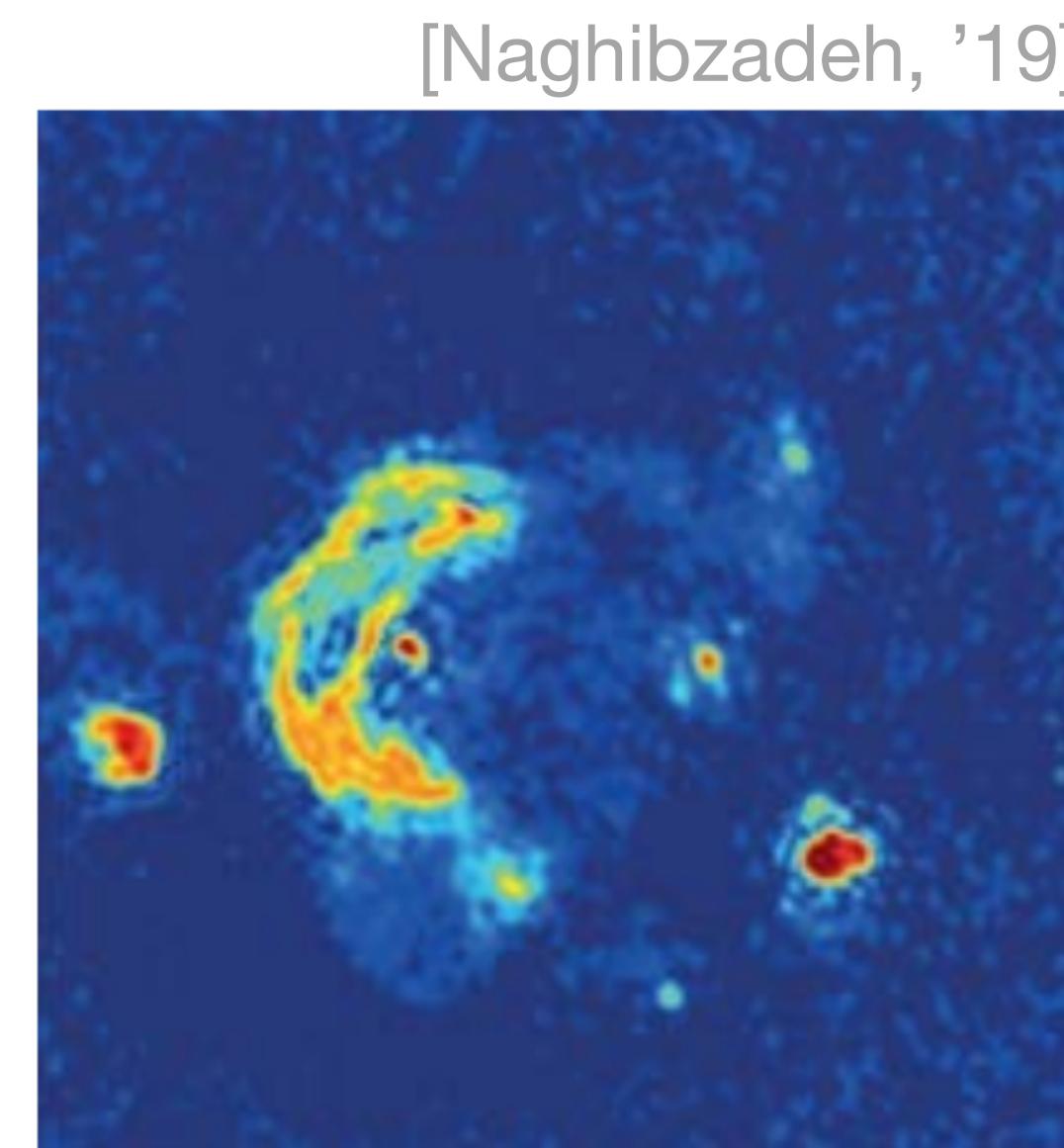
$$\min_x \sum_i (y_i - \mathbf{g}_i^\top \mathbf{x})^2$$

Distributed optimization

Average consensus

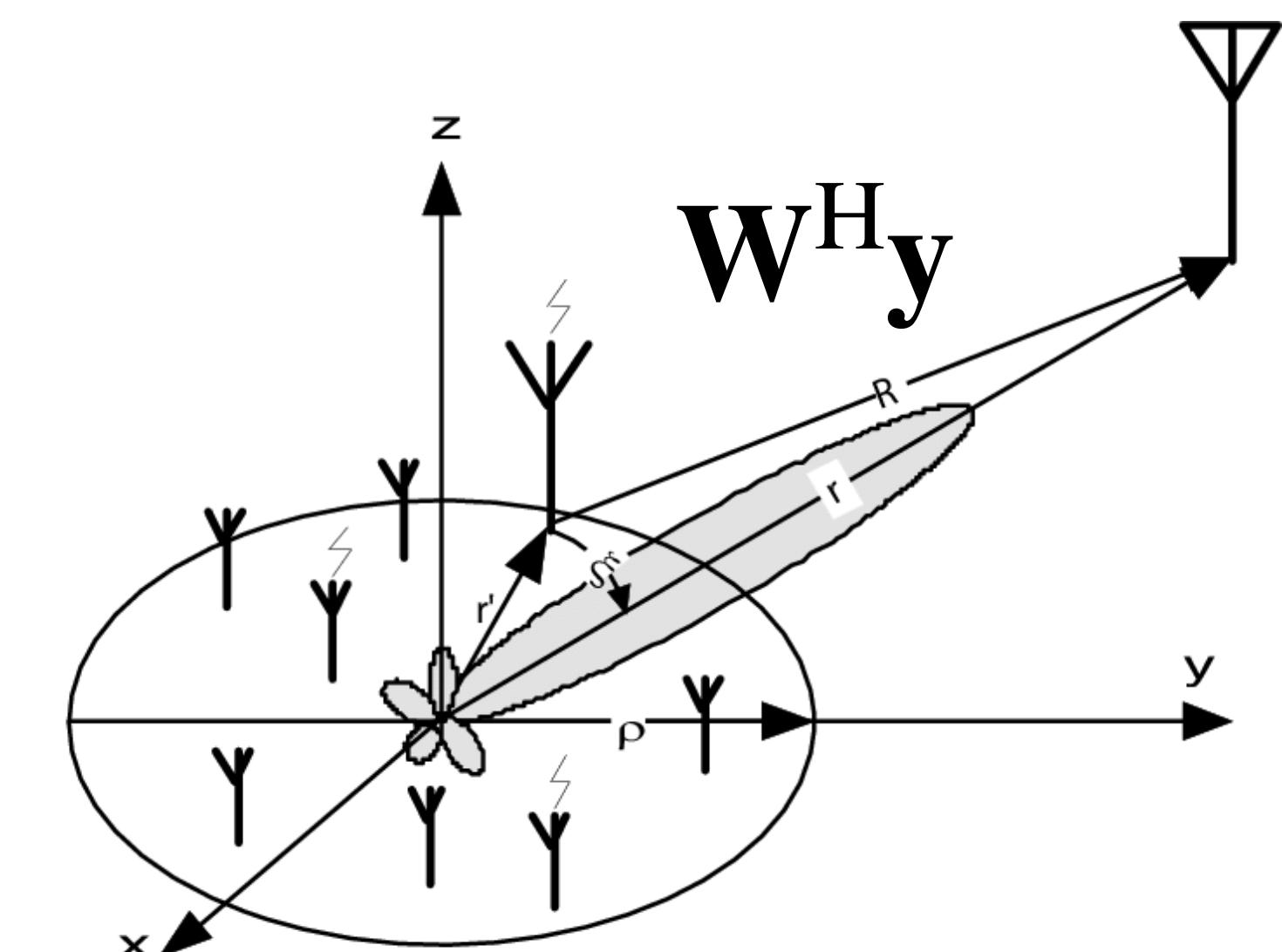
$$\min_x \sum_i (y_i - x)^2$$

Distributed imaging



$$\min_x \sum_i (y_i - \mathbf{g}_i^\top \mathbf{x})^2$$

Distributed Beamforming



$$\min_{\mathbf{x}} \|\mathbf{y} - (\mathbf{W}^H)^\dagger \mathbf{x}\|_2^2$$

How to leverage graph filters for distributed optimization?

Connection with graph filters

Goal: Implement **known** operation

$$\mathbf{x}^* = \tilde{\mathbf{H}}\mathbf{y}$$

Connection with graph filters

Goal: Implement **known** operation

$$\mathbf{x}^* = \tilde{\mathbf{H}}\mathbf{y}$$

in a **distributed** manner.

Connection with graph filters

Goal: Implement **known** operation

$$\mathbf{x}^* = \tilde{\mathbf{H}}\mathbf{y}$$

in a **distributed** manner.

distributable
by nature

Approach: Approximate $\tilde{\mathbf{H}}$ by means of **graph filters**

Global operator fitting

$$\min_{\Theta} \|\tilde{H} - H_{\text{fit}}(\Theta)\|^2$$

where \tilde{H} is the solution of a centralized optimization problem

Global operator fitting

$$\min_{\Theta} \|\tilde{H} - H_{\text{fit}}(\Theta)\|^2$$

where \tilde{H} is the solution of a centralized optimization problem

- Only works if global solution is linear (quadratic problems)

Global operator fitting

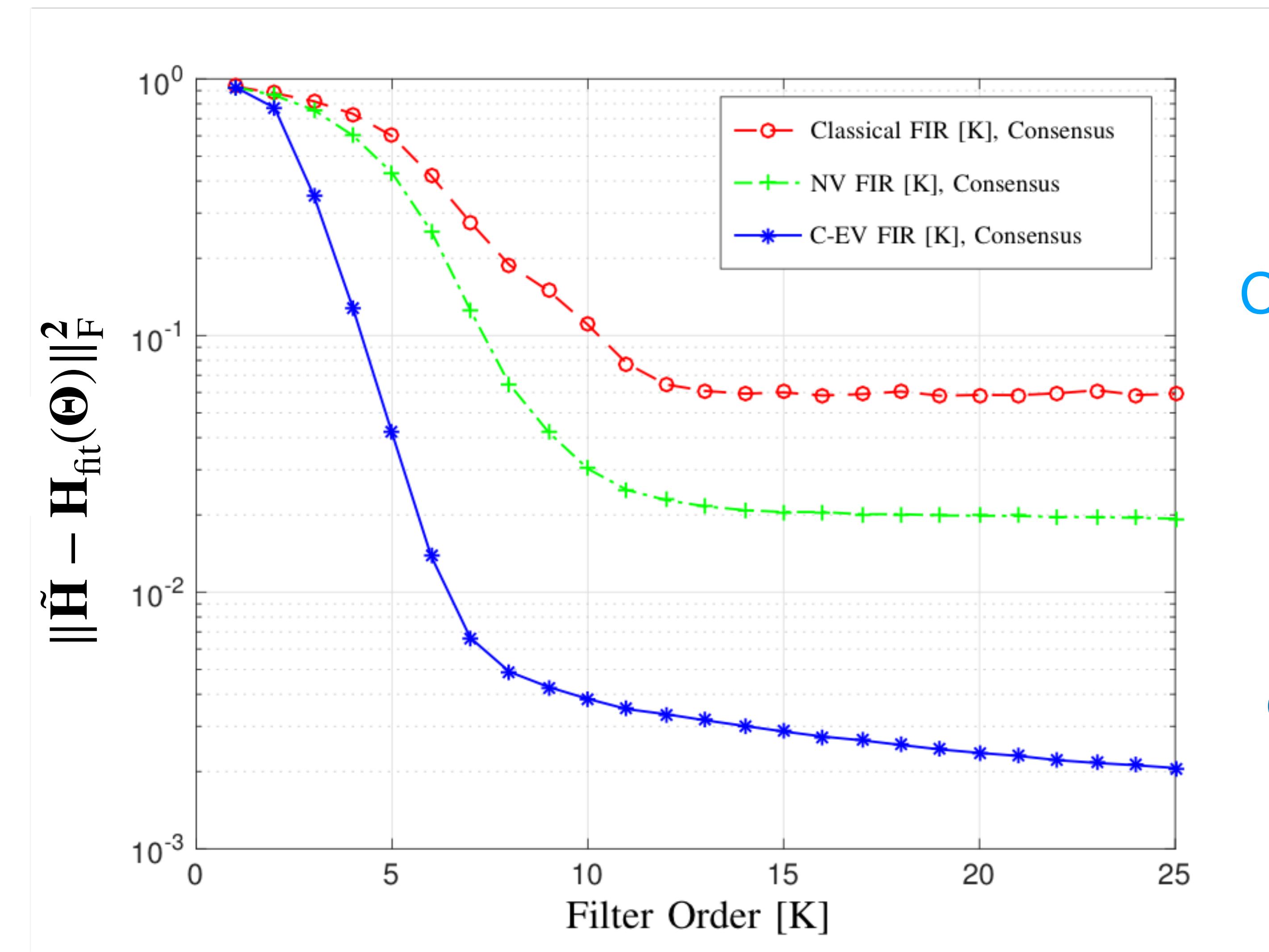
$$\min_{\Theta} \|\tilde{H} - H_{\text{fit}}(\Theta)\|^2$$

where \tilde{H} is the solution of a centralized optimization problem

- Only works if global solution is **linear** (quadratic problems)
- Two possible **design approaches**
 - ◆ A fusion centre designs the filter and distributes the coefficients
 - ◆ The nodes themselves carry out the filter design which requires knowledge of the global operator and the total graph

Some applications

Average consensus



Consensus matrix

$$\tilde{\mathbf{H}} = \mathbf{1}\mathbf{1}^T/N$$

$$N = 256$$

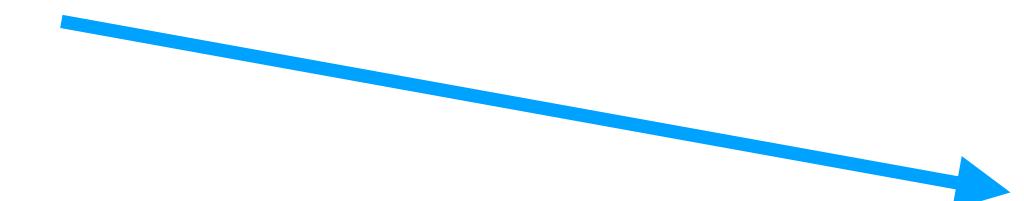
Community graph

Distributed imaging

$$\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{G}\mathbf{x}\|_2^2$$

Distributed imaging

$$\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{G}\mathbf{x}\|_2^2$$

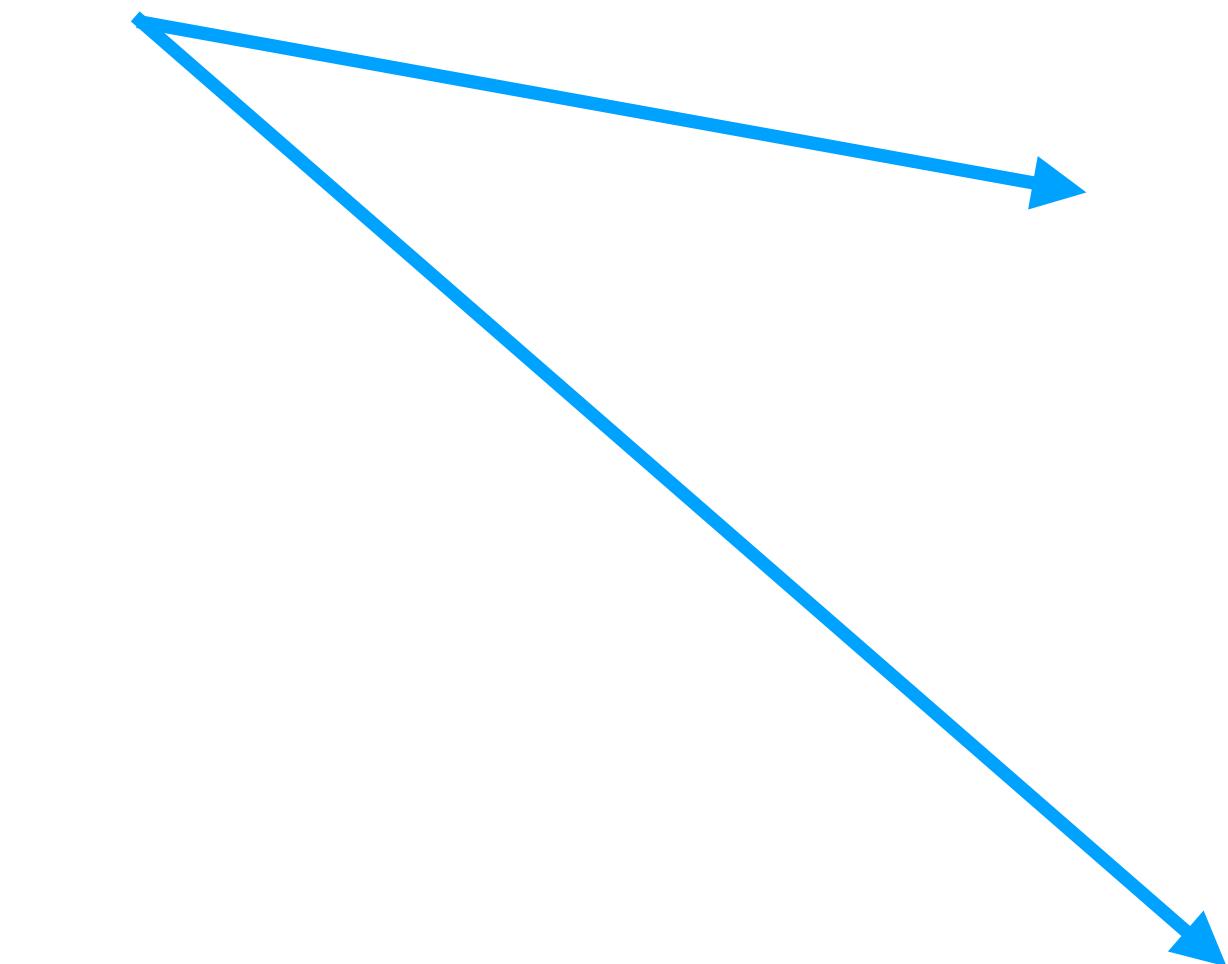


Distributed optimization approach

$$\min_{\mathbf{x}} \sum \left| [\mathbf{y}]_i - \mathbf{g}_i^\top \mathbf{x} \right|^2$$
$$\mathbf{G}^\top = [\mathbf{g}_1, \mathbf{g}_2, \dots, \mathbf{g}_N]$$

Distributed imaging

$$\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{G}\mathbf{x}\|_2^2$$



Distributed optimization approach

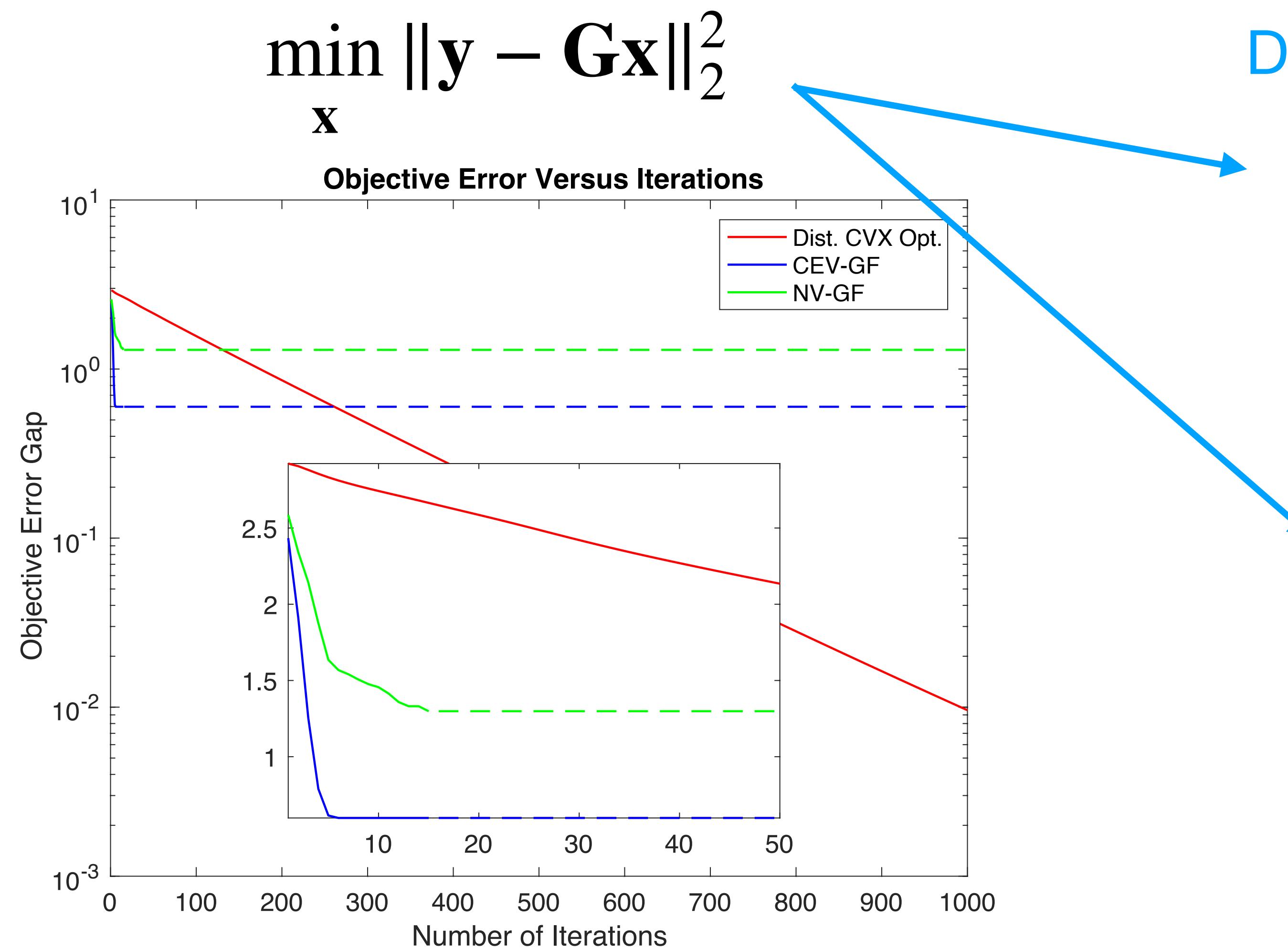
$$\min_{\mathbf{x}} \sum_{\mathbf{G}^T = [\mathbf{g}_1, \mathbf{g}_2, \dots, \mathbf{g}_N]} |[\mathbf{y}]_i - \mathbf{g}_i^T \mathbf{x}|^2$$

Graph filtering approach

$$\min_{\Theta} \|\mathbf{1}\tilde{\mathbf{g}}_i^T - \mathbf{H}_i(\Theta)\|_F^2$$

$$(\mathbf{G}^\dagger)^T = [\tilde{\mathbf{g}}_1, \tilde{\mathbf{g}}_2, \dots, \tilde{\mathbf{g}}_d]$$

Distributed imaging



Distributed optimization approach

$$\min_{\mathbf{x}} \sum \left| [\mathbf{y}]_i - \mathbf{g}_i^\top \mathbf{x} \right|^2$$

$$\mathbf{G}^\top = [\mathbf{g}_1, \mathbf{g}_2, \dots, \mathbf{g}_N]$$

Graph filtering approach

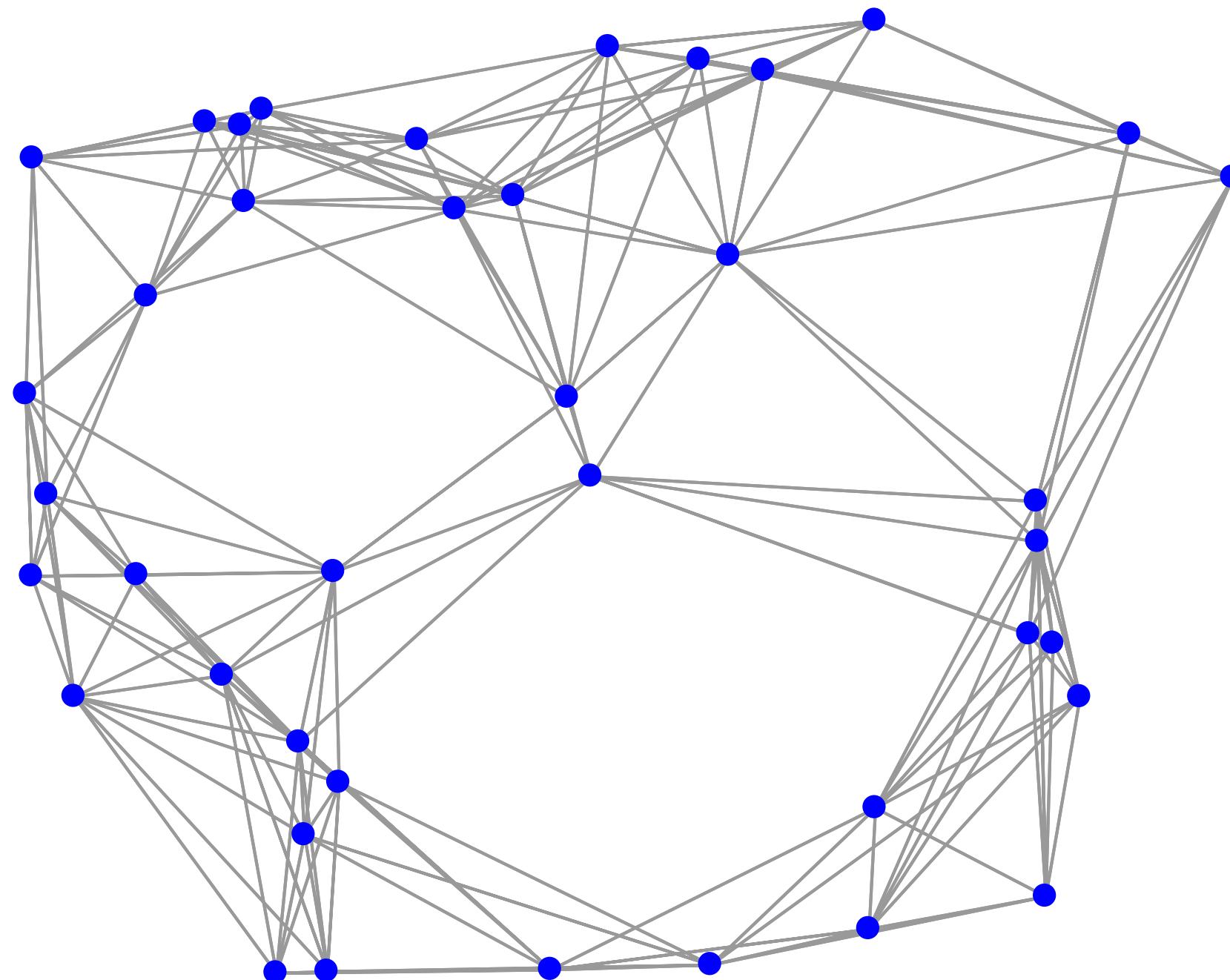
$$\min_{\Theta} \|\mathbf{1}\tilde{\mathbf{g}}_i^\top - \mathbf{H}_i(\Theta)\|_F^2$$

$$(\mathbf{G}^\dagger)^\top = [\tilde{\mathbf{g}}_1, \tilde{\mathbf{g}}_2, \dots, \tilde{\mathbf{g}}_d]$$

Distributed beamforming

Applying beamforming matrix

$$\mathbf{x} = \mathbf{W}^H \mathbf{y}$$

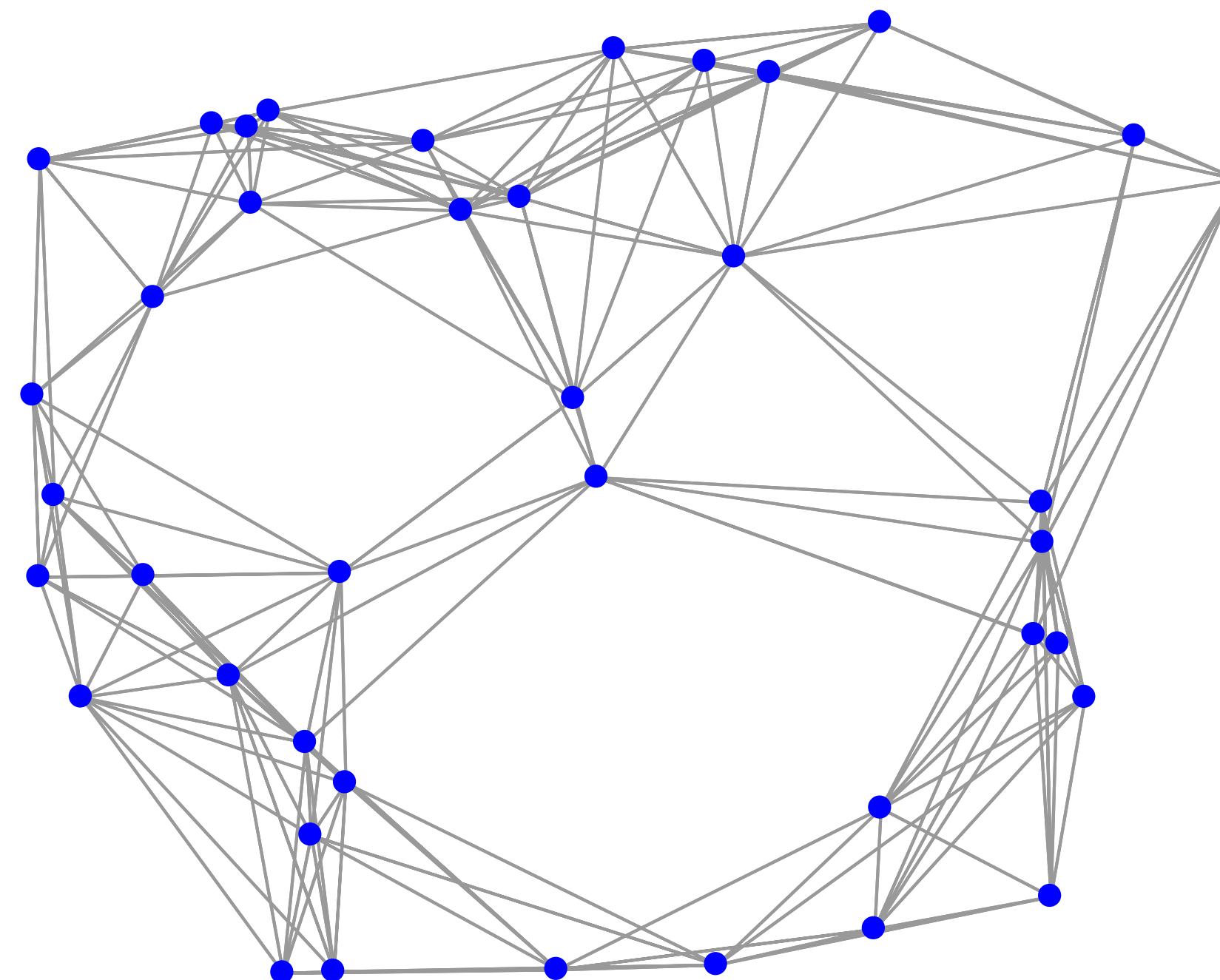


sensor array

Distributed beamforming

Applying beamforming matrix

$$\mathbf{x} = \mathbf{W}^H \mathbf{y}$$



sensor array

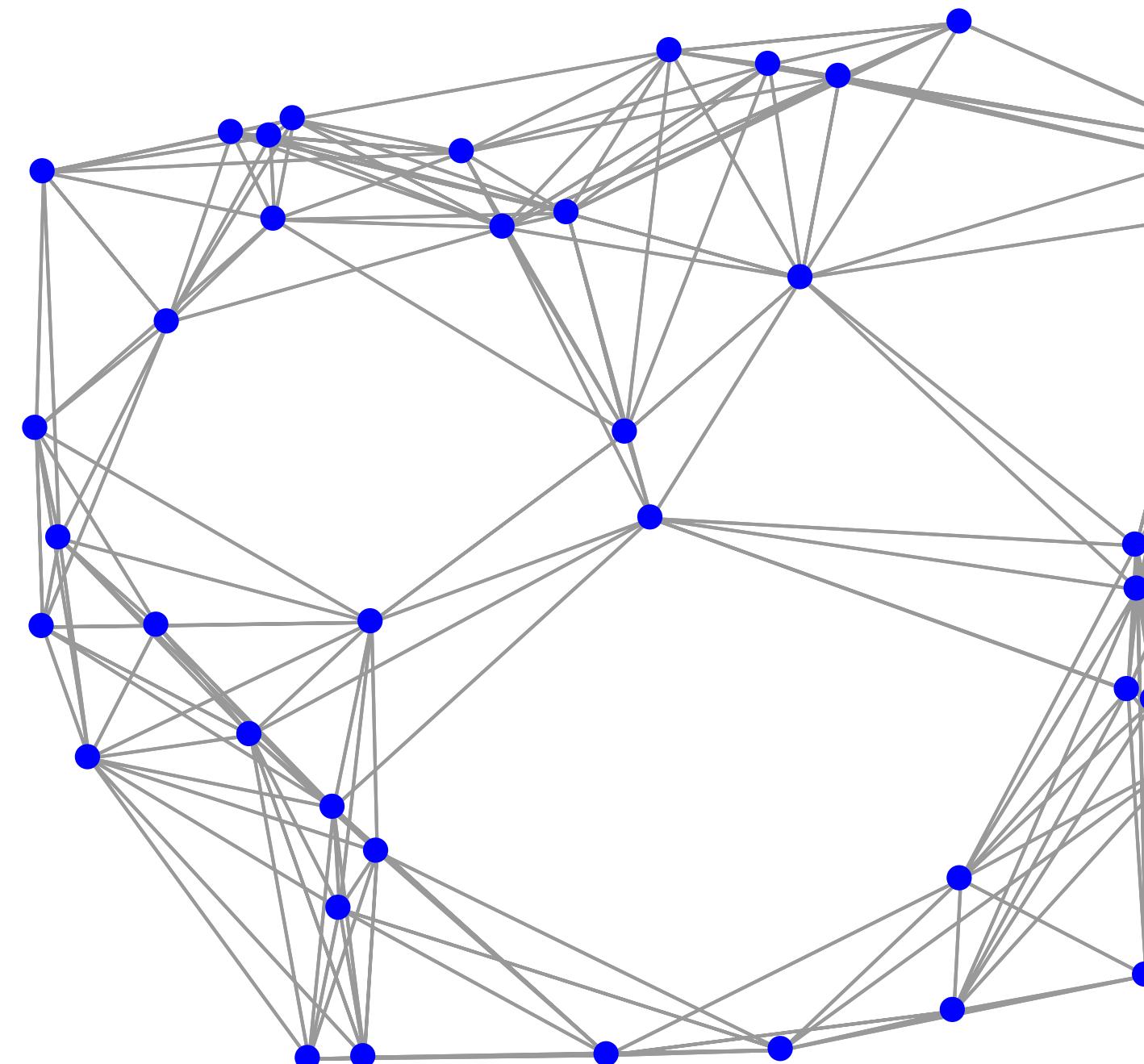
Distributed optimization approach

$$\min_{\mathbf{x}} \|\mathbf{y} - (\mathbf{W}^H)^\dagger \mathbf{x}\|_2^2$$

Distributed beamforming

Applying beamforming matrix

$$\mathbf{x} = \mathbf{W}^H \mathbf{y}$$



sensor array

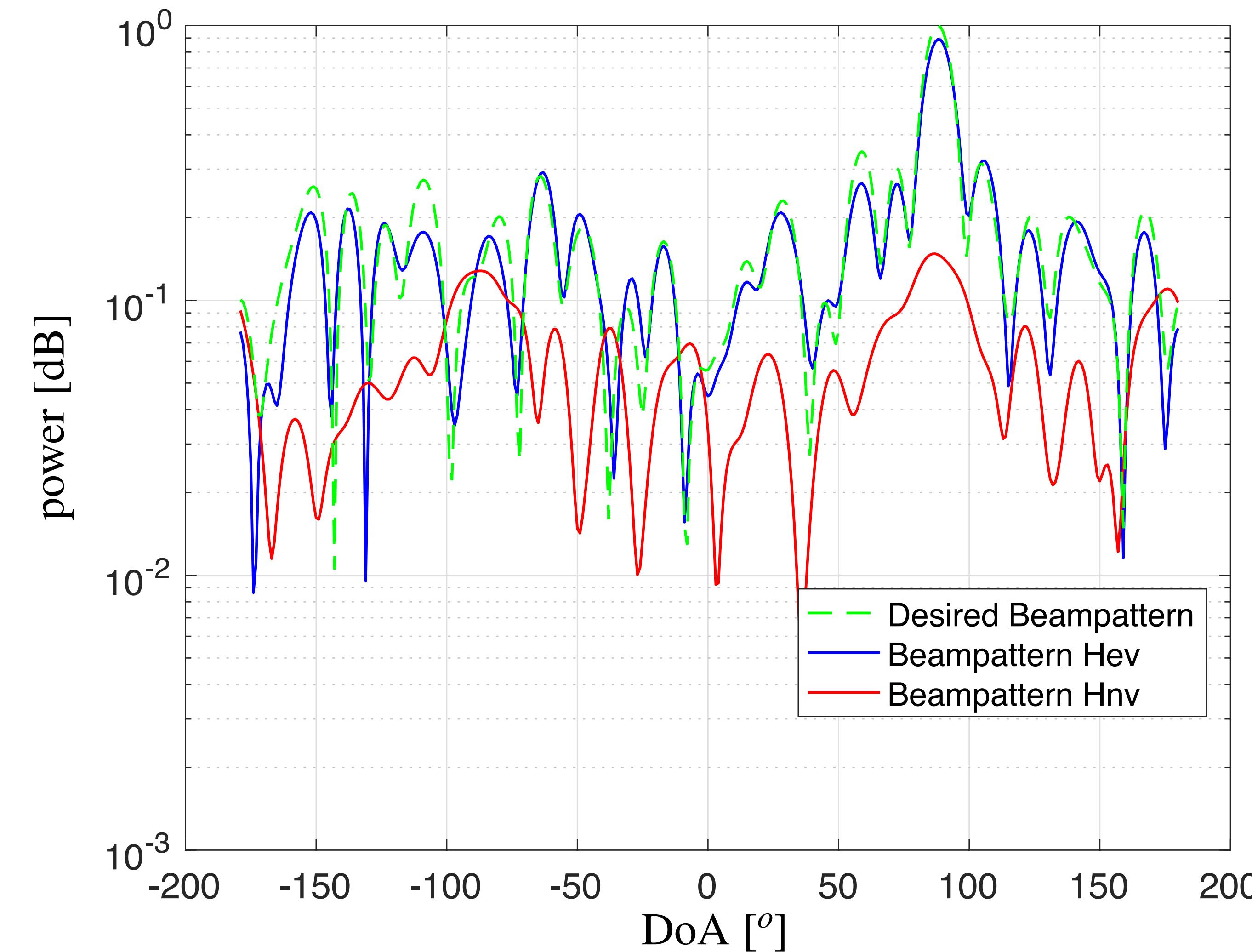
Distributed optimization approach

$$\min_{\mathbf{x}} \|\mathbf{y} - (\mathbf{W}^H)^\dagger \mathbf{x}\|_2^2$$

Graph filtering approach

$$\min_{\Theta} \|\mathbf{W}^H - \mathbf{H}(\Theta)\|_F$$

Distributed beamforming



intermedio

part 3

graph filters for distributed

optimization [2]

part 3 :: overview

part 3 :: overview

○ Asynchronous implementation

- Classical results
- Results for classical graph filters
- Extension to more advanced graph filters
- Results

part 3 :: overview

○ Asynchronous implementation

- Classical results
- Results for classical graph filters
- Extension to more advanced graph filters
- Results

○ Cascaded implementation

- Motivation
- Cascaded problem formulation
- Right-left iterative fitting (RELIEF)
- Results for average consensus

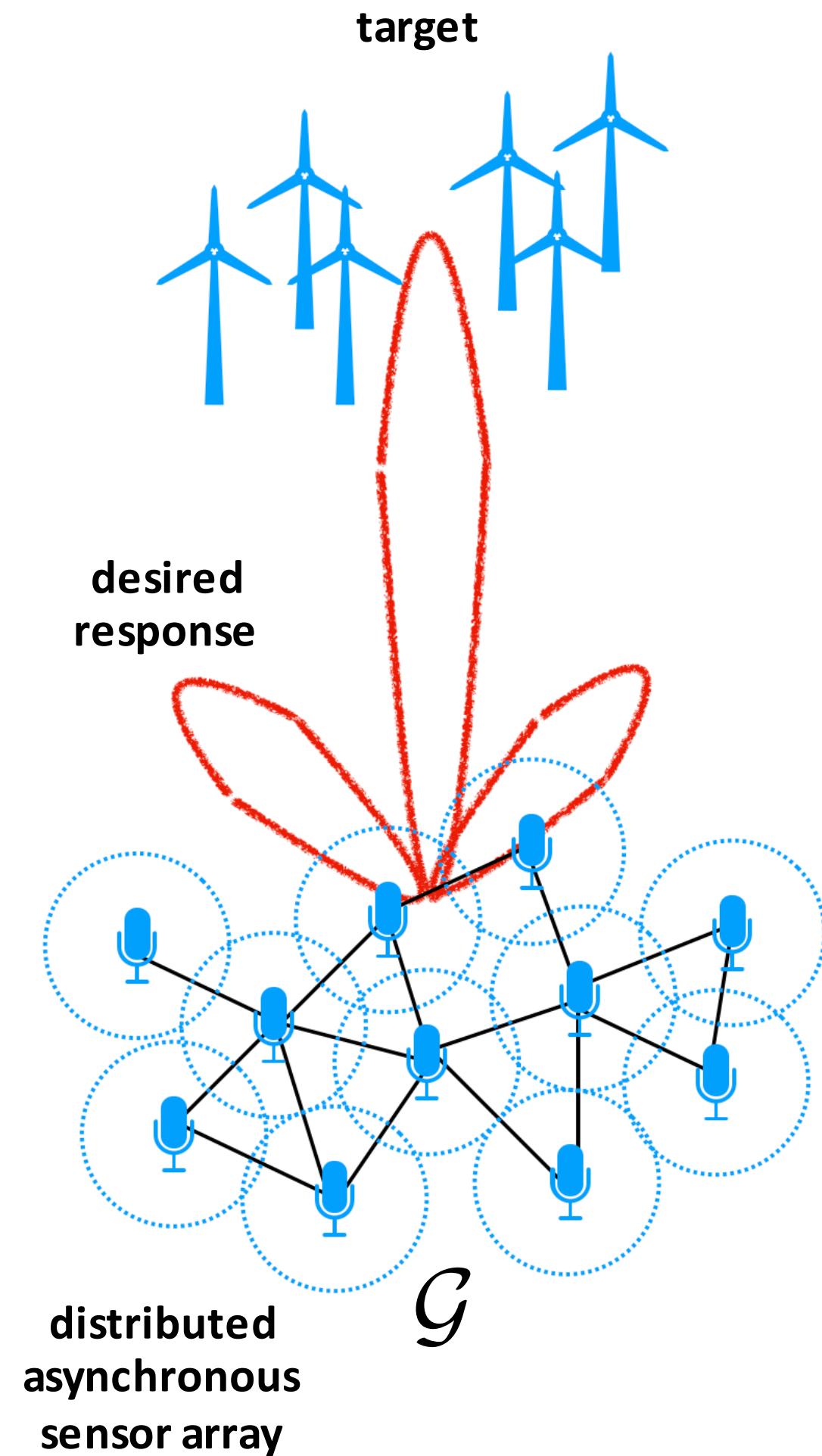
What about unsynchronized networks?

Asynchronous graph filtering

- Many applications require to compute, e.g., the beamforming

$$\mathbf{y} = \mathbf{W}^H \mathbf{x} \approx \mathbf{H}(\Theta) \mathbf{x}$$

distributively over an unsynchronised network.



Asynchronous graph filtering

- Many applications require to compute, e.g., the beamforming

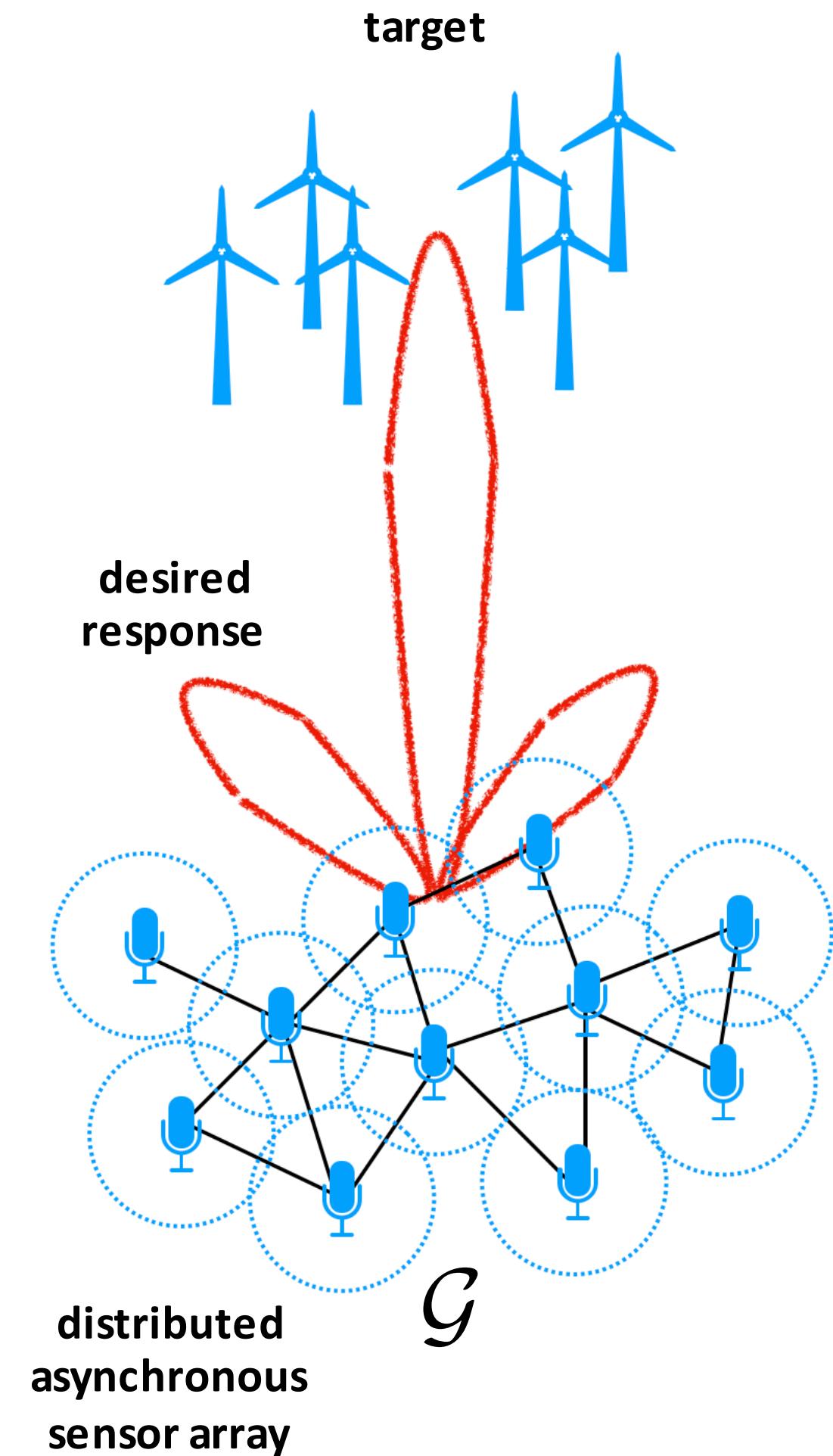
$$\mathbf{y} = \mathbf{W}^H \mathbf{x} \approx \mathbf{H}(\Theta) \mathbf{x}$$

distributively over an unsynchronised network.

- Suppose we want to use general graph filter operations

$$\mathbf{y}_{GF} = \mathbf{H}(\Theta) \mathbf{x} = \mathbf{H}_B \mathbf{H}_A$$

$$\mathbf{H}_B \triangleq \mathbf{I} - \sum_{k=1}^Q \Phi_{k,b} \mathbf{S}^{k-1} \quad \mathbf{H}_A \triangleq \left(\mathbf{I} - \sum_{k=1}^K \Phi_{k,a} \mathbf{S}^{k-1} \right)^{-1}$$



Asynchronous graph filtering

- Many applications require to compute, e.g., the beamforming

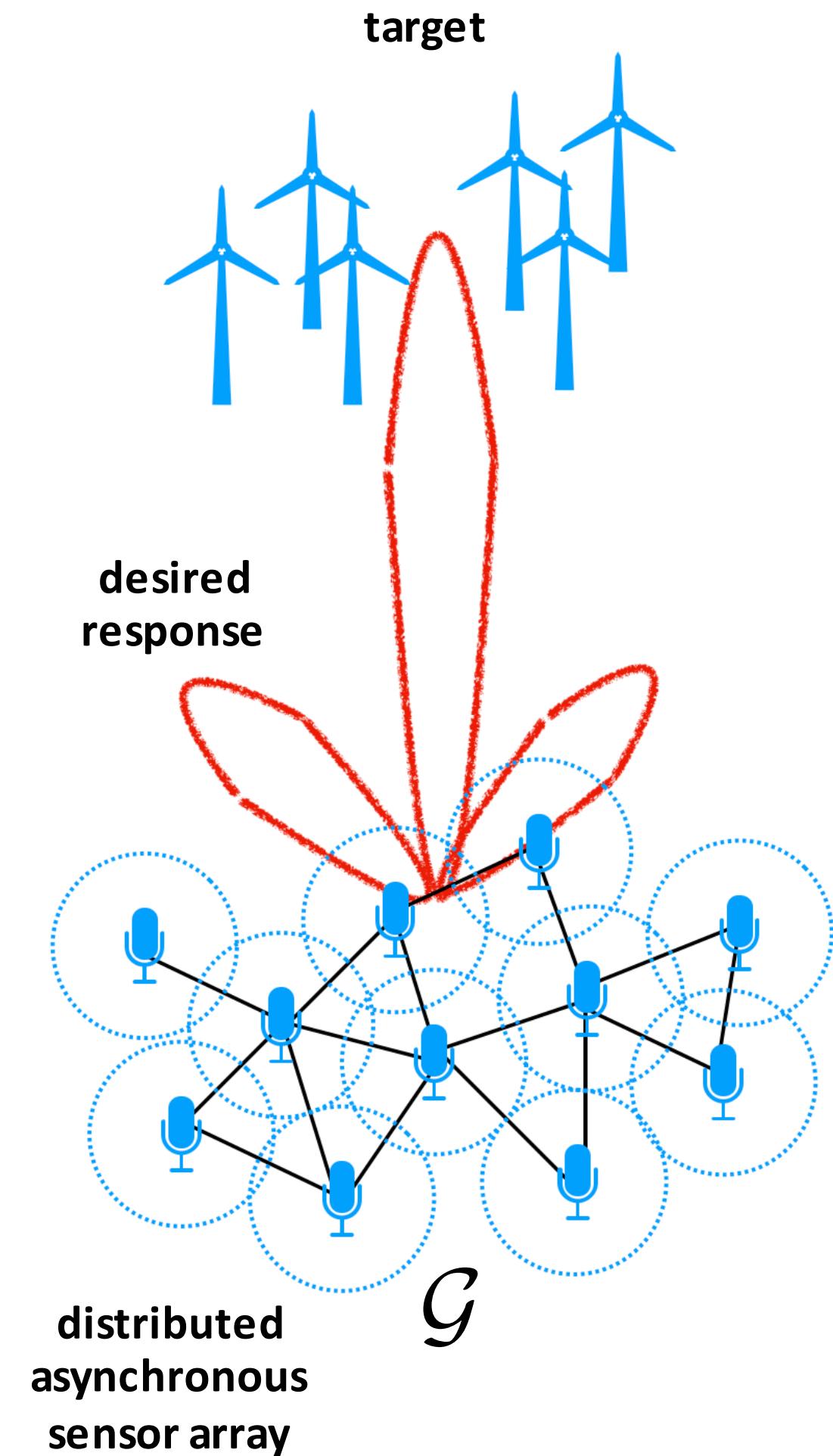
$$\mathbf{y} = \mathbf{W}^H \mathbf{x} \approx \mathbf{H}(\Theta) \mathbf{x}$$

distributively over an unsynchronised network.

- Suppose we want to use general graph filter operations

$$\mathbf{y}_{GF} = \mathbf{H}(\Theta) \mathbf{x} = \mathbf{H}_B \mathbf{H}_A$$

$$\mathbf{H}_B \triangleq \mathbf{I} - \sum_{k=1}^Q \Phi_{k,b} \mathbf{S}^{k-1} \quad \mathbf{H}_A \triangleq \left(\mathbf{I} - \sum_{k=1}^K \Phi_{k,a} \mathbf{S}^{k-1} \right)^{-1}$$



Under which conditions is possible to implement the operator in the network?

Asynchronous graph filtering

- Classical results. Asynchronous implementation of the recurrence

$$\mathbf{y}_{t+1} = \mathbf{y}_t + (\mathbf{x} - \mathbf{C}\mathbf{y}_t) \quad (\text{splitting method})$$

convergence under mild conditions on \mathbf{C} .

[D. Chazan, '69][D. Bertsekas, '83][Y. Saad, '03]

Asynchronous graph filtering

- **Classical results.** **Asynchronous** implementation of the recurrence

$$\mathbf{y}_{t+1} = \mathbf{y}_t + (\mathbf{x} - \mathbf{C}\mathbf{y}_t) \quad (\text{splitting method})$$

convergence under mild conditions on \mathbf{C} .

[D. Chazan, '69][D. Bertsekas, '83][Y. Saad, '03]

- **Recent results for classical GF.** **Asynchronous** implementation of a GF

$$\mathbf{y} = p(\gamma \mathbf{S})(q(\gamma \mathbf{S}))^{-1} \mathbf{x} \quad p(x) = \sum_{k=0}^{K-1} p_k x^k$$

convergence under mild conditions on matrices involved.

