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Tutorial break down

VIDEO 1:
® Part | Graph Signal Processing and Graph Filters

- Introduction to GSP

- Graph filters, applications, design and implementation aspects
® Part || Graph Filters