[O. Teke, '19]

$$q(x) = 1 + \sum_{k=1}^K q_k x^k$$

Asynchronous graph filtering

- From the model

$$\mathbf{y}_{GF} = \mathbf{H}(\Theta)\mathbf{x} = \mathbf{H}_B\mathbf{H}_A\mathbf{x}$$

Asynchronous graph filtering

- From the model

$$\mathbf{y}_{GF} = \mathbf{H}(\Theta)\mathbf{x} = \mathbf{H}_B\mathbf{H}_A\mathbf{x}$$

consider the partial output of the graph filter operation

$$\mathbf{y}_A = \mathbf{H}_A\mathbf{x}$$

Asynchronous graph filtering

- From the model

$$\mathbf{y}_{GF} = \mathbf{H}(\Theta)\mathbf{x} = \mathbf{H}_B\mathbf{H}_A\mathbf{x}$$

consider the partial output of the graph filter operation

$$\mathbf{y}_A = \mathbf{H}_A\mathbf{x}$$

which can be written as the [solution](#) to the linear system

$$\left(\mathbf{I} - \sum_{k=1}^K \Phi_k \mathbf{S}^{k-1} \right) \mathbf{y}_A = \mathbf{x}$$

Asynchronous graph filtering

This system can be solved with the recursion

$$\mathbf{y}_{t+1} = \mathbf{x} + \mathbf{B}\mathbf{y}_t$$

Asynchronous graph filtering

This system can be solved with the recursion

$$\mathbf{y}_{t+1} = \mathbf{x} + \mathbf{B}\mathbf{y}_t$$

which **converges** to $\mathbf{y}_\infty \rightarrow \mathbf{H}_A \mathbf{x}$ if

$$\rho(\mathbf{B}) < 1$$

Asynchronous graph filtering

This system can be solved with the recursion

$$\mathbf{y}_{t+1} = \mathbf{x} + \mathbf{B}\mathbf{y}_t$$

which **converges** to $\mathbf{y}_\infty \rightarrow \mathbf{H}_A \mathbf{x}$ if

$$\rho(\mathbf{B}) < 1$$

Requires several exchanges before update!

However, $\mathbf{B} \triangleq \sum_{k=0}^K \Phi_k \mathbf{S}^k$ is **not suitable** for asynchronous operation.

Asynchronous graph filtering

Instead, consider the *kth shift* of the recurrence vector

$$\mathbf{y}_t^{(k)} = \mathbf{S}\mathbf{y}_t^{(k-1)}$$

Asynchronous graph filtering

Instead, consider the *kth shift* of the recurrence vector

$$\mathbf{y}_t^{(k)} = \mathbf{S}\mathbf{y}_t^{(k-1)}$$

stacking the vectors $\{\mathbf{y}_t^{(k)}\}_{k=0}^{K-1}$ in $\bar{\mathbf{y}}_t$ we obtain the *extended recurrence* equation

$$\begin{aligned} \bar{\mathbf{y}}_{t+1} &= \begin{bmatrix} \mathbf{x} \\ 0 \\ \vdots \\ 0 \end{bmatrix} + \begin{bmatrix} \Phi_1 & \Phi_2 & \cdots & \Phi_K \\ \mathbf{S} & & & 0 \\ & \ddots & & \vdots \\ & & \mathbf{S} & 0 \end{bmatrix} \bar{\mathbf{y}}_t \\ &= \bar{\mathbf{x}} + \bar{\mathbf{B}} \bar{\mathbf{y}}_{t+1} \end{aligned}$$

Analogous to
companion matrix for
linear recursive
sequences

Asynchronous graph filtering

Instead, consider the *kth shift* of the recurrence vector

$$\mathbf{y}_t^{(k)} = \mathbf{S}\mathbf{y}_t^{(k-1)}$$

stacking the vectors $\{\mathbf{y}_t^{(k)}\}_{k=0}^{K-1}$ in $\bar{\mathbf{y}}_t$ we obtain the *extended recurrence* equation

$$\begin{aligned}\bar{\mathbf{y}}_{t+1} &= \begin{bmatrix} \mathbf{x} \\ 0 \\ \vdots \\ 0 \end{bmatrix} + \begin{bmatrix} \Phi_1 & \Phi_2 & \cdots & \Phi_K \\ \mathbf{S} & & & 0 \\ & \ddots & & \vdots \\ & & \mathbf{S} & 0 \end{bmatrix} \bar{\mathbf{y}}_{t+1} \\ &= \bar{\mathbf{x}} + \bar{\mathbf{B}} \bar{\mathbf{y}}_{t+1}\end{aligned}$$

the recurrence asymptotically *converges* if $\rho(\bar{\mathbf{B}}) < 1$.

Asynchronous graph filtering

- For the **inexact synchronous** recurrence

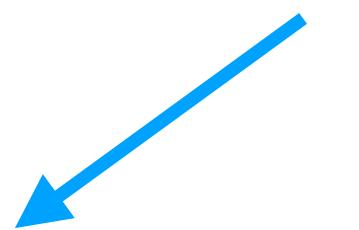
$$\bar{\mathbf{y}}_{t+1}^{\text{in}} = \bar{\mathbf{x}} + \bar{\mathbf{B}}\bar{\mathbf{y}}_t + \mathbf{v}_t$$

Asynchronous graph filtering

- For the **inexact synchronous recurrence**

$$\bar{\mathbf{y}}_{t+1}^{\text{in}} = \bar{\mathbf{x}} + \bar{\mathbf{B}}\bar{\mathbf{y}}_t + \mathbf{v}_t$$

bounded
perturbations, e.g.,
fixed-precision

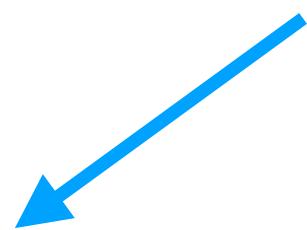

$$\|\mathbf{v}_l\| \leq \beta, \forall l \in \mathbb{N}$$

Asynchronous graph filtering

- For the **inexact synchronous recurrence**

$$\bar{\mathbf{y}}_{t+1}^{\text{in}} = \bar{\mathbf{x}} + \bar{\mathbf{B}}\bar{\mathbf{y}}_t + \mathbf{v}_t$$

bounded
perturbations, e.g.,
fixed-precision


$$\|\mathbf{v}_l\| \leq \beta, \forall l \in \mathbb{N}$$

under conditions

$$C \quad \rho \leq 1, \quad \gamma := a \frac{1 - \rho^K}{1 - \rho} < 1 \quad a := \max_{k \in \{1, \dots, K\}} \|\Phi_k\|$$

Asynchronous graph filtering

- For the **inexact synchronous recurrence**

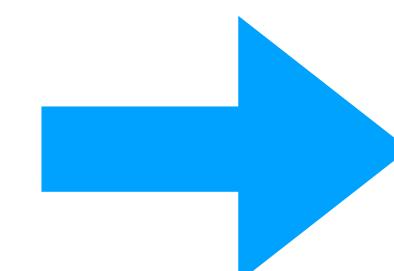
$$\bar{\mathbf{y}}_{t+1}^{\text{in}} = \bar{\mathbf{x}} + \bar{\mathbf{B}}\bar{\mathbf{y}}_t + \mathbf{v}_t$$

bounded
perturbations, e.g.,
fixed-precision

$\|\mathbf{v}_l\| \leq \beta, \forall l \in \mathbb{N}$

under conditions

$$C \quad \rho \leq 1, \quad \gamma := a \frac{1 - \rho^K}{1 - \rho} < 1 \quad a := \max_{k \in \{1, \dots, K\}} \|\Phi_k\|$$



$$\lim_{l \rightarrow \infty} \|(\bar{\mathbf{y}}_l^{\text{in}})^{(0)} - \mathbf{y}_A\| \leq \frac{\beta}{1 - \gamma}$$

recurrence **asymptotically converges within a norm ball**

Asynchronous graph filtering

- For the **inexact synchronous recurrence**

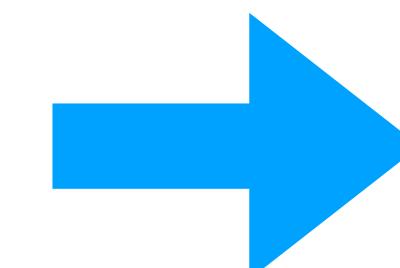
$$\bar{\mathbf{y}}_{t+1}^{\text{in}} = \bar{\mathbf{x}} + \bar{\mathbf{B}}\bar{\mathbf{y}}_t + \mathbf{v}_t$$

bounded
perturbations, e.g.,
fixed-precision

$\|\mathbf{v}_l\| \leq \beta, \forall l \in \mathbb{N}$

under conditions

$$C \quad \rho \leq 1, \quad \gamma := a \frac{1 - \rho^K}{1 - \rho} < 1 \quad a := \max_{k \in \{1, \dots, K\}} \|\Phi_k\|$$



$$\lim_{l \rightarrow \infty} \|(\bar{\mathbf{y}}_l^{\text{in}})^{(0)} - \mathbf{y}_A\| \leq \frac{\beta}{1 - \gamma}$$

exact convergence
in noise-free case

recurrence **asymptotically converges within a norm ball**

Asynchronous graph filtering

For the asynchronous recurrence

Asynchronous graph filtering

For the asynchronous recurrence

$$\mathbf{Z}_t \triangleq \text{diag}(\mathbf{w}_t) \in \{0,1\}^{KN \times KN}$$

(update-selection matrix)

Asynchronous graph filtering

For the asynchronous recurrence

$$\mathbf{Z}_t \triangleq \text{diag}(\mathbf{w}_t) \in \{0,1\}^{KN \times KN}$$

(update-selection matrix)

Asynchronous graph filtering

For the asynchronous recurrence

not all memory
entries are
updated

$$\mathbf{Z}_t \triangleq \text{diag}(\mathbf{w}_t) \in \{0,1\}^{KN \times KN}$$

(update-selection matrix)

$$\mathbf{w}_t = [(\mathbf{w}_t^{(0)})^\top, \dots, (\mathbf{w}_t^{(K-1)})^\top]^\top$$

(kth shift update selection)

Asynchronous graph filtering

For the asynchronous recurrence

not all memory
entries are
updated

$$\mathbf{Z}_t \triangleq \text{diag}(\mathbf{w}_t) \in \{0,1\}^{KN \times KN}$$

(update-selection matrix)

$$\mathbf{w}_t = [(\mathbf{w}_t^{(0)})^\top, \dots, (\mathbf{w}_t^{(K-1)})^\top]^\top$$

(kth shift update selection)

with

$$\sum_{t=0}^{\infty} [\mathbf{Z}_t]_{i,i} \gg 0 \quad \& \quad C$$

(sufficiently exciting condition)

Asynchronous graph filtering

For the asynchronous recurrence

not all memory
entries are
updated

$$\mathbf{Z}_t \triangleq \text{diag}(\mathbf{w}_t) \in \{0,1\}^{KN \times KN}$$

(update-selection matrix)

$$\mathbf{w}_t = [(\mathbf{w}_t^{(0)})^\top, \dots, (\mathbf{w}_t^{(K-1)})^\top]^\top$$

(kth shift update selection)

with

$$\sum_{t=0}^{\infty} [\mathbf{Z}_t]_{i,i} \gg 0 \quad \& \quad C$$

(sufficiently exciting condition)

$$\lim_{l \rightarrow \infty} (\bar{y}_l^a)^{(0)} = y_A$$

recurrence asymptotically converges

Asynchronous graph filtering

- Let a network perform the filtering operation

$$\mathbf{y}_{GF} = \mathbf{H}(\Theta)\mathbf{x} = \mathbf{H}_B\mathbf{H}_A\mathbf{x}$$

Asynchronous graph filtering

- Let a network perform the filtering operation

$$\mathbf{y}_{GF} = \mathbf{H}(\Theta)\mathbf{x} = \mathbf{H}_B\mathbf{H}_A\mathbf{x}$$

if conditions

$$\sum_{t=0}^{\infty} [\mathbf{Z}_t]_{i,i} \gg 0 \quad \& \quad C$$

are met for the matrices involved in \mathbf{H}_A

Asynchronous graph filtering

- Let a network perform the filtering operation

$$\mathbf{y}_{GF} = \mathbf{H}(\Theta)\mathbf{x} = \mathbf{H}_B\mathbf{H}_A\mathbf{x}$$

if conditions

$$\sum_{t=0}^{\infty} [\mathbf{Z}_t]_{i,i} \gg 0 \quad \& \quad C$$

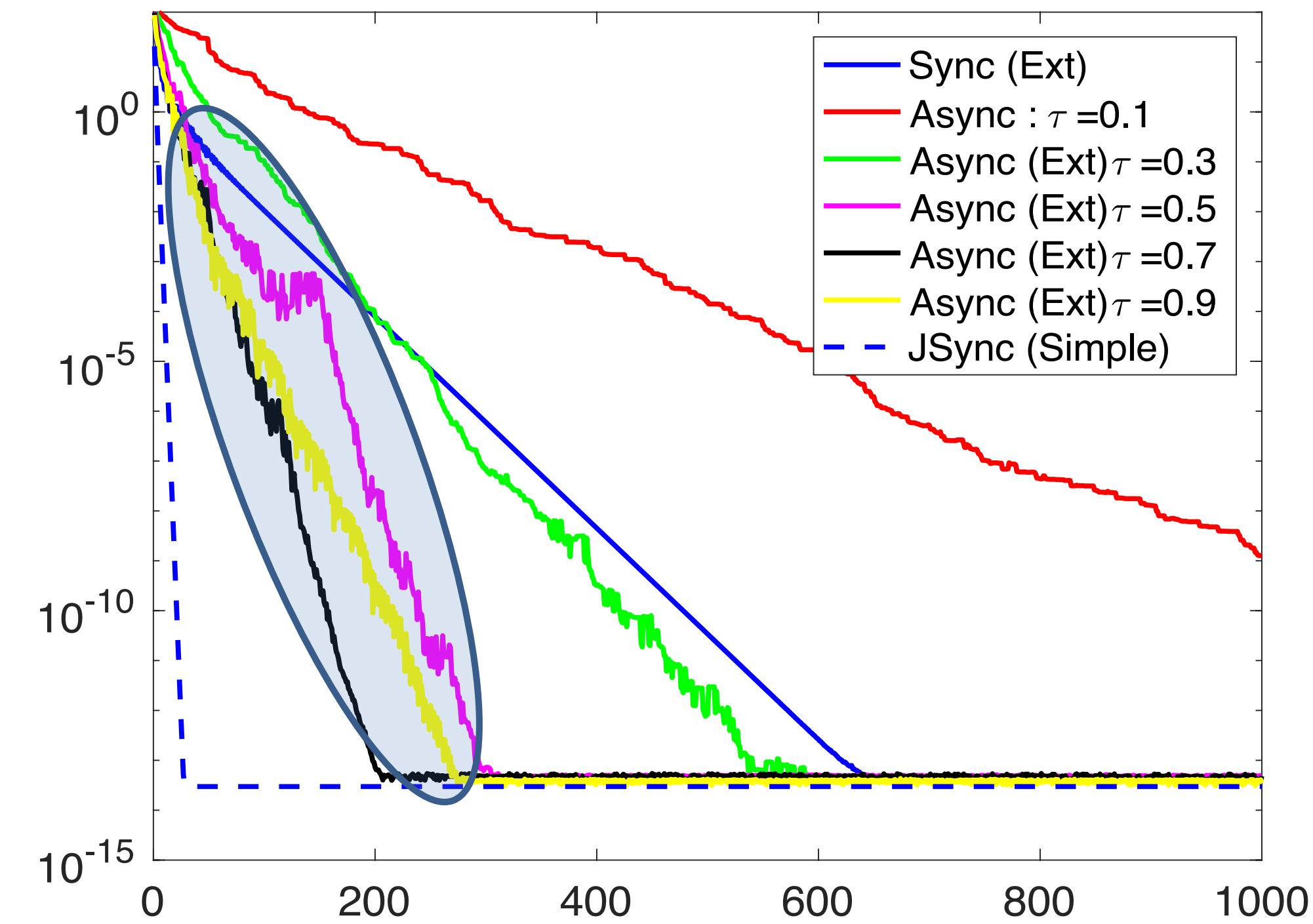
are met for the matrices involved in \mathbf{H}_A

then the **asynchronous** implementation of $\mathbf{H}(\Theta)$ **converges** to \mathbf{y}_{GF} .

Asynchronous graph filtering

Example: ARMA CEV-GF

$$\mathbf{H} = \mathbf{H}_B \mathbf{H}_A = \left[\sum_{l=0}^1 \phi_l \mathbf{S}^l \right] \left[\sum_{k=1}^3 \Phi_k \mathbf{S}^{k-1} \right]^{-1}$$



$$\rho(\mathbf{H}) = 2.048$$

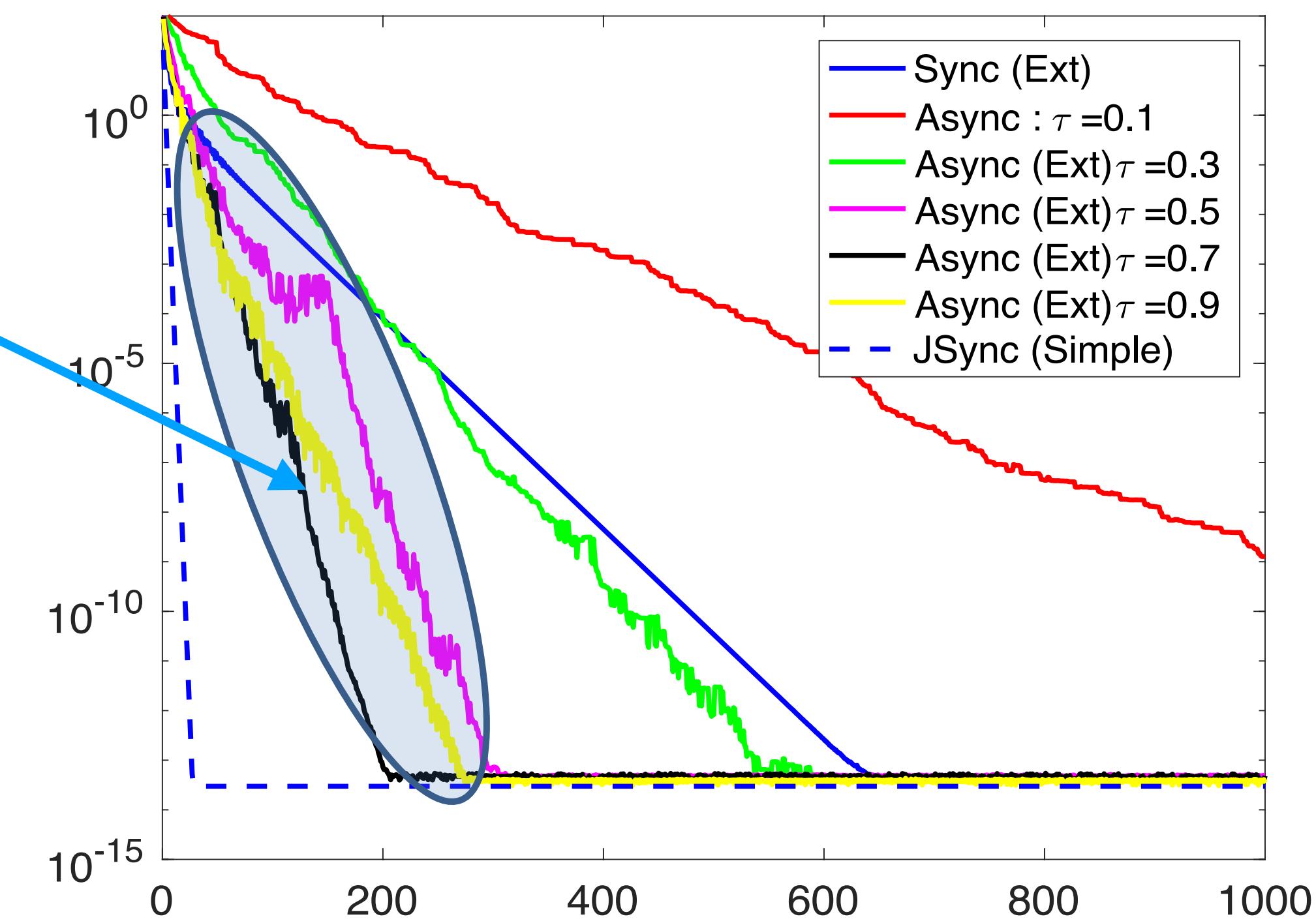
τ : synchronization rate

Asynchronous graph filtering

Example: ARMA CEV-GF

$$\mathbf{H} = \mathbf{H}_B \mathbf{H}_A = \left[\sum_{l=0}^1 \phi_l \mathbf{S}^l \right] \left[\sum_{k=1}^3 \Phi_k \mathbf{S}^{k-1} \right]^{-1}$$

non monotone convergence



$$\rho(\mathbf{H}) = 2.048$$

τ : synchronization rate

How to deal with large graph filter orders?

Cascaded graph filter implementation

- For large graph filter orders K

finding Θ for $H(\Theta)$ becomes severely **ill-conditioned**.

Cascaded graph filter implementation

- For large graph filter orders K

finding Θ for $H(\Theta)$ becomes severely **ill-conditioned**.

[most shift operators have **poor spectral qualities**]

Cascaded graph filter implementation

- For large graph filter orders K

finding Θ for $H(\Theta)$ becomes severely **ill-conditioned**.

[most shift operators have **poor spectral qualities**]

Cascaded Graph filters

Limits order of GF and use it as a **building block** (module)

$$\mathcal{H}(S; \Theta) \triangleq \prod_{i=1}^Q H(\Theta_i)$$

Coutino, Leus, *On Distributed Consensus by a Cascade Of Generalized Graph Filters*, Asilomar, 2019

Cascaded graph filter implementation

- For large graph filter orders K

finding Θ for $H(\Theta)$ becomes severely **ill-conditioned**.

[most shift operators have **poor spectral qualities**]

Cascaded Graph filters

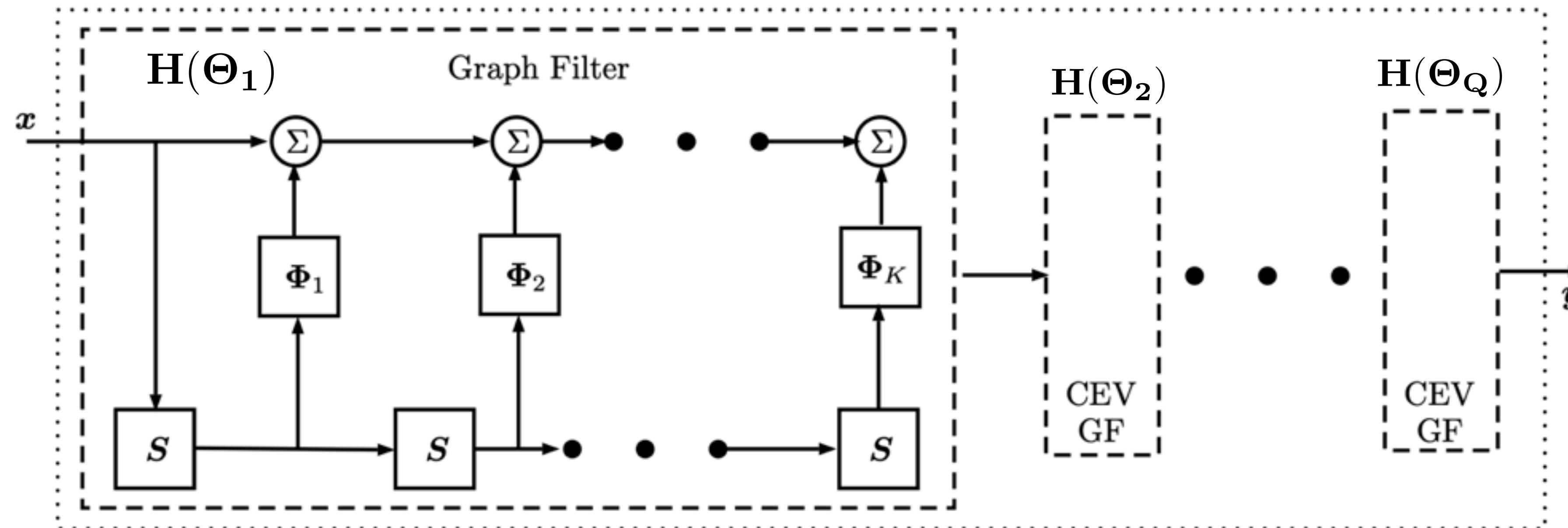
Limits order of GF and use it as a **building block** (module)

$$\mathcal{H}(S; \Theta) \triangleq \prod_{i=1}^Q H(\Theta_i)$$

Connections
with GNNs

Cascaded graph filter implementation

$$\mathcal{H}(\mathbf{S}; \boldsymbol{\Theta}) \triangleq \prod_{i=1}^Q \mathbf{H}(\boldsymbol{\Theta}_i)$$



Cascaded graph filter implementation

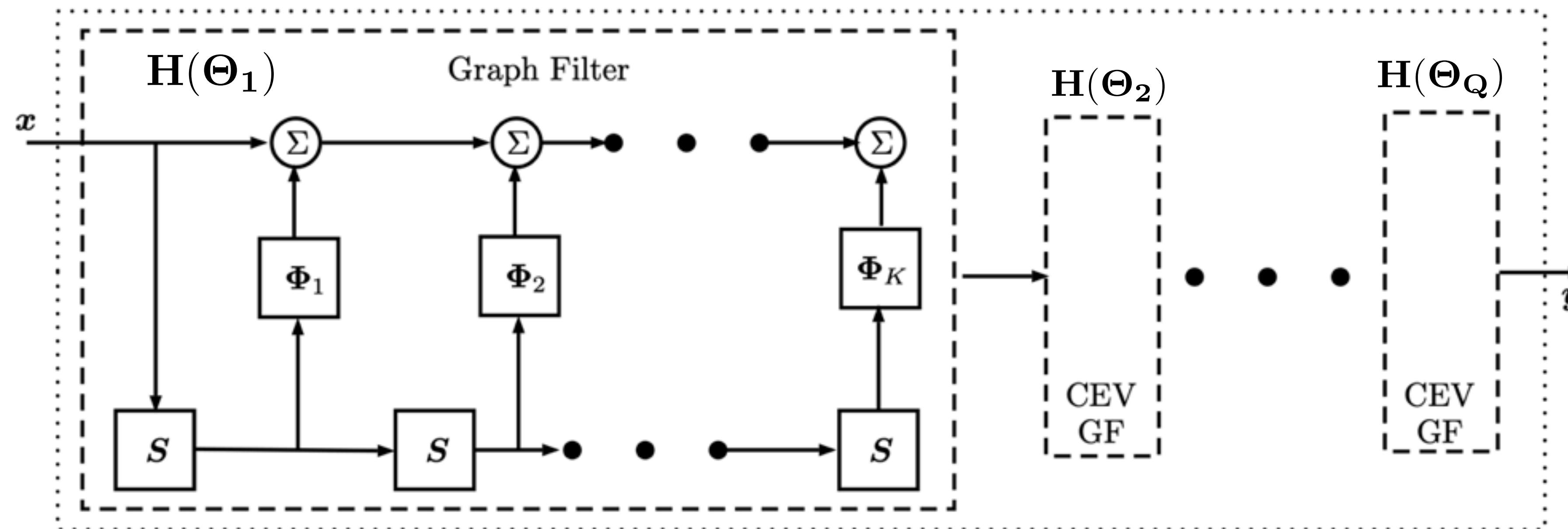
$$\mathcal{H}(\mathbf{S}; \boldsymbol{\Theta}) \triangleq \prod_{i=1}^Q \mathbf{H}(\boldsymbol{\Theta}_i)$$



- ◆ This implementation aims to
 - improve **conditioning** of design problem
 - **reduced-sized** optimization problems
 - obtain better performance with a **reduced order**

Cascaded graph filter implementation

$$\mathcal{H}(\mathbf{S}; \boldsymbol{\Theta}) \triangleq \prod_{i=1}^Q \mathbf{H}(\boldsymbol{\Theta}_i)$$



- ◆ This implementation aims to
 - improve **conditioning** of design problem
 - **reduced-sized** optimization problems
 - obtain better performance with a **reduced order**

However, this leads to a
non convex design problem

Cascaded graph filter implementation

- Cascaded graph filter parameters can be found by the **nonconvex** problem

$$\begin{aligned} \{\Theta_i^*\}_{i=1}^Q = \arg \min_{\{\Theta_i\}_{i=1}^Q} & \|\mathcal{H}(\mathbf{S}, \Theta) - \mathbf{H}^*\| \\ \text{s.t. } & \Theta_i \in \mathcal{C}_i, \forall i \in \{1, \dots, Q\} \end{aligned}$$

similar to the approach for **learning parameters** of GNNs.

Cascaded graph filter implementation

- Cascaded graph filter parameters can be found by the **nonconvex** problem

$$\begin{aligned} \{\Theta_i^*\}_{i=1}^Q &= \arg \min_{\{\Theta_i\}_{i=1}^Q} \|\mathcal{H}(\mathbf{S}, \Theta) - \mathbf{H}^*\| \\ \text{s.t. } \Theta_i &\in \mathcal{C}_i, \forall i \in \{1, \dots, Q\} \end{aligned}$$

coefficients
constraints, e.g.,
interval

similar to the approach for **learning parameters** of GNNs.

Cascaded graph filter implementation

- Cascaded graph filter parameters can be found by the **nonconvex** problem

$$\begin{aligned} \{\Theta_i^*\}_{i=1}^Q &= \arg \min_{\{\Theta_i\}_{i=1}^Q} \|\mathcal{H}(\mathbf{S}, \Theta) - \mathbf{H}^*\| \\ \text{s.t. } \Theta_i &\in \mathcal{C}_i, \forall i \in \{1, \dots, Q\} \end{aligned}$$

coefficients
constraints, e.g.,
interval

similar to the approach for **learning parameters** of GNNs.

- Alternatively, we can perform a **sequential refitting** process using a partition

$$\mathcal{H}(\mathbf{S}; \Theta) = \mathbf{H}_l \mathbf{M} \mathbf{H}_r$$

$$\mathbf{H}_l \triangleq \mathbf{H}(\Theta_Q)$$

$$\mathbf{M} \triangleq \prod_{q=2}^{Q-1} \mathbf{H}(\Theta_q)$$

$$\mathbf{H}_r \triangleq \mathbf{H}(\Theta_1)$$

which exploits the **sparsity** of the involved matrices.

Cascaded graph filter implementation

- For fixed \mathbf{H}_r and \mathbf{M} the design for \mathbf{H}_l is given by

$$\arg \min_{\theta_q} \|\Omega_l \theta_q - \text{vec}(\mathbf{H}^*)\|_2 \quad [\text{linSparseSolve}]$$

$$\Omega_l \triangleq (\mathbf{H}_r^\top \mathbf{M}^\top \otimes \mathbf{I}) \Psi$$

$$\Psi \triangleq [(\mathbf{I} \otimes \mathbf{I}) \mathbf{J}, (\mathbf{S}^\top \otimes \mathbf{I}) \mathbf{J}, \dots, ((\mathbf{S}^\top)^K \otimes \mathbf{I}) \mathbf{J}] : \mathbf{J} \quad \text{selection matrix for nonzero entries of } \Phi_k$$

Cascaded graph filter implementation

- For fixed \mathbf{H}_r and \mathbf{M} the design for \mathbf{H}_l is given by

$$\arg \min_{\theta_q} \|\Omega_l \theta_q - \text{vec}(\mathbf{H}^*)\|_2 \quad [\text{linSparseSolve}]$$

$$\Omega_l \triangleq (\mathbf{H}_r^\top \mathbf{M}^\top \otimes \mathbf{I}) \Psi$$

$$\Psi \triangleq [(\mathbf{I} \otimes \mathbf{I}) \mathbf{J}, (\mathbf{S}^\top \otimes \mathbf{I}) \mathbf{J}, \dots, ((\mathbf{S}^\top)^K \otimes \mathbf{I}) \mathbf{J}] : \mathbf{J} \quad \text{selection matrix for nonzero entries of } \Phi_k$$

- ◆ Ω_l accepts **efficient memory storage**
- ◆ **preconditioner** for Ω_l can be obtained if its constructed explicitly
- ◆ Otherwise, Ω_l can be computed as an **operator**, i.e., matrix-vector operation

Cascaded graph filter implementation

- For fixed \mathbf{H}_r and \mathbf{M} the design for \mathbf{H}_l is given by

$$\arg \min_{\theta_q} \|\Omega_l \theta_q - \text{vec}(\mathbf{H}^*)\|_2 \quad [\text{linSparseSolve}]$$

$$\Omega_l \triangleq (\mathbf{H}_r^\top \mathbf{M}^\top \otimes \mathbf{I}) \Psi$$

$$\Psi \triangleq [(\mathbf{I} \otimes \mathbf{I}) \mathbf{J}, (\mathbf{S}^\top \otimes \mathbf{I}) \mathbf{J}, \dots, ((\mathbf{S}^\top)^K \otimes \mathbf{I}) \mathbf{J}] : \mathbf{J} \quad \begin{matrix} \text{selection matrix for} \\ \text{nonzero entries of } \Phi_k \end{matrix}$$

- ◆ Ω_l accepts **efficient memory storage**
- ◆ **preconditioner** for Ω_l can be obtained if its constructed explicitly
- ◆ Otherwise, Ω_l can be computed as an **operator**, i.e., matrix-vector operation

Linear solver exploiting such characteristics are readily available [Paige, '82] [Fong, '11]

Cascaded graph filter implementation

- Borrowing ideas from **RELAX** we fit $\{H_r, H_l\}$ until **convergence**.
[Li, '96]
 - ◆ as M is not included, **sparsity** of the system is preserved.
 - ◆ **efficient** sparse solvers can be used for each matrix
 - ◆ under mild conditions, two-block coordinate descent **converges**.

Cascaded graph filter implementation

- Borrowing ideas from **RELAX** we fit $\{H_r, H_l\}$ until **convergence**.

[Li, '96]

- ◆ as M is not included, **sparsity** of the system is preserved.
- ◆ **efficient** sparse solvers can be used for each matrix
- ◆ under mild conditions, two-block coordinate descent **converges**.

Algorithm 2: refitPair Routine

Result: (θ_l, θ_r) : filter parameters
Input: $H^*, \Psi, H_l, H_r, M, \text{maxIt}, \epsilon_{\text{tol}}$
initialization: numIt = 0, $\mathbf{h}^* = \text{vec}(H^*)$;
while $(\epsilon > \epsilon_{\text{tol}}) \& (\text{numIt} < \text{maxIt})$ **do**
 numIt = numIt + 1;
 $H_r \leftarrow \text{linSparseSolve}([I \otimes H_l M] \Psi, \mathbf{h}^*)$;
 $H_l \leftarrow \text{linSparseSolve}([H_r^T M^T \otimes I] \Psi, \mathbf{h}^*)$;
 $\epsilon \leftarrow \|H_l M H_r - H^*\|_F^2$;
end

Cascaded graph filter implementation

○ Summary of the procedure :: Right-Left Iterative Fitting [RELIEF]

Algorithm 1: RELIEF Algorithm

Result: $\{\theta_i\}_{i \in [Q]}$: filter parameters
Input: \mathbf{H}^* , Ψ , Q , ϵ_{tol}
initialization: $\theta_i = \mathbf{0} \forall i \in [Q]$, $q = 0$, $\mathbf{M} = \mathbf{H}_1 = \mathbf{I}$,
 $\mathbf{h}^* = \text{vec}(\mathbf{H}^*)$;

while $(\epsilon > \epsilon_{\text{tol}}) \& (q < Q)$ **do**

$q = q + 1$;

$\mathbf{H}_q \leftarrow \text{linSparseSolve}([\mathbf{H}_1^T \mathbf{M}^T \otimes \mathbf{I}] \Psi, \mathbf{h}^*)$;

if $q > 1$ **then**

$(\mathbf{H}_1, \mathbf{H}_q) \leftarrow \text{refitPair}(\mathbf{H}^*, \Psi, \mathbf{H}_1, \mathbf{H}_q, \mathbf{M}, \epsilon_{\text{tol}})$;

$\mathbf{M} \leftarrow \mathbf{H}_q \mathbf{M}$

end

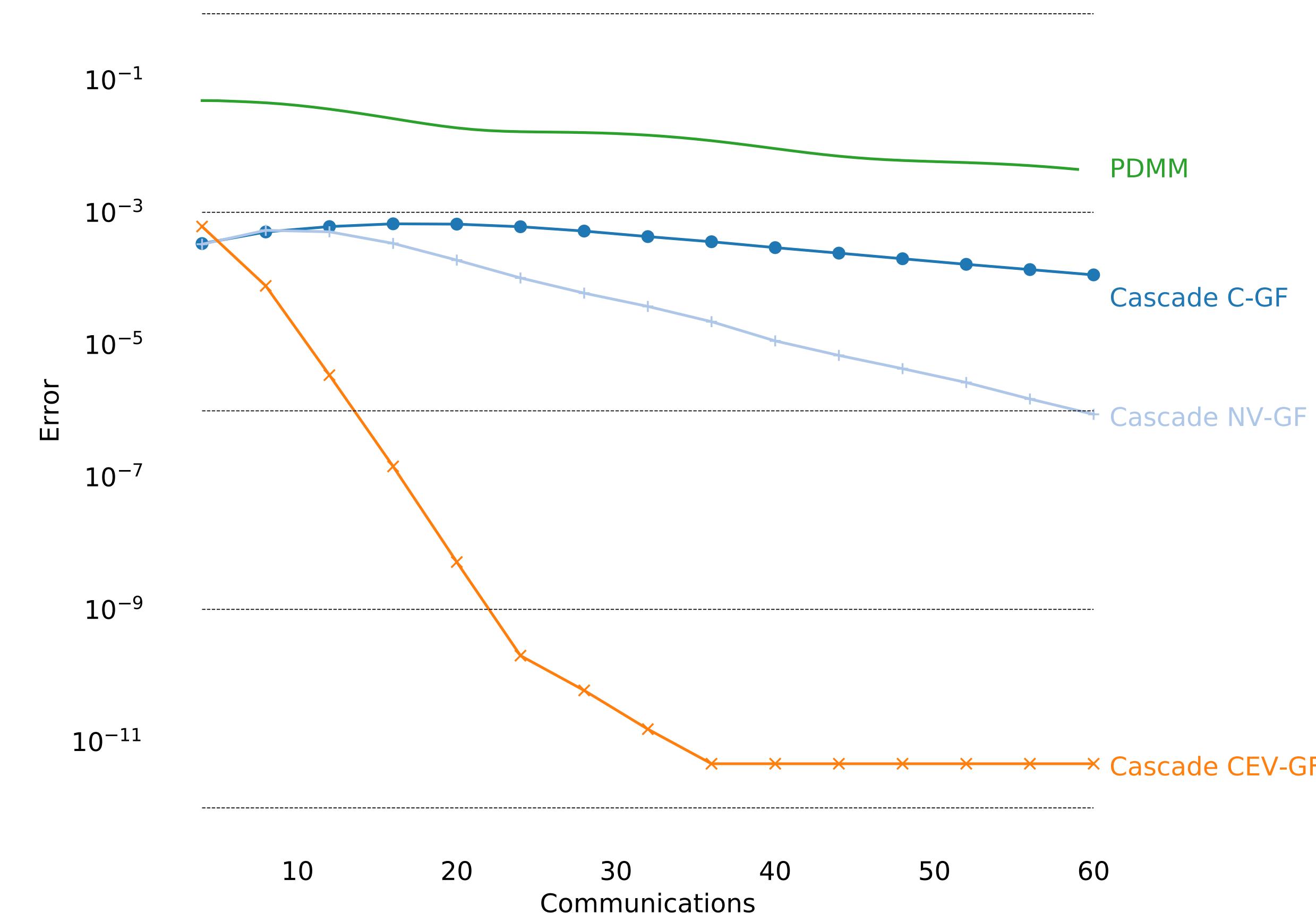
$\mathbf{H}_{\text{total}} \leftarrow \mathbf{M} \mathbf{H}_1$;

$\epsilon \leftarrow \|\mathbf{H}_{\text{total}} - \mathbf{H}^*\|_{\text{F}}^2$;

end

Cascaded graph filter implementation

Example: Consensus over a network with 500 nodes



part 2 & 3 :: conclusions

● Graph signal processing arises as an alternative for distributed optimization

- Significant benefits in terms of communication efficiency
- Applications: distributed consensus, distributed imaging, beamforming
- Requires knowledge of the data transformation
- Data transform must be linear and data independent

part 2 & 3 :: conclusions

● Graph signal processing arises as an alternative for distributed optimization

- Significant benefits in terms of communication efficiency
- Applications: distributed consensus, distributed imaging, beamforming
- Requires knowledge of the data transformation
- Data transform must be linear and data independent

● Asynchronous graph filter is possible under mild conditions

- Results hold for classical, node-varying, constrained edge-varying graph filters
- For node-varying and constrained edge-varying filter order is critical

part 2 & 3 :: conclusions

● Graph signal processing arises as an alternative for distributed optimization

- Significant benefits in terms of communication efficiency
- Applications: distributed consensus, distributed imaging, beamforming
- Requires knowledge of the data transformation
- Data transform must be linear and data independent

● Asynchronous graph filter is possible under mild conditions

- Results hold for classical, node-varying, constrained edge-varying graph filters
- For node-varying and constrained edge-varying filter order is critical

● Cascaded graph filters alleviates ill-conditioning of large filter orders

- Allows for an efficient sparse least squares design
- Reduction in communication and computational cost
- Implements only linear data transformations

part 4:: overview

- Role of **graph filters** in graph neural networks (GNNs)
 - ◆ GNNs ~ **nonlinear graph filters**
- For simplicity will discuss supervised learning
- How to go from neural networks to GNNs?
- Types of GNNs
 - ◆ What are graph convolutional neural networks?
 - ◆ How use edge varying GNNs?
- How to use GNNs for graph signal processing applications?
- For GNN **pooling**, **transferability**, and applications in **control** and **resource allocation**
 - ◆ T-9: Graph Neural Networks (F. Gama and A. Ribeiro)

Why we use filters in neural networks?

Supervised learning

- Relies on a **dataset of R training** examples

$$\mathcal{R} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_R, y_R)\}$$

- ◆ \mathbf{x}_r the r th input data in space \mathcal{X}
- ◆ y_r the r th output data in space \mathcal{Y} (labels)

- **Goal:** learn a function f that maps \mathbf{x}_r to y_r
- we want f parametric: $f(\theta) : \mathcal{X} \rightarrow \mathcal{Y}$

Supervised learning

- Design parameters θ such that

- ◆ **minimize** a cost distance between $f(\theta, \mathbf{x}_r)$ and \mathbf{y}_r (e.g., MSE)

$$\underset{\theta}{\text{minimize}} \frac{1}{R} \sum_{r=1}^R (f(\theta, \mathbf{x}_r) - y_r)^2$$

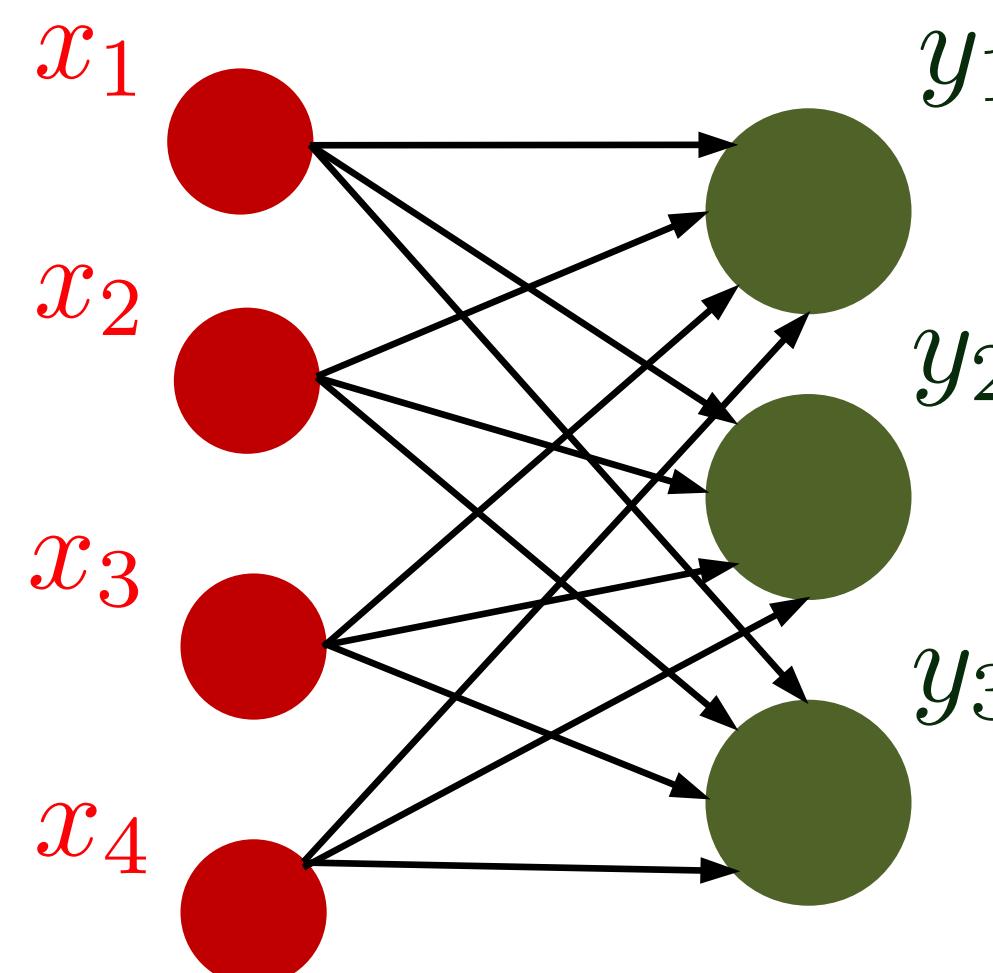
- ◆ **generalize** well for test data $\mathbf{x}_r \notin \mathcal{R}$

Neural networks

- Express function f as a cascade of layered functions

$$f(\theta, \mathbf{x}) = f^3(\theta^3, f^2(\theta^2, f^1(\theta^1, \mathbf{x})))$$

- No structure in the data; perceptron



$$\mathbf{y} = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$$

- Parameters $\theta = \{\mathbf{W}, \mathbf{b}\}$
- Pointwise nonlinearity $\sigma(\cdot)$

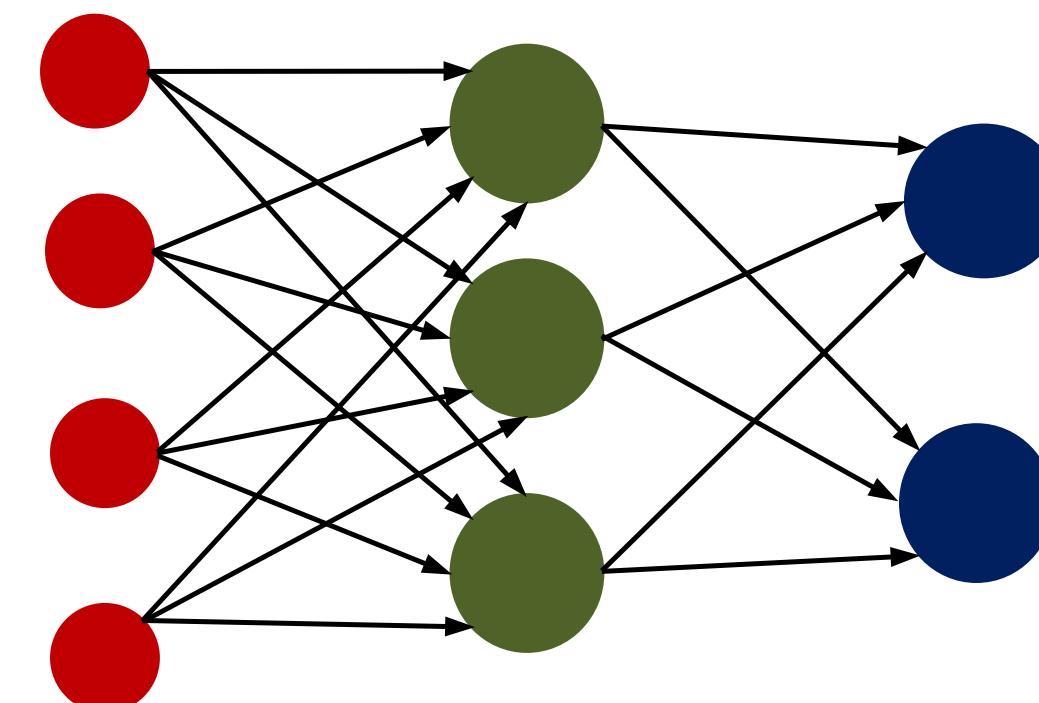
layer 1: parameters θ^1
 layer 2: parameters θ^2
 layer 3: parameters θ^3

$$\text{ReLU}(x) = \begin{cases} x & x > 0 \\ 0 & \text{otw} \end{cases}$$

Neural networks

● No structure in the data: multi-layer perceptron

◆ Improves expressivity



$\mathbf{x}_0 \quad \mathbf{x}_1 \quad \mathbf{x}_2$

$$\mathbf{x}^l = \sigma(\mathbf{W}^l \mathbf{x}^{l-1} + \mathbf{b}^l)$$

- Input features $\mathbf{x}^0 = \mathbf{x}_r$
- Output features \mathbf{x}^L
- Propagation rule at layer l

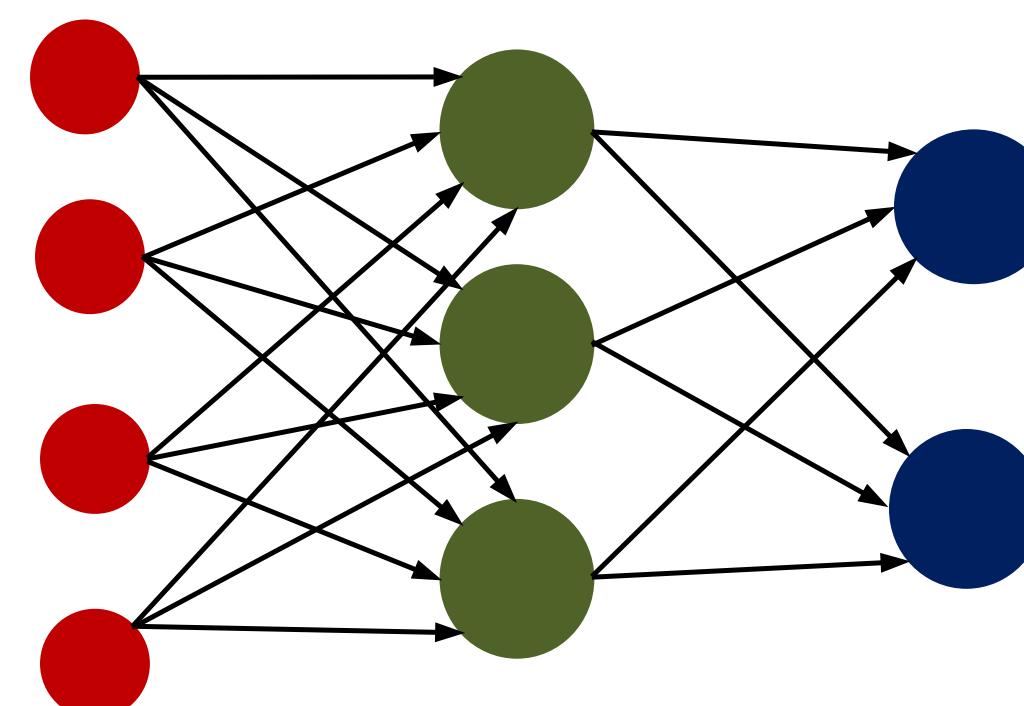
\mathbf{x}^{l-1} : input layer $l =$ output layer $l - 1$

\mathbf{x}^l : output layer l

$\theta^l = \{\mathbf{W}^l, \mathbf{b}^l\}$: parameters layer l

Neural networks

- Unrolling recursion $\mathbf{x}^L = \sigma(\mathbf{W}^L \mathbf{x}^{L-1} + \mathbf{b}^L)$



$\mathbf{x}_0 \quad \mathbf{x}_1 \quad \mathbf{x}_2$

$$\begin{aligned}\mathbf{x}^L &= \sigma(\mathbf{W}^L \mathbf{x}^{L-1} + \mathbf{b}^L) \\ &= \sigma(\mathbf{W}^L \sigma(\mathbf{W}^{L-1} \mathbf{x}^{L-2} + \mathbf{b}^{L-1}) + \mathbf{b}^L) \\ &= \sigma(\mathbf{W}^L \sigma(\mathbf{W}^{L-1} \sigma(\dots \sigma(\mathbf{W}^1 \mathbf{x}^0 + \mathbf{b}^0) + \mathbf{b}^{L-1}) + \mathbf{b}^L)\end{aligned}$$

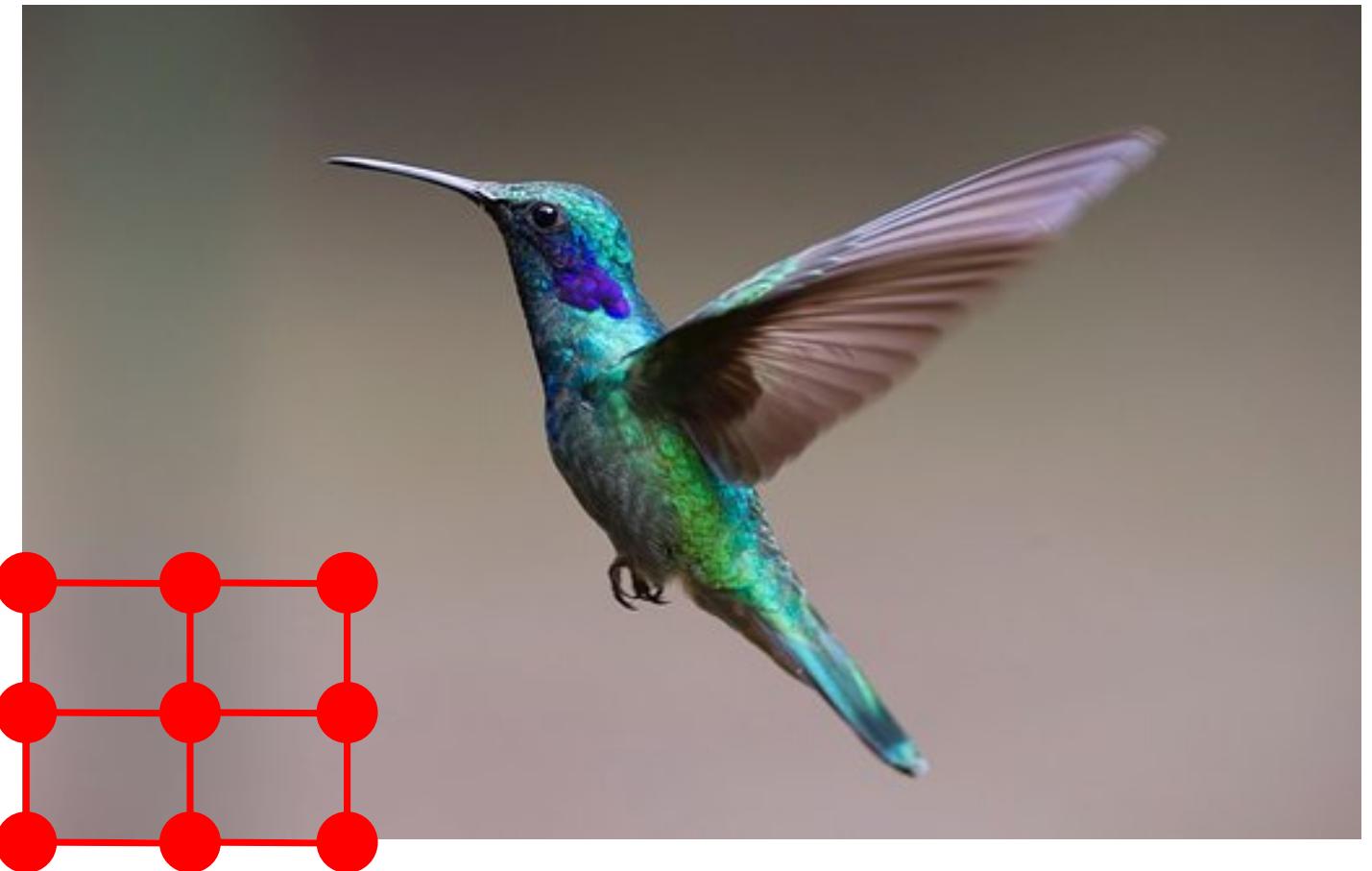
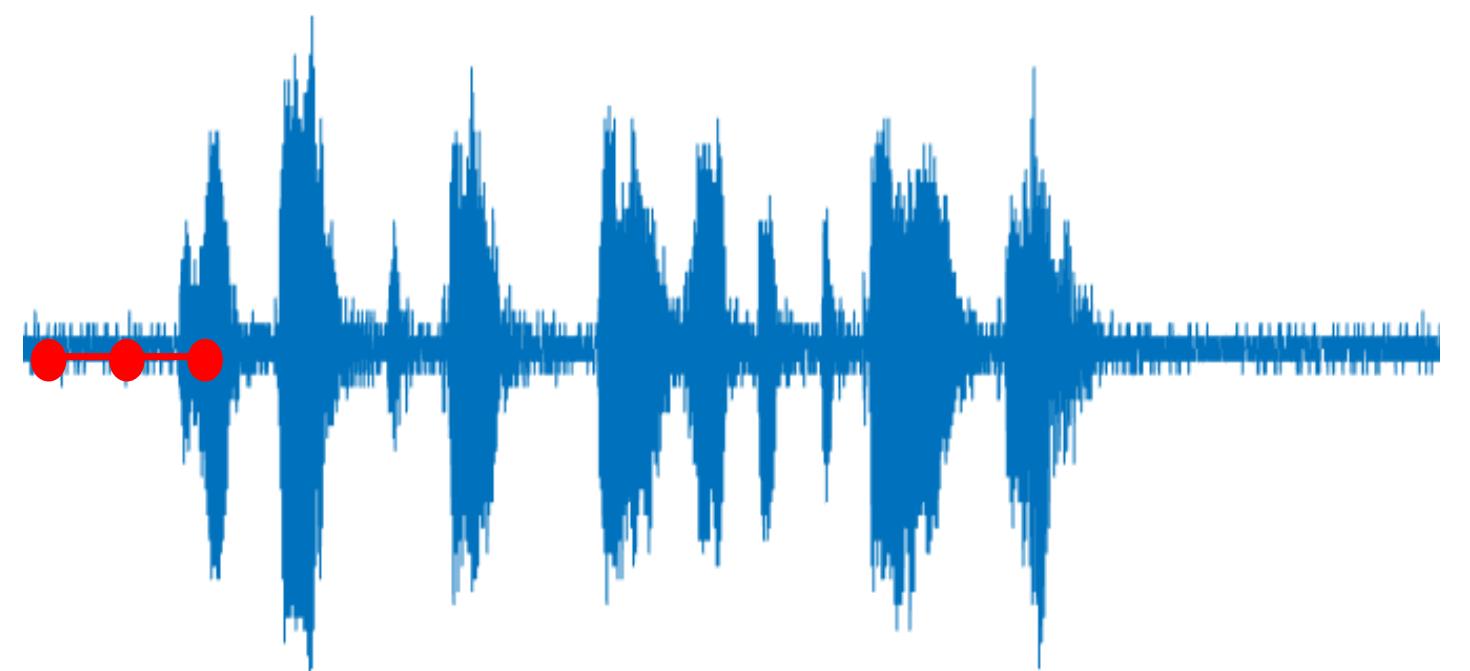
- \mathbf{x}^L depends on \mathbf{x}^0 through a composition of linear functions and pointwise nonlinearities

Neural networks

- MLP fails in **high dimensional** data $\mathbf{x}^l = \sigma(\mathbf{W}^l \mathbf{x}^{l-1} + \mathbf{b}^l)$
 - ◆ if layers have dimensions $\dim(\mathbf{x}^l) = \dim(\mathbf{x}^{l-1}) \sim \mathcal{O}(N)$
 - $\dim(\mathbf{W}^l) \sim \mathcal{O}(N^2)$ parameters, e.g., $N = 1000 \rightarrow \mathcal{O}(10^6)$
 - complexity $\mathcal{O}(N^2)$
- need to **exploit structure** in data

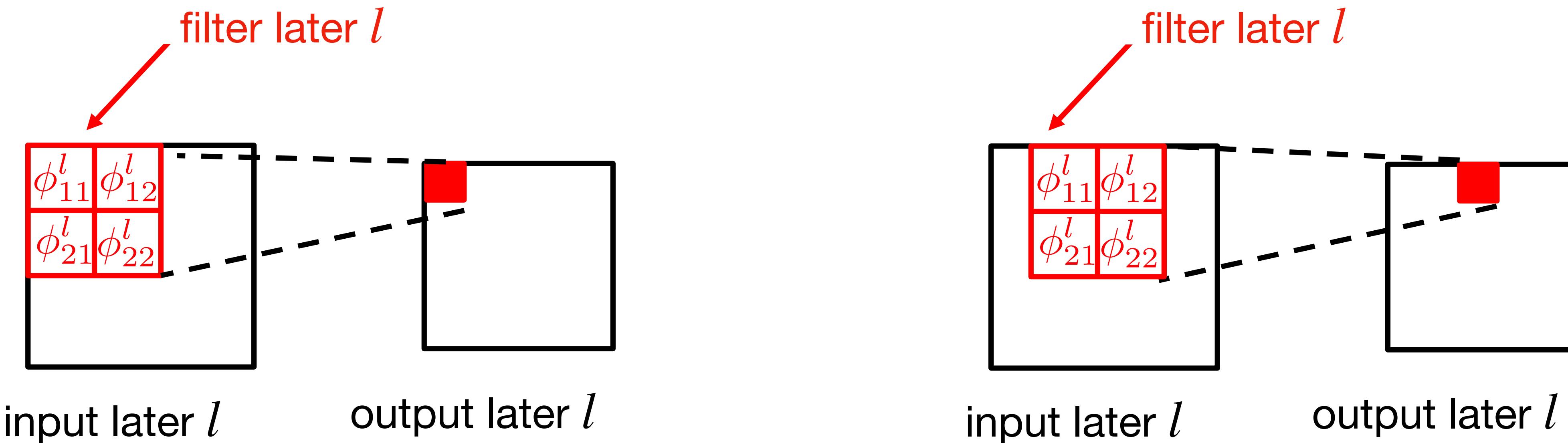
Neural networks

- structure in data
 - ◆ spatial data: pixel neighbors
 - ◆ temporal data: signal proximity
- reduce parameters by effective sharing
- reduce complexity by efficient implementation
- use spatial and temporal filters
 - ◆ no loss of discriminatory power



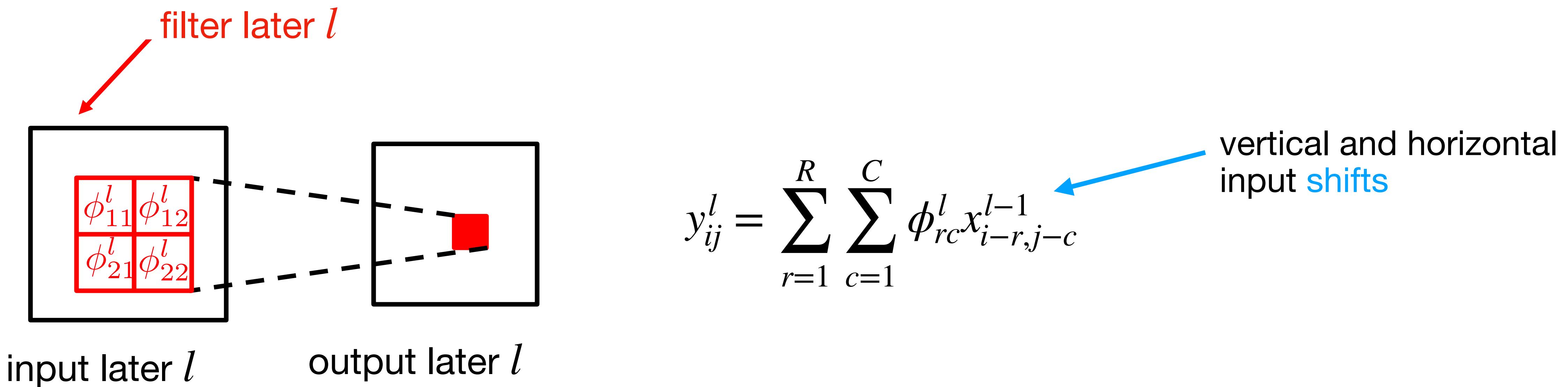
Filters in spatial convolutional layer

- MLP propagation rule $\mathbf{x}^l = \sigma(\mathbf{W}^l \mathbf{x}^{l-1} + \mathbf{b}^l)$
- Spatial data: spatial convolution filter bank substitutes \mathbf{W}^l
 - filters apply the same parameters to different locations
 - bias \mathbf{b}^l can be ignored or shared $\mathbf{b}^l = b^l \mathbf{1}$



Filters in spatial convolutional layer

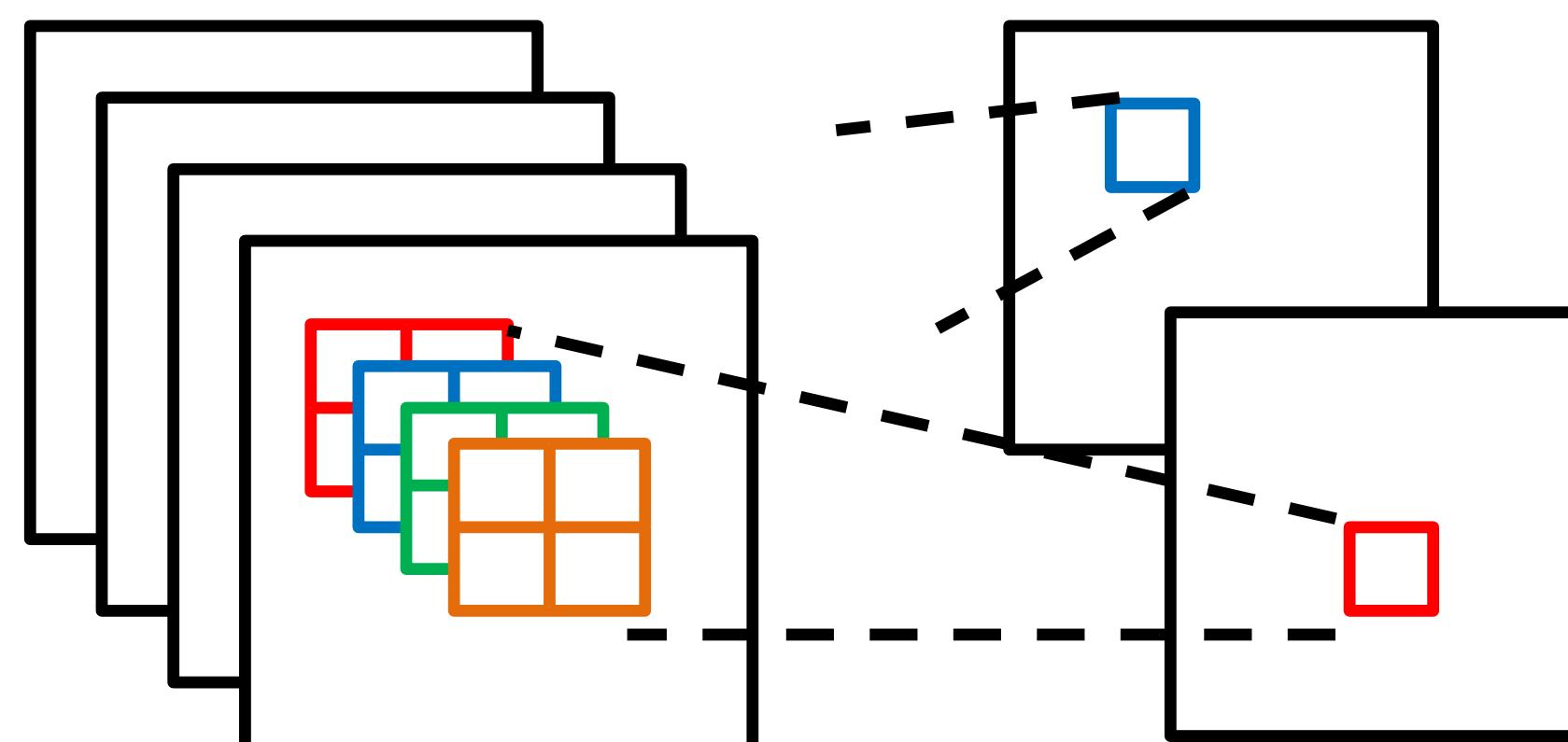
- shift-and-sum convolves filter with input image



- spatial FIR convolutional filtering

Convolutional neural networks

- CNNs increase descriptive power with a **parallel filter bank**



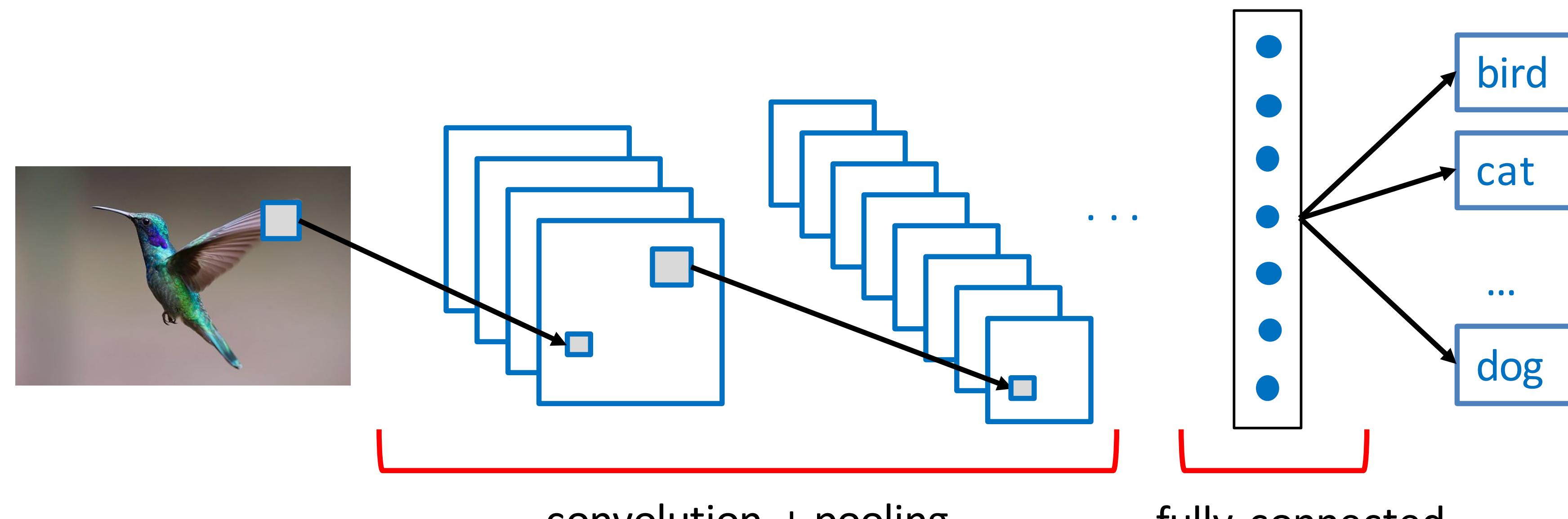
input layer l
has 4 inputs

output layer l
has 2 outputs

- ◆ input F images
- ◆ process each with a **parallel bank of filters**
- ◆ sum filter outputs to obtain higher-level features
- ◆ parameters are **filter coefficients**
- ◆ train with back propagation

CNN full stack

- Cascade of spatial filter bank and nonlinearities



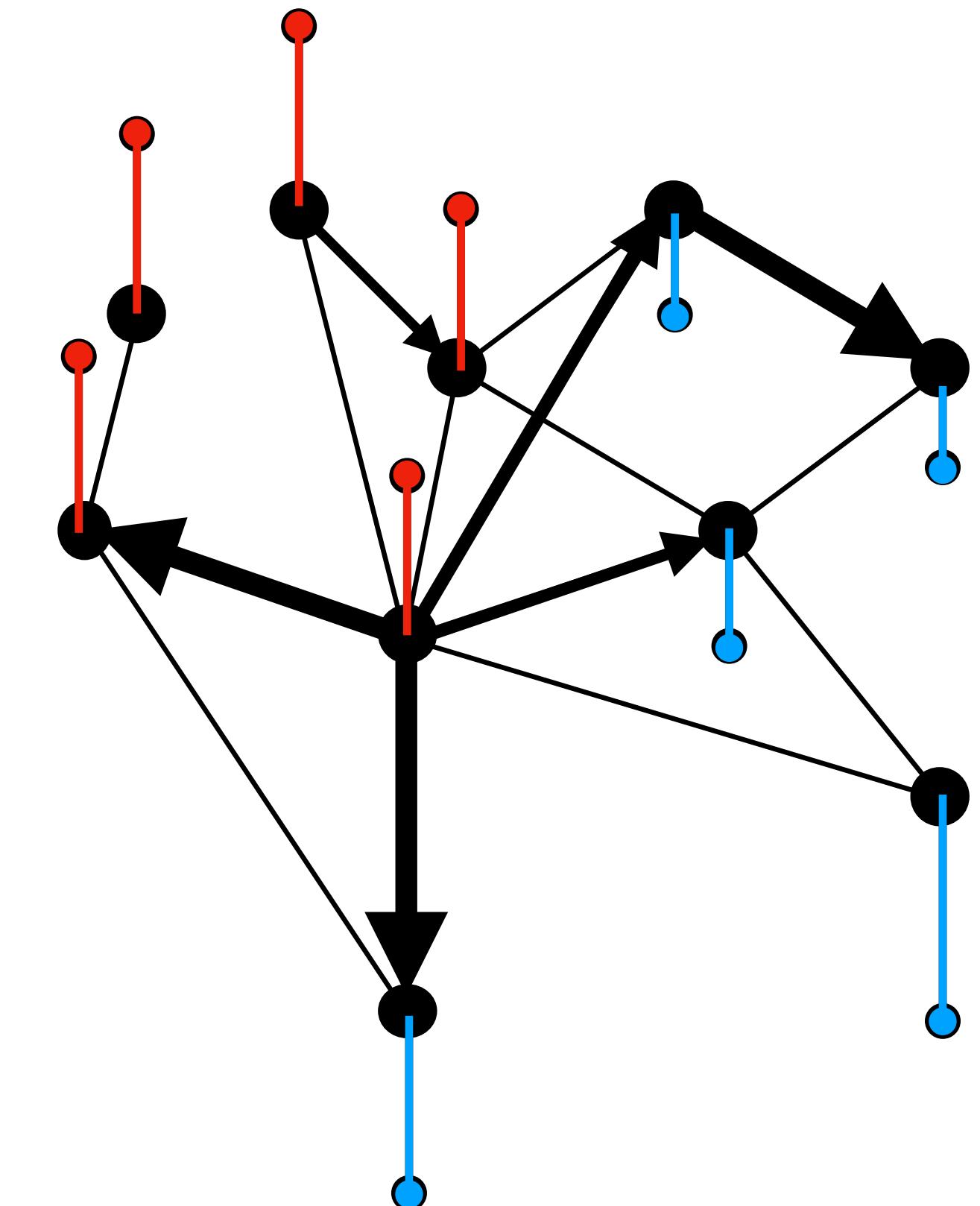
Benefits

- Parameters - **independent** on the image dimensions
- Complexity - **spatial convolution** (efficient)

What about data on graphs?

Learning from (ir)regular graph data

- Training samples $\mathbf{x}_r \in \mathbb{R}^N$ are **graph signals**
- Non-Euclidean structure
 - ◆ conventional **CNNs** are **inapplicable**
- MLP can apply $\mathbf{x}^l = \sigma(\mathbf{W}^l \mathbf{x}^{l-1} + \mathbf{b}^l)$
 - ◆ ignores the structure
 - ◆ data demanding

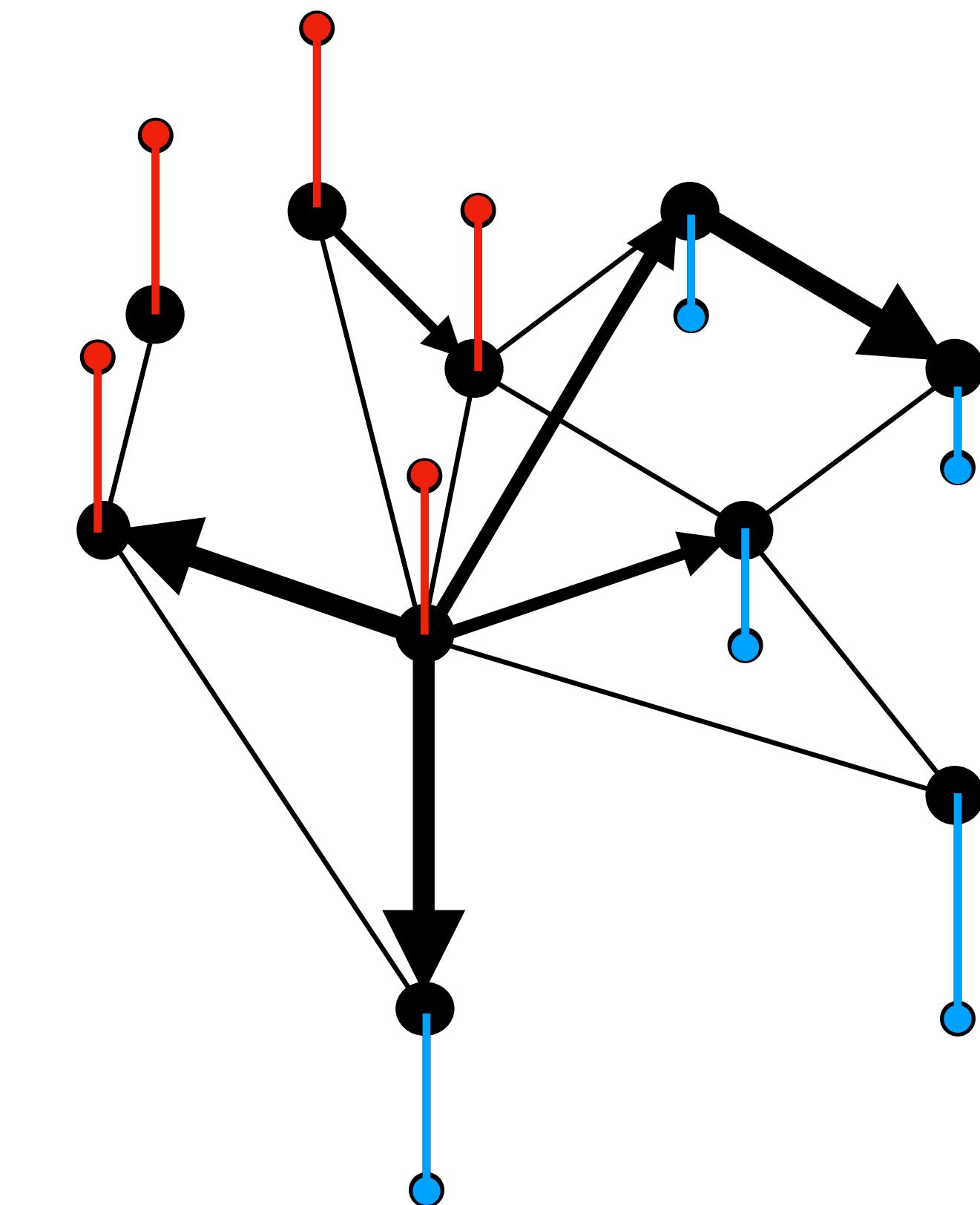


Learning from (ir)regular graph data

- Need a **neural network** solution to account to account for coupling **signal-topology**
- **Graph as prior to estimate a parametric function**

$$f(\theta, \mathbf{S}) : \mathcal{X} \rightarrow \mathcal{Y}$$

- ◆ \mathbf{S} is the graph shift operator
- ◆ θ trainable parameters (i.e., filter coefficients)



Graph neural networks

- Graph neural networks substitute \mathbf{W}^l with graph filter bank
- Propagation rule through graph filters

$$\mathbf{x}^l = \sigma(\mathbf{H}^l \mathbf{x}^{l-1})$$

- \mathbf{H}^l graph filter at layer l for any shift operator \mathbf{S}
 - ◆ Edge-variant filter: EdgeNets
 - ◆ Node-variant filter: Node-variant GNNs [Gama'18 - DSW]
 - ◆ FIR filters: Graph convolutional neural networks [Gama'18 - TSP]
 - Chebyshev form: ChebNets [Defferrard'16 - NeurIPS]
 - ◆ ARMA filters: ARMANets
 - Direct, parallel, cascade [Wijesinghe'19 - NeurIPS] [Bianchi'19-arXiv]
 - Cayley form: CayleyNets [Levie'18 - TSP]

Graph convolutional neural networks

- Graph convolutional neural networks use a graph convolutional filter (FIR - ARMA)

Example: FIR

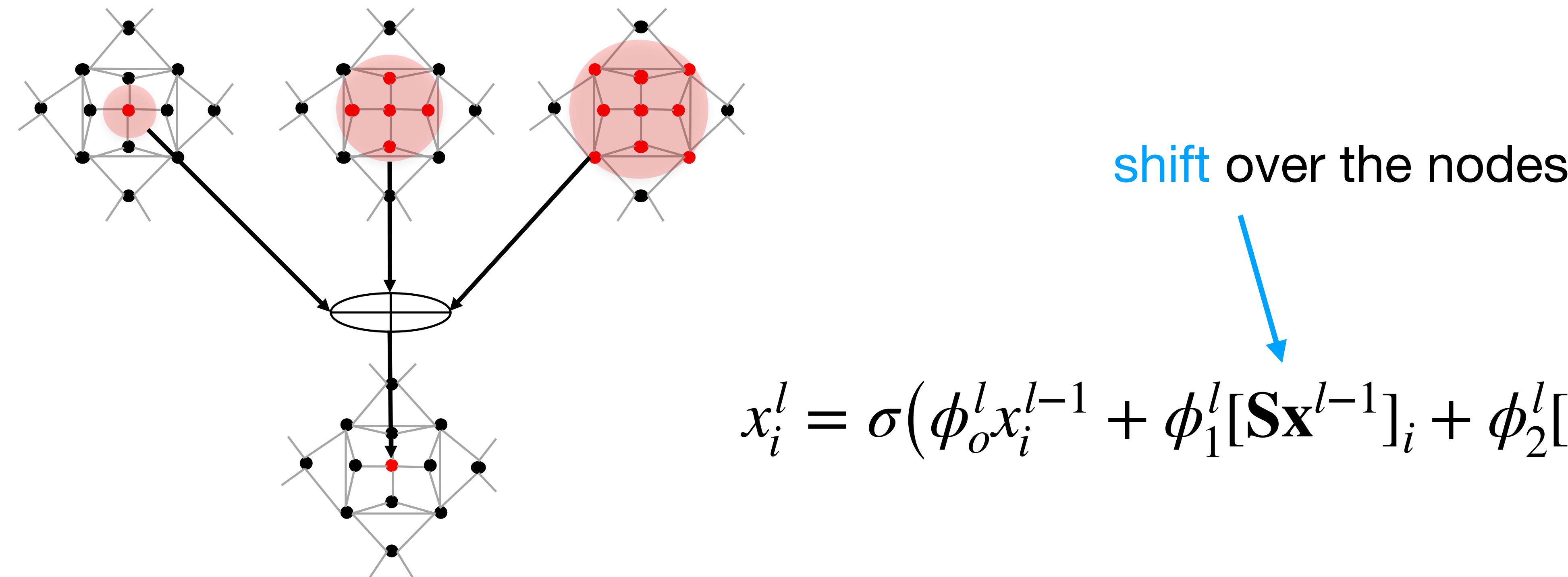
$$\mathbf{x}^l = \sigma \left(\sum_{k=0}^K \phi_k^l \mathbf{S}^k \mathbf{x}^{l-1} \right)$$

- parameters shared among all nodes and edges
- shift-and-sum convolves filter with graph signal

Graph convolutional neural networks

- GCNN: shift-and-sum & shared parameters

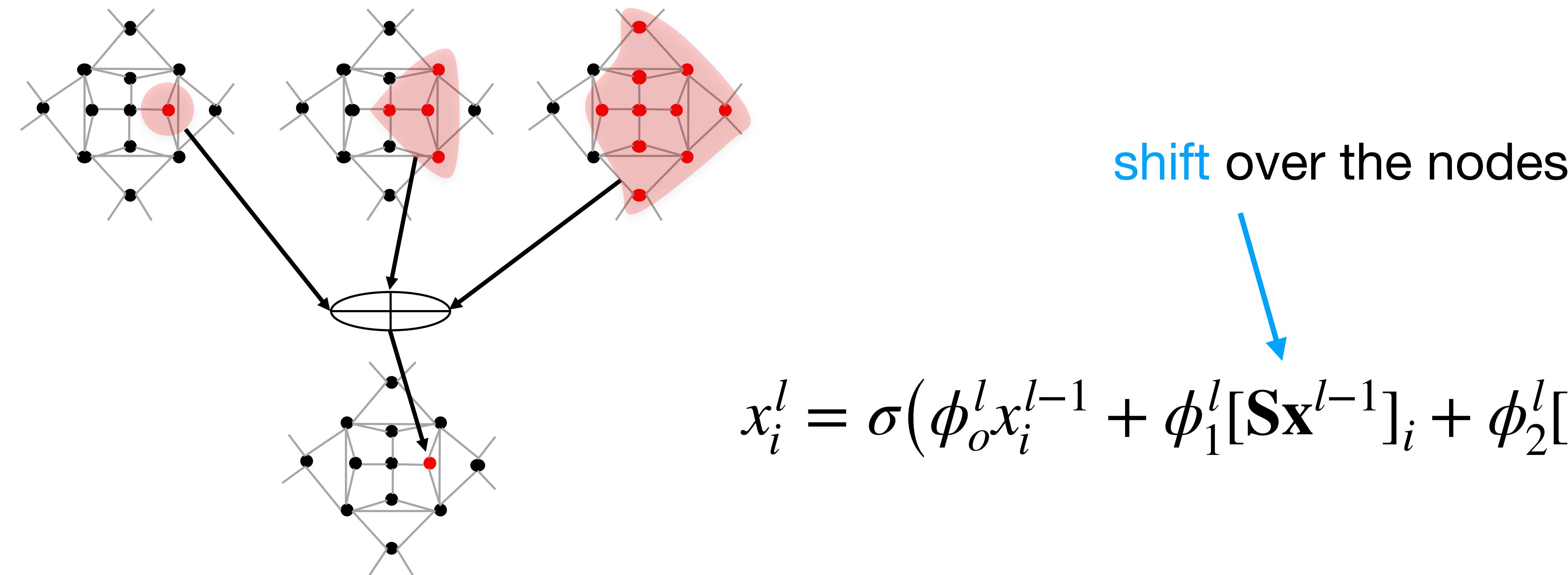
$$\mathbf{x}^l = \sigma(\phi_o^l \mathbf{x}^{l-1} + \phi_1^l \mathbf{S} \mathbf{x}^{l-1} + \phi_2^l \mathbf{S}^2 \mathbf{x}^{l-1})$$



Graph convolutional neural networks

- GCNN: shift-and-sum & shared parameters

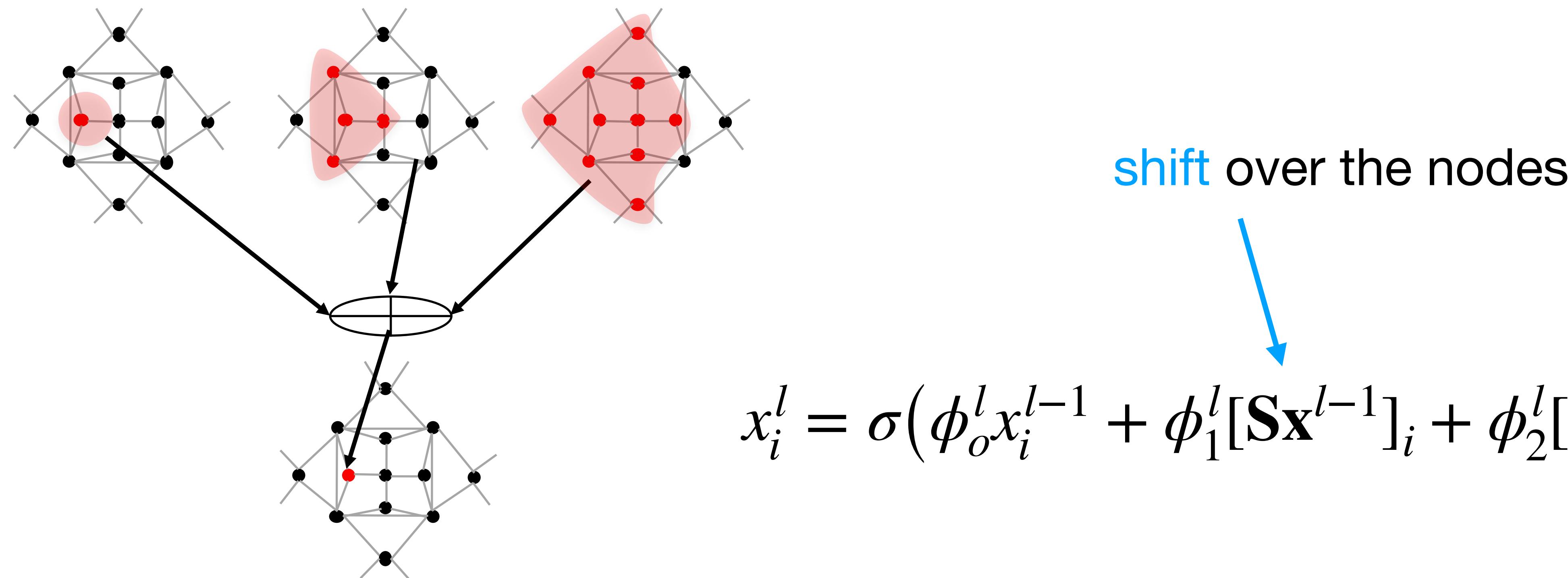
$$\mathbf{x}^l = \sigma(\phi_o^l \mathbf{x}^{l-1} + \phi_1^l \mathbf{S} \mathbf{x}^{l-1} + \phi_2^l \mathbf{S}^2 \mathbf{x}^{l-1})$$



Graph convolutional neural networks

- GCNN: shift-and-sum & shared parameters

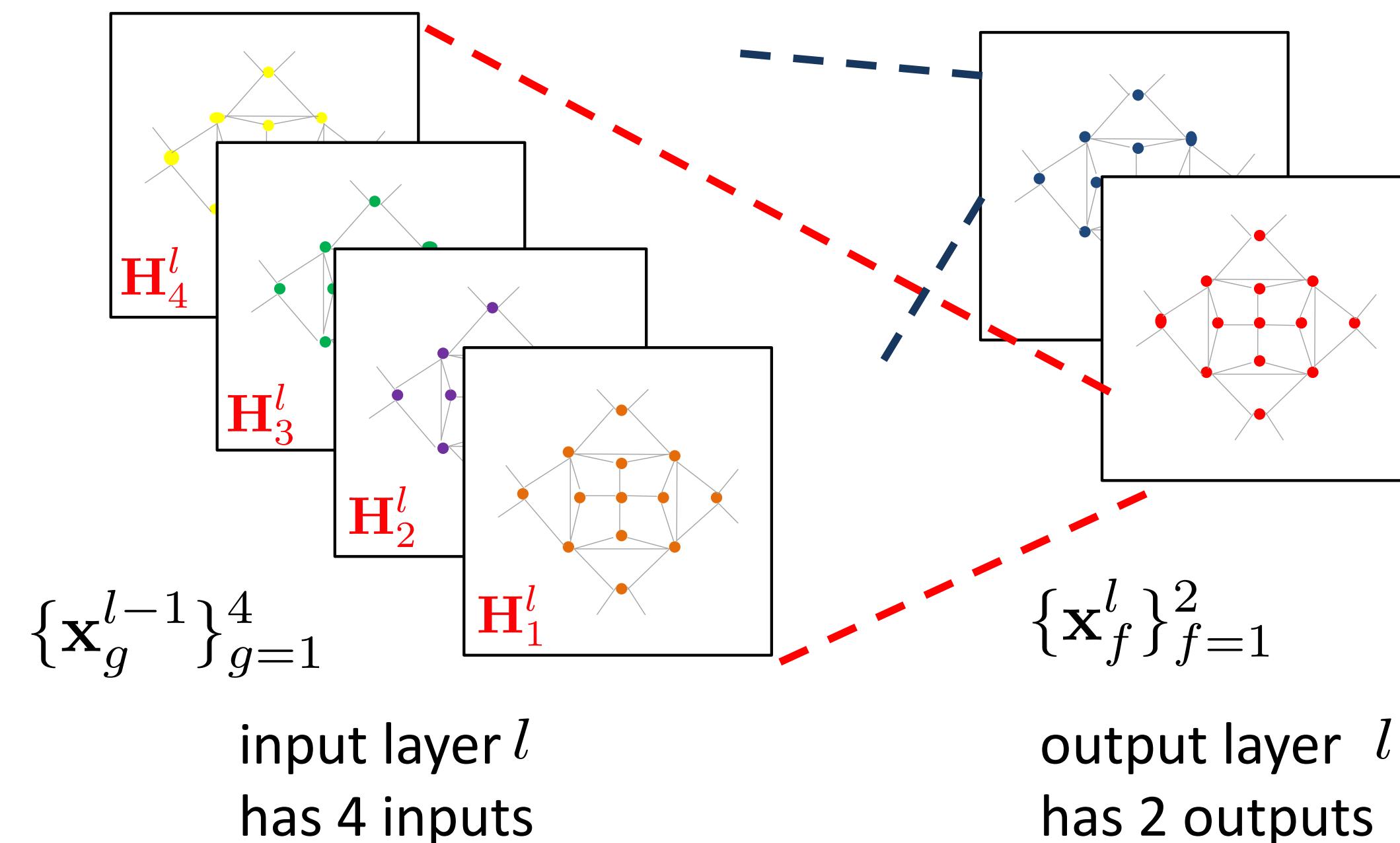
$$\mathbf{x}^l = \sigma(\phi_o^l \mathbf{x}^{l-1} + \phi_1^l \mathbf{S} \mathbf{x}^{l-1} + \phi_2^l \mathbf{S}^2 \mathbf{x}^{l-1})$$



$$x_i^l = \sigma(\phi_o^l x_i^{l-1} + \phi_1^l [\mathbf{S} \mathbf{x}^{l-1}]_i + \phi_2^l [\mathbf{S}^2 \mathbf{x}^{l-1}]_i)$$

Graph convolutional neural networks

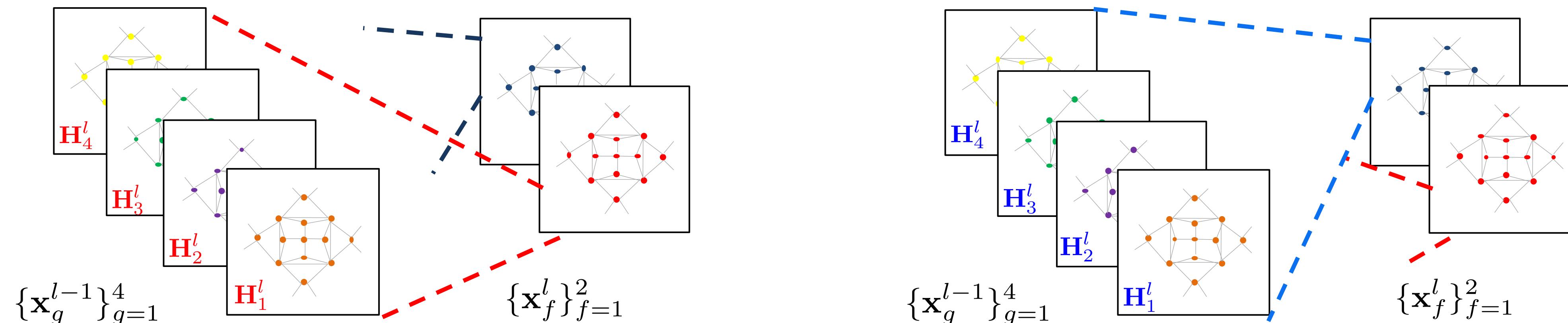
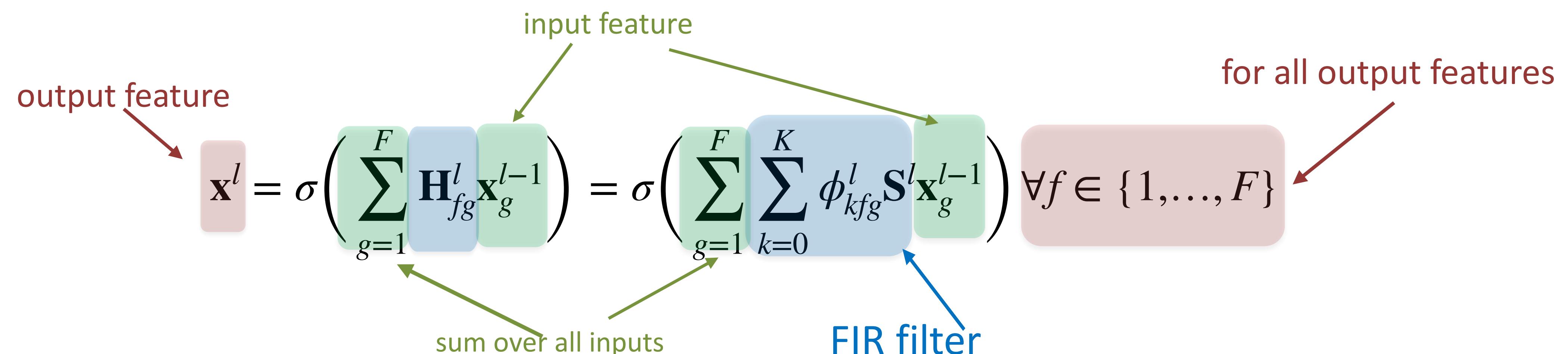
- GCNNs increase descriptive power with a **parallel filter bank**



- ◆ F input graph signals $\{x_g^{l-1}\}_{g=1}^F$
- ◆ process **each signal** with a **graph filter**
- ◆ sum filter outputs
- ◆ parameter are filter coefficients (backprop.)

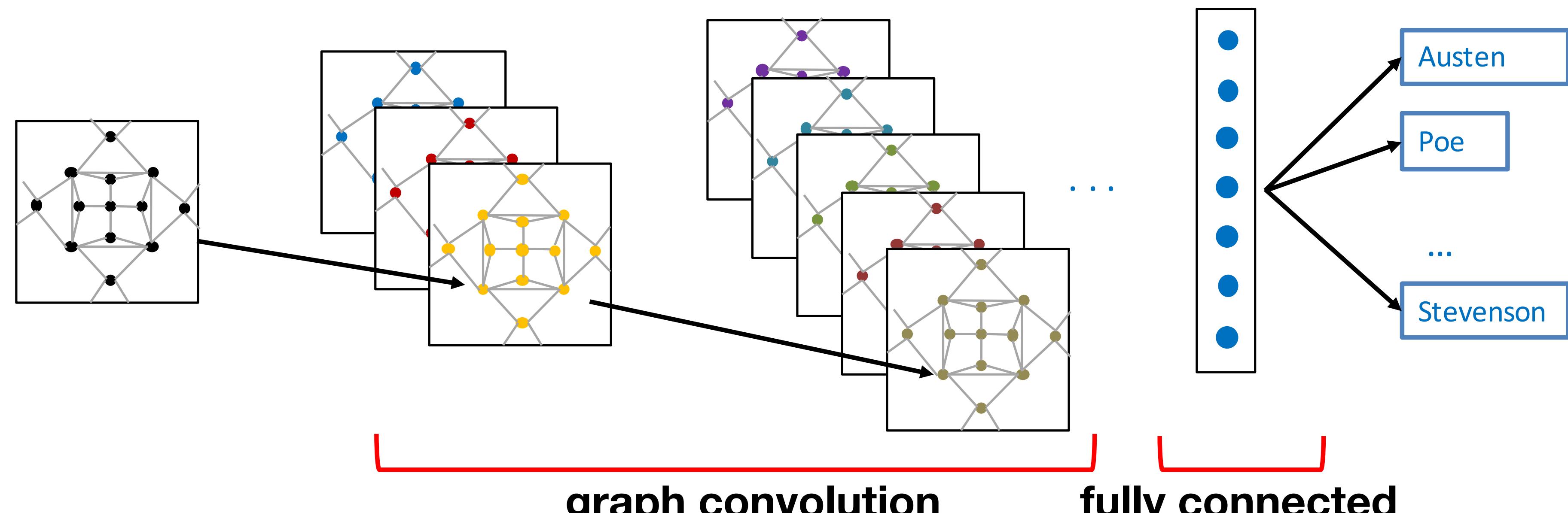
Graph convolutional neural networks

- GCNNs increase descriptive power with a **parallel filter bank**



GCNN full stack

- Cascade graph filters and nonlinearities



Benefits

- Parameters $\mathcal{O}(KF^2L)$ - **independent** on the graph dimensions
- Complexity $\mathcal{O}(KMF^2L)$ - **linear** in number of edges

EdgeNet

- Substitutes **FIR** filters with **edge-variant** graph filter
- Propagation rule

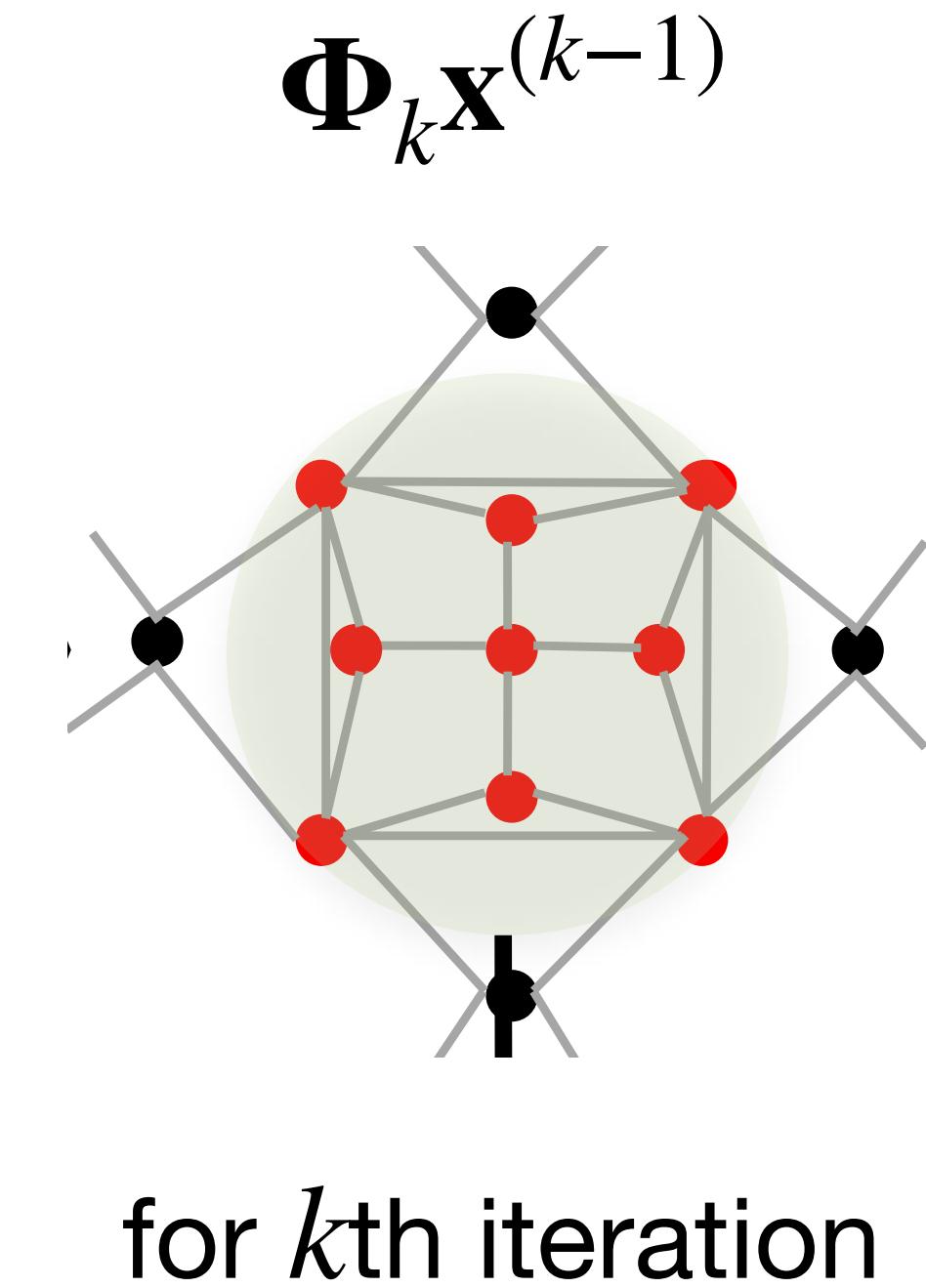
$$\mathbf{x}_f^l = \sigma \left(\sum_{g=1}^F \mathbf{H}_{\text{EV}fg}^l \mathbf{x}_g^{l-1} \right) \forall f \in \{1, \dots, F\}$$

Edge-variant filter

- The most general GNN
 - ◆ Includes **all** GCNN, **all** ARMANet, GIN, GAT

EdgeNet properties

- **Different** parameters per **edge** and **node**
 - ◆ Order $\mathcal{O}(MKF^2L)$
 - ◆ More flexibility
 - ◆ Requires **only the support** of **S**
 - **Adapts** the edge weights to the task
 - **Robust** to uncertainties in edge weights
 - ◆ Requires **fewer** parallel filters and shallower networks
 - ◆ Can overfit and require more data than GCNN (FIR-filters)
- Complexity $\mathcal{O}(MKF^2L)$ - depends on edges

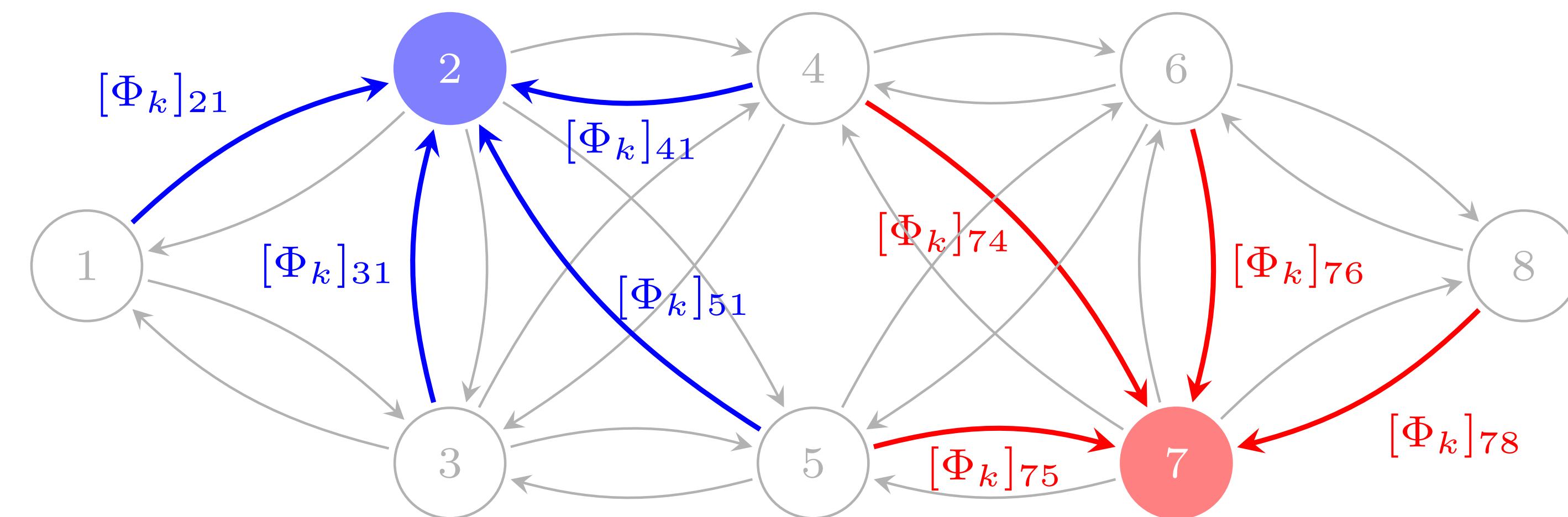


How to use EdgeNets?

- The full form may sometimes **overfit**
 - ◆ Penalize coefficients to sparse (i.e., $\|\Phi\|_1$)
 - ◆ Impose parameter **sharing**
 - **FIR** : all nodes all edges same parameter
 - **Node-variant** : all edges same parameter for a node
 - **Attention mechanism** [Velickovic'18 - ICLR]
 - **Hybrid** : FIR + EV to particular nodes

How to use EdgeNets?

Example: Hybrid (FIR + EV)



- Nodes 2 and 7 use EV filter
- All other nodes use FIR filter
- More flexibility than GCNN
- Parameters independent on the graph dimensions

Where are GNNs useful?

Applications

- Distributed finite-time consensus
- Distributed regression
- Authorship attribution
- Recommender systems

- For control, resource allocation and other SP applications [T-9]
- For semi-supervised learning, graph classification [Wu'20 -TNNLS]

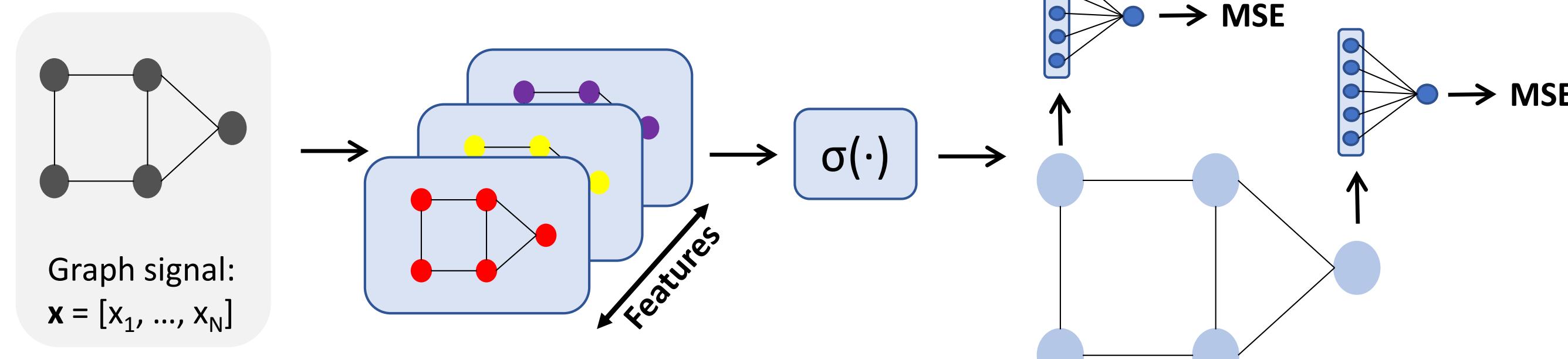
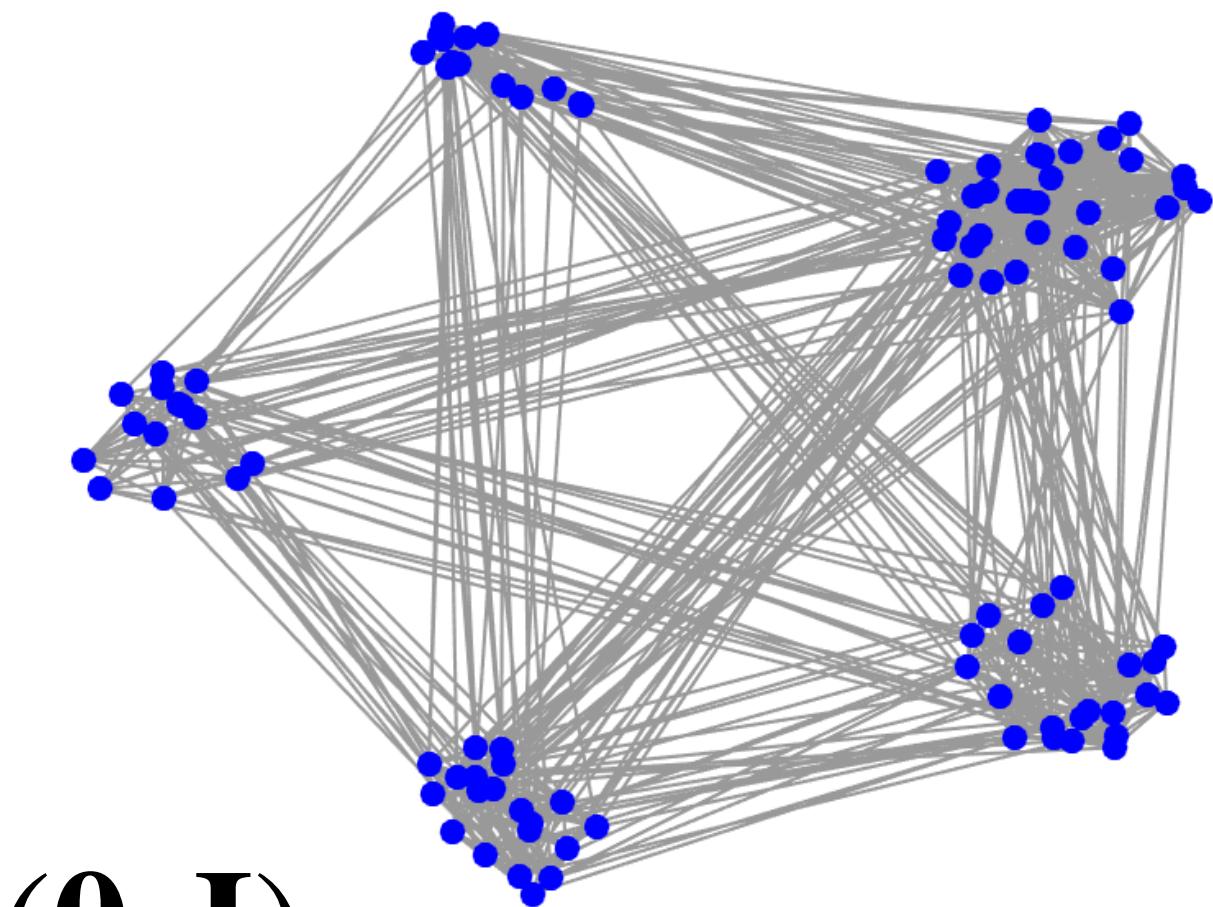
Learning finite-time consensus

- Learn the consensus function for a specific graph
 - ◆ EV can do the job but all nodes need to know all graph
 - Feasible only in small setups

Stochastic block model

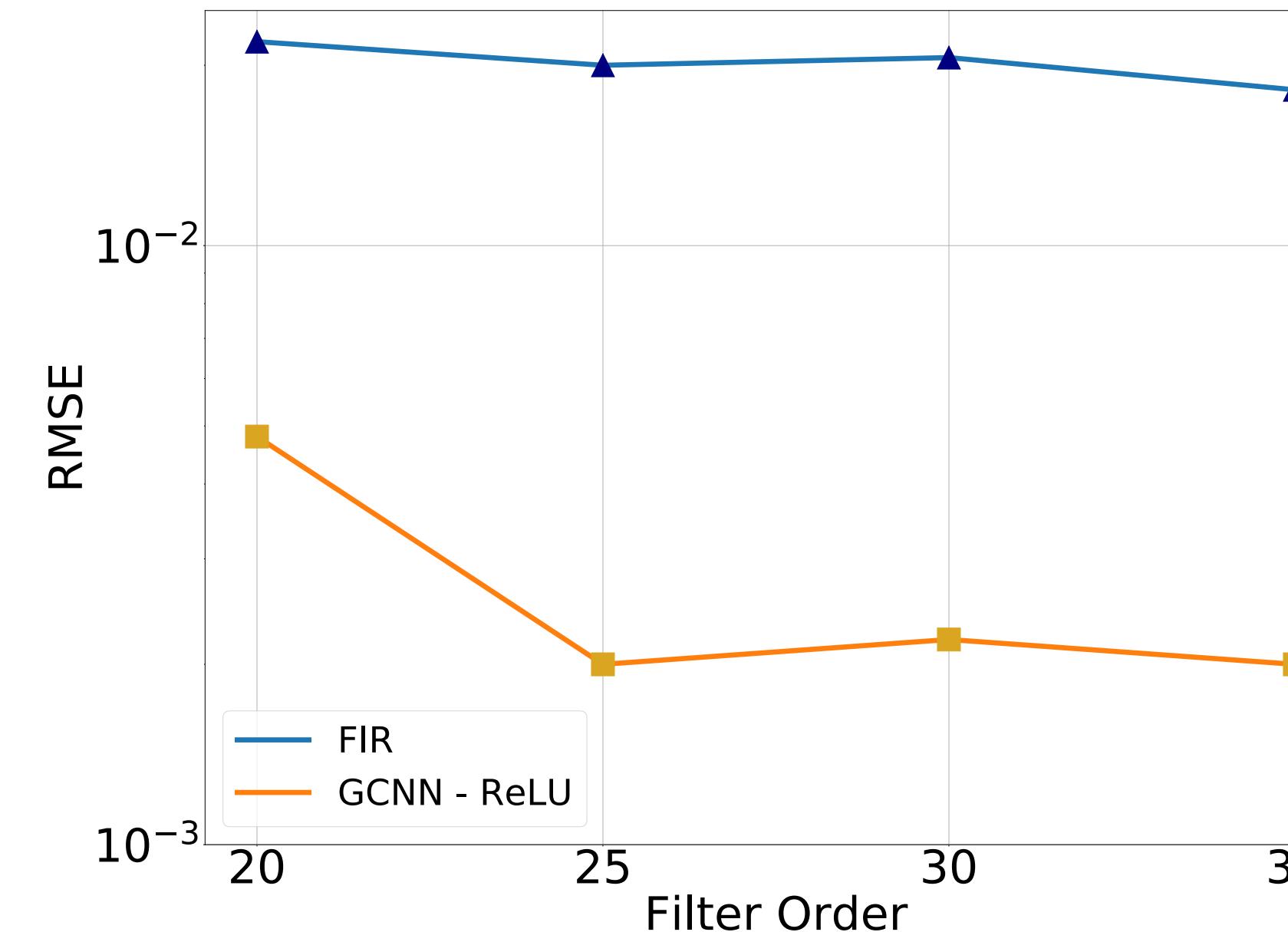
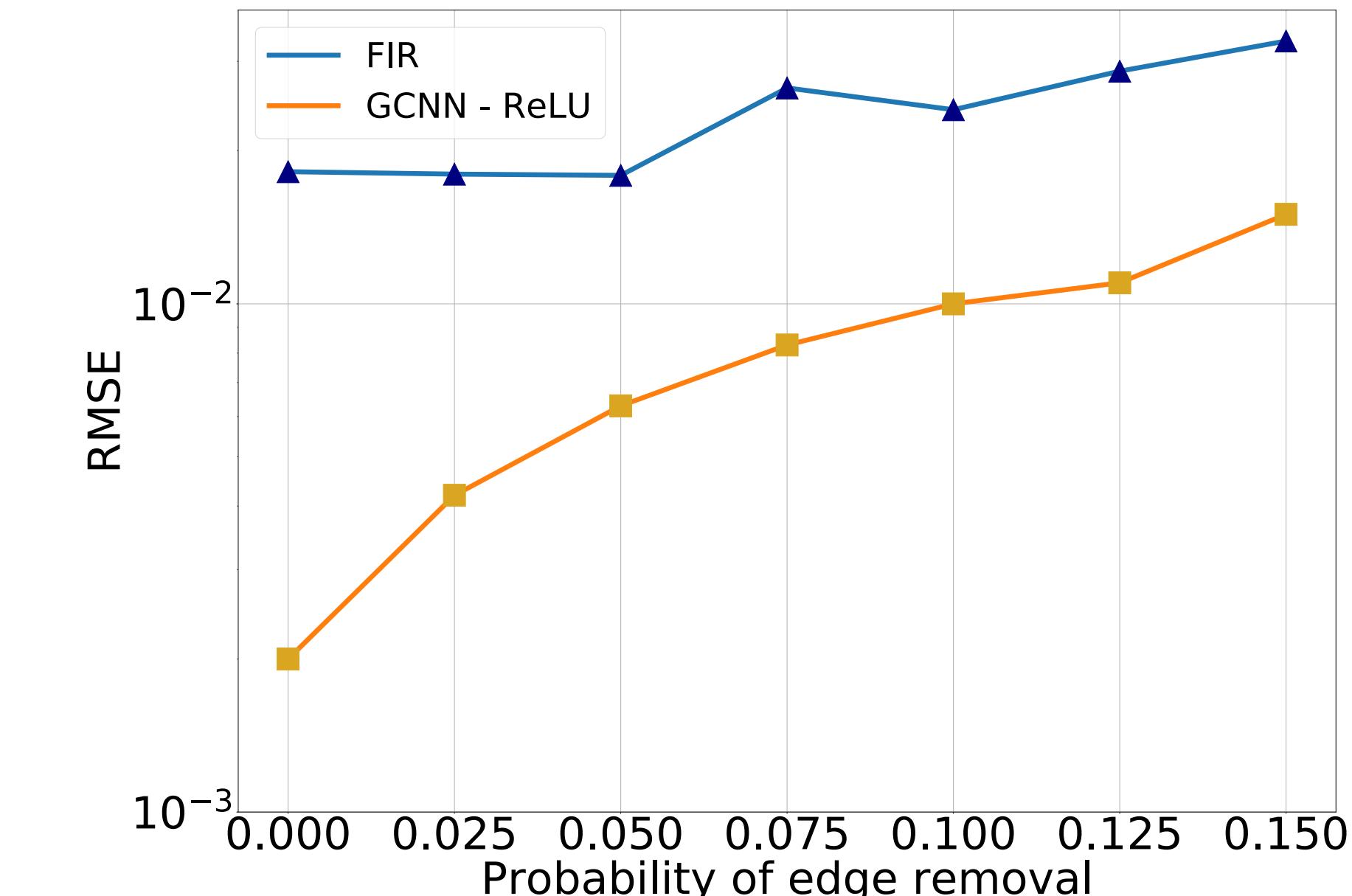
$N = 100$ and $C = 5$ communities; graph signals $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

1 Layer, $F = 32$ features, shared FC (32×1) per node



Iancu, Isufi, [Towards Finite-Time Consensus with Graph Convolutional Neural Networks](#), EUSIPCO 2020 (submitted)

Learning finite-time consensus



- Consensus is **strictly** low pass
- Better performance for high orders
- Machine precision needs EV
- Train and test on different graphs
- GCNN exploits better the connectivity
- GCNNs are better transferable

Distributed regression

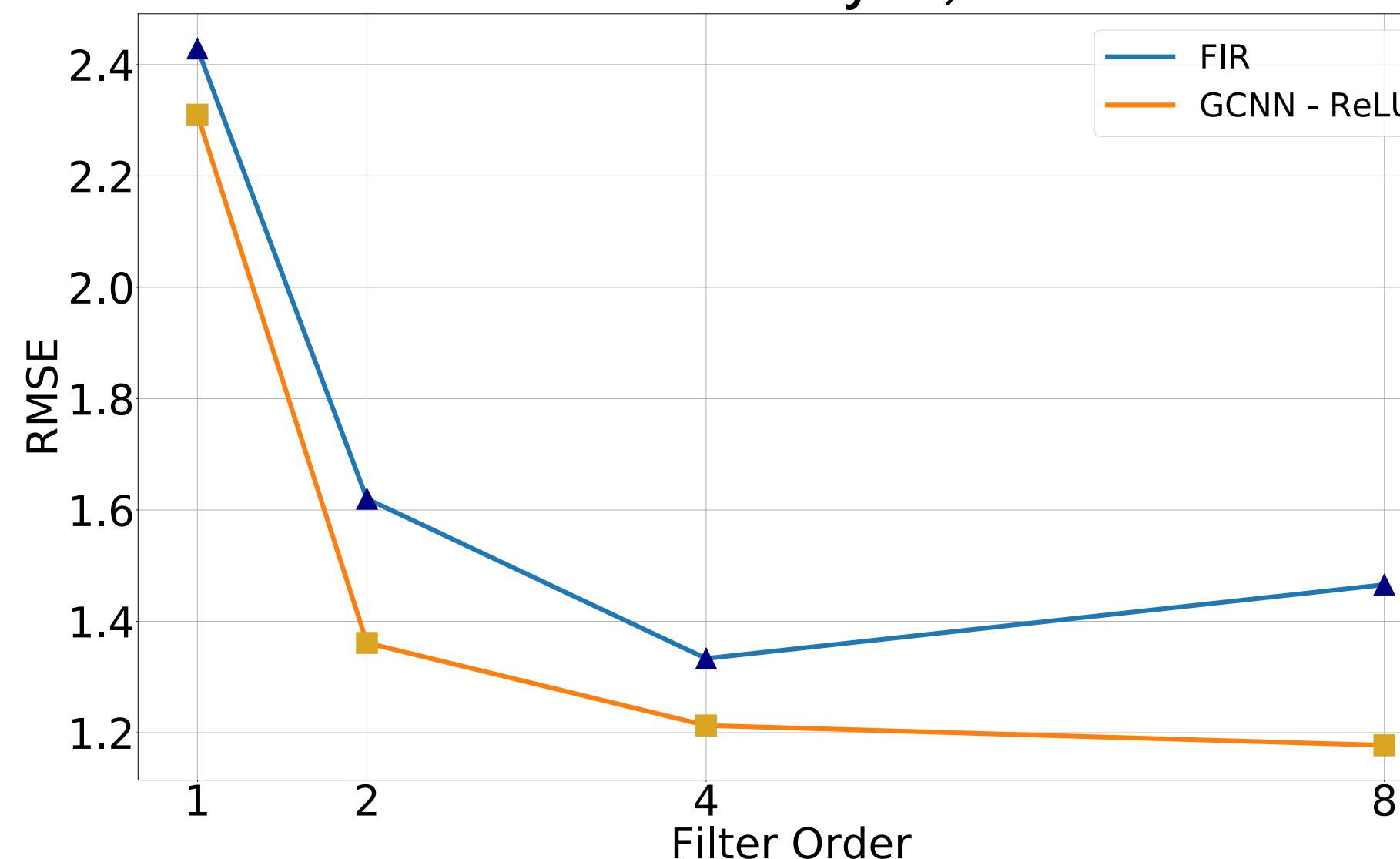
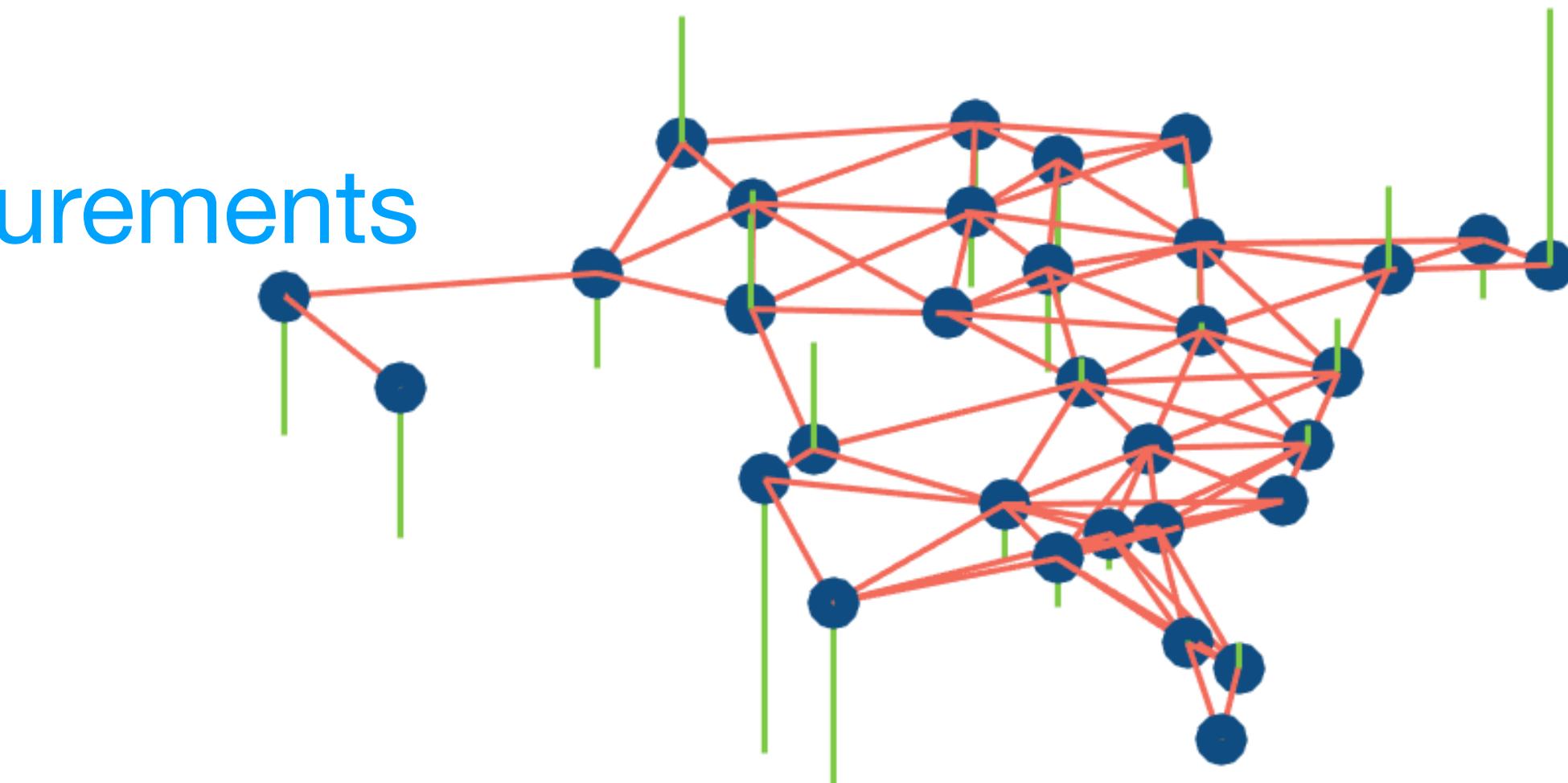
Retrieve signal distributively from noisy measurements

Molene weather dataset

Build a graph between stations $N = 32$

Graph signal: 744 temperature recording

$SNR = 3\text{dB}$ 1 layer; 4 features



- Nonlinear architecture reduces RMSE
- 4 times more communications
- Regression more challenging than classification
- Needs: more data/more graph prior

Authorship attribution

Attribute texts to an author [Segarra'15-TSP]

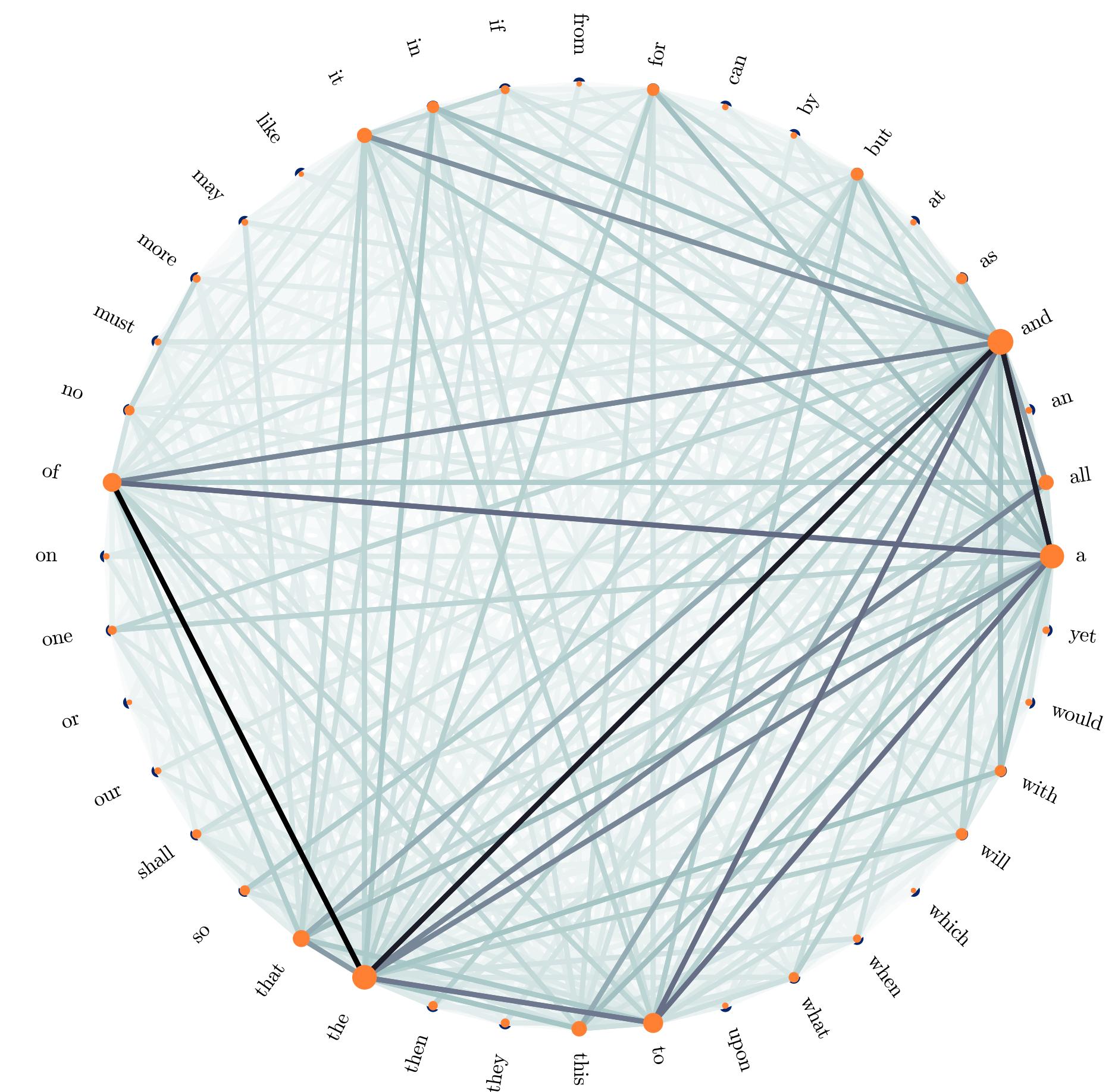
Build a word adjacency network

$$N = 190 - 211$$

Graph signal: word frequency count

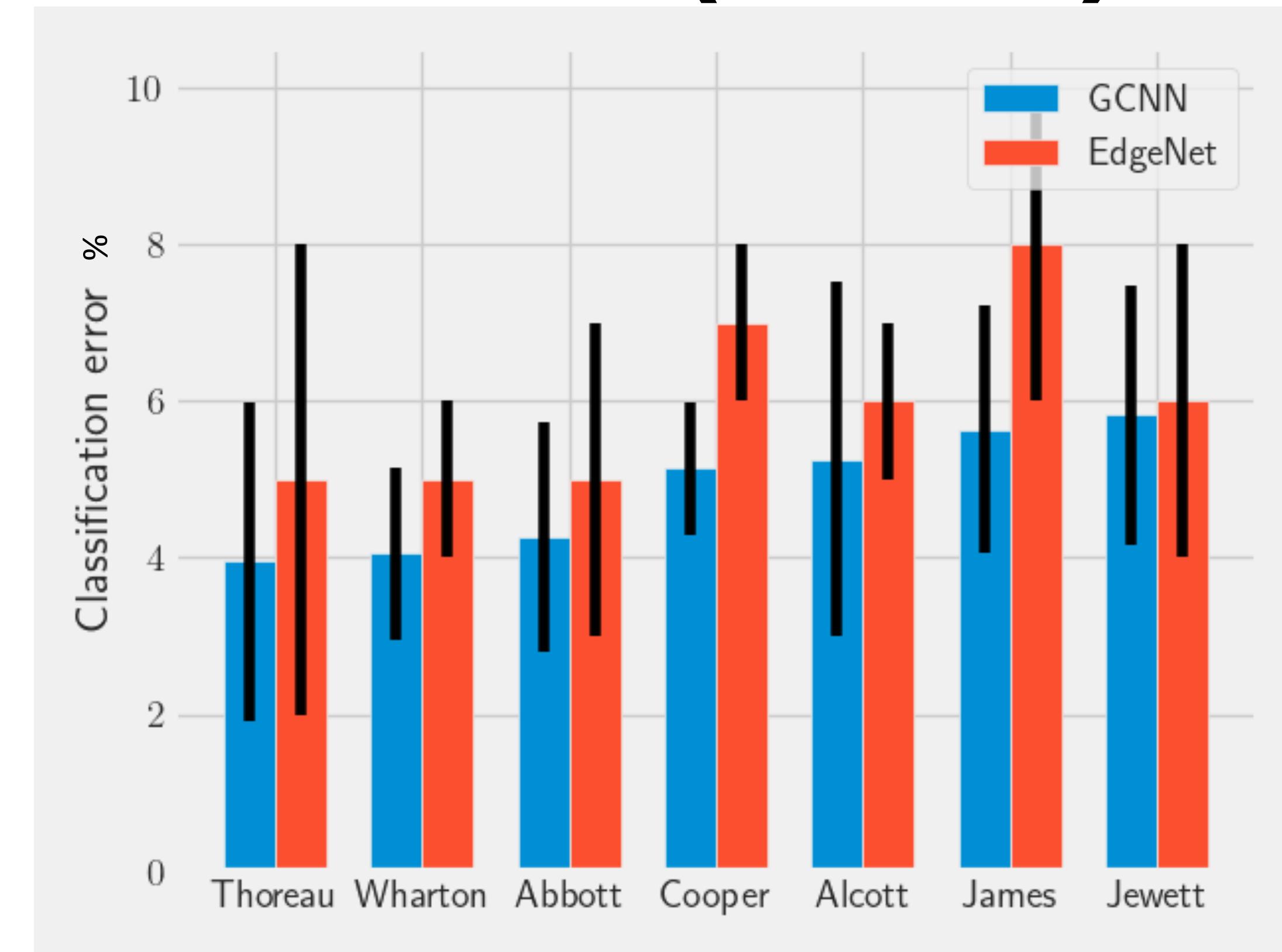
~ 1000 texts from the author of interest

~ 1000 from others



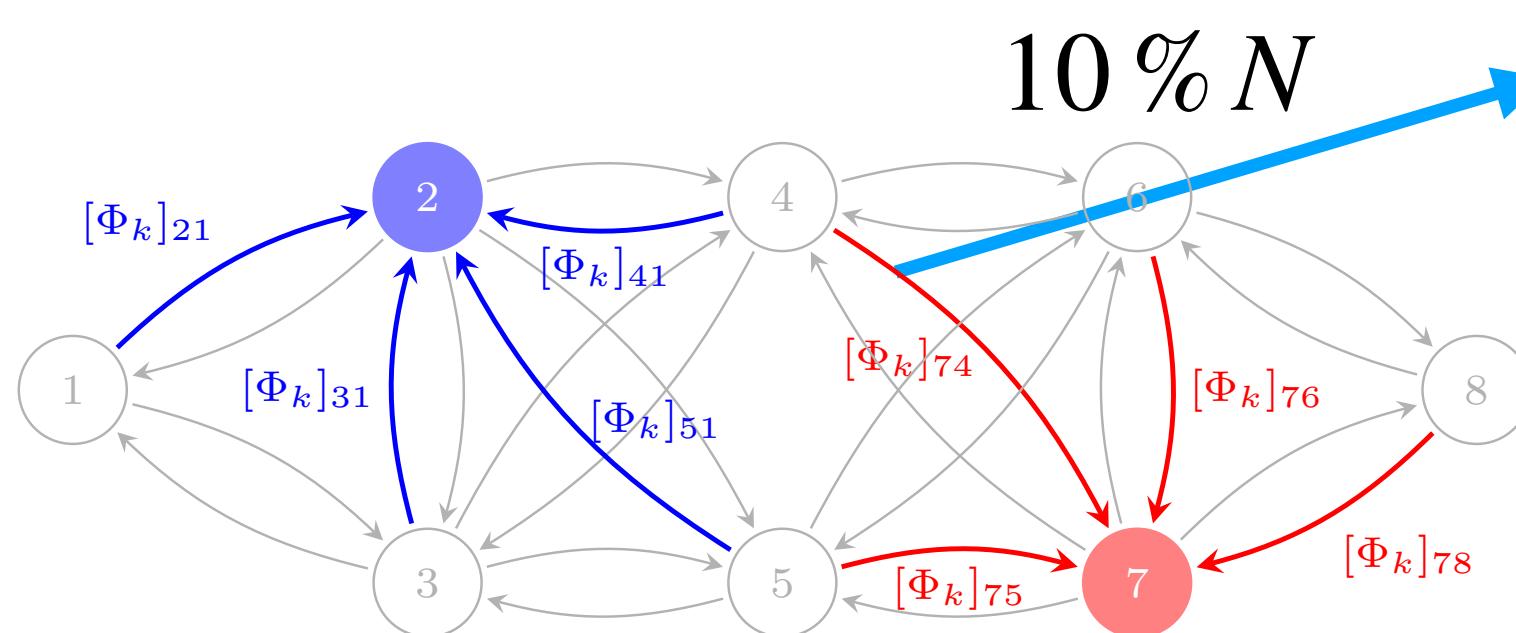
[© figure Ruiz'19-TSP]

Authorship attribution (easier)



- EV hyperparameters (K, F, L) taken from the FIR
- Parameter sharing is beneficial
1 layer, $K \in [2, 10]$, $F \in \{16, 32, 64\}$

Authorship attribution (difficult)



Architecture	Classification error		
	Austen	Brontë	Poe
GCNN	7.2(± 2.0)%	12.9(± 3.5)%	14.3(± 6.4)%
Edge varying	7.1(± 2.2)%	13.1(± 3.9)%	10.7(± 4.3)%
Node varying	7.4(± 2.1)%	14.6(± 4.2)%	11.7(± 4.9)%
Hybrid edge var.	6.9(± 2.6)%	14.0(± 3.7)%	11.7(± 4.8)%
ARMANet	7.9(± 2.3)%	11.6(± 5.0)%	10.9(± 3.7)%

1 layer, $F = 32, K = 4$

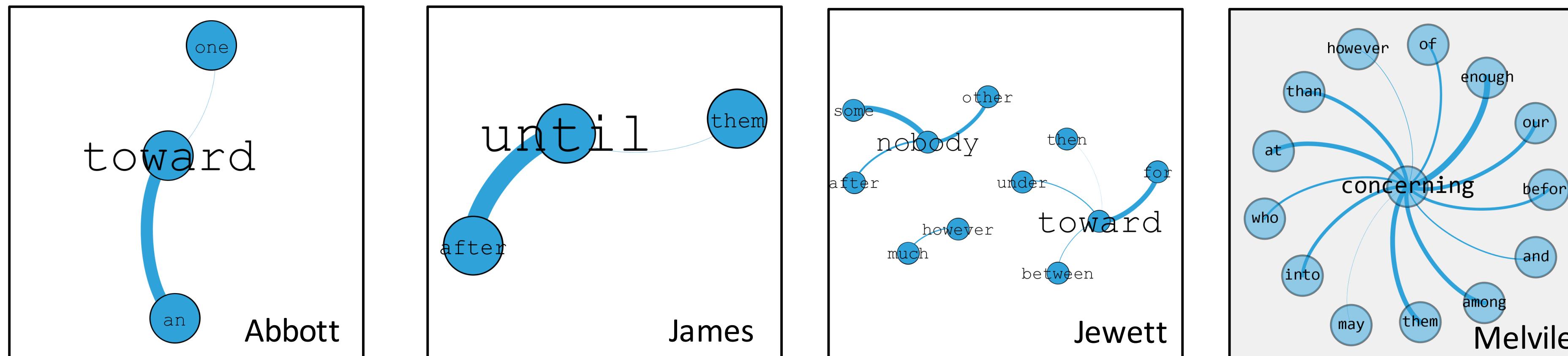
- EdgeNet requires its own hypertunning
- Better for more **difficult** scenarios
- **Subclasses** of the **EV** can perform better depending on problem difficulty

Authorship attribution (explain)

○ Explain GNNs with EdgeNets

- ◆ One layer EdgeNet with order $K = 1$
- ◆ Training the EdgeNet = learning graph weights
 - removed small weight edges = accuracy drop $< 5\%$
 - identifies most relevant function words per author

$$\mathbf{x}_1^1 = \sigma(\Phi \mathbf{x}_1^0)$$



- identify an author from 3 words

Authorship attribution

Identifying author gender from texts

- ◆ No NLP: shallow and fast training, no pretraining/corpus
- ◆ Graphs + signals from female and male authors in train - test

Classification error

	EdgeNet	GCNN	EV-GCNN
Mean	8.6%	10.1%	7.8%
Std	6×10^{-3}	6×10^{-3}	5×10^{-3}

1 layer architectures, $F = 64$

Sparse WANs help classification

Sparse EV shift operator + GCNN

Recommender systems

- Fill missing entries in a user-item matrix

Movielens 100K dataset $U = 943; I = 1,582$

Build a similarity graph (principle of collaborative filter)

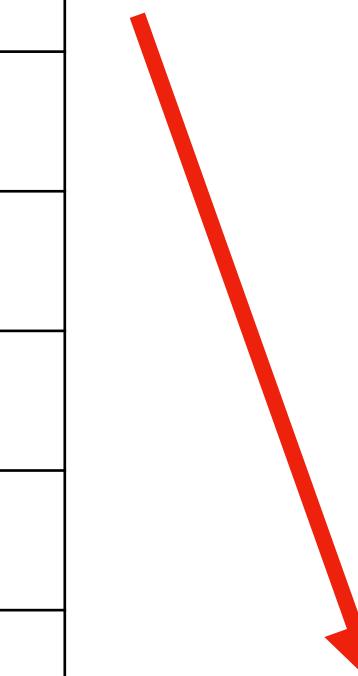
	Item 1	Item 2	Item 3	...	Item I
User 1	5	1	?	...	2
User 2	?	?	3	...	3
User 3	4	?	4	...	?
...
User U	?	4	3	...	1

user similarity graph

nodes : users

edges : Pearson/cosine similarity

between pairs of users



item similarity graph

nodes : items

edges : Pearson/cosine similarity

between pairs of items

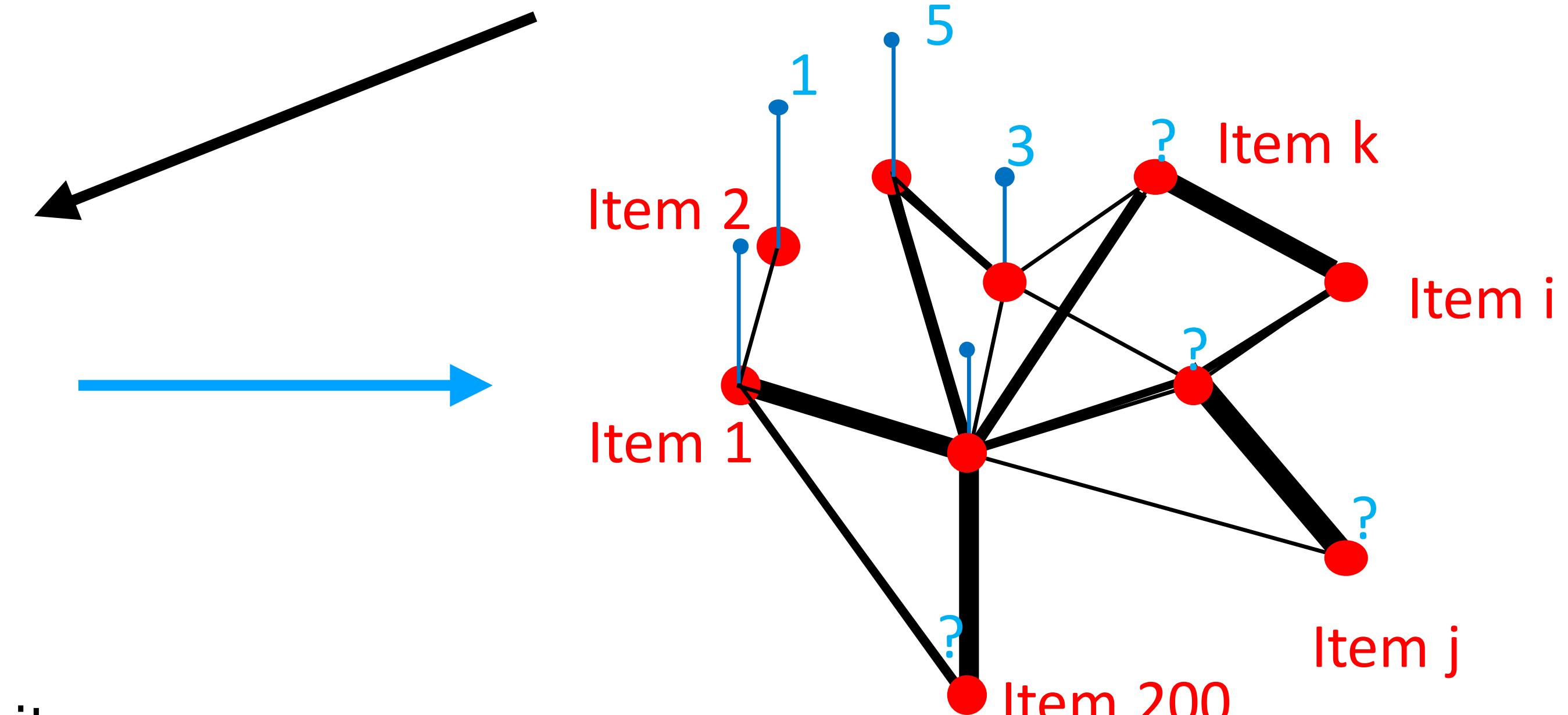
Recommender systems

- Here item similarity graph

$N = 200$ most rated items

	Item 1	Item 2	Item 3	...	Item I
User 1	5	1	?	...	2
User 2	?	?	3	...	3
User 3	4	?	4	...	?
...
User U	?	4	3	...	1

subset of user ratings
to build the graph



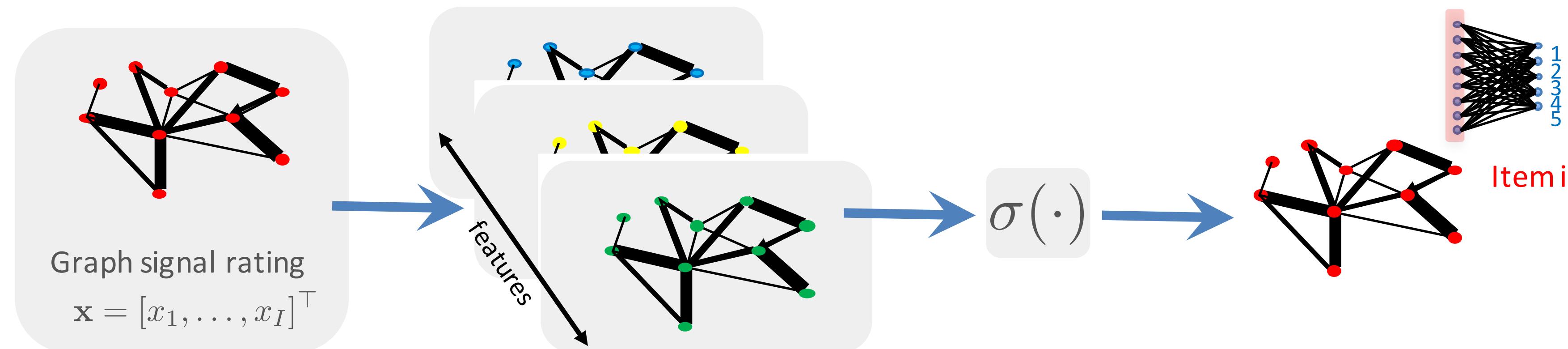
Graph signal : rating of user u to all items

- interpolation problem on graphs

Goal: find rating all users give to item i (fill i th column of matrix)

Recommender systems

- Use locality of the filters to build a GNN **specific to item I**



Frame as signal classification problem per node

1 layer, 32 features

EdgeNet suffers in general -requires parameterization

Archit./Movie-ID	50	258	100	181	294	Average
GCNN	0.82	1.08	0.95	0.86	1.04	0.95
Edge var.	0.93	1.03	1.00	0.88	1.24	1.02
Node var.	0.78	1.04	1.00	0.87	1.00	0.94
Hybrid edge var.	0.75	1.02	0.98	0.82	1.08	0.93

part 4 :: conclusions

- Graph filter are the **building block** of graph neural network (GNN)
 - ◆ Incorporate effectively the **graph signal - graph topology** into learning
 - ◆ Serve as a **prior** to reduce parameters and complexity
 - ◆ Graph convolutions through graph filters
- Different filter = different graph neural networks
 - ◆ FIR = GCNNs
 - ◆ ARMA = ARMANets
 - ◆ Edge varying = EdgeNets

part 4 :: conclusions

- EdgeNets provide the broadest GNN family
 - ◆ Particularize to **all** the others including GINs and GATs
 - ◆ Help **explainability**
- Applications in signal classification & regression
 - ◆ Authorship attribution
 - ◆ Recommender systems

GNN - next challenges

- More graph prior instead of more data
- Explainability
 - ◆ What topological information is more relevant?
 - ◆ What spectral information is more relevant?
 - ◆ EdgeNet can be a strong tool in this regard
- Robustness/Transferability
 - ◆ To topological perturbations
 - ◆ To input perturbations
- Distributed learning
 - ◆ Graph filters are distributable

part 4

graph neural networks

part 4:: overview

- Role of **graph filters** in graph neural networks (GNNs)
 - ◆ GNNs ~ **nonlinear graph filters**
- For simplicity will discuss supervised learning

part 4:: overview

- Role of **graph filters** in graph neural networks (GNNs)
 - ◆ GNNs ~ **nonlinear graph filters**
- For simplicity will discuss supervised learning
- How to go from neural networks to GNNs?
- Types of GNNs
 - ◆ What are graph convolutional neural networks?
 - ◆ How to use edge varying GNNs?
- How to use GNNs for graph signal processing applications?

part 4:: overview

- Role of **graph filters** in graph neural networks (GNNs)
 - ◆ GNNs ~ **nonlinear graph filters**
- For simplicity will discuss supervised learning
- How to go from neural networks to GNNs?
- Types of GNNs
 - ◆ What are graph convolutional neural networks?
 - ◆ How to use edge varying GNNs?
- How to use GNNs for graph signal processing applications?
- For GNN **pooling**, **transferability**, and applications in **control** and **resource allocation**
 - ◆ T-9: Graph Neural Networks (F. Gama and A. Ribeiro)

Why we use filters in neural networks?

Supervised learning

- Relies on a **dataset of R training** examples

$$\mathcal{R} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_R, y_R)\}$$

- ◆ \mathbf{x}_r the r th input data in space \mathcal{X}
- ◆ y_r the r th output data in space \mathcal{Y} (labels)

Supervised learning

- Relies on a **dataset of R training** examples

$$\mathcal{R} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_R, y_R)\}$$

- ◆ \mathbf{x}_r the r th input data in space \mathcal{X}
- ◆ y_r the r th output data in space \mathcal{Y} (labels)

- **Goal:** learn a function f that maps \mathbf{x}_r to y_r

- we want f parametric: $f(\theta) : \mathcal{X} \rightarrow \mathcal{Y}$

Supervised learning

- Design parameters θ such that

- ◆ **minimize** a cost distance between $f(\theta, \mathbf{x}_r)$ and y_r (e.g., MSE)

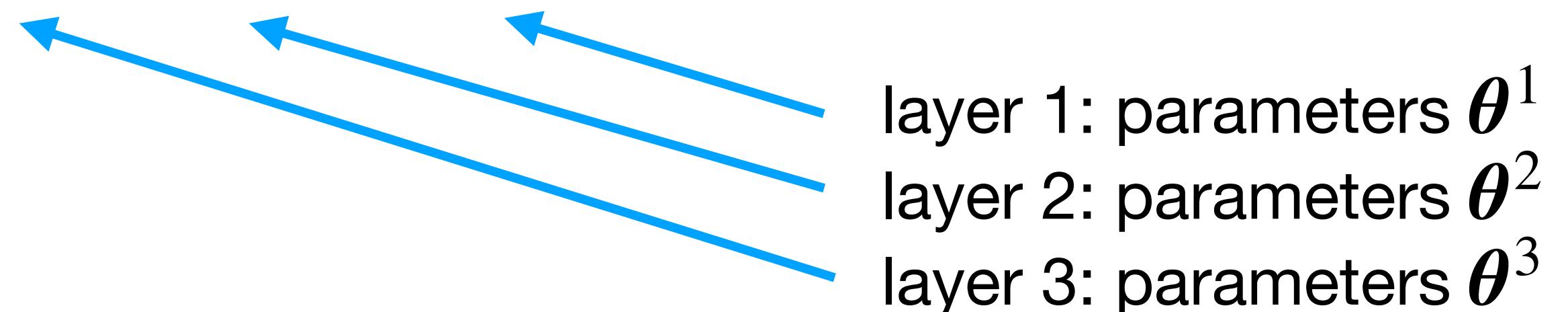
$$\underset{\theta}{\text{minimize}} \frac{1}{R} \sum_{r=1}^R (f(\theta, \mathbf{x}_r) - y_r)^2$$

- ◆ **generalize** well for test data $\mathbf{x}_r \notin \mathcal{R}$

Neural networks

- Express function f as a cascade of layered functions

$$f(\theta, \mathbf{x}) = f^3(\theta^3, f^2(\theta^2, f^1(\theta^1, \mathbf{x})))$$

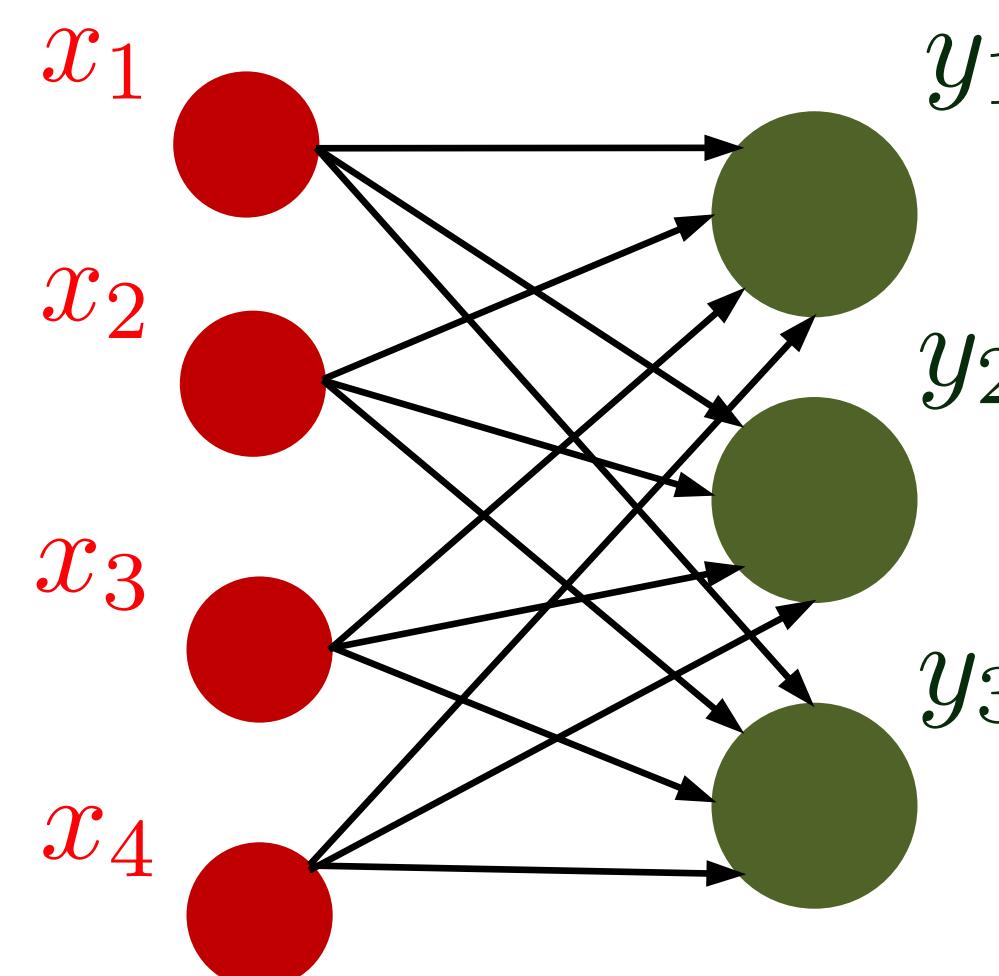


Neural networks

- Express function f as a cascade of layered functions

$$f(\theta, \mathbf{x}) = f^3(\theta^3, f^2(\theta^2, f^1(\theta^1, \mathbf{x})))$$

- No structure in the data: perceptron



$$\mathbf{y} = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$$

- Parameters $\theta = \{\mathbf{W}, \mathbf{b}\}$
- Pointwise nonlinearity $\sigma(\cdot)$

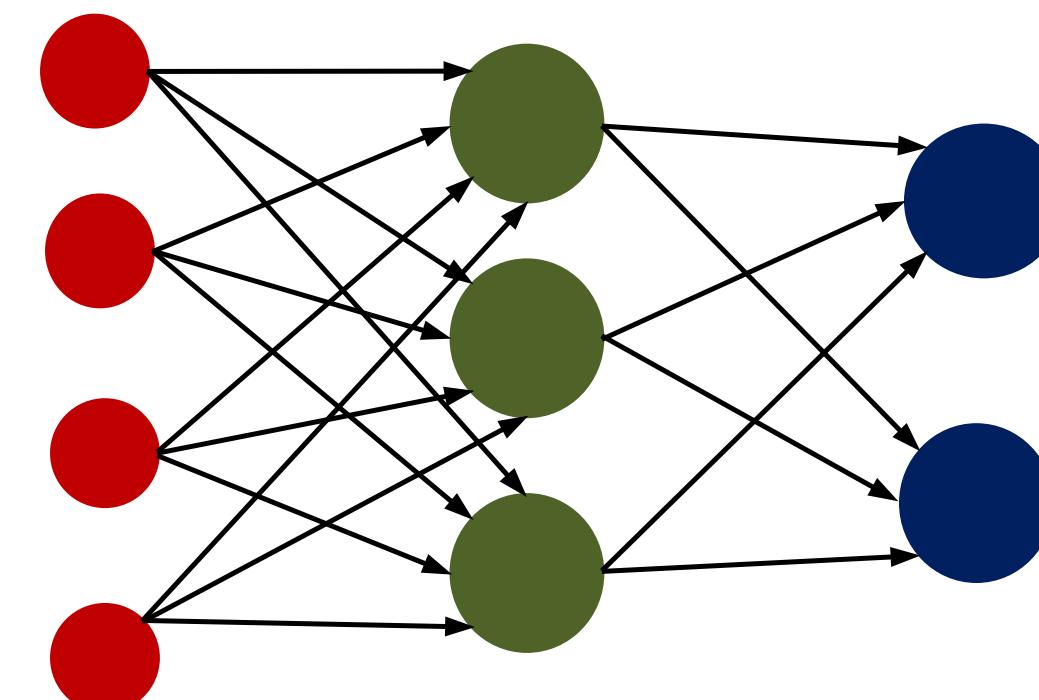
layer 1: parameters θ^1
 layer 2: parameters θ^2
 layer 3: parameters θ^3

$$\text{ReLU}(x) = \begin{cases} x & x > 0 \\ 0 & \text{otw} \end{cases}$$

Neural networks

- No structure in the data: multi-layer perceptron

◆ Improves expressivity



$\mathbf{x}_0 \quad \mathbf{x}_1 \quad \mathbf{x}_2$

$$\mathbf{x}^l = \sigma(\mathbf{W}^l \mathbf{x}^{l-1} + \mathbf{b}^l)$$

- Input features $\mathbf{x}^0 = \mathbf{x}_r$
- Output features \mathbf{x}^L

\mathbf{x}^{l-1} : input layer $l =$ output layer $l - 1$

\mathbf{x}^l : output layer l

$\theta^l = \{\mathbf{W}^l, \mathbf{b}^l\}$: parameters layer l

Neural networks

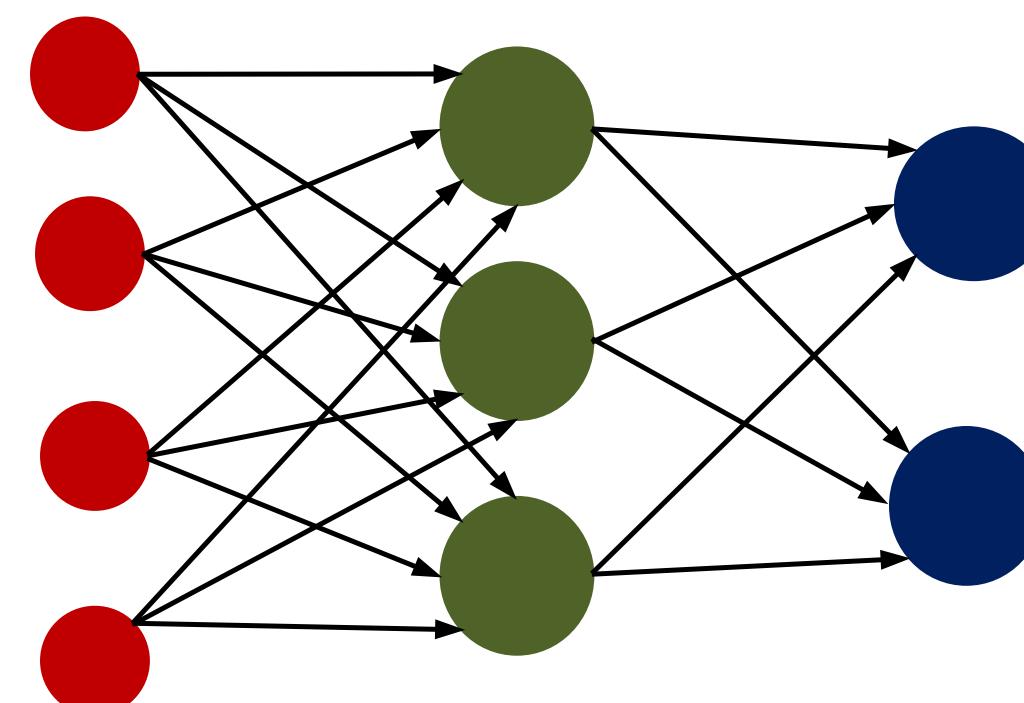
- Unrolling recursion $\mathbf{x}^L = \sigma(\mathbf{W}^L \mathbf{x}^{L-1} + \mathbf{b}^L)$



$$\begin{aligned}\mathbf{x}^L &= \sigma(\mathbf{W}^L \mathbf{x}^{L-1} + \mathbf{b}^L) \\ &= \sigma(\mathbf{W}^L \sigma(\mathbf{W}^{L-1} \mathbf{x}^{L-2} + \mathbf{b}^{L-1}) + \mathbf{b}^L)\end{aligned}$$

Neural networks

- Unrolling recursion $\mathbf{x}^L = \sigma(\mathbf{W}^L \mathbf{x}^{L-1} + \mathbf{b}^L)$



$\mathbf{x}_0 \quad \mathbf{x}_1 \quad \mathbf{x}_2$

$$\begin{aligned}\mathbf{x}^L &= \sigma(\mathbf{W}^L \mathbf{x}^{L-1} + \mathbf{b}^L) \\ &= \sigma(\mathbf{W}^L \sigma(\mathbf{W}^{L-1} \mathbf{x}^{L-2} + \mathbf{b}^{L-1}) + \mathbf{b}^L) \\ &= \sigma(\mathbf{W}^L \sigma(\mathbf{W}^{L-1} \sigma(\dots \sigma(\mathbf{W}^1 \mathbf{x}^0 + \mathbf{b}^1) + \mathbf{b}^{L-1}) + \mathbf{b}^L)\end{aligned}$$

- \mathbf{x}^L depends on \mathbf{x}^0 through a composition of linear functions and pointwise nonlinearities

Neural networks

- ➊ MLP fails in **high dimensional** data $\mathbf{x}^l = \sigma(\mathbf{W}^l \mathbf{x}^{l-1} + \mathbf{b}^l)$
 - ◆ if layers have dimensions $\dim(\mathbf{x}^l) = \dim(\mathbf{x}^{l-1}) \sim \mathcal{O}(N)$
 - $\dim(\mathbf{W}^l) \sim \mathcal{O}(N^2)$ parameters, e.g., $N = 1000 \rightarrow \mathcal{O}(10^6)$
 - complexity $\mathcal{O}(N^2)$

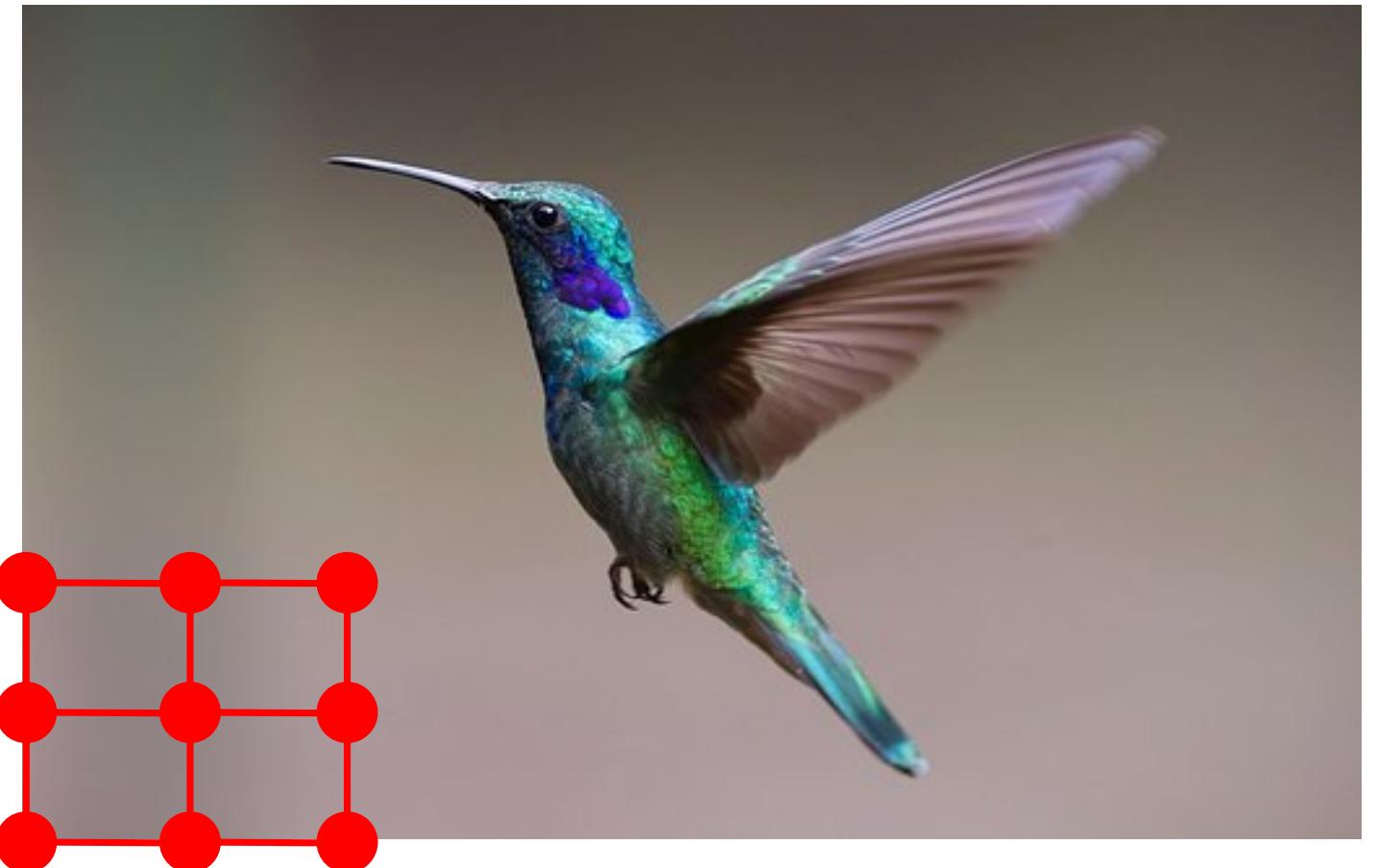
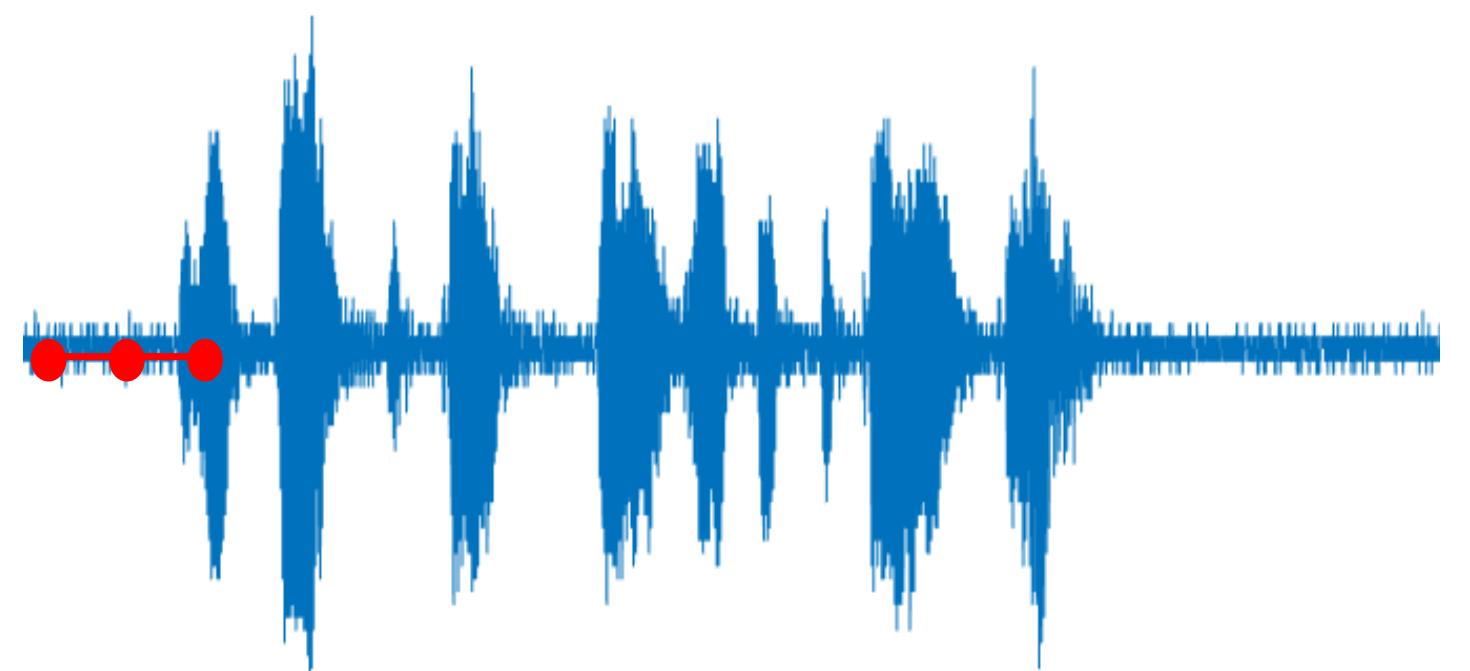
Neural networks

- MLP fails in **high dimensional** data $\mathbf{x}^l = \sigma(\mathbf{W}^l \mathbf{x}^{l-1} + \mathbf{b}^l)$
 - ◆ if layers have dimensions $\dim(\mathbf{x}^l) = \dim(\mathbf{x}^{l-1}) \sim \mathcal{O}(N)$
 - $\dim(\mathbf{W}^l) \sim \mathcal{O}(N^2)$ parameters, e.g., $N = 1000 \rightarrow \mathcal{O}(10^6)$
 - complexity $\mathcal{O}(N^2)$
- need to **exploit structure** in data

Neural networks

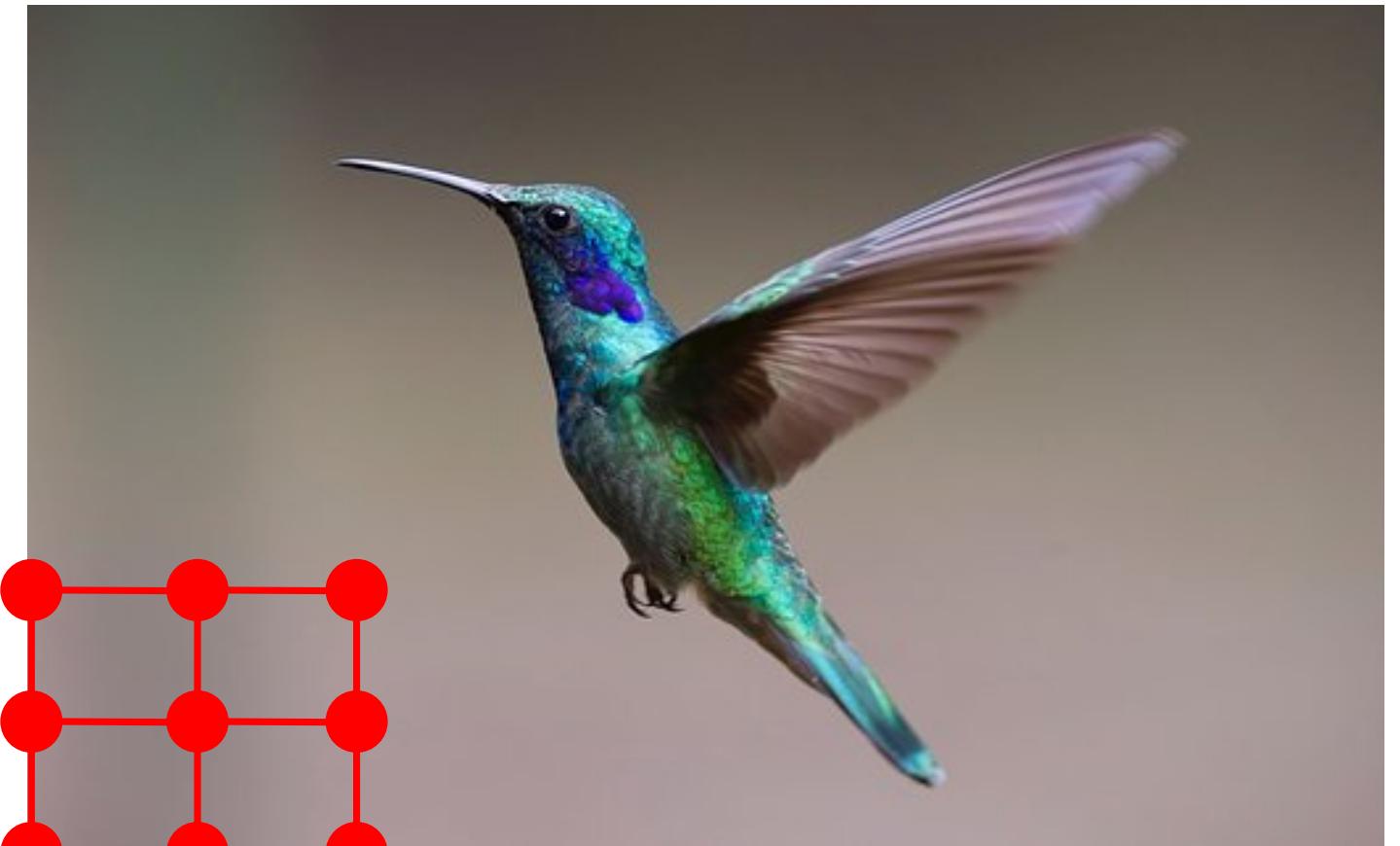
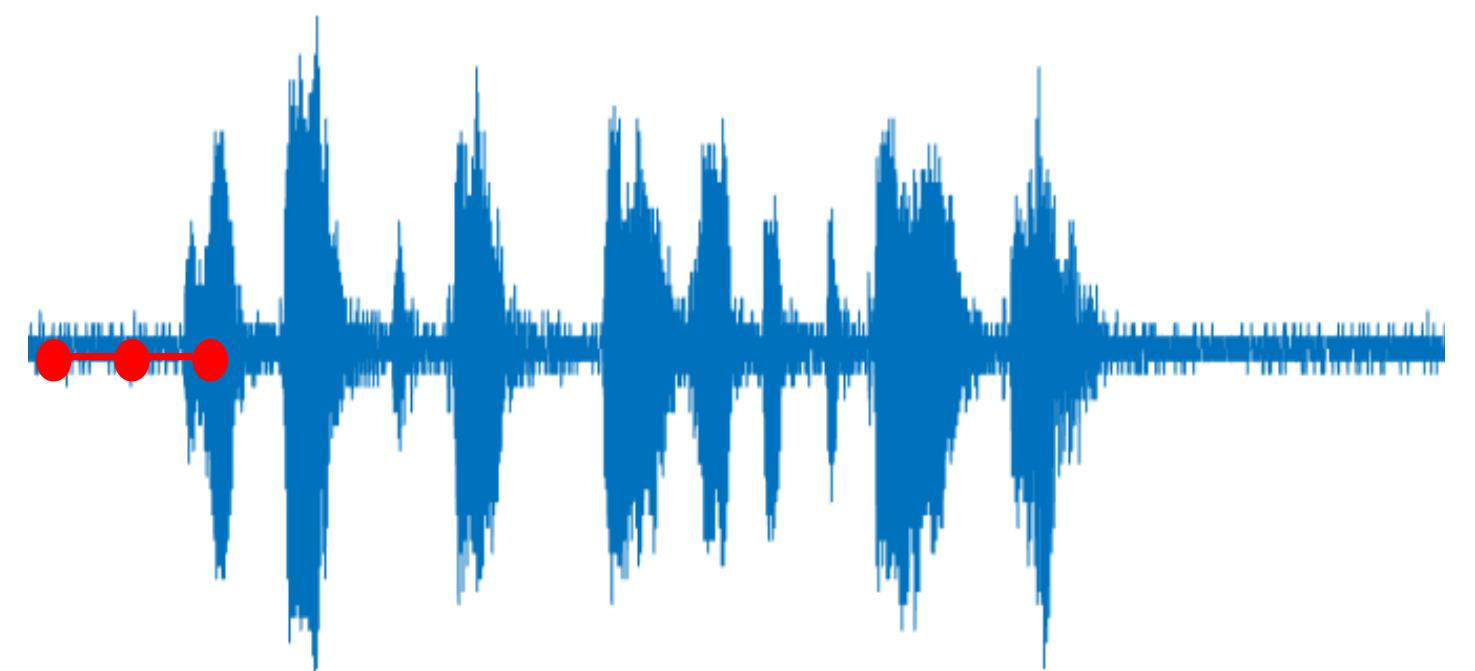
○ structure in data

- ◆ spatial data: pixel neighbors
- ◆ temporal data: signal proximity



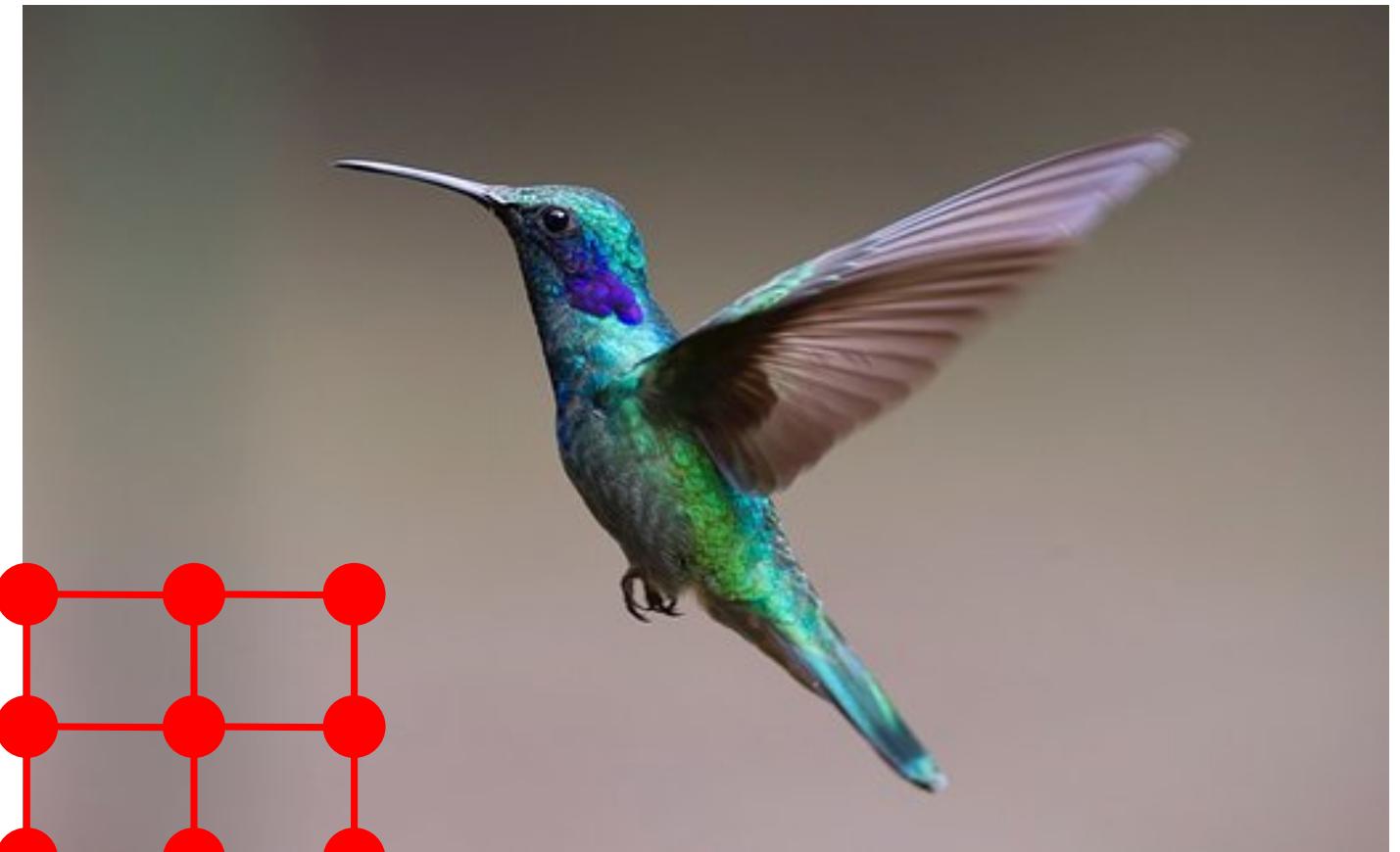
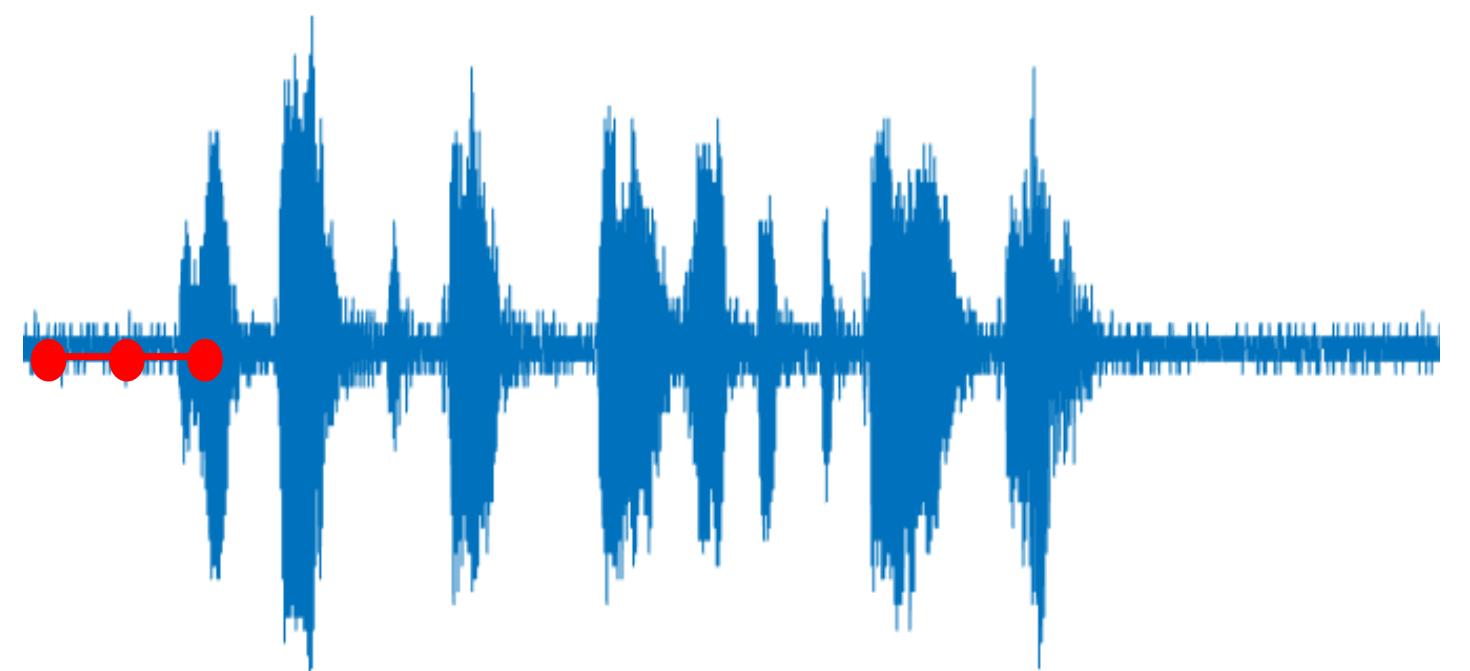
Neural networks

- structure in data
 - ◆ spatial data: pixel neighbors
 - ◆ temporal data: signal proximity
- reduce parameters by effective sharing
- reduce complexity by efficient implementation



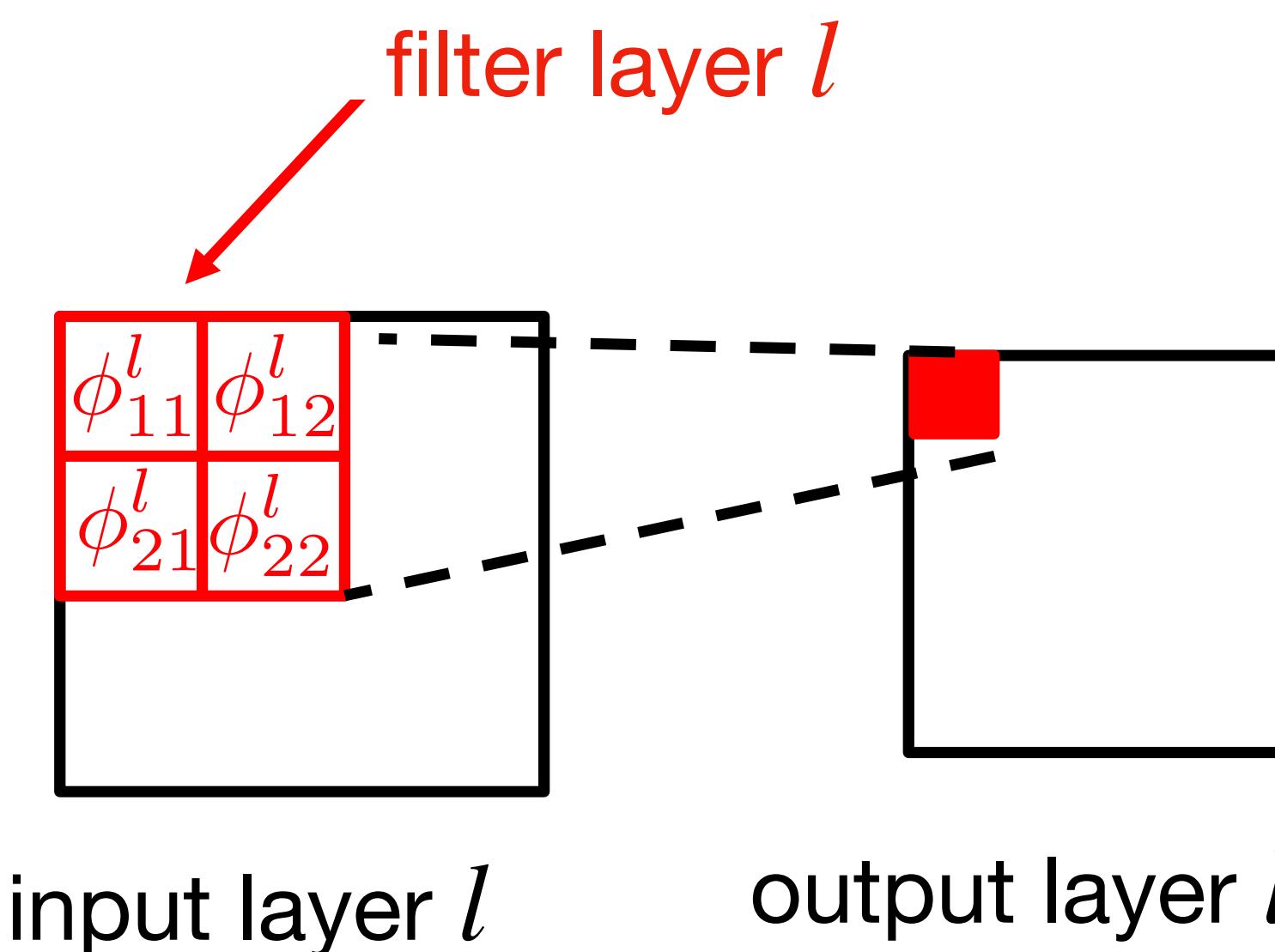
Neural networks

- structure in data
 - ◆ spatial data: pixel neighbors
 - ◆ temporal data: signal proximity
- reduce parameters by effective sharing
- reduce complexity by efficient implementation
- use spatial and temporal filters
 - ◆ no loss of discriminatory power



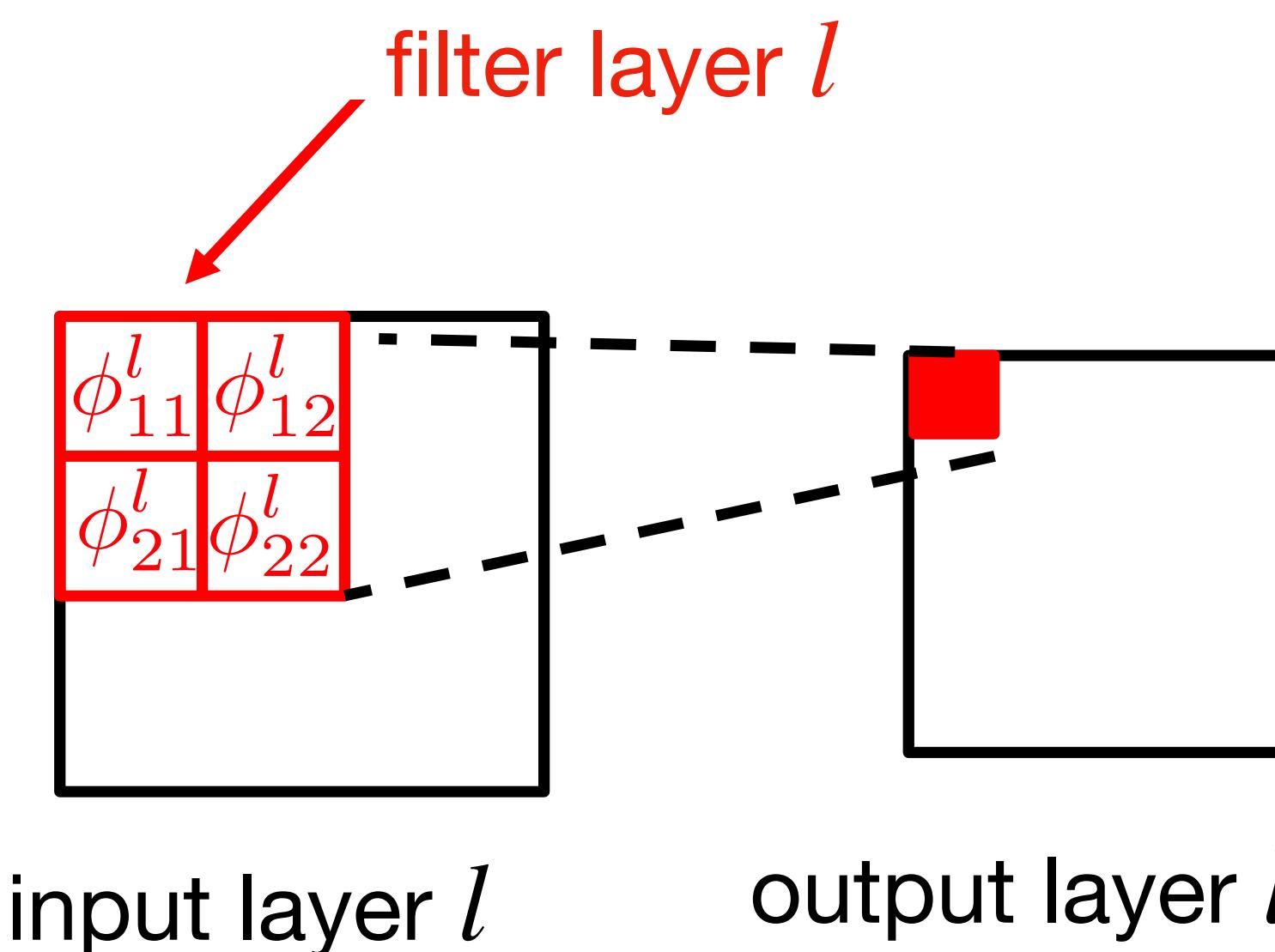
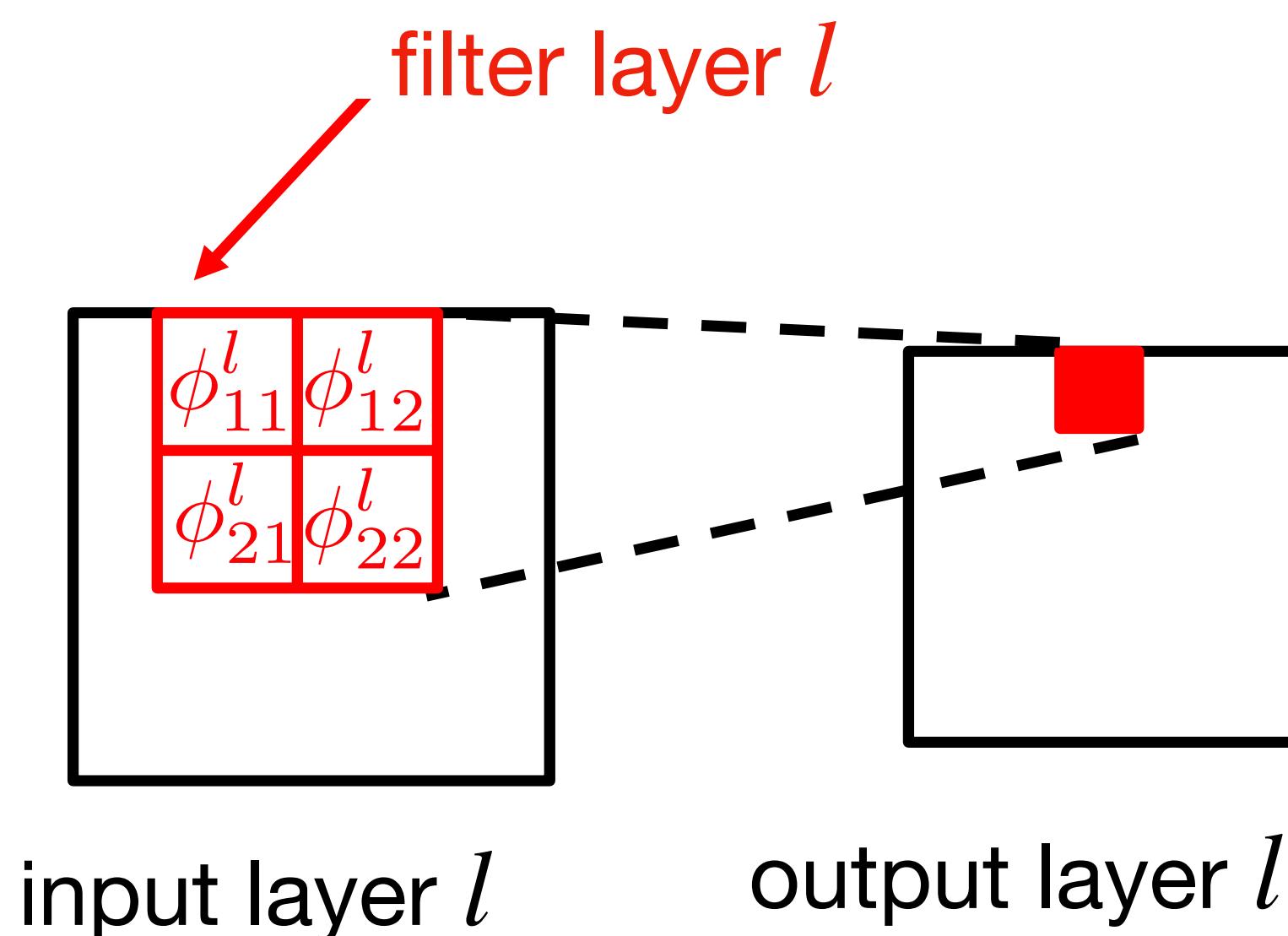
Filters in spatial convolutional layer

- MLP propagation rule $\mathbf{x}^l = \sigma(\mathbf{W}^l \mathbf{x}^{l-1} + \mathbf{b}^l)$
- Spatial data: spatial convolution filter bank substitutes \mathbf{W}^l
 - ◆ filters apply the same parameters to different locations
 - ◆ bias \mathbf{b}^l can be ignored or shared $\mathbf{b}^l = b^l \mathbf{1}$



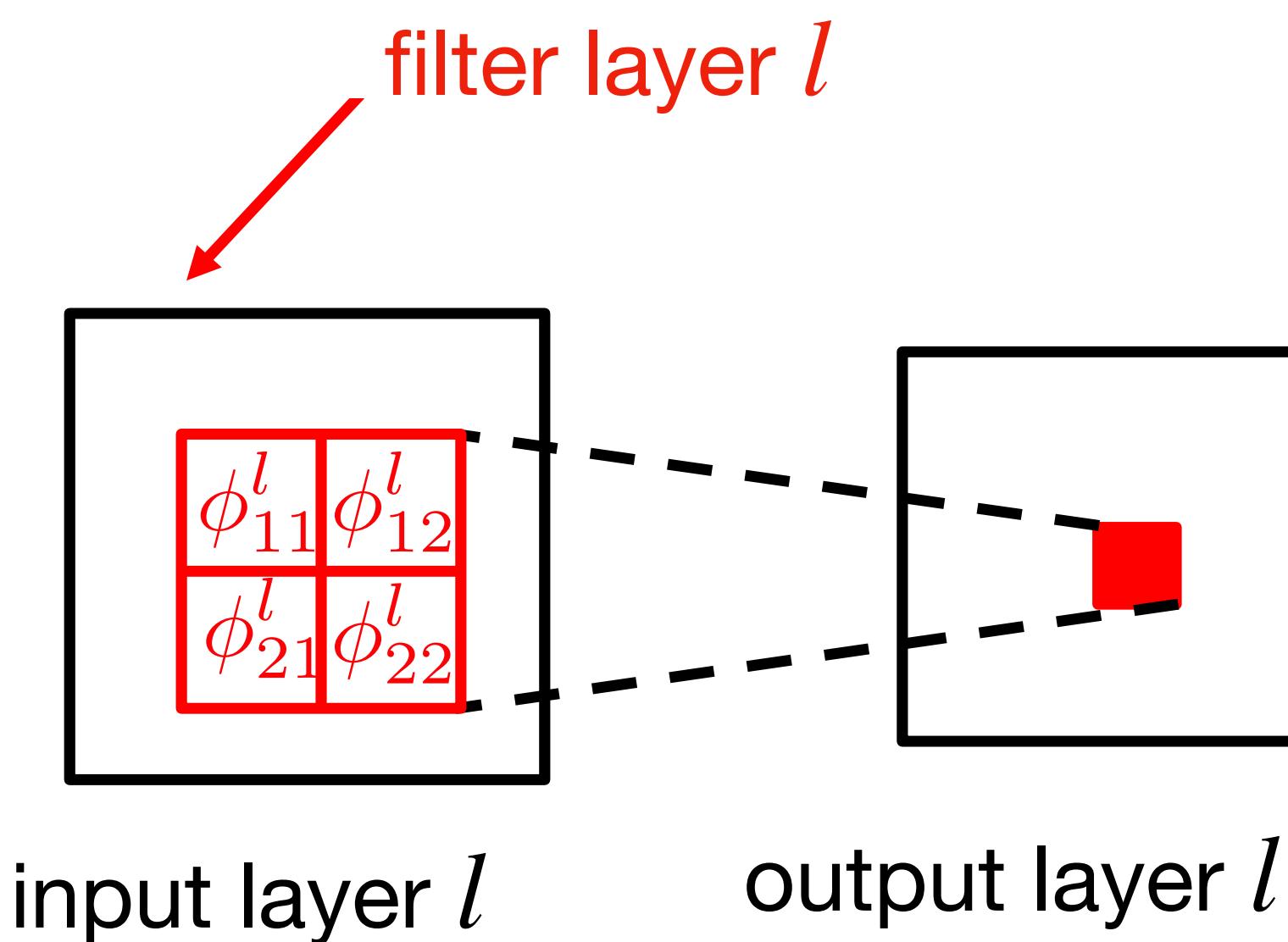
Filters in spatial convolutional layer

- MLP propagation rule $\mathbf{x}^l = \sigma(\mathbf{W}^l \mathbf{x}^{l-1} + \mathbf{b}^l)$
- Spatial data: spatial convolution filter bank substitutes \mathbf{W}^l
 - filters apply the same parameters to different locations
 - bias \mathbf{b}^l can be ignored or shared $\mathbf{b}^l = b^l \mathbf{1}$



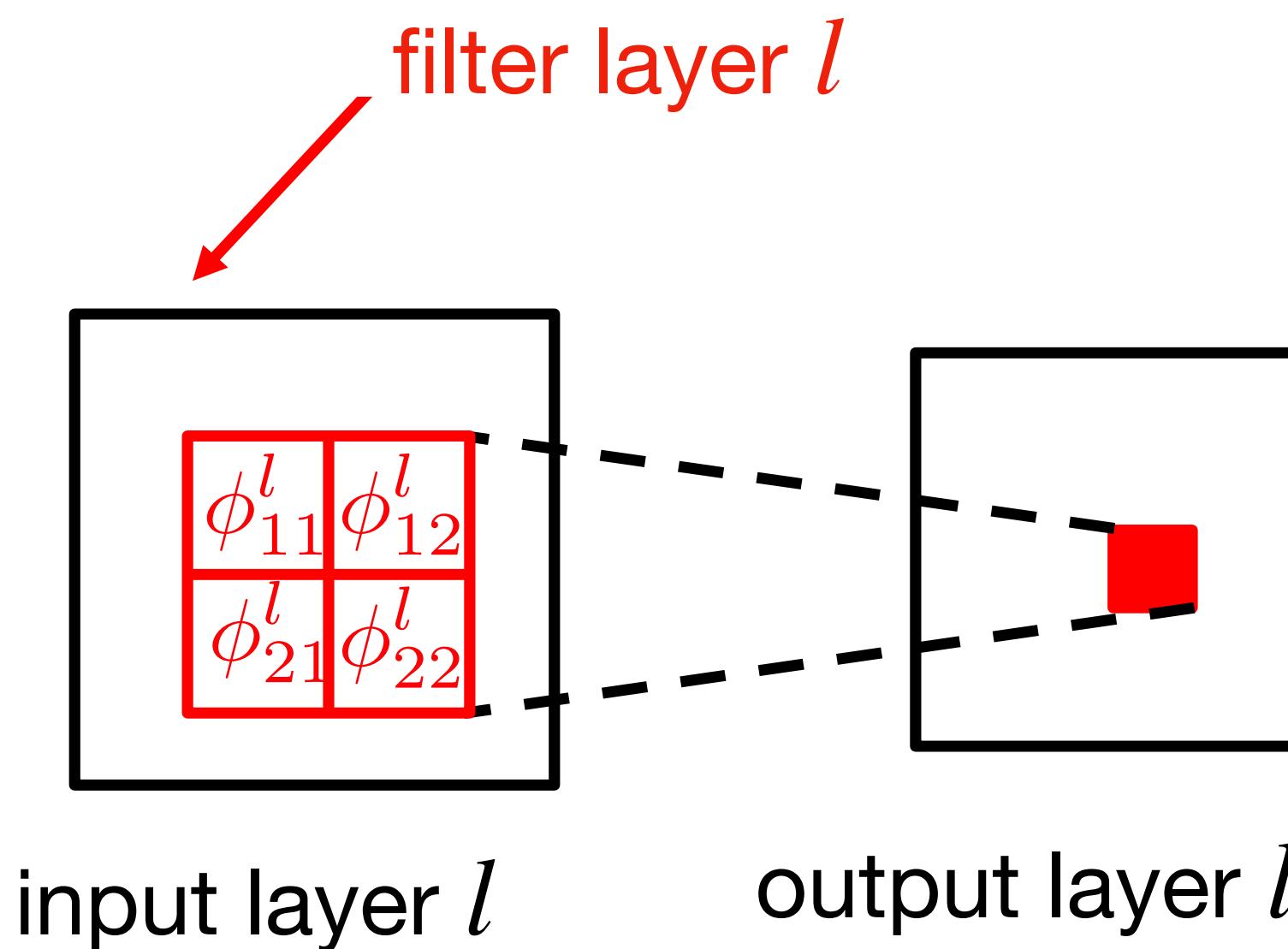
Filters in spatial convolutional layer

- shift-and-sum convolves filter with input image



Filters in spatial convolutional layer

- shift-and-sum convolves filter with input image

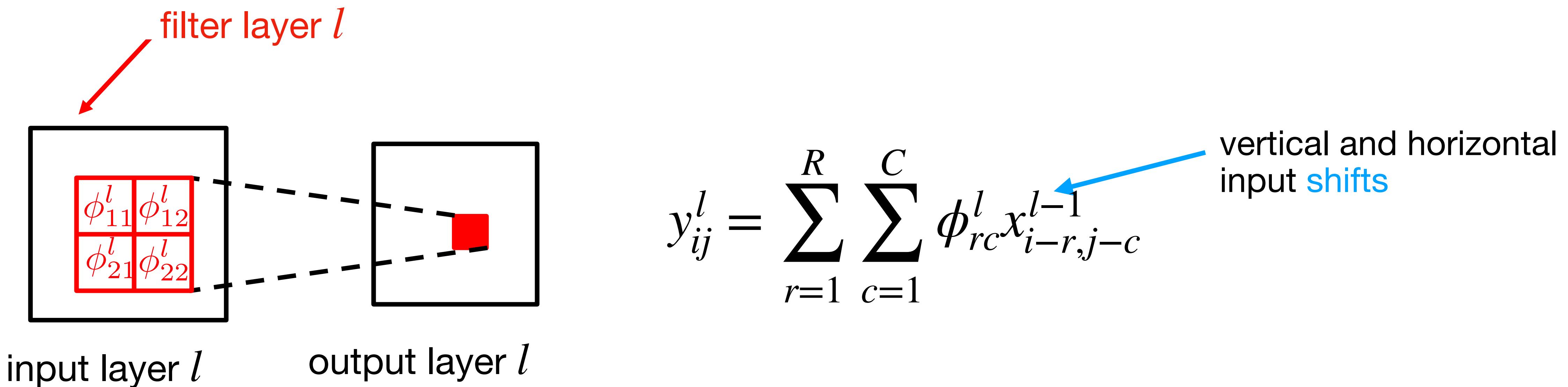


$$y_{ij}^l = \sum_{r=1}^R \sum_{c=1}^C \phi_{rc}^l x_{i-r, j-c}^{l-1}$$

vertical and horizontal input shifts

Filters in spatial convolutional layer

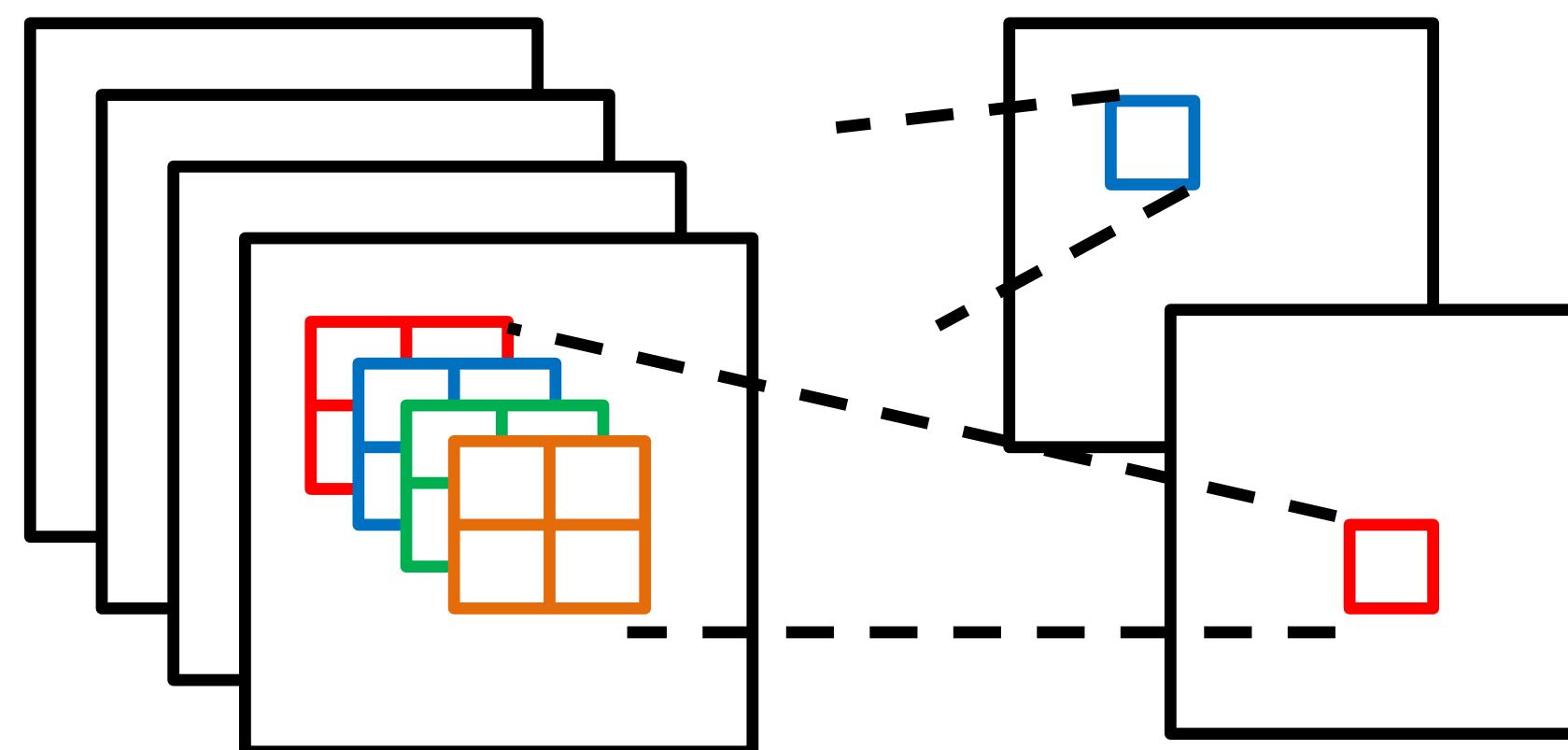
- shift-and-sum convolves filter with input image



- spatial FIR convolutional filtering

Convolutional neural networks

- CNNs increase descriptive power with a **parallel filter bank**



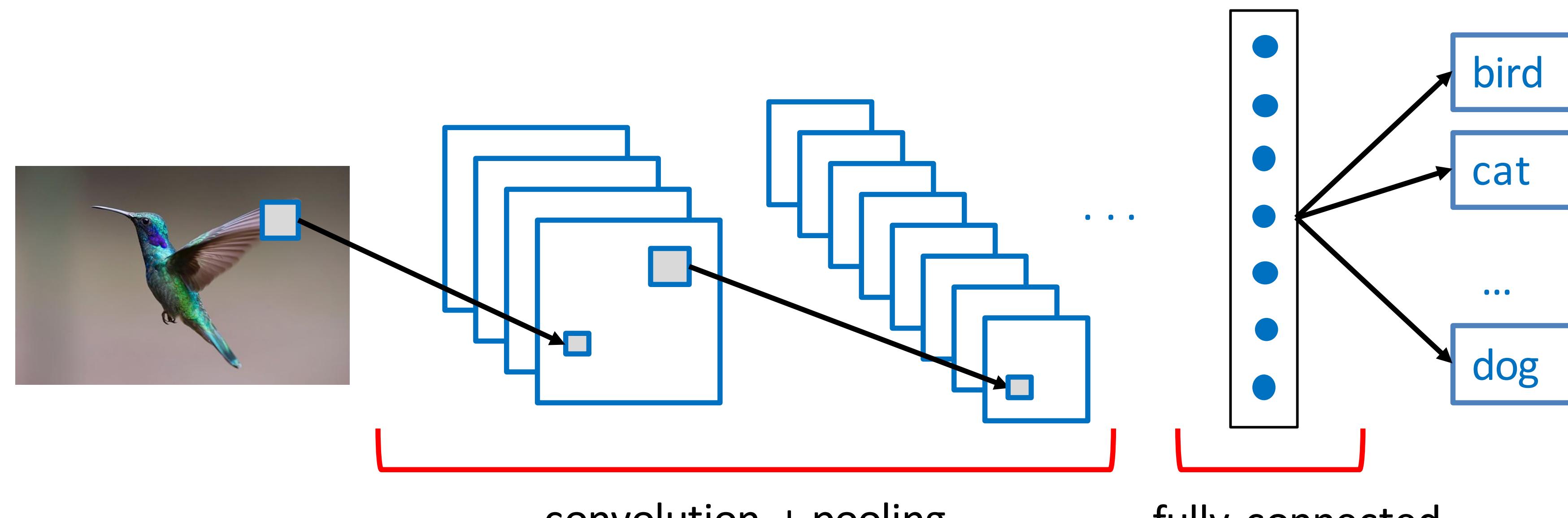
input layer l
has 4 inputs

output layer l
has 2 outputs

- ◆ input F images
- ◆ process each with a **parallel bank of filters**
- ◆ sum filter outputs to obtain higher-level features
- ◆ **parameters** are **filter coefficients** (backprop.)

CNN full stack

- Cascade of spatial filter bank and nonlinearities



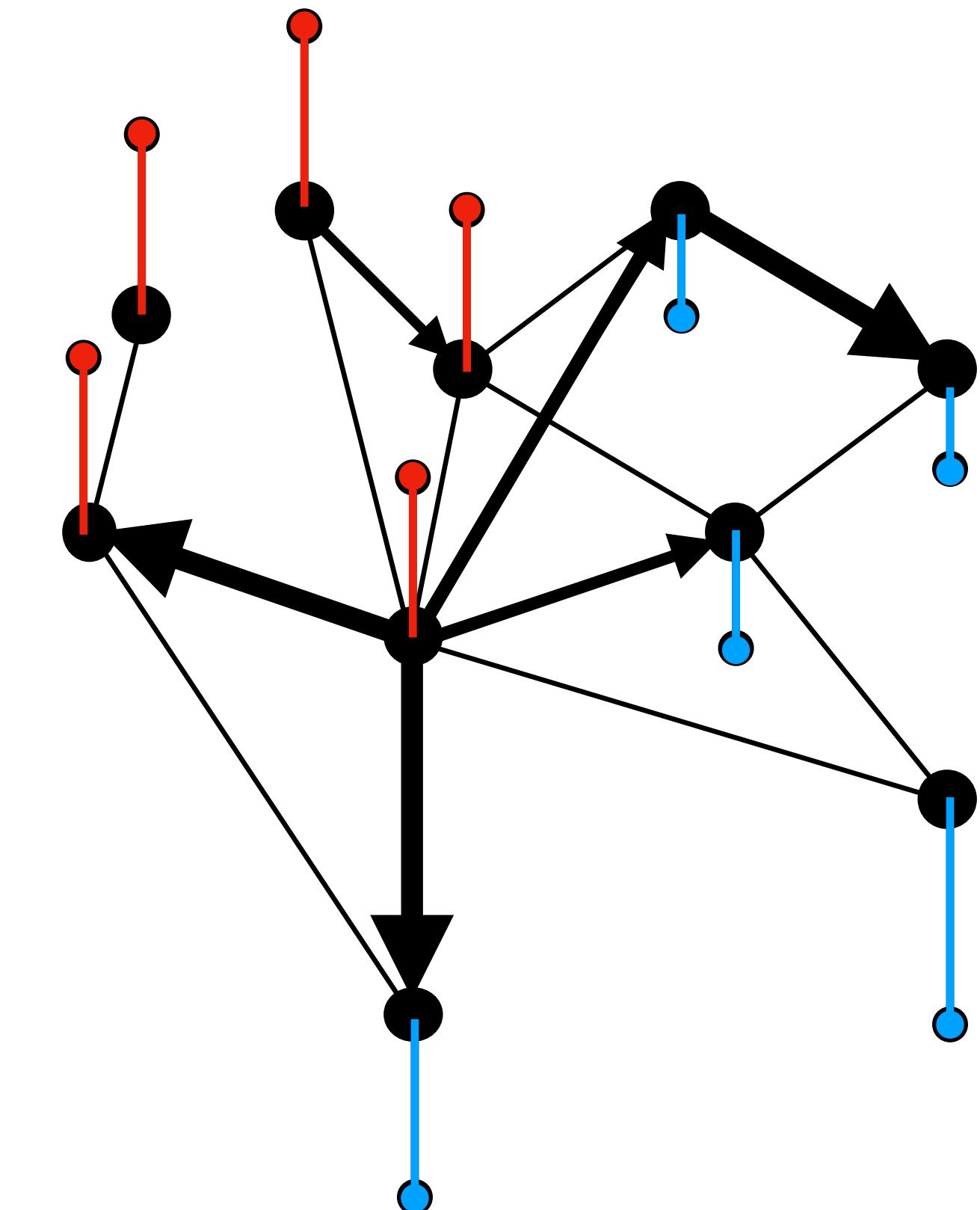
Benefits

- Parameters - **independent** on the image dimensions
- Complexity - **spatial convolution**

What about data on graphs?

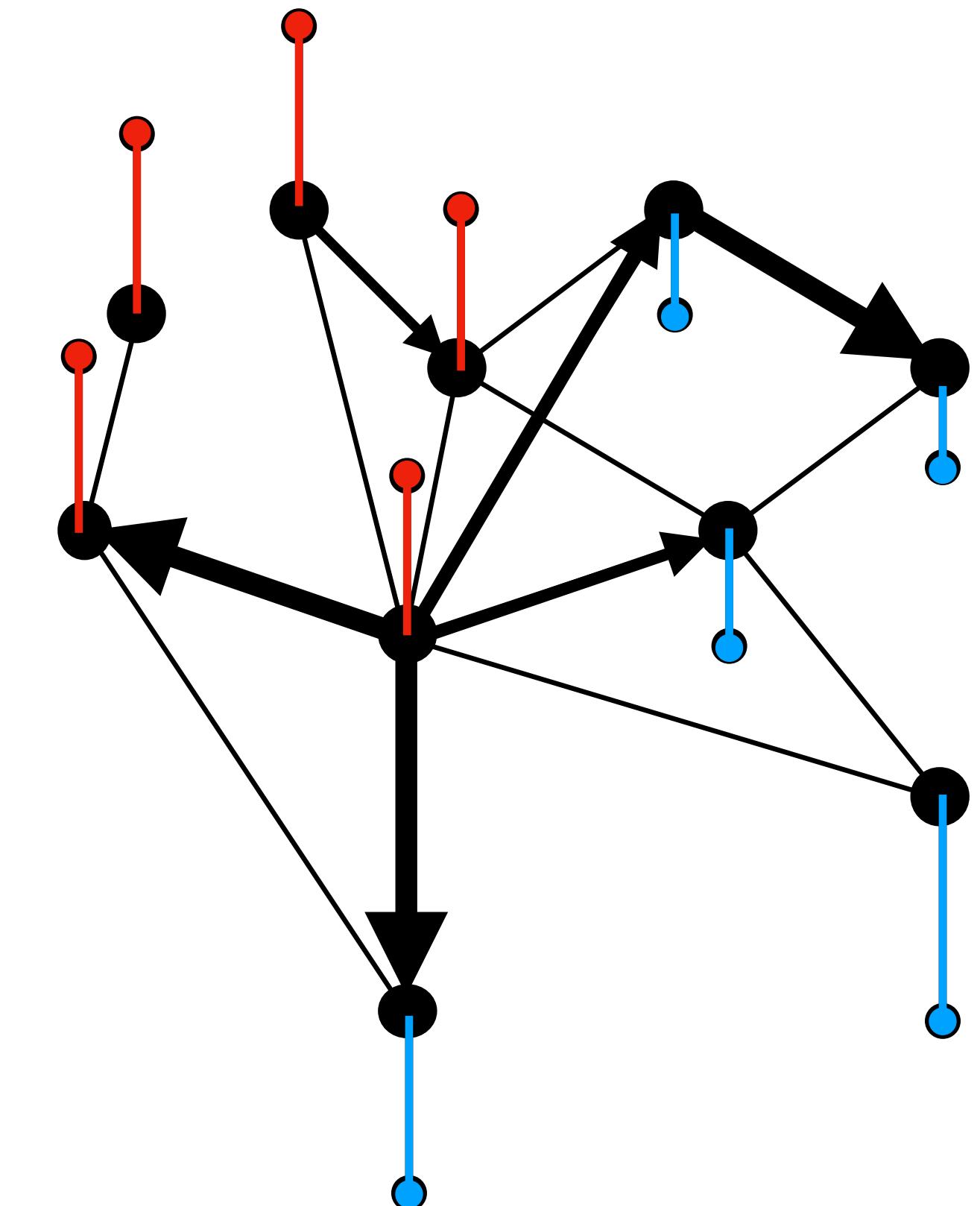
Learning from (ir)regular graph data

- Training samples $\mathbf{x}_r \in \mathbb{R}^N$ are **graph signals**
- Non-Euclidean structure
- ◆ conventional **CNNs** are **inapplicable**



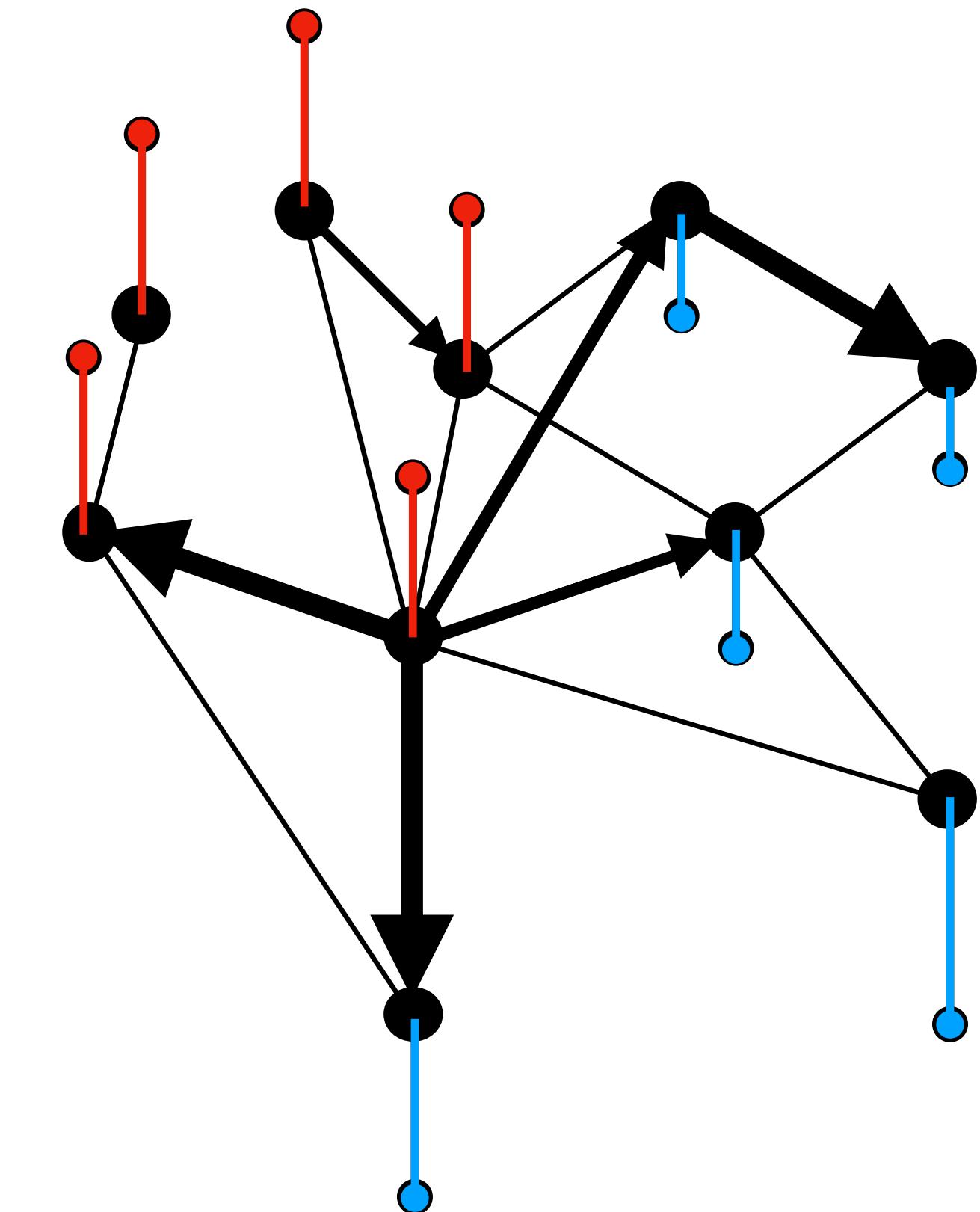
Learning from (ir)regular graph data

- Training samples $\mathbf{x}_r \in \mathbb{R}^N$ are **graph signals**
- Non-Euclidean structure
 - ◆ conventional **CNNs** are **inapplicable**
- MLP can apply $\mathbf{x}^l = \sigma(\mathbf{W}^l \mathbf{x}^{l-1} + \mathbf{b}^l)$
 - ◆ ignores the structure
 - ◆ data demanding



Learning from (ir)regular graph data

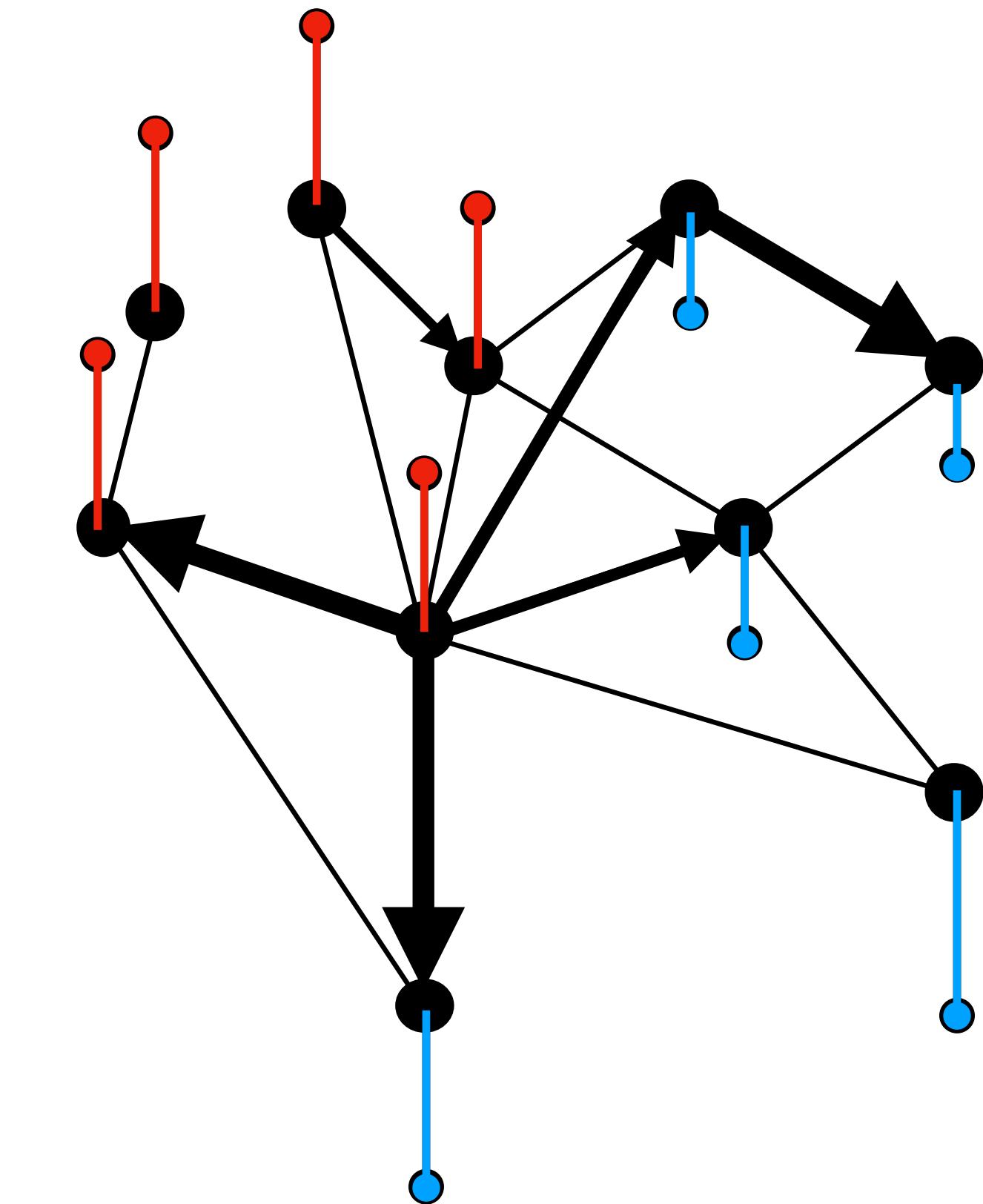
- Need a **neural network** solution to account for coupling **signal-topology**



Learning from (ir)regular graph data

- Need a **neural network** solution to account for coupling **signal-topology**
- Graph as prior to estimate a parametric function
$$f(\theta, \mathbf{S}) : \mathcal{X} \rightarrow \mathcal{Y}$$

- ◆ \mathbf{S} is the graph shift operator
- ◆ θ trainable parameters (i.e., filter coefficients)



Graph neural networks

- Graph neural networks substitute \mathbf{W}^l with graph filter bank

Graph neural networks

- Graph neural networks substitute \mathbf{W}^l with graph filter bank
- Propagation rule through graph filters

$$\mathbf{x}^l = \sigma(\mathbf{H}^l \mathbf{x}^{l-1})$$

- \mathbf{H}^l graph filter at layer l for any shift operator \mathbf{S}

Graph neural networks

- Graph neural networks substitute \mathbf{W}^l with graph filter bank
- Propagation rule through graph filters

$$\mathbf{x}^l = \sigma(\mathbf{H}^l \mathbf{x}^{l-1})$$

- \mathbf{H}^l graph filter at layer l for any shift operator \mathbf{S}
 - ◆ Edge-variant filter: EdgeNets
 - ◆ Node-variant filter: Node-variant GNNs [Gama'18 - DSW]

Graph neural networks

- Graph neural networks substitute \mathbf{W}^l with graph filter bank
- Propagation rule through graph filters

$$\mathbf{x}^l = \sigma(\mathbf{H}^l \mathbf{x}^{l-1})$$

- \mathbf{H}^l graph filter at layer l for any shift operator \mathbf{S}
 - ◆ Edge-variant filter: EdgeNets
 - ◆ Node-variant filter: Node-variant GNNs [Gama'18 - DSW]
 - ◆ FIR filters: Graph convolutional neural networks [Gama'18 - TSP]
 - Chebyshev form: ChebNets [Defferrard'16 - NeurIPS]

Graph neural networks

- Graph neural networks substitute \mathbf{W}^l with graph filter bank
- Propagation rule through graph filters

$$\mathbf{x}^l = \sigma(\mathbf{H}^l \mathbf{x}^{l-1})$$

- \mathbf{H}^l graph filter at layer l for any shift operator \mathbf{S}
 - ◆ Edge-variant filter: EdgeNets
 - ◆ Node-variant filter: Node-variant GNNs [Gama'18 - DSW]
 - ◆ FIR filters: Graph convolutional neural networks [Gama'18 - TSP]
 - Chebyshev form: ChebNets [Defferrard'16 - NeurIPS]
 - ◆ ARMA filters: ARMANets
 - Direct, parallel, cascade [Wijesinghe'19 - NeurIPS] [Bianchi'19-arXiv]
 - Cayley form: CayleyNets [Levie'18 - TSP]

Graph convolutional neural networks

- Graph convolutional neural networks use a graph convolutional filter (FIR - ARMA)

Example: FIR

$$\mathbf{x}^l = \sigma \left(\sum_{k=0}^K \phi_k^l \mathbf{S}^k \mathbf{x}^{l-1} \right)$$

Graph convolutional neural networks

- Graph convolutional neural networks use a graph convolutional filter (FIR - ARMA)

Example: FIR

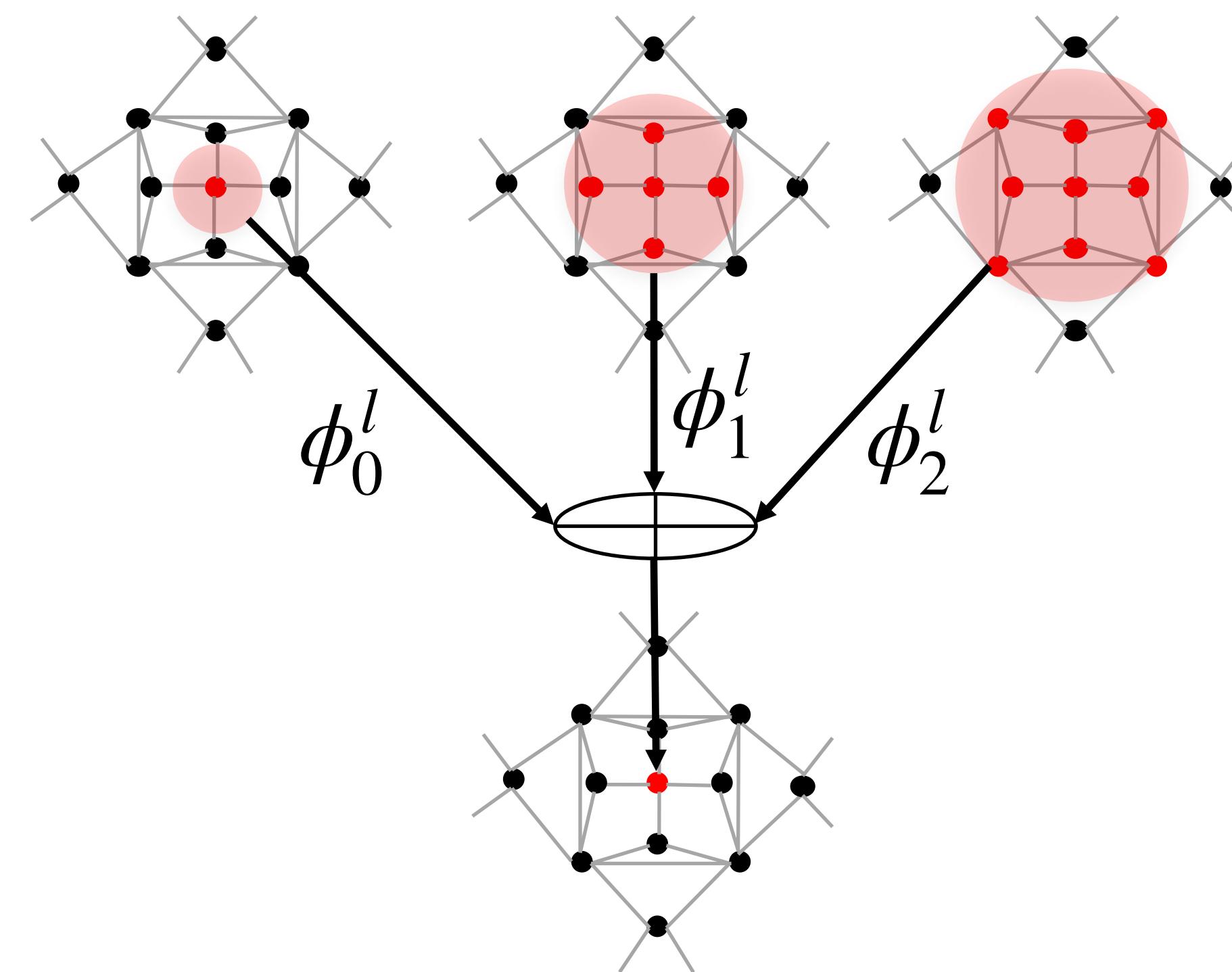
$$\mathbf{x}^l = \sigma \left(\sum_{k=0}^K \phi_k^l \mathbf{S}^k \mathbf{x}^{l-1} \right)$$

- parameters shared among all nodes and edges
- shift-and-sum convolves filter with graph signal

Graph convolutional neural networks

- GCNN: shift-and-sum & shared parameters

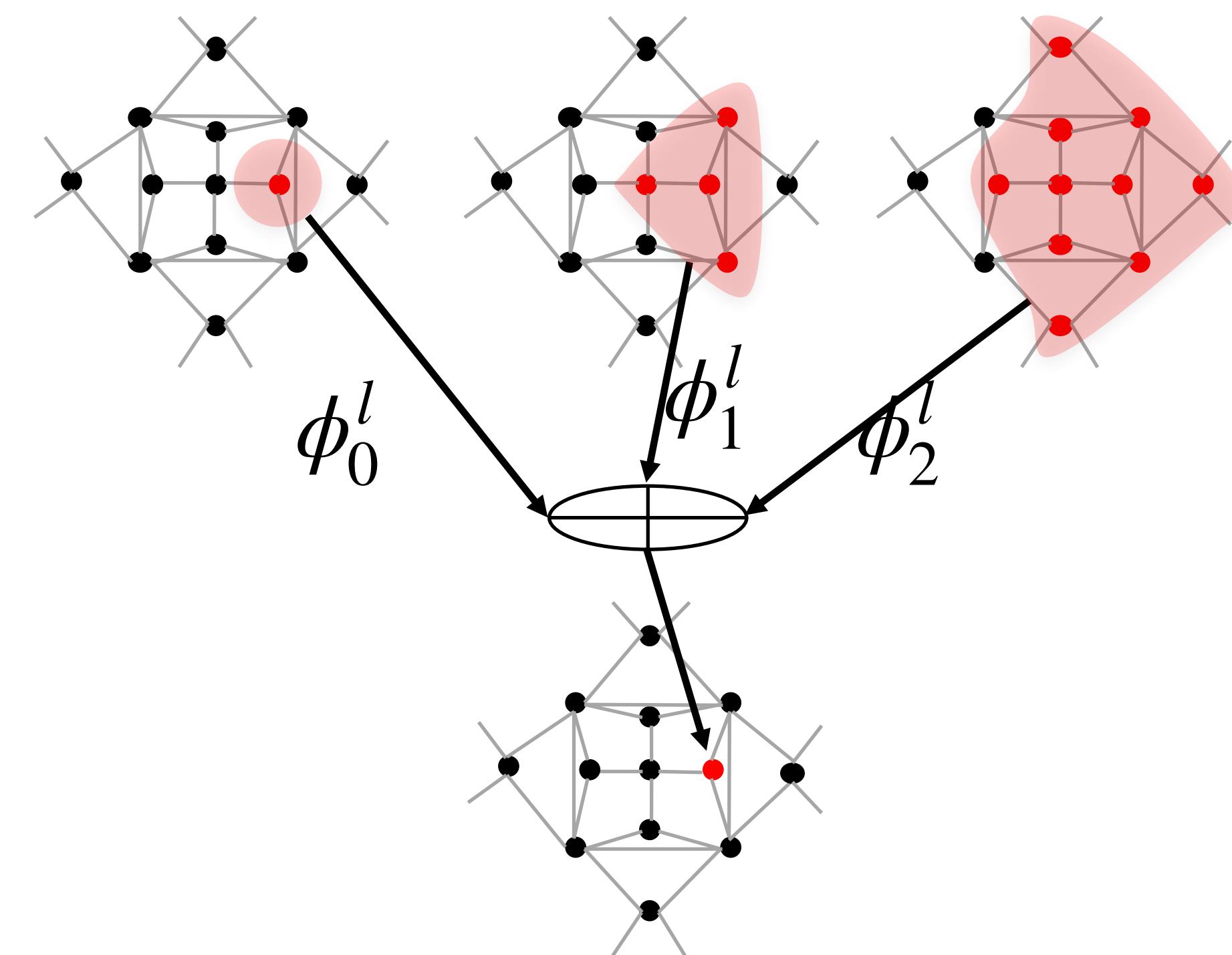
$$\mathbf{x}^l = \sigma(\phi_0^l \mathbf{x}^{l-1} + \phi_1^l \mathbf{S} \mathbf{x}^{l-1} + \phi_2^l \mathbf{S}^2 \mathbf{x}^{l-1})$$



Graph convolutional neural networks

- GCNN: shift-and-sum & shared parameters

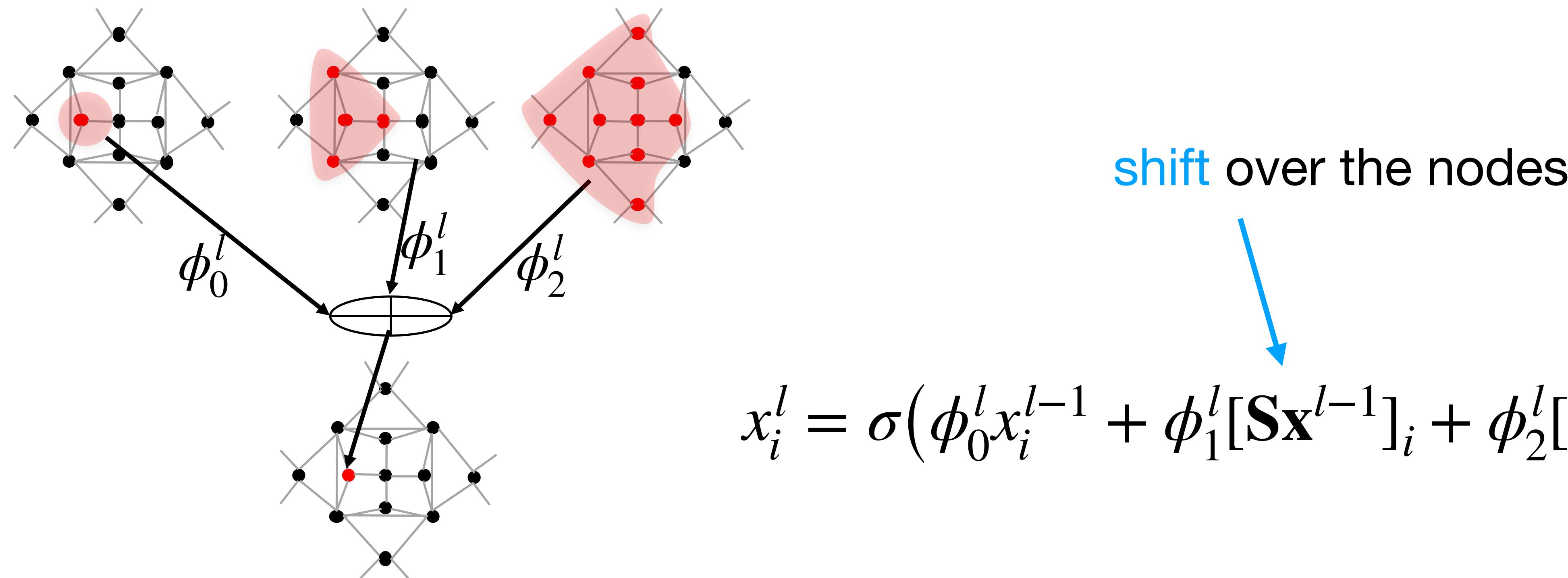
$$\mathbf{x}^l = \sigma(\phi_0^l \mathbf{x}^{l-1} + \phi_1^l \mathbf{S} \mathbf{x}^{l-1} + \phi_2^l \mathbf{S}^2 \mathbf{x}^{l-1})$$



Graph convolutional neural networks

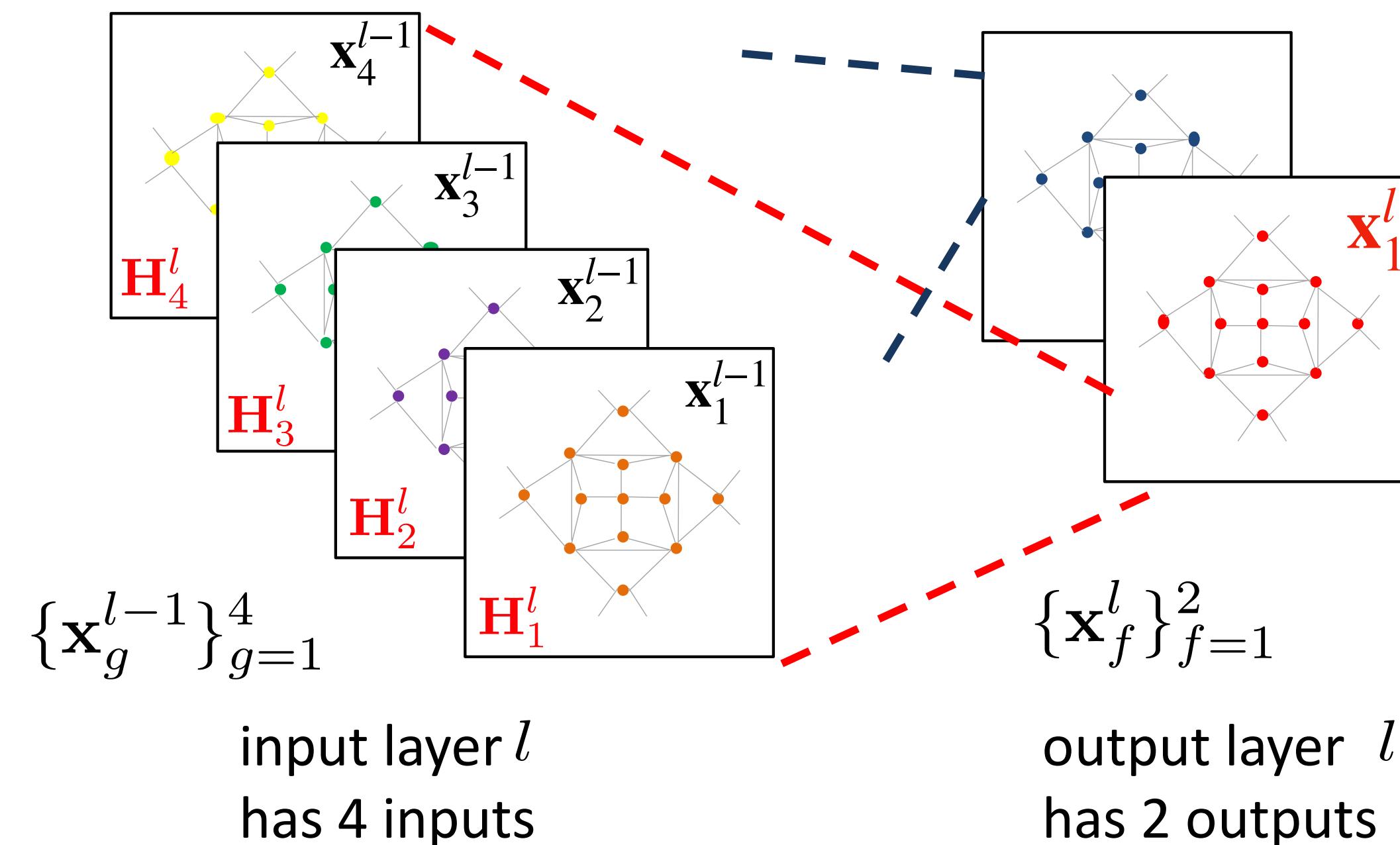
- GCNN: shift-and-sum & shared parameters

$$\mathbf{x}^l = \sigma(\phi_0^l \mathbf{x}^{l-1} + \phi_1^l \mathbf{S} \mathbf{x}^{l-1} + \phi_2^l \mathbf{S}^2 \mathbf{x}^{l-1})$$



Graph convolutional neural networks

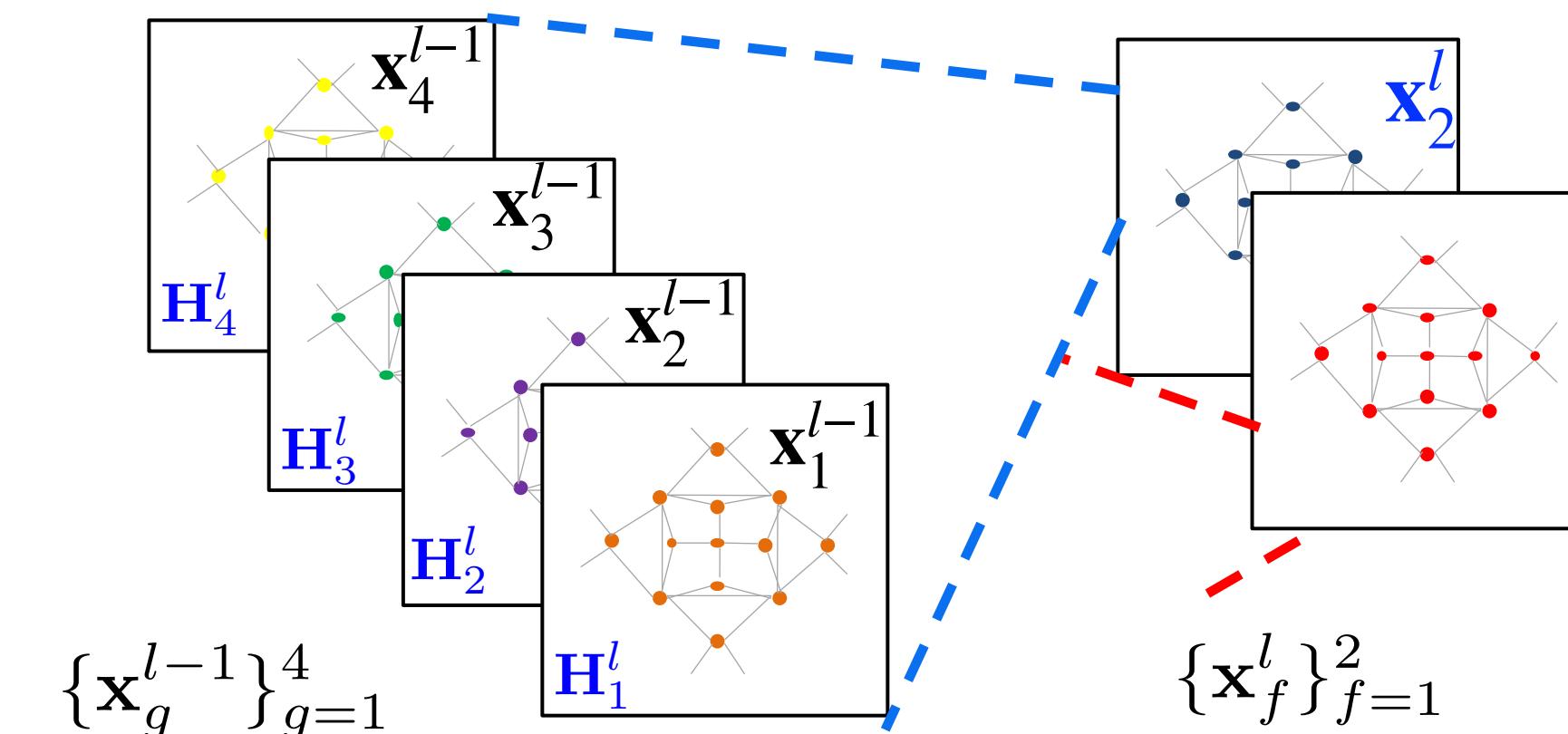
- GCNNs increase descriptive power with a **parallel filter bank**



- ◆ F input graph signals $\{x_g^{l-1}\}_{g=1}^F$
- ◆ process **each signal** with a **graph filter**
- ◆ sum filter outputs
- ◆ parameter are filter coefficients (backprop.)

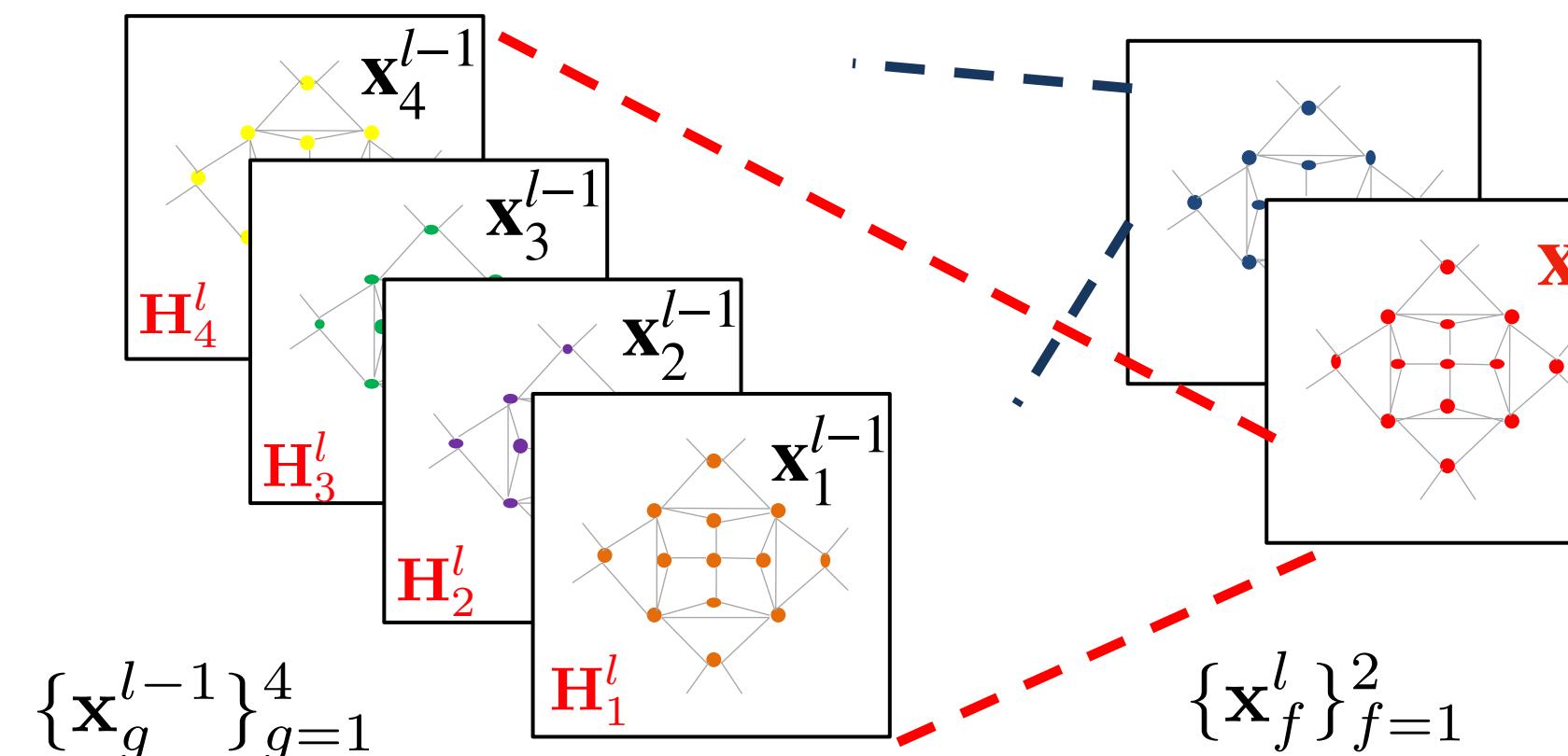
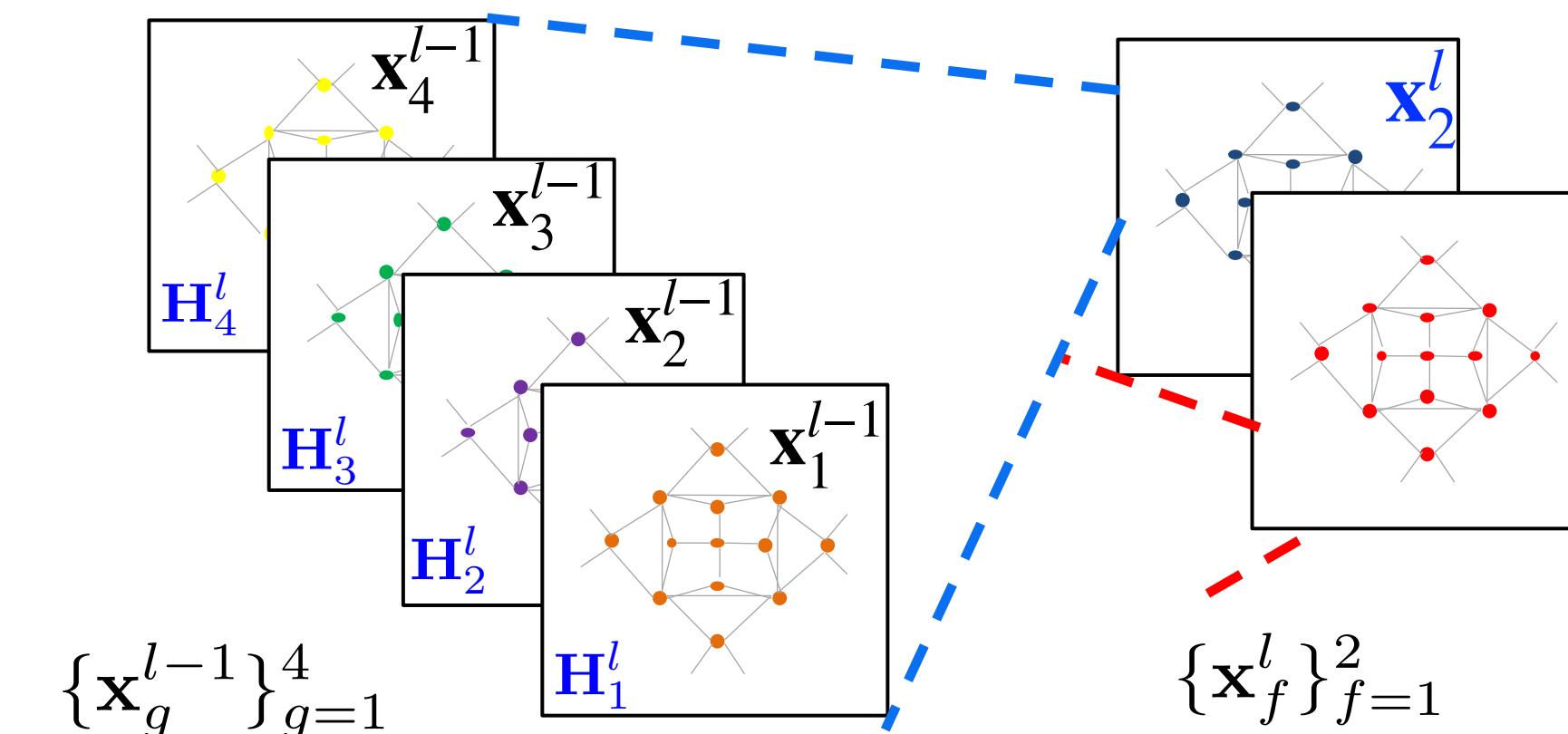
Graph convolutional neural networks

- GCNNs increase descriptive power with a **parallel filter bank**



Graph convolutional neural networks

- GCNNs increase descriptive power with a **parallel filter bank**

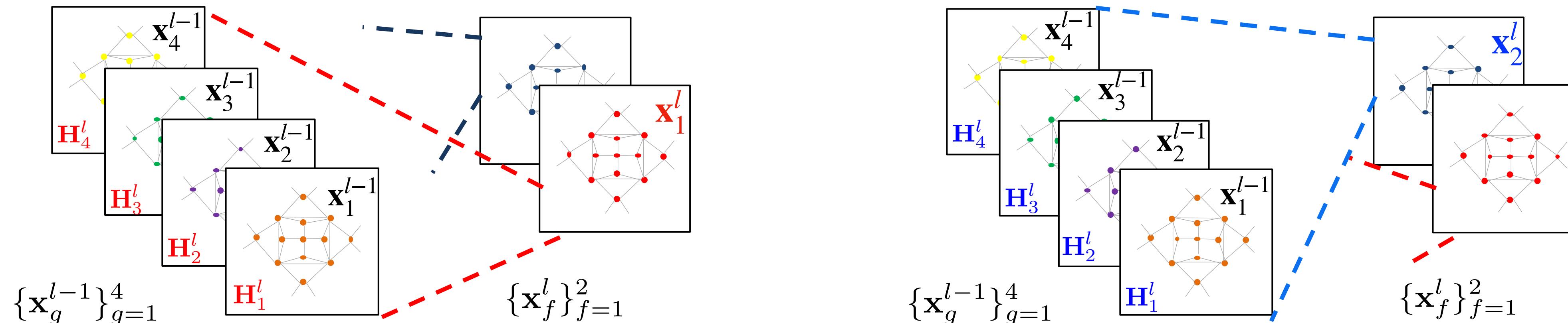


input feature

$$x_f^l = \sigma \left(\sum_{g=1}^F H_{fg}^l x_g^{l-1} \right)$$

Graph convolutional neural networks

- GCNNs increase descriptive power with a **parallel filter bank**



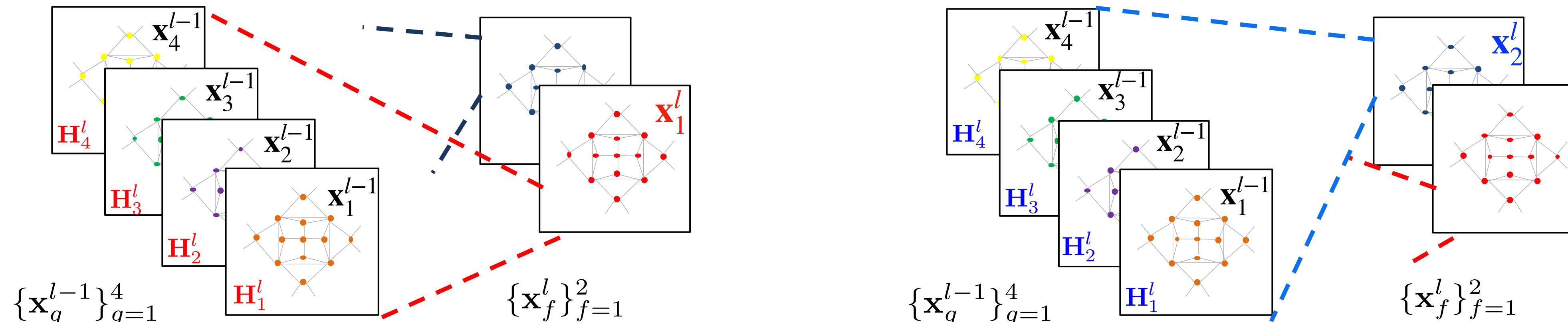
input feature

$$\mathbf{x}_f^l = \sigma \left(\sum_{g=1}^F \mathbf{H}_{fg}^l \mathbf{x}_g^{l-1} \right)$$

FIR filter

Graph convolutional neural networks

- GCNNs increase descriptive power with a **parallel filter bank**



sum over inputs

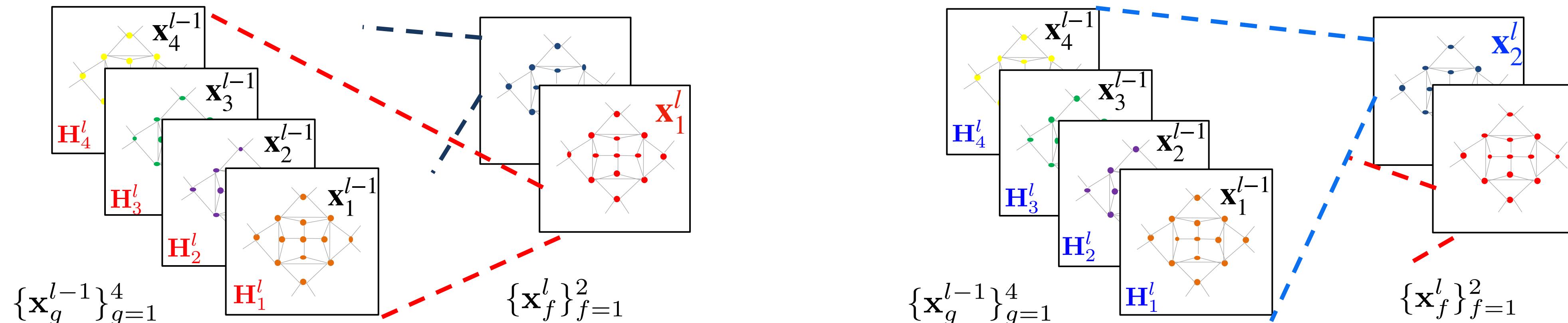
input feature

FIR filter

$$\mathbf{x}_f^l = \sigma \left(\sum_{g=1}^F \mathbf{H}_{fg}^l \mathbf{x}_g^{l-1} \right)$$

Graph convolutional neural networks

- GCNNs increase descriptive power with a **parallel filter bank**



sum over inputs

output feature

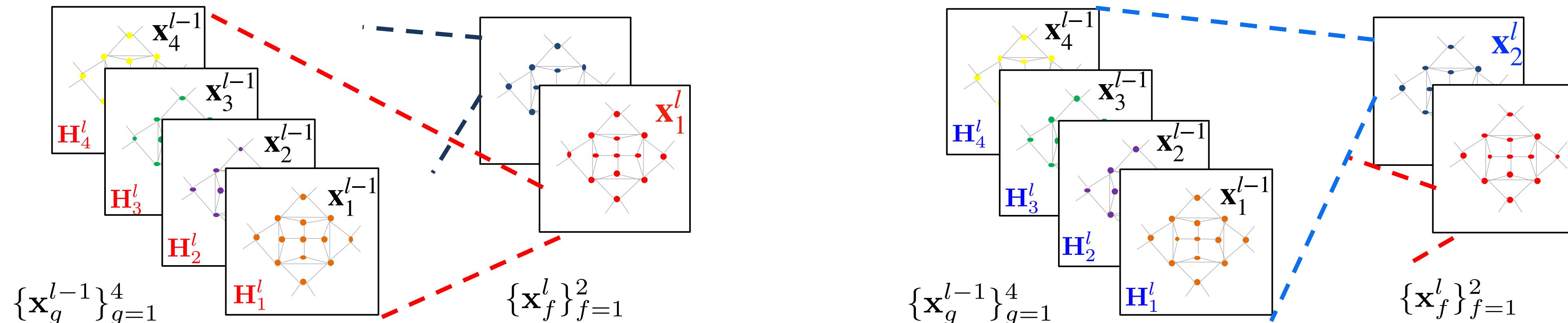
input feature

FIR filter

$$x_f^l = \sigma \left(\sum_{g=1}^F H_{fg}^l x_g^{l-1} \right)$$

Graph convolutional neural networks

- GCNNs increase descriptive power with a **parallel filter bank**



$$\mathbf{x}_f^l = \sigma \left(\sum_{g=1}^F \mathbf{H}_{fg}^l \mathbf{x}_g^{l-1} \right)$$

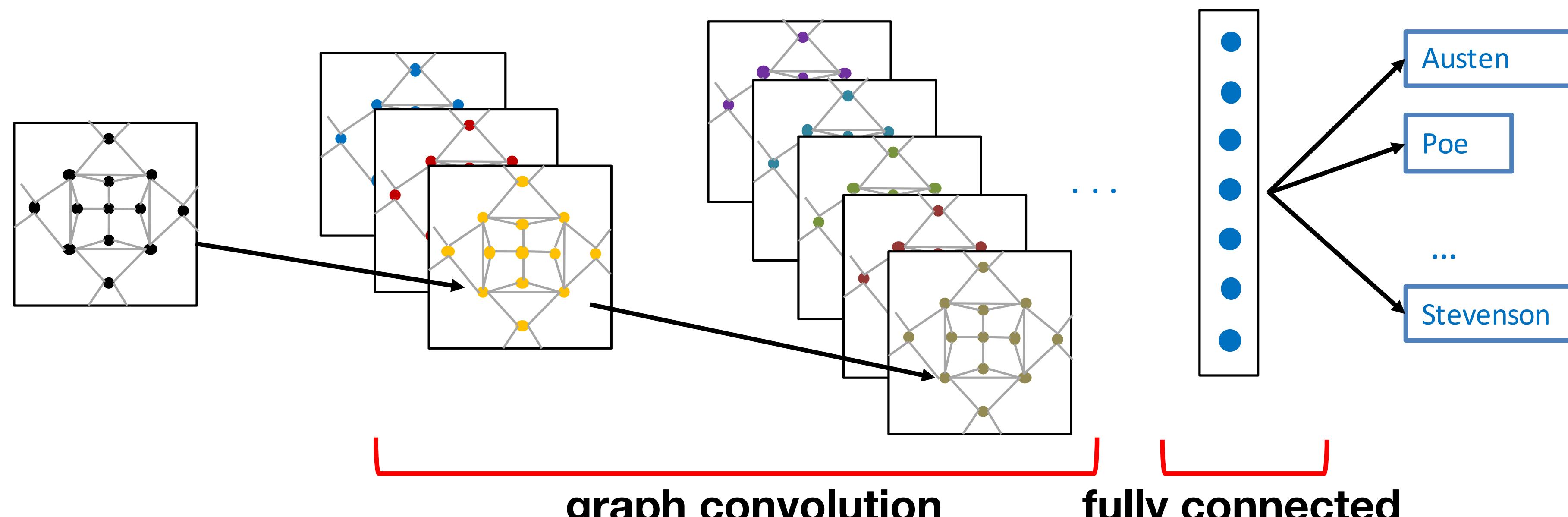
Diagram illustrating the computation of output feature \mathbf{x}_f^l from input feature \mathbf{x}_g^{l-1} using a parallel filter bank. The equation shows the summation of weighted input features, where the weights are determined by the filter bank \mathbf{H}_{fg}^l and the input feature \mathbf{x}_g^{l-1} . The summation is performed over all output features F .

Annotations in the diagram:

- sum over inputs (green arrow)
- output feature (red arrow)
- input feature (green arrow)
- for all output features (red arrow)
- FIR filter (blue arrow)

GCNN full stack

- Cascade graph filters and nonlinearities



Benefits

- Parameters $\mathcal{O}(KF^2L)$ - **independent** on the graph dimensions
- Complexity $\mathcal{O}(KMF^2L)$ - **linear** in number of edges (~nodes)

EdgeNet

- Substitutes **FIR** filters with **edge-variant** graph filter
- Propagation rule

$$\mathbf{x}_f^l = \sigma \left(\sum_{g=1}^F \mathbf{H}_{\text{EV}fg}^l \mathbf{x}_g^{l-1} \right) \forall f \in \{1, \dots, F\}$$

Edge-variant filter

EdgeNet

- Substitutes **FIR** filters with **edge-variant** graph filter
- Propagation rule

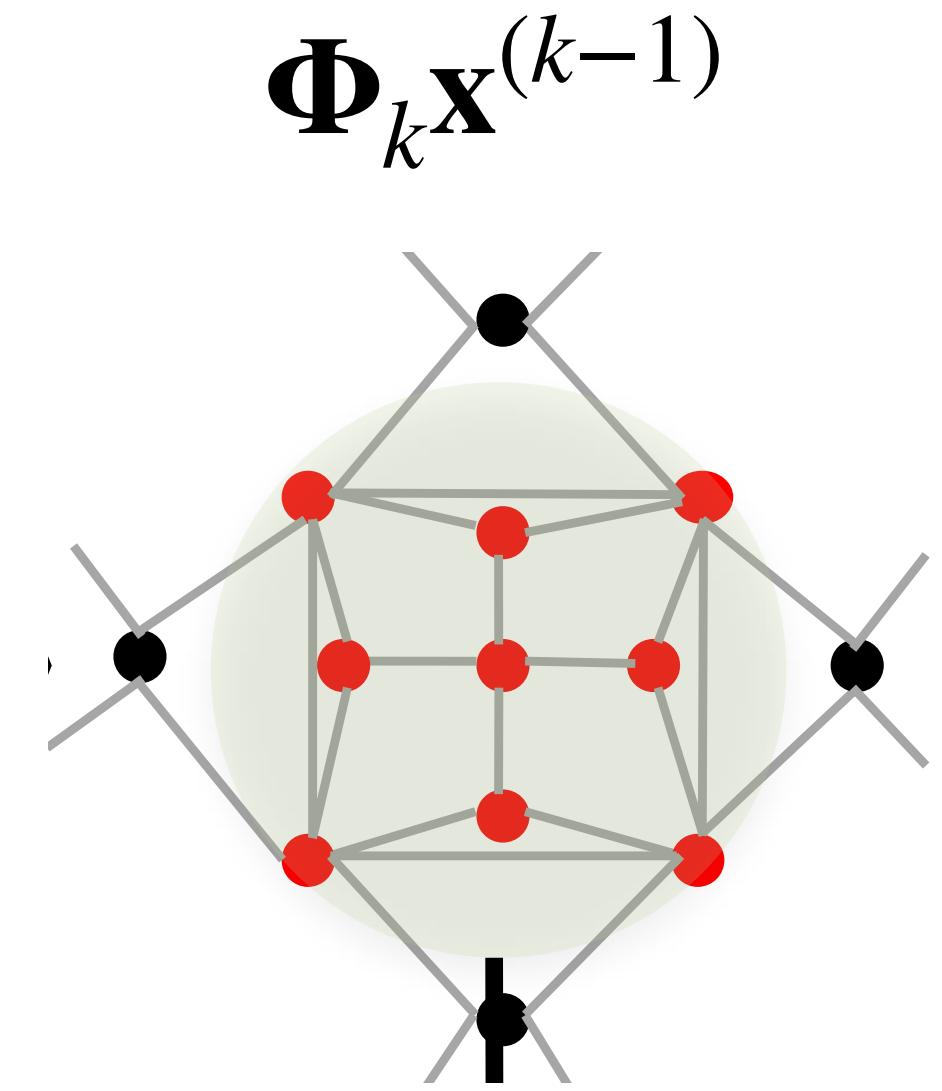
$$\mathbf{x}_f^l = \sigma \left(\sum_{g=1}^F \mathbf{H}_{\text{EV}fg}^l \mathbf{x}_g^{l-1} \right) \forall f \in \{1, \dots, F\}$$

Edge-variant filter

- The most general GNN
 - ◆ Includes **all** GCNN, **all** ARMANet, GIN, GAT

EdgeNet properties

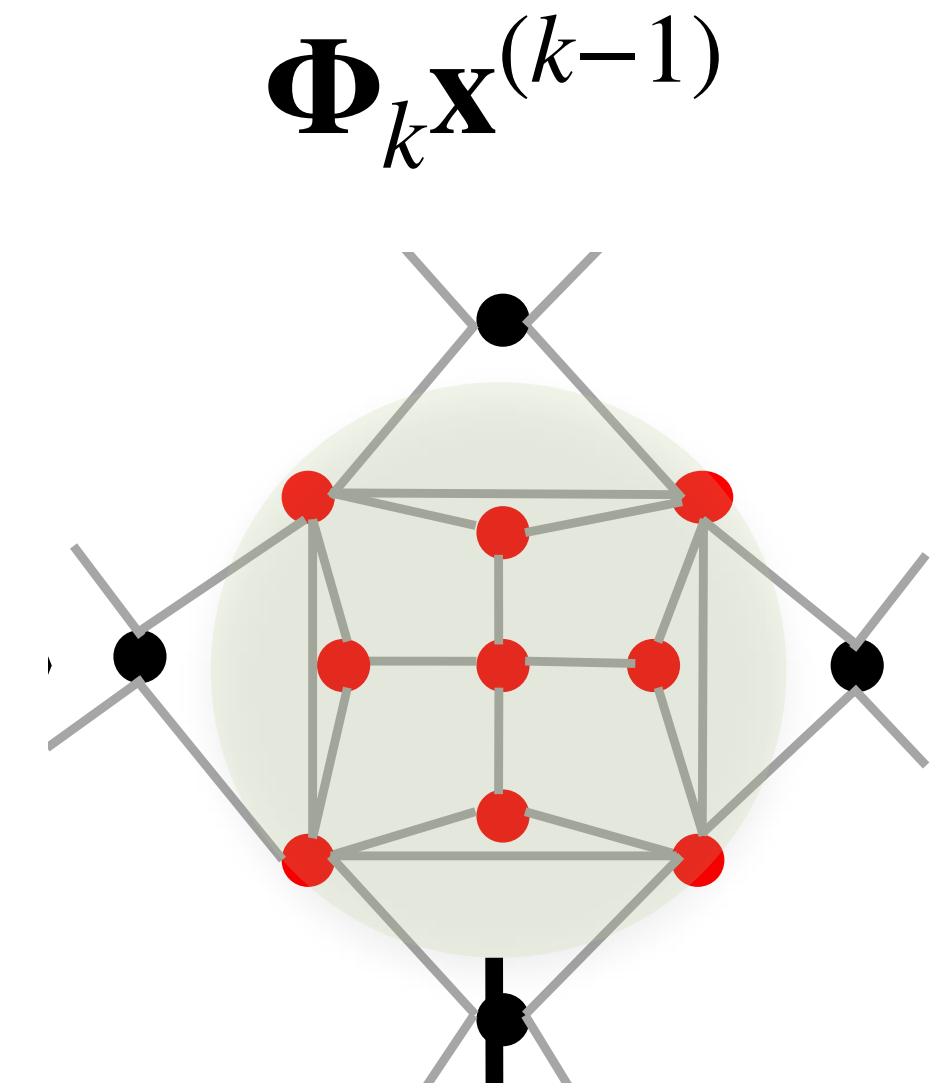
- Different parameters per edge and node



for k th iteration

EdgeNet properties

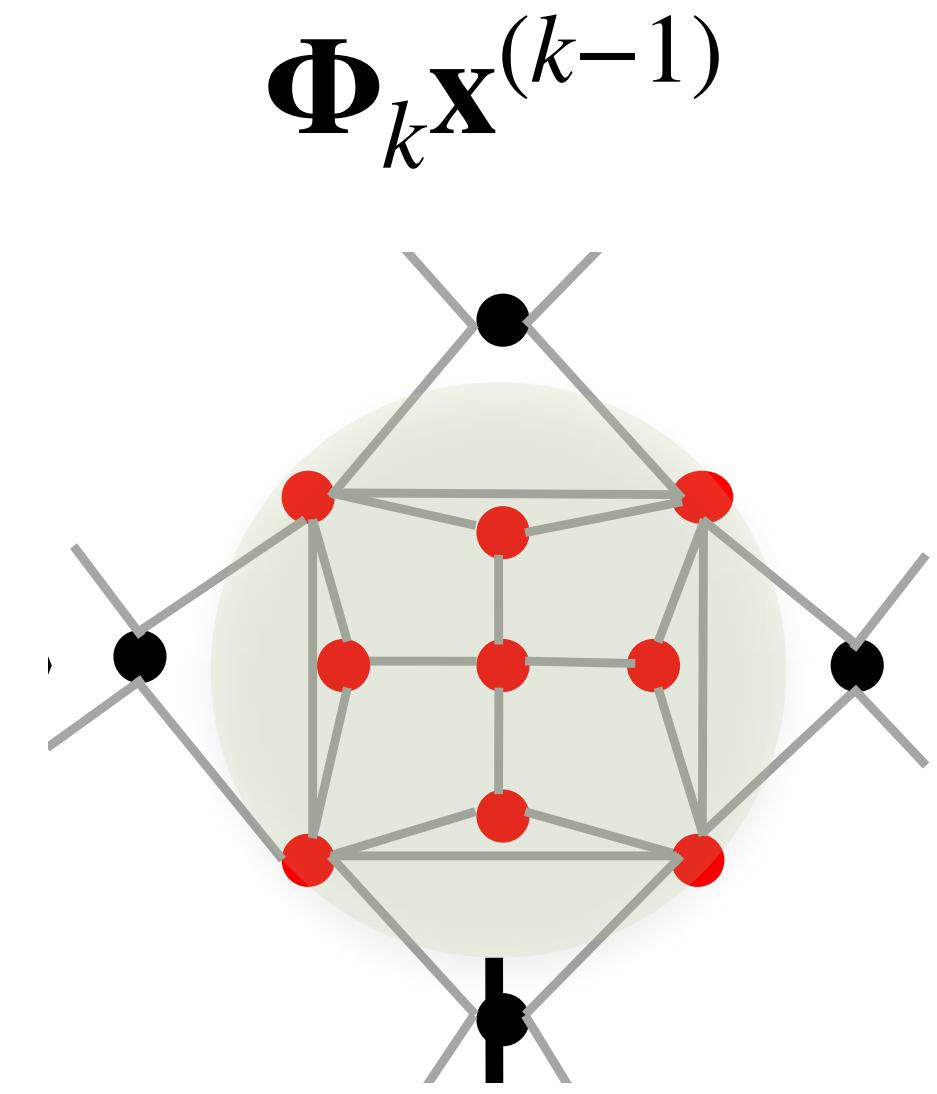
- Different parameters per edge and node
 - ◆ Order $\mathcal{O}(MKF^2L)$
 - ◆ More flexibility



for k th iteration

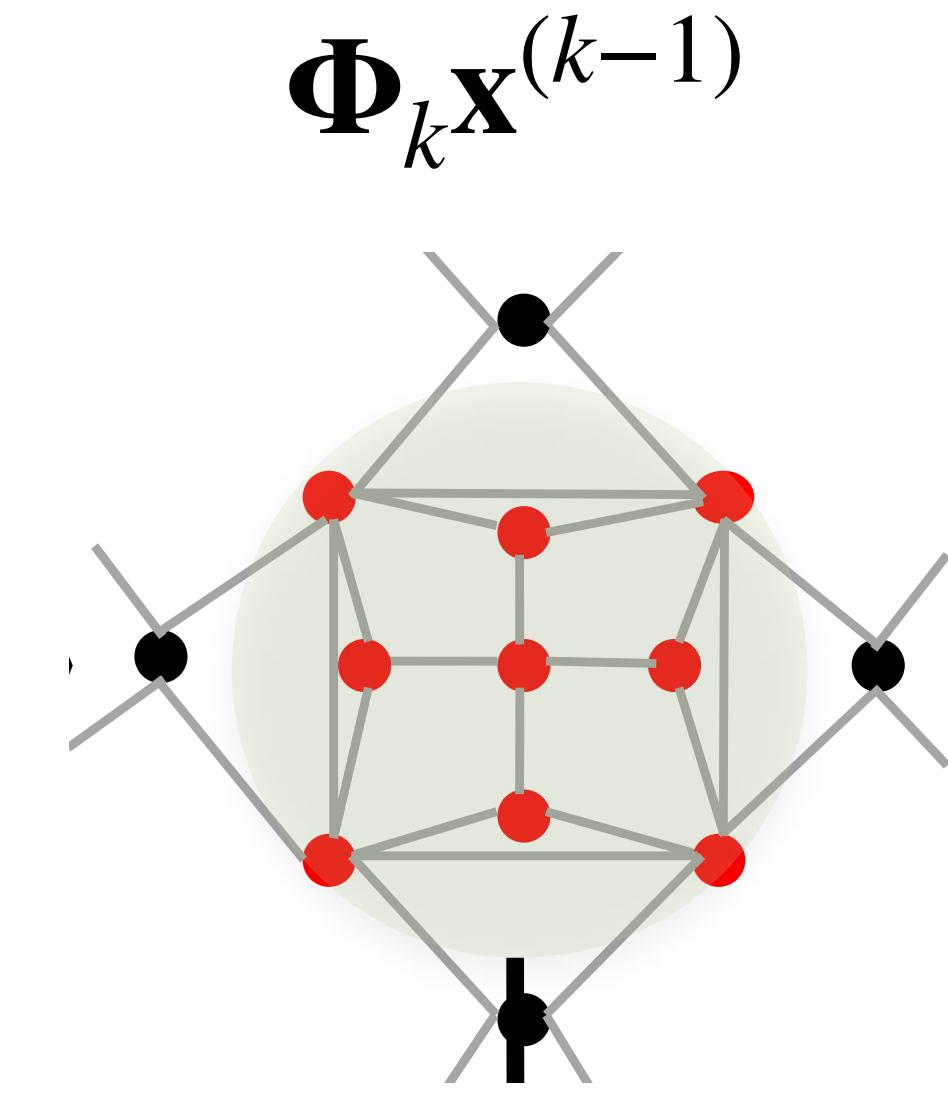
EdgeNet properties

- Different parameters per edge and node
 - ◆ Order $\mathcal{O}(MKF^2L)$
 - ◆ More flexibility
 - ◆ Requires only the support of \mathbf{S}
 - Adapts the edge weights to the task
 - Robust to uncertainties in edge weights



EdgeNet properties

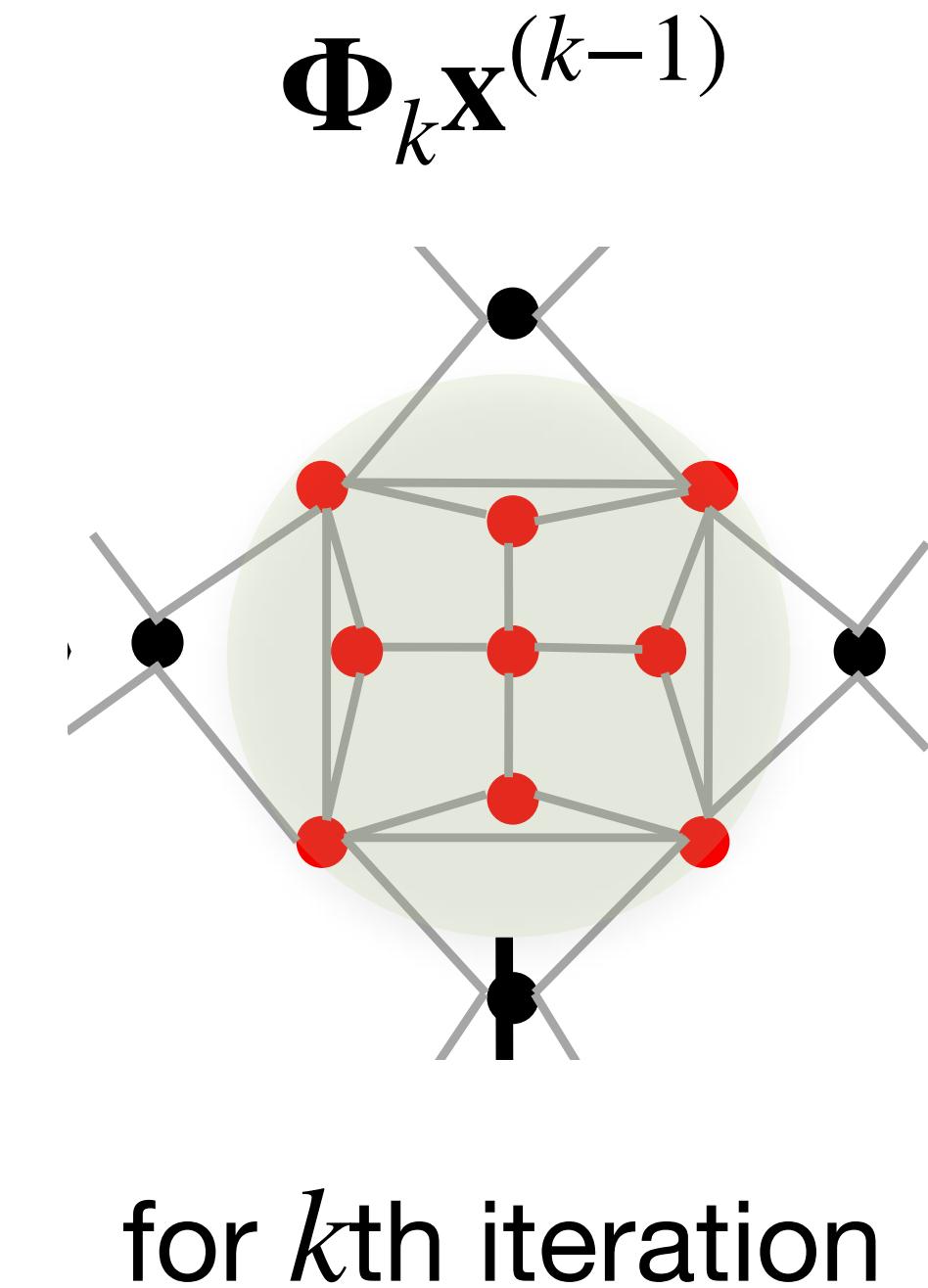
- Different parameters per edge and node
 - ◆ Order $\mathcal{O}(MKF^2L)$
 - ◆ More flexibility
 - ◆ Requires only the support of \mathbf{S}
 - Adapts the edge weights to the task
 - Robust to uncertainties in edge weights
 - ◆ Requires fewer parallel filters and shallower networks
 - ◆ Can overfit and require more data than GCNN (FIR-filters)



for k th iteration

EdgeNet properties

- Different parameters per **edge** and **node**
 - ◆ Order $\mathcal{O}(MKF^2L)$
 - ◆ More flexibility
 - ◆ Requires **only the support** of **S**
 - **Adapts** the edge weights to the task
 - **Robust** to uncertainties in edge weights
 - ◆ Requires **fewer** parallel filters and shallower networks
 - ◆ Can overfit and require more data than GCNN (FIR-filters)
- Complexity $\mathcal{O}(MKF^2L)$ - depends on edges (like GCNN)



How to use EdgeNets?

- The full form may sometimes **overfit**
 - ◆ Penalize coefficients to sparse (i.e., $\|\Phi\|_1$)

How to use EdgeNets?

- The full form may sometimes **overfit**
 - ◆ Penalize coefficients to sparse (i.e., $\|\Phi\|_1$)
 - ◆ Impose parameter **sharing**
 - **FIR** : all nodes all edges same parameter

How to use EdgeNets?

- The full form may sometimes **overfit**
 - ◆ Penalize coefficients to sparse (i.e., $\|\Phi\|_1$)
 - ◆ Impose parameter **sharing**
 - **FIR** : all nodes all edges same parameter
 - **Node-variant** : all edges same parameter for a node

How to use EdgeNets?

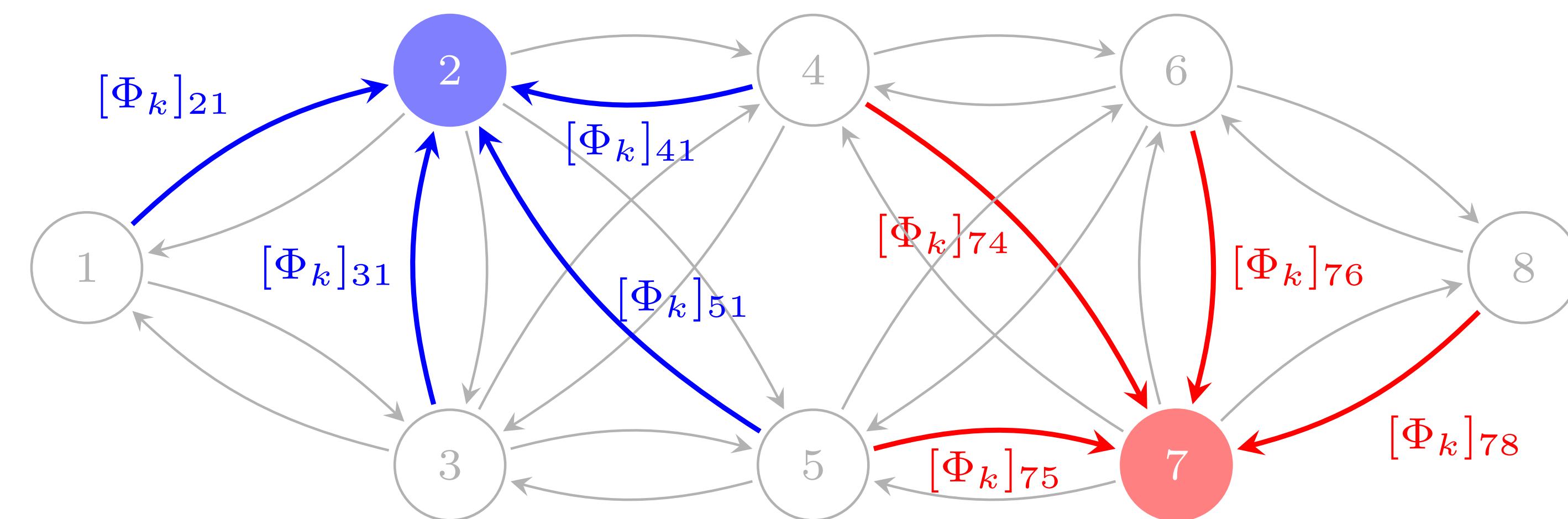
- The full form may sometimes **overfit**
 - ◆ Penalize coefficients to sparse (i.e., $\|\Phi\|_1$)
 - ◆ Impose parameter **sharing**
 - **FIR** : all nodes all edges same parameter
 - **Node-variant** : all edges same parameter for a node
 - **Attention mechanism** [Velickovic'18 - ICLR]

How to use EdgeNets?

- The full form may sometimes **overfit**
 - ◆ Penalize coefficients to sparse (i.e., $\|\Phi\|_1$)
 - ◆ Impose parameter **sharing**
 - **FIR** : all nodes all edges same parameter
 - **Node-variant** : all edges same parameter for a node
 - **Attention mechanism** [Velickovic'18 - ICLR]
 - **Hybrid** : FIR + EV to particular nodes

How to use EdgeNets?

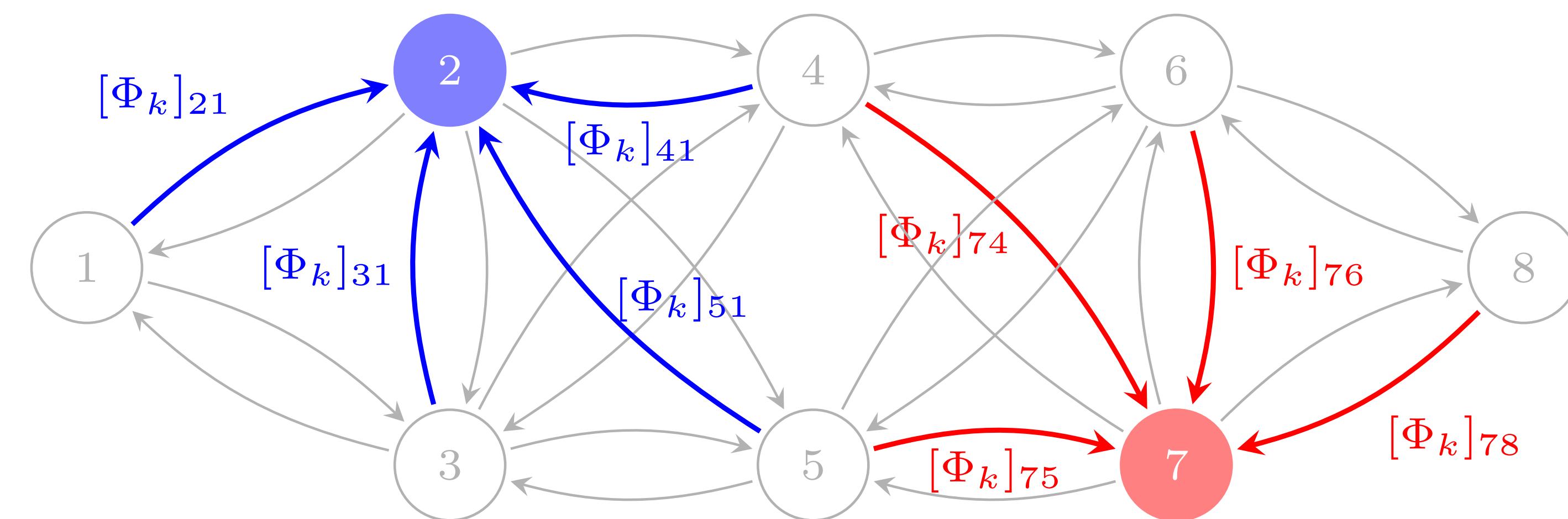
Example: Hybrid (FIR + EV)



- Nodes 2 and 7 use EV filter
- All other nodes use FIR filter

How to use EdgeNets?

Example: Hybrid (FIR + EV)



- Nodes 2 and 7 use EV filter
- All other nodes use FIR filter
- More flexibility than GCNN
- Parameters independent on the graph dimensions

How to apply GNNs?

Applications

- Distributed finite-time consensus
- Distributed regression
- Authorship attribution
- Recommender systems

Applications

- Distributed finite-time consensus
- Distributed regression
- Authorship attribution
- Recommender systems

- For control, resource allocation and other SP applications [T-9]
- For semi-supervised learning, graph classification [Wu'20 -TNNLS]

Learning finite-time consensus

- Learn the consensus function for a specific graph
 - ◆ EV can do the job but all nodes need to know all graph
 - Feasible only in small setups

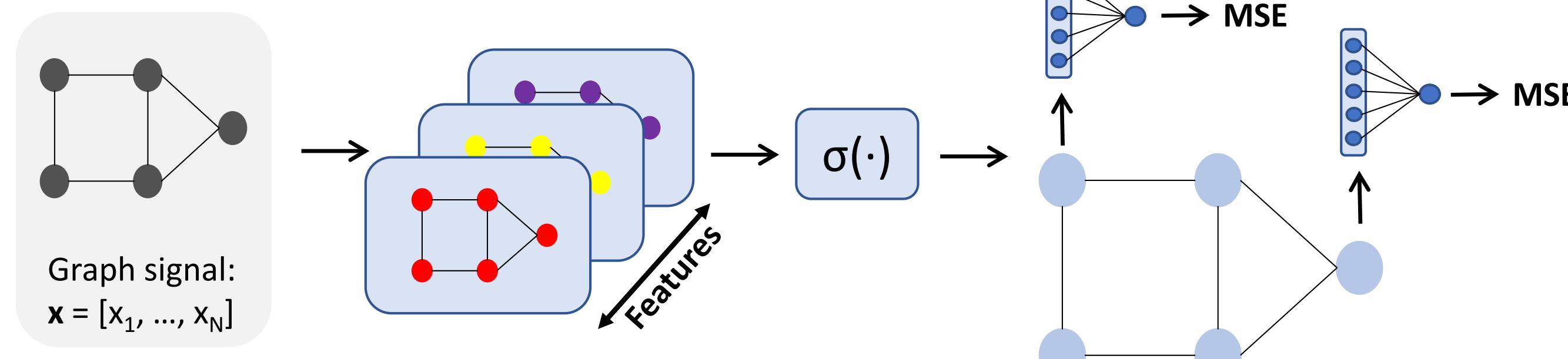
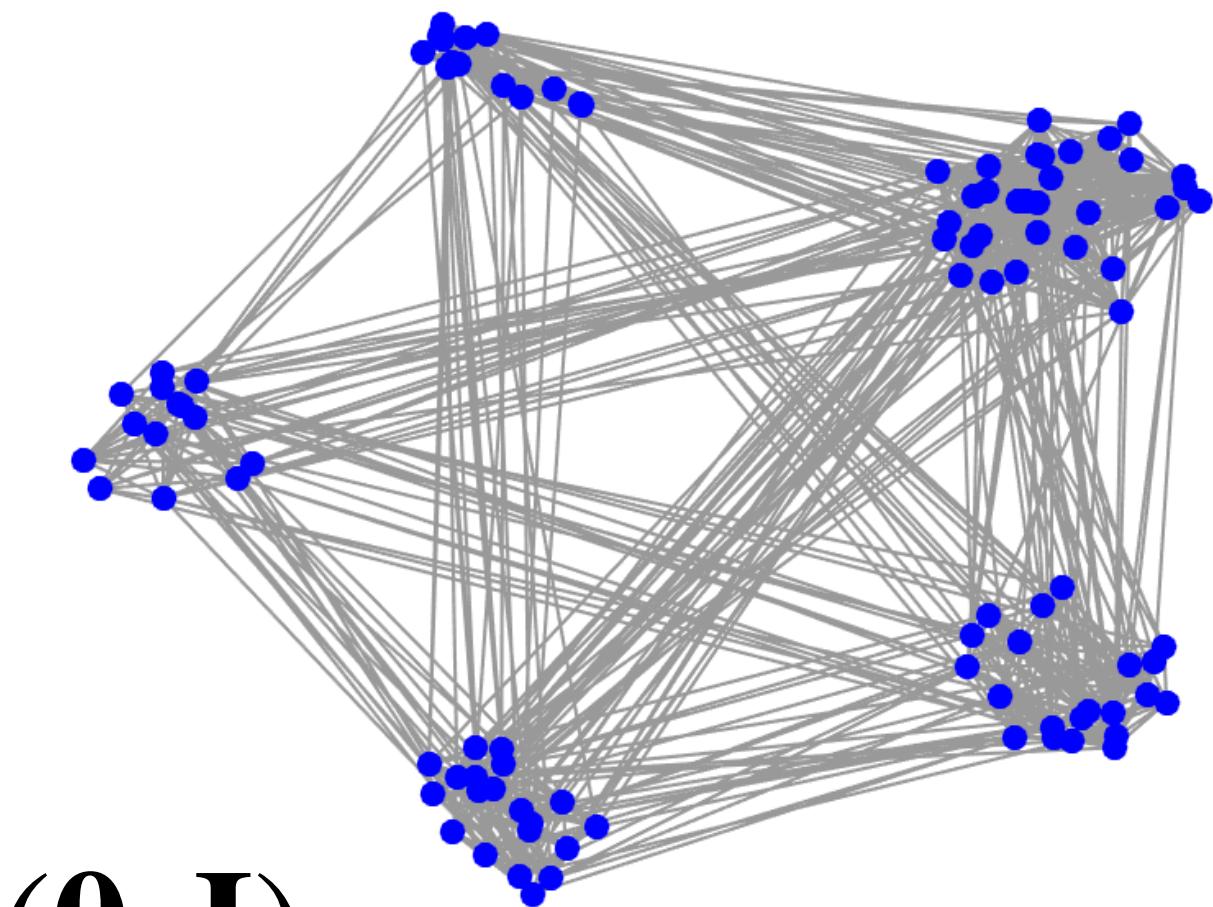
Learning finite-time consensus

- Learn the consensus function for a specific graph
 - ◆ EV can do the job but all nodes need to know all graph
 - Feasible only in small setups

Stochastic block model

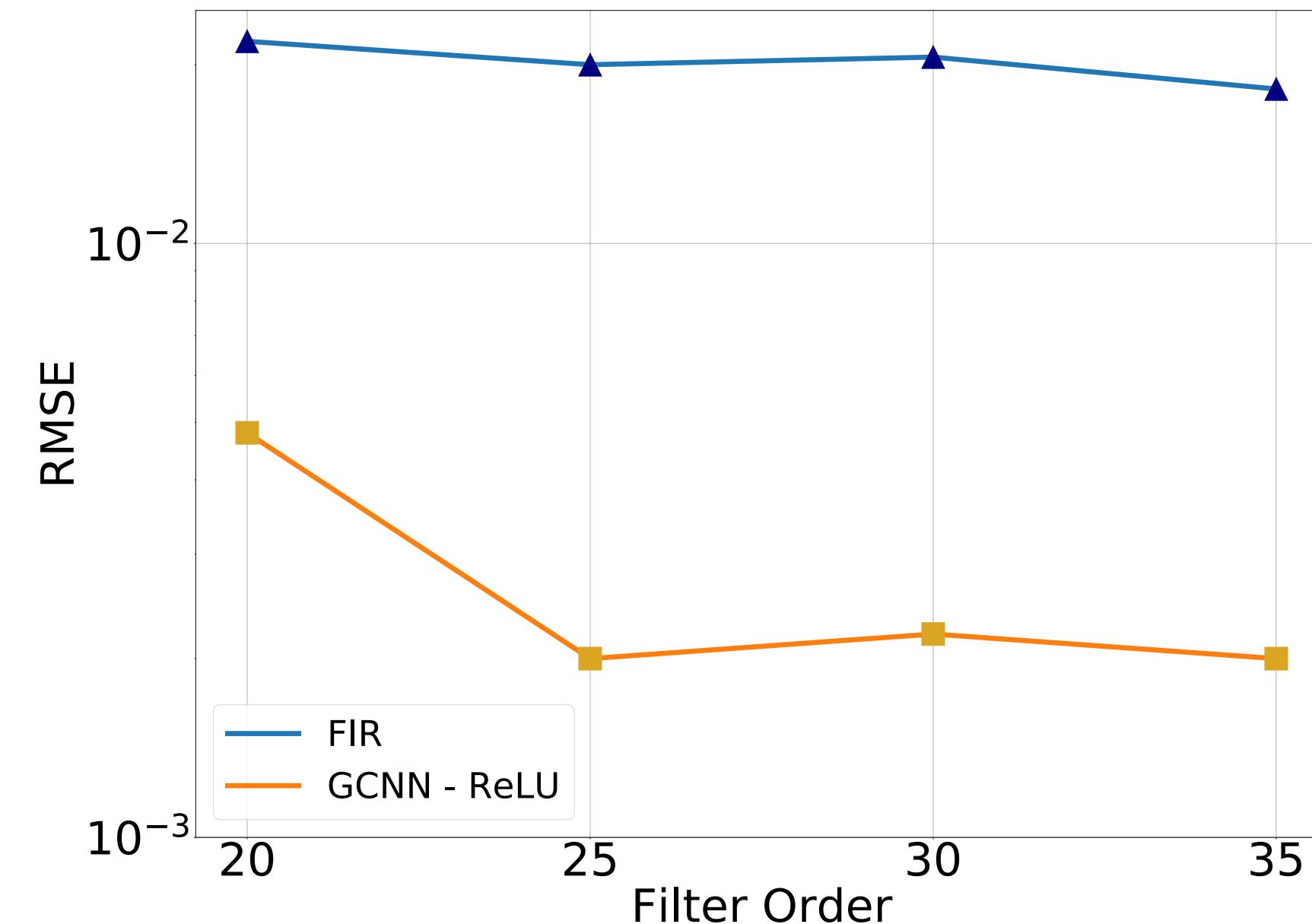
$N = 100$ and $C = 5$ communities; graph signals $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

1 Layer, $F = 32$ features, shared FC (32×1) per node



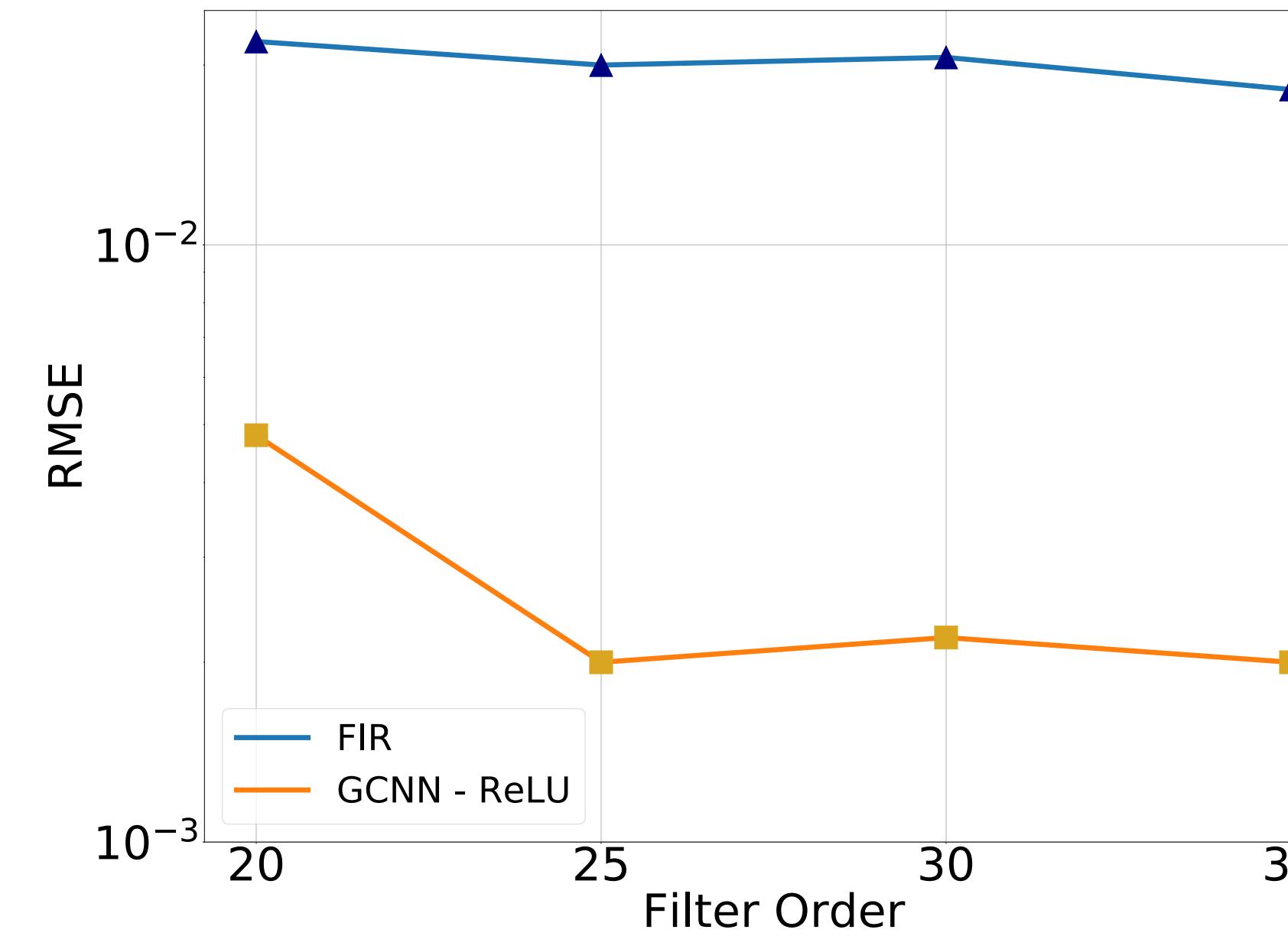
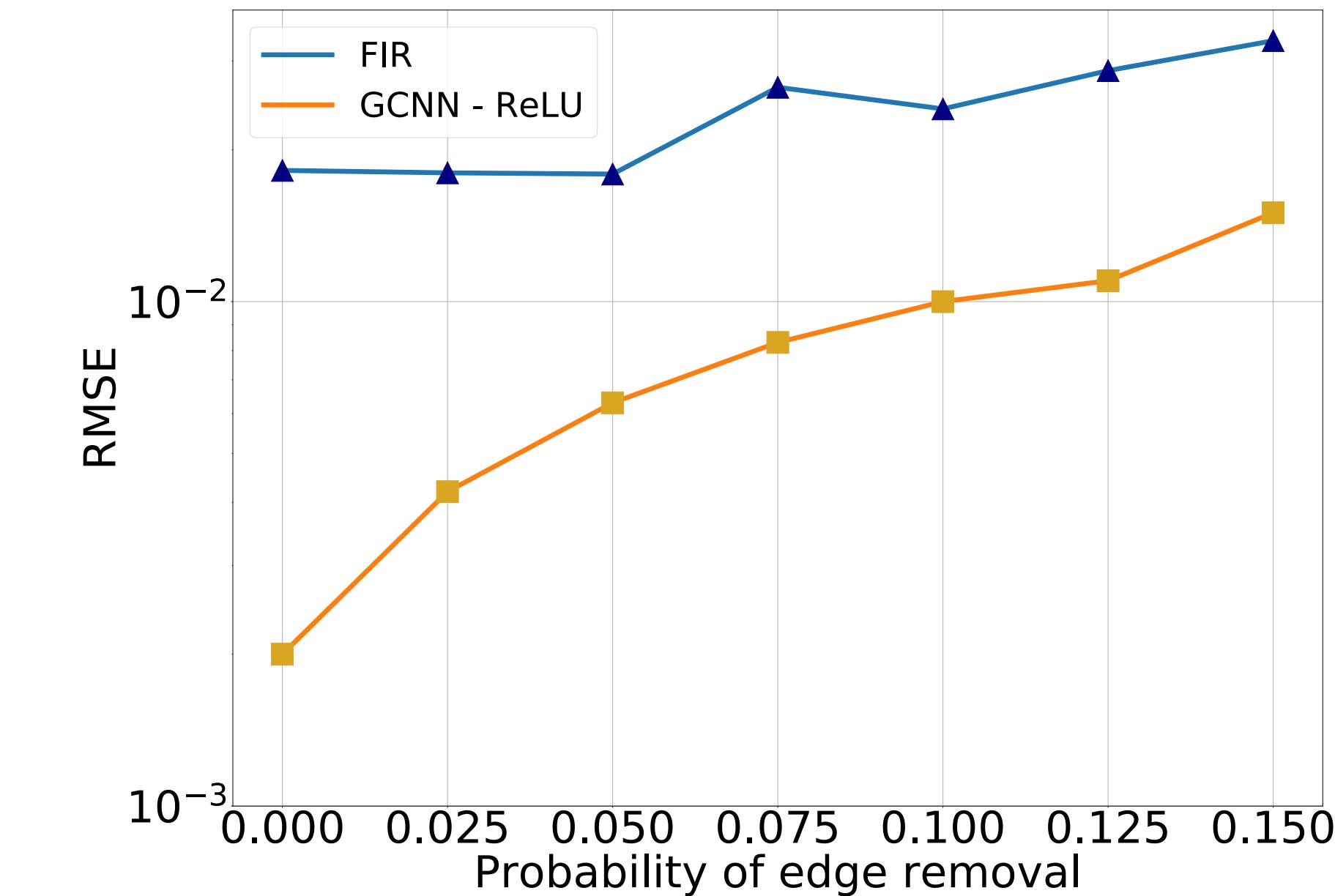
Iancu, Isufi, [Towards Finite-Time Consensus with Graph Convolutional Neural Networks](#), EUSIPCO 2020 (submitted)

Learning finite-time consensus



- Consensus is **strictly** low pass
- Better performance for high orders
- Machine precision needs EV

Learning finite-time consensus



- Consensus is **strictly** low pass
- Better performance for high orders
- Machine precision needs EV
- Train and test on different graphs
- GCNN exploits better the connectivity
- GCNNs are better transferable

Distributed regression

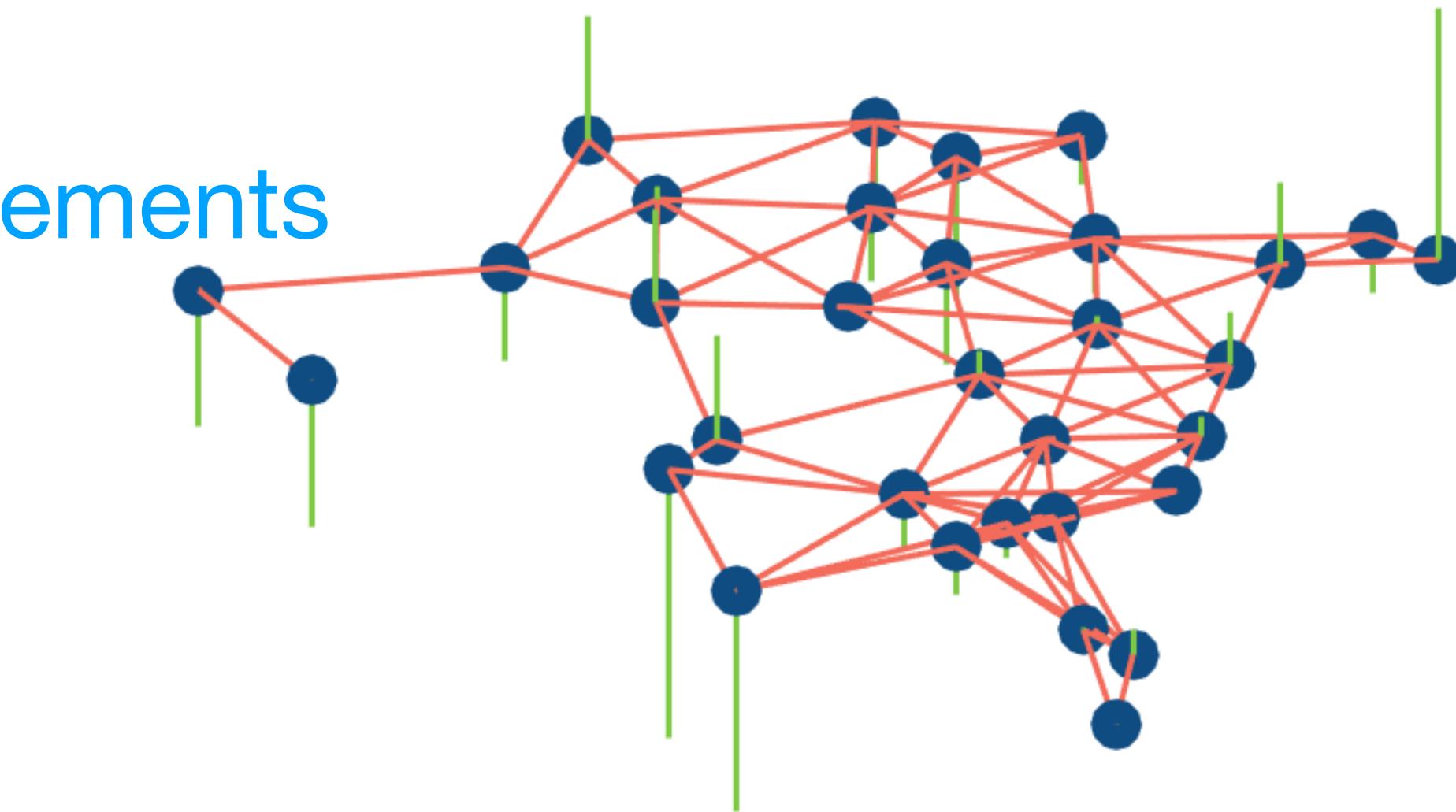
- Retrieve signal distributively from noisy measurements

Molene weather dataset

Build a graph between stations $N = 32$

Graph signal: 744 temperature recording

$SNR = 3\text{dB}$ 1 layer; 4 features



Distributed regression

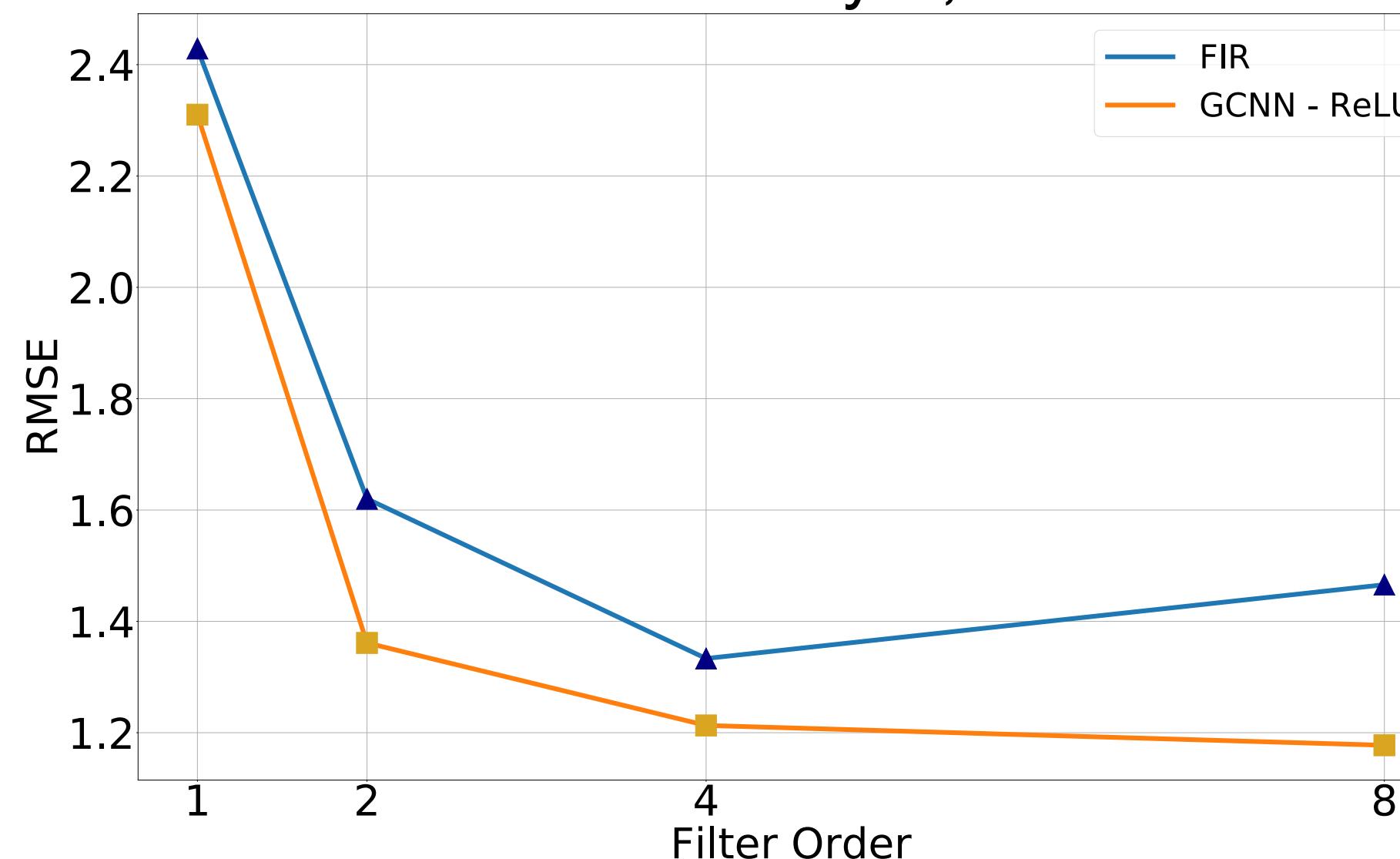
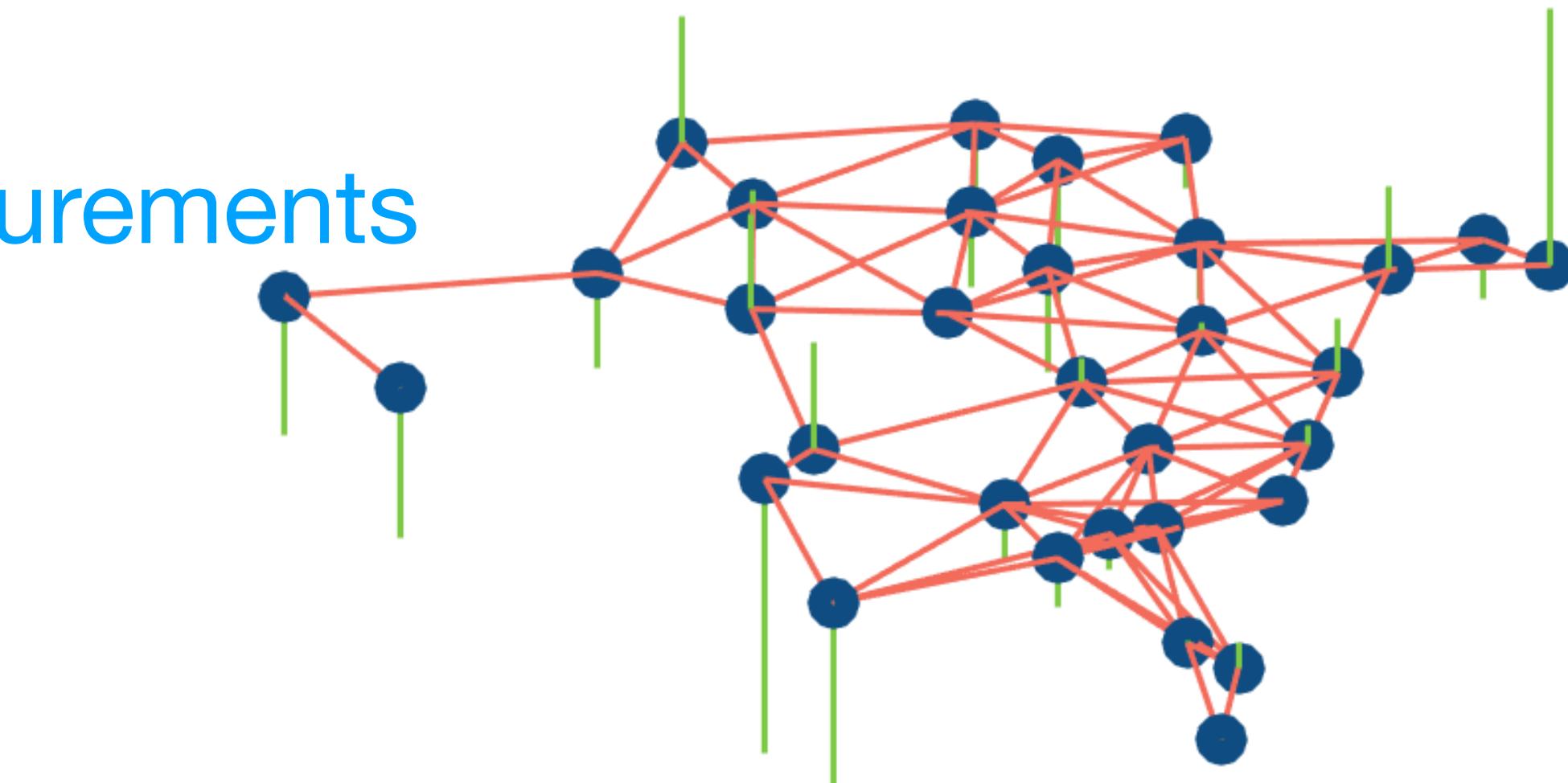
Retrieve signal distributively from noisy measurements

Molene weather dataset

Build a graph between stations $N = 32$

Graph signal: 744 temperature recording

$SNR = 3\text{dB}$ 1 layer; 4 features



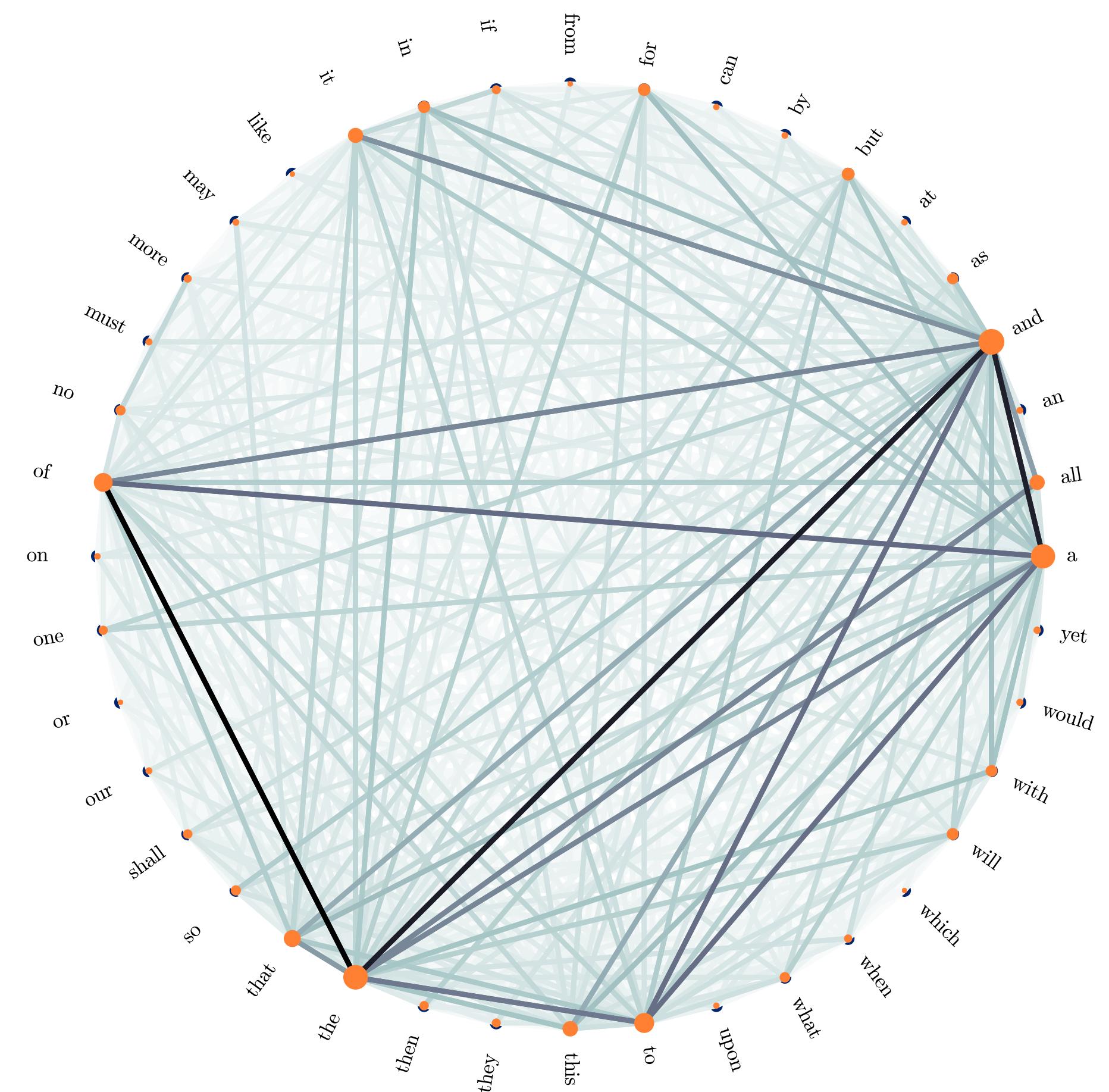
- Nonlinear architecture reduces RMSE
- 4 times more communications
- Regression more challenging than classification
- Needs: more data/more graph prior

Authorship attribution

Attribute texts to an author [Segarra'15-TSP]

Build a word adjacency network

$$N = 190 - 211$$



[© figure Ruiz'19-TSP]

Authorship attribution

Attribute texts to an author [Segarra'15-TSP]

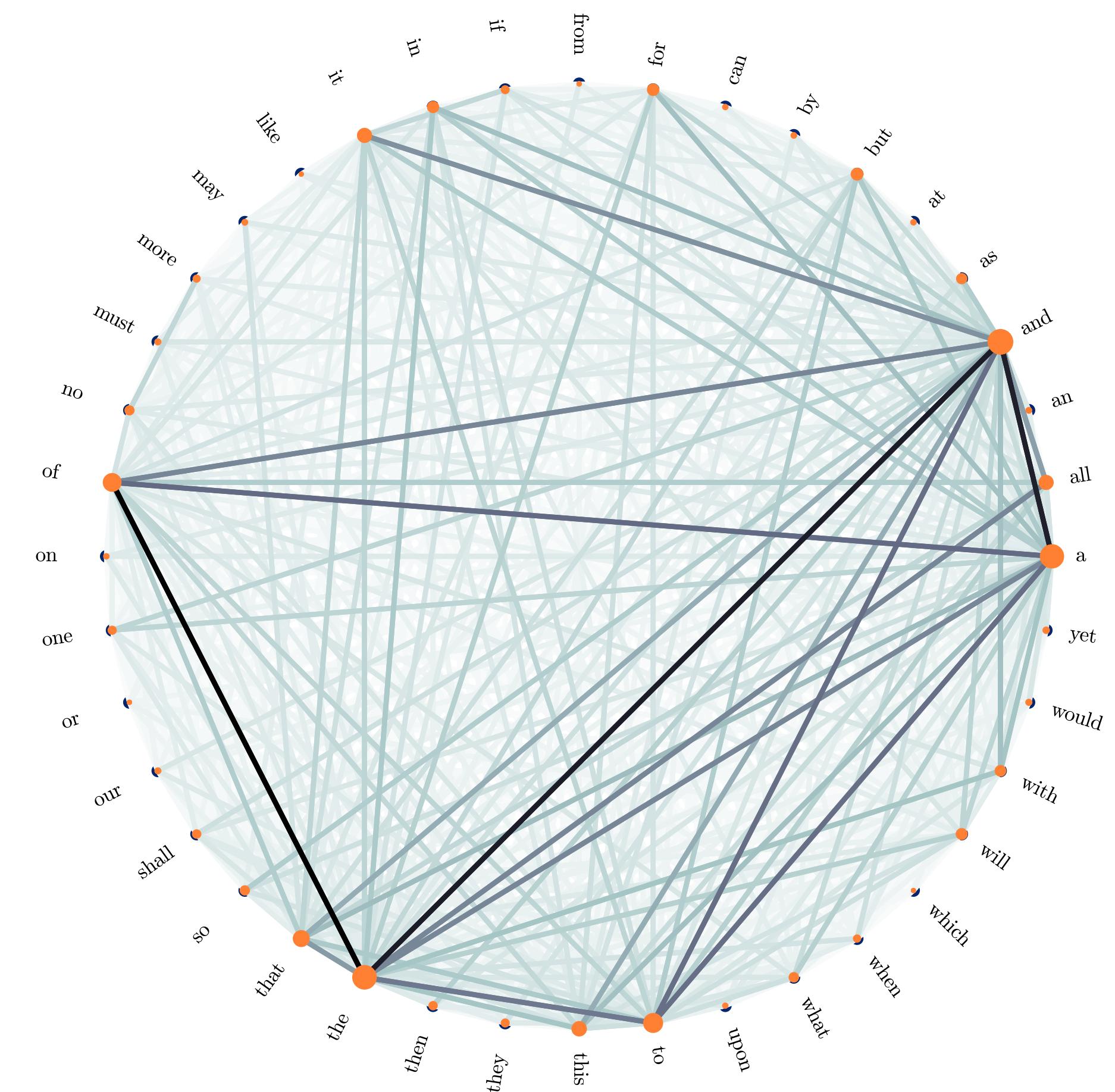
Build a word adjacency network

$$N = 190 - 211$$

Graph signal: word frequency count

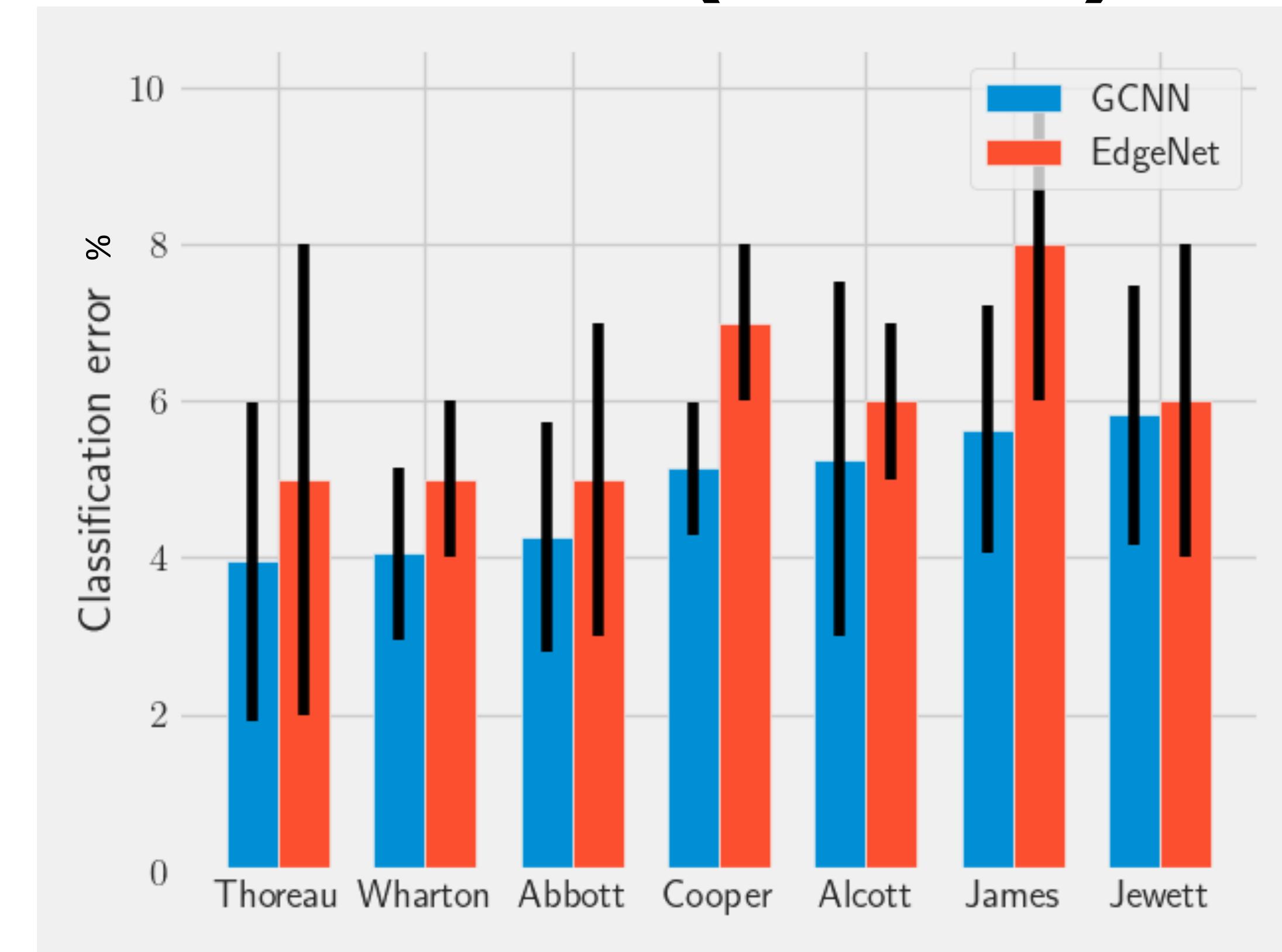
~ 1000 texts from the author of interest

~ 1000 from others



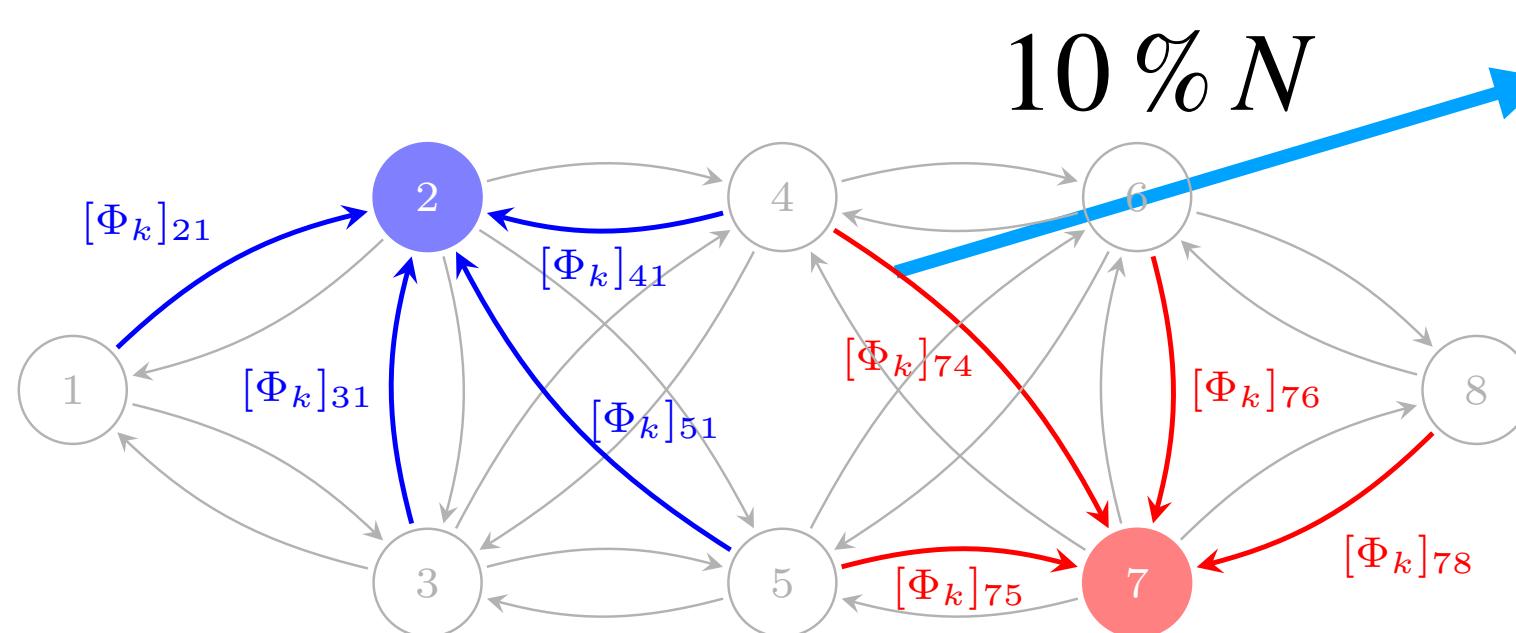
[© figure Ruiz'19-TSP]

Authorship attribution (easier)



- EV hyperparameters (K, F, L) taken from the FIR
- Parameter sharing is beneficial
1 layer, $K \in [2, 10]$, $F \in \{16, 32, 64\}$

Authorship attribution (difficult)



Architecture	Classification error		
	Austen	Brontë	Poe
GCNN	7.2(± 2.0)%	12.9(± 3.5)%	14.3(± 6.4)%
Edge varying	7.1(± 2.2)%	13.1(± 3.9)%	10.7(± 4.3)%
Node varying	7.4(± 2.1)%	14.6(± 4.2)%	11.7(± 4.9)%
Hybrid edge var.	6.9(± 2.6)%	14.0(± 3.7)%	11.7(± 4.8)%
ARMANet	7.9(± 2.3)%	11.6(± 5.0)%	10.9(± 3.7)%

1 layer, $F = 32, K = 4$

- EdgeNet requires its own hypertunning
- Better for more **difficult** scenarios
- **Subclasses** of the **EV** can perform better depending on problem difficulty

Authorship attribution (explain)

○ Explain GNNs with EdgeNets

- ◆ One layer EdgeNet with order $K = 1$
- ◆ Training the EdgeNet = learning graph weights

$$\mathbf{x}_1^1 = \sigma(\Phi \mathbf{x}_1^0)$$

Authorship attribution (explain)

○ Explain GNNs with EdgeNets

- ◆ One layer EdgeNet with order $K = 1$
- ◆ Training the EdgeNet = learning graph weights
 - removed small weight edges = accuracy drop $< 5\%$
 - identifies most relevant function words per author

$$\mathbf{x}_1^1 = \sigma(\Phi \mathbf{x}_1^0)$$

Authorship attribution (explain)

○ Explain GNNs with EdgeNets

- ◆ One layer EdgeNet with order $K = 1$
- ◆ Training the EdgeNet = learning graph weights
 - removed small weight edges = accuracy drop $< 5\%$
 - identifies most relevant function words per author

$$\mathbf{x}_1^1 = \sigma(\Phi \mathbf{x}_1^0)$$



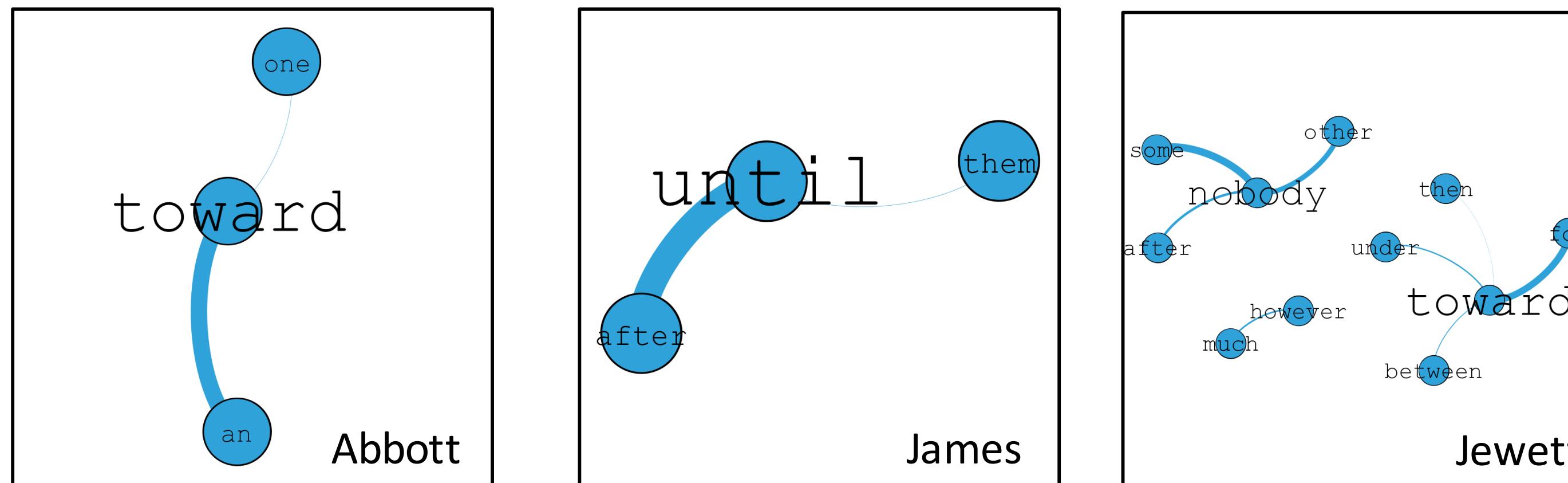
- identify an author from 3 words

Authorship attribution (explain)

○ Explain GNNs with EdgeNets

- ◆ One layer EdgeNet with order $K = 1$
- ◆ Training the EdgeNet = learning graph weights
 - removed small weight edges = accuracy drop $< 5\%$
 - identifies most relevant function words per author

$$\mathbf{x}_1^1 = \sigma(\Phi \mathbf{x}_1^0)$$



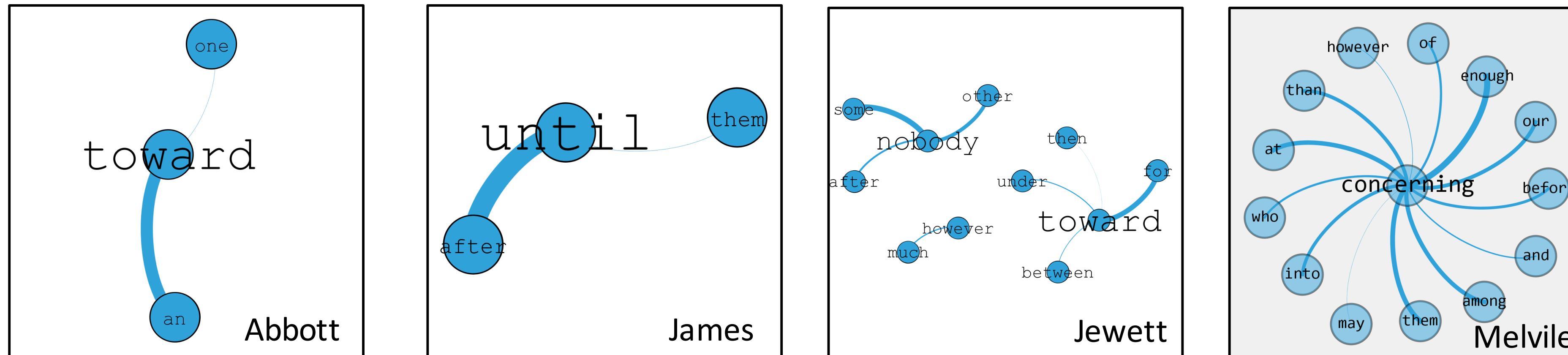
- identify an author from 3 words

Authorship attribution (explain)

○ Explain GNNs with EdgeNets

- ◆ One layer EdgeNet with order $K = 1$
- ◆ Training the EdgeNet = learning graph weights
 - removed small weight edges = accuracy drop $< 5\%$
 - identifies most relevant function words per author

$$\mathbf{x}_1^1 = \sigma(\Phi \mathbf{x}_1^0)$$



- identify an author from 3 words

Authorship attribution

- Identifying author gender from texts
 - ◆ No NLP: shallow and fast training, no pretraining/corpus
 - ◆ Graphs + signals from female and male authors in train - test

Authorship attribution

Identifying author gender from texts

- ◆ No NLP: shallow and fast training, no pretraining/corpus
- ◆ Graphs + signals from female and male authors in train - test

Classification error

	EdgeNet	GCNN	EV-GCNN
Mean	8.6%	10.1%	7.8%
Std	6×10^{-3}	6×10^{-3}	5×10^{-3}

1 layer architectures, $F = 64$

Sparse WANs help classification

Sparse EV shift operator + GCNN

Recommender systems

- Fill missing entries in a user-item matrix

Movielens 100K dataset $U = 943; I = 1,582$

Build a similarity graph (principle of collaborative filter)

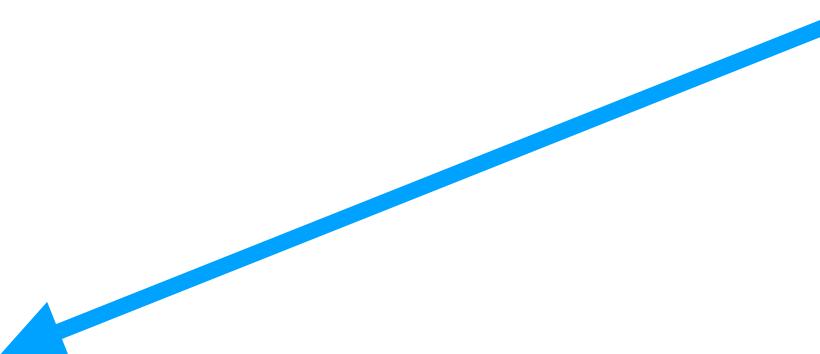
	Item 1	Item 2	Item 3	...	Item I
User 1	5	1	?	...	2
User 2	?	?	3	...	3
User 3	4	?	4	...	?
...
User U	?	4	3	...	1

Recommender systems

- Fill missing entries in a user-item matrix

Movielens 100K dataset $U = 943; I = 1,582$

Build a similarity graph (principle of collaborative filter)



	Item 1	Item 2	Item 3	...	Item I
User 1	5	1	?	...	2
User 2	?	?	3	...	3
User 3	4	?	4	...	?
...
User U	?	4	3	...	1

user similarity graph

nodes : users

edges : Pearson/cosine similarity

between pairs of users

Recommender systems

- Fill missing entries in a user-item matrix

Movielens 100K dataset $U = 943; I = 1,582$

Build a similarity graph (principle of collaborative filter)

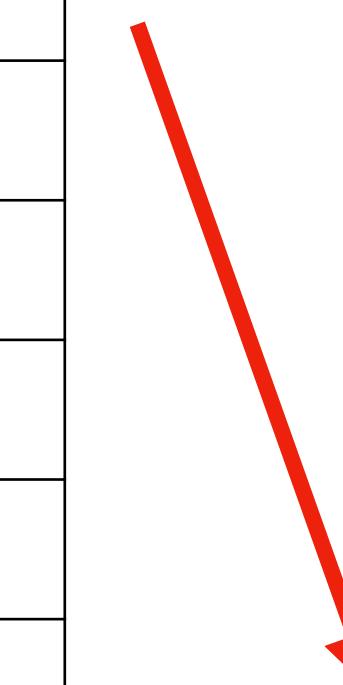
	Item 1	Item 2	Item 3	...	Item I
User 1	5	1	?	...	2
User 2	?	?	3	...	3
User 3	4	?	4	...	?
...
User U	?	4	3	...	1

user similarity graph

nodes : users

edges : Pearson/cosine similarity

between pairs of users



item similarity graph

nodes : items

edges : Pearson/cosine similarity

between pairs of items

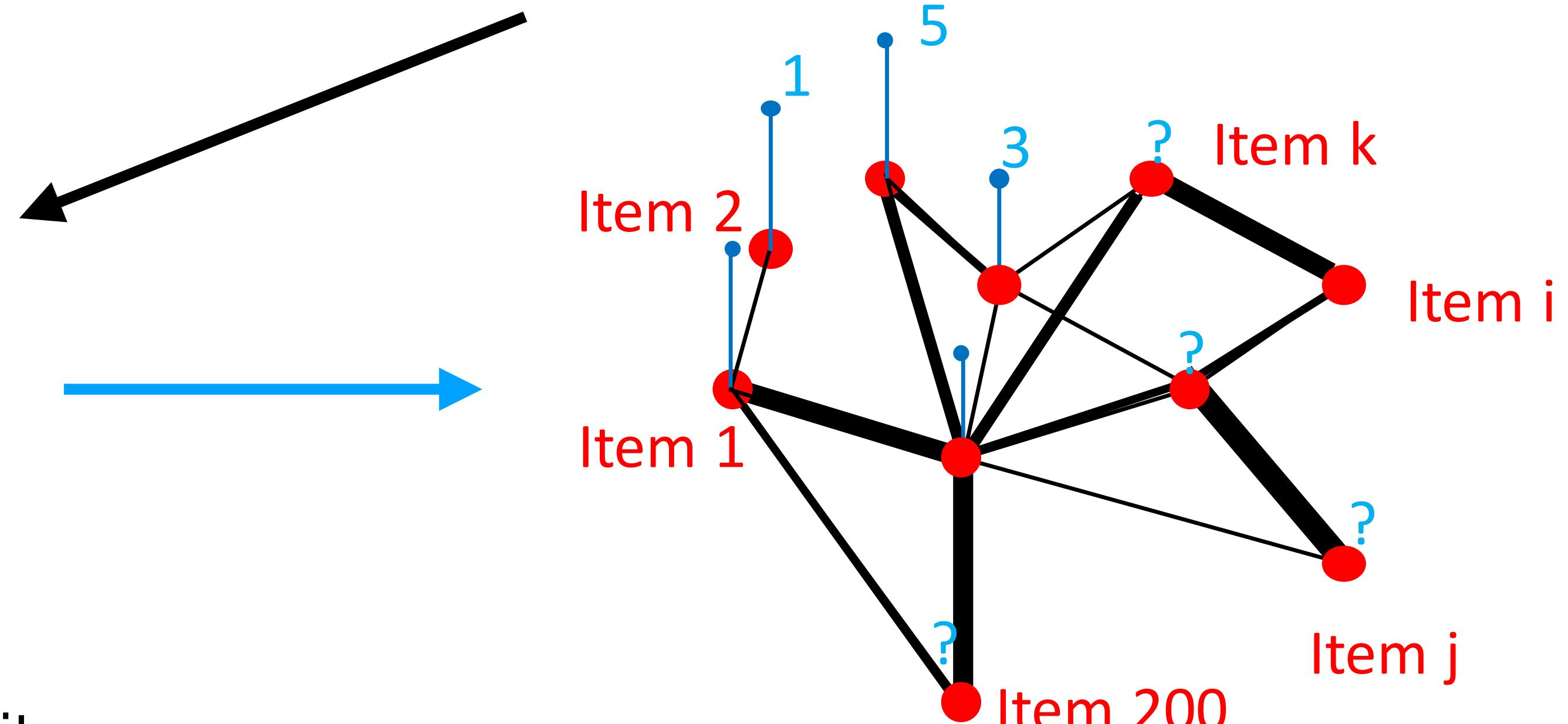
Recommender systems

- Here item similarity graph

$N = 200$ most rated items

	Item 1	Item 2	Item 3	...	Item I
User 1	5	1	?	...	2
User 2	?	?	3	...	3
User 3	4	?	4	...	?
...
User U	?	4	3	...	1

subset of user ratings
to build the graph



Graph signal : rating of user u to all items

- interpolation problem on graphs

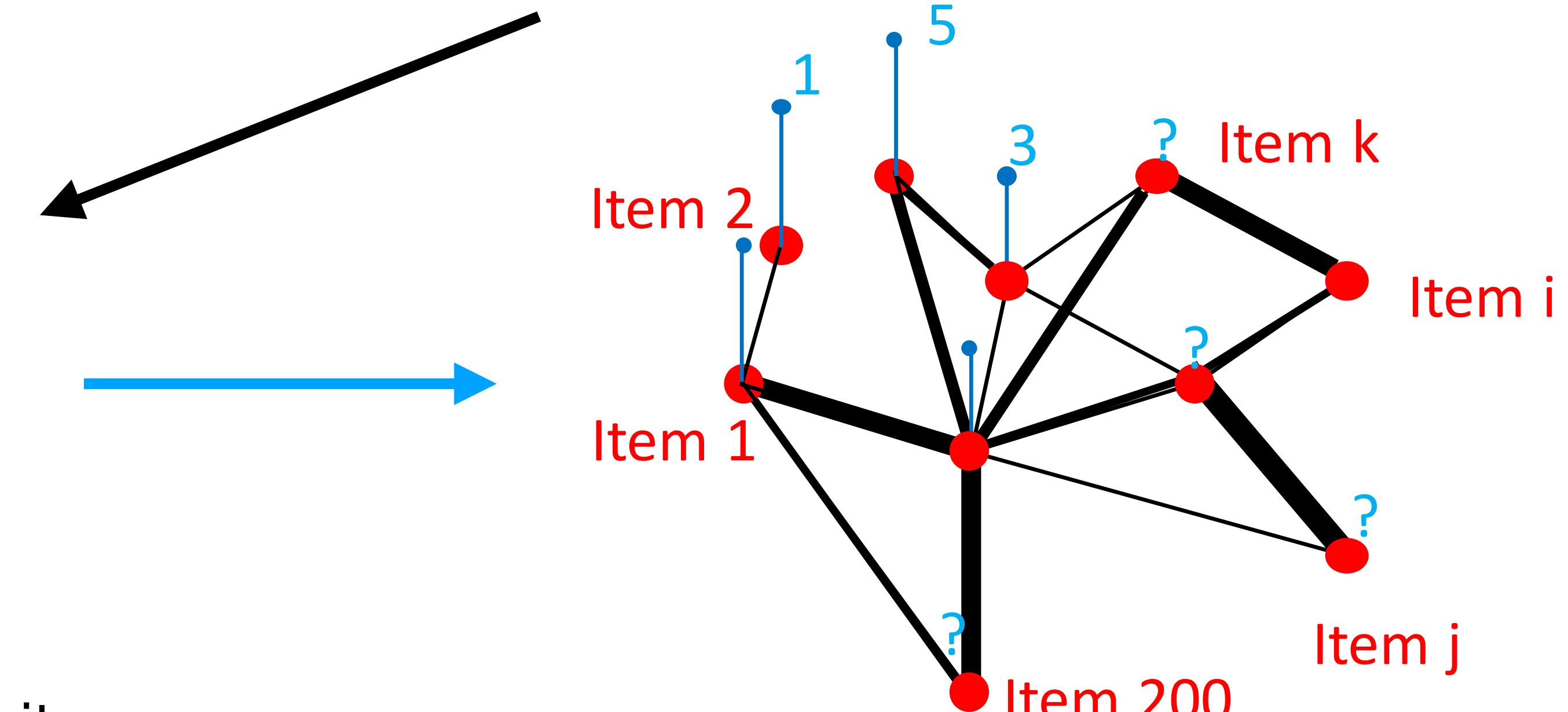
Recommender systems

- Here item similarity graph

$N = 200$ most rated items

	Item 1	Item 2	Item 3	...	Item I
User 1	5	1	?	...	2
User 2	?	?	3	...	3
User 3	4	?	4	...	?
...
User U	?	4	3	...	1

subset of user ratings
to build the graph



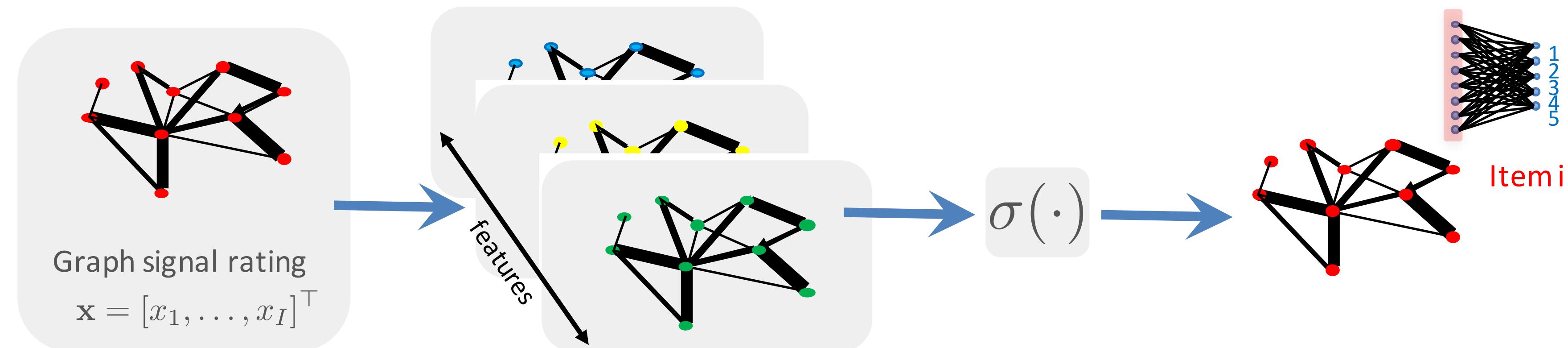
Graph signal : rating of user u to all items

- interpolation problem on graphs

Goal: find rating all users give to item i (fill i th column of matrix)

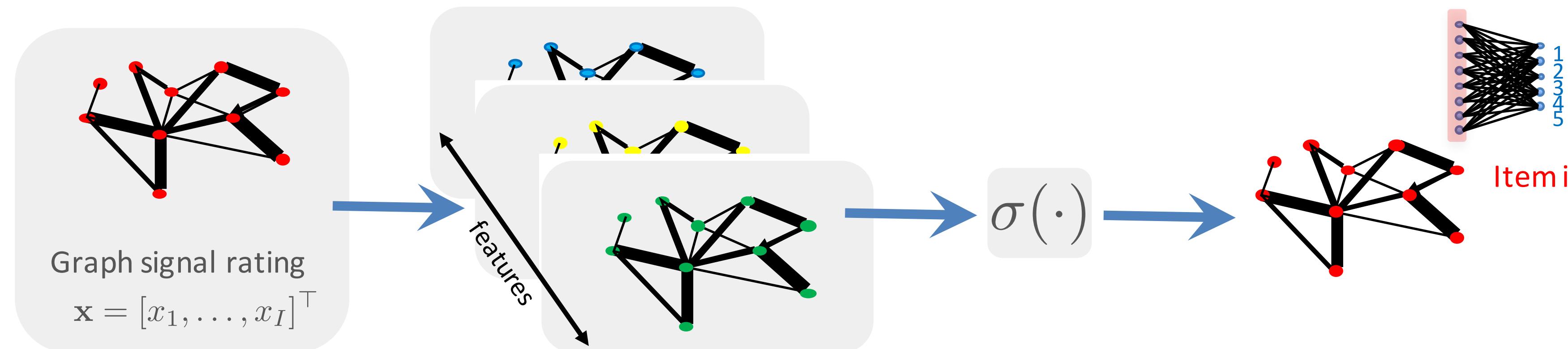
Recommender systems

- Use locality of the filters to build a GNN **specific to item I**



Recommender systems

- Use locality of the filters to build a GNN **specific to item I**



Frame as signal classification problem per node

1 layer, 32 features

EdgeNet suffers in general -requires parameterization

Archit./Movie-ID	50	258	100	181	294	Average
GCNN	0.82	1.08	0.95	0.86	1.04	0.95
Edge var.	0.93	1.03	1.00	0.88	1.24	1.02
Node var.	0.78	1.04	1.00	0.87	1.00	0.94
Hybrid edge var.	0.75	1.02	0.98	0.82	1.08	0.93

part 4 :: conclusions

- Graph filter are the **building block** of graph neural network (GNN)
 - ◆ Incorporate effectively the **graph signal - graph topology** into learning
 - ◆ Serve as a **prior** to reduce parameters and complexity
 - ◆ Graph convolutions through graph filters

part 4 :: conclusions

- Graph filter are the **building block** of graph neural network (GNN)
 - ◆ Incorporate effectively the **graph signal - graph topology** into learning
 - ◆ Serve as a **prior** to reduce parameters and complexity
 - ◆ Graph convolutions through graph filters
- Different filter = different graph neural networks
 - ◆ FIR = GCNNs
 - ◆ ARMA = ARMANets
 - ◆ Edge varying = EdgeNets

part 4 :: conclusions

- EdgeNets provide the broadest GNN family
 - ◆ Particularize to **all** the others including GINs and GATs
 - ◆ Help **explainability**

part 4 :: conclusions

- EdgeNets provide the broadest GNN family
 - ◆ Particularize to **all** the others including GINs and GATs
 - ◆ Help **explainability**
- Applications in signal classification & regression
 - ◆ Authorship attribution
 - ◆ Recommender systems

GNN - next challenges

- More graph prior instead of more data

GNN - next challenges

- More graph prior instead of more data
- Explainability
 - ◆ What topological information is more relevant?
 - ◆ What spectral information is more relevant?
 - ◆ EdgeNet can be a strong tool in this regard

GNN - next challenges

- More graph prior instead of more data
- Explainability
 - ◆ What topological information is more relevant?
 - ◆ What spectral information is more relevant?
 - ◆ EdgeNet can be a strong tool in this regard
- Robustness/Transferability
 - ◆ To topological perturbations
 - ◆ To input perturbations

GNN - next challenges

- More graph prior instead of more data
- Explainability
 - ◆ What topological information is more relevant?
 - ◆ What spectral information is more relevant?
 - ◆ EdgeNet can be a strong tool in this regard
- Robustness/Transferability
 - ◆ To topological perturbations
 - ◆ To input perturbations
- Distributed learning
 - ◆ Graph filters are distributable

Conclusions

- **Graph filtering** for denoising, interpolation, distributed optimization, GNNs
 - ◆ FIR graph filters
 - ◆ IIR - ARMA graph filters
- **Extensions** of FIR filters (can be used for IIR as well)
- **Edge-variant** graph filters **generalize** classical graph filters
 - ◆ reduction in communication and computation complexity
- **Easy design** using least squares
- **Applications**
 - ◆ Design of **low-order graph filters**
 - ◆ **Distributed optimization** solutions
 - ◆ **Graphical neural network** implementations



Questions?

{ g.j.t.leus; e.isufi-1; m.a.coutinominguez } @tudelft.nl

Thank you

References

Start with graph signal processing

- Ortega et al., [Graph signal processing: Overview, challenges, and applications](#), Proceedings of the IEEE, 2018.
- Shuman et al., [The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains](#), IEEE Signal Processing Magazine, 2013.
- Sandryhaila and Moura, [Discrete signal processing on graphs](#), IEEE Transactions on Signal Processing, 2013.
- Sandryhaila and Moura, [Discrete signal processing on graphs: Frequency analysis](#), IEEE Transactions on Signal Processing, 2014.

Distributed aspects of graph filters

- Shuman et al., [Chebyshev polynomial approximation for distributed signal processing](#), International Conference on Distributed Computing in Sensor Systems and Workshops, 2011.
- Sandryhaila et al, [Finite-time distributed consensus through graph filters](#), IEEE International Conference on Acoustic, Speech and Signal Processing, 2014.
- Loukas et al., [Distributed autoregressive moving average graph filters](#), IEEE Signal Processing Letters, 2015.
- Shi et al., [Infinite impulse response graph filters in wireless sensor networks](#), IEEE Signal Processing Letters, 2015.
- Segarra et al., [Center-weighted median graph filters](#), IEEE Global Conference on Signal and Information Processing, 2016.
-

References

- Isufi et al., [Autoregressive moving average graph filters](#), IEEE Transactions on Signal Processing, 2017.
- Isufi et al., [Autoregressive moving average graph filters – A stable distributed implementation](#), IEEE International Conference on Acoustic, Speech and Signal Processing, 2017.
- Isufi et al., [Distributed sparsified graph filters for denoising and diffusion tasks](#), IEEE International Conference on Acoustic, Speech and Signal Processing, 2017.
- Segarra et al., [Optimal graph-filter design and applications to distributed linear network operators](#), IEEE Transactions on Signal Processing, 2017.
- Coutino et al., [Distributed edge-variant graph filters](#), IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2017.
- Chamon and Ribeiro, [Finite-precision effects on graph filters](#), IEEE Global Conference on Signal Processing, 2017.
- Liu et al., [Filter design for autoregressive moving average graph filters](#), IEEE Transaction on Signal and Information Processing over Networks, 2018.
- Isufi et al., [Distributed Wiener-based reconstruction of graph signals](#), IEEE Statistical Signal Processing Workshop, 2018.
- Coutino et al., [On the limits of finite-time distributed consensus through successive local linear operations](#), Asilomar Conference on Signals, Systems, and Computers, 2018.
- Coutino et al., [Advances in distributed graph filtering](#), IEEE Transactions on Signal Processing, 2019.
- Ben Saad et al., [Quantization analysis and robust design for distributed graph filters](#), IEEE Transactions on Signal Processing, 2019.
-

References

Start with graph neural networks

- Bronstein et al, [Geometric deep learning: going beyond Euclidean data](#), IEEE Signal Processing Magazine, 2017.
- Wu et al, [A comprehensive survey on graph neural networks](#), IEEE Transactions on Neural Networks and Learning Systems, 2020.
- Gama et al, [Graphs, Convolutions, and Neural Networks](#), submitted to IEEE Signal Processing Magazine, 2020, arXiv: 2003.03777

Graph filters in graph neural networks

- Bruna et al., [Spectral networks and locally connected networks on graphs](#), arXiv:1312.6203.
- Defferrard et al. [Convolutional neural networks on graphs with fast localized spectral filtering](#), Conference on Neural Information Processing Systems, 2016.
- Kipf and Welling, [Semi-supervised classification with graph convolutional neural networks](#), International Conference on Learning Representations, 2016.
- Velickovic et al, [Graph attention networks](#), International Conference on Learning Representations, 2018.
- Levie et al., [Cayleynets: Graph convolutional neural networks with complex rational spectral filters](#), IEEE Transactions on Signal Processing, 2018.
- Gama et al., [Convolutional neural network architectures for signals supported on graphs](#), IEEE Transactions on Signal Processing, 2018.
- Gama et al., [Convolutional neural networks via node-varying graph filters](#), IEEE Data Science Workshop, 2018.

References

- Bianchi et al., [Graph neural networks with convolutional ARMA filters](#), arXiv: 1901.01343, 2019.
- Wijesinghe et al., [DFNets: Spectral CNNs for graphs with feedback-looped filters](#), Conference on Neural Information Processing Systems, 2019.
- Ruiz et al., [Invariance-preserving localized activation functions for graph neural networks](#), IEEE Transactions on Signal Processing, 2019.
- Isufi et al., [Generalizing graph convolutional neural networks with edge-variant recursions on graphs](#), European Signal Processing Conference, 2019.
- Isufi et al., [EdgeNets: Edge varying graph neural networks](#), arXiv: 2001.07620, 2020.
- Iancu and Isufi, [Towards finite-time consensus with graph convolutional neural networks](#), submitted to European Signal Processing Conference 2020.
- Iancu et al., [Distributed Localized Nonlinearities For Graph Neural Networks](#), submitted to IEEE International Workshop on Machine Learning for Signal Processing, 2020.

Robustness of graph filters and graph neural networks

- Isufi et al., [Stochastic graph filtering on time-varying graphs](#), IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2015.
- Isufi et al., [Filtering random graph processes over random time-varying graphs](#), IEEE Transactions on Signal Processing, 2017.
- Levie et al., [On the transferability of spectral graph filters](#), International Conference on Sampling Theory and Applications, 2019.

References

- Gama et al., [Stability properties of graph neural networks](#), arXiv:1905.04497, 2020.
- Gao et al., [Stochastic graph neural networks](#), IEEE International Conference on Acoustic, Speech and Signal Processing, 2020.
- Ioannidis et al., [Edge Dithering for Robust Adaptive Graph Convolutional Networks](#), arXiv:1910.09590, 2020

Other applications of graph filters

- Hammond et al., [Wavelets on graphs via spectral graph theory](#), Applied and Computational Harmonic Analysis, 2011.
- Girault et al., [Semi-supervised learning for graph to signal mapping: A graph signal Wiener filter interpretation](#), IEEE International Conference on Acoustic, Speech and Signal Processing, 2014.
- Eglimez and Ortega, Spectral anomaly detection using graph-based filtering for wireless sensor networks, IEEE International Conference on Acoustic, Speech and Signal Processing, 2014.
- Tremblay et al., [Compressive spectral clustering](#), International Conference on Machine Learning, 2016.
- Isufi et al., [2-Dimensional finite impulse response graph-temporal filters](#), IEEE Global Conference on Signal and Information Processing, 2016.
- Marques et al., [Stationary graph processes and spectral estimation](#), IEEE Transactions on Signal Processing, 2017.
- Ioannidis et al., [Graph Neural Networks for Predicting Protein Functions](#), IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2017.
- Berberidis et al., [Adaptive Diffusions for Scalable Learning over Graphs](#), IEEE Transactions on Signal Processing, 2018.
- Huang et al., [Rating prediction via graph signal processing](#), IEEE Transactions on Signal Processing, 2018.

References

- Isufi et al., [Forecasting time series with VARMA recursions on graphs](#), IEEE Transactions on Signal Processing, 2019.
- Sun et al., [A graph signal processing framework for atrial activity extraction](#), European Signal Processing Conference, 2019.
- Nikolakopoulos et al., [Personalized Diffusions for Top-N Recommendation](#), International Conference on Recommender Systems , 2019
- Sun et al., [Graph-time spectral analysis for atrial fibrillation](#), Biomedical Signal Processing and Control, 2020.

Graph topology inference

- Segarra et al., [Network topology inference from spectral templates](#), IEEE Transactions on Signal and Information Processing over Networks, 2017.
- Giannakis et al., [Topology identification and learning over graphs: Accounting for nonlinearities and dynamics](#), Proceedings of the IEEE, 2018
- Mateos et al., [Connecting the dots: Identifying network structure via graph signal processing](#), IEEE Signal Processing Magazine, 2019
- Coutino et al., [State-space network topology identification from partial observations](#), IEEE Transactions on Signal and Information Processing over Networks, 2020.

Other referred papers

- Segarra et al., [Authorship attribution through function word adjacency networks](#), IEEE Transactions on Signal Processing, 2015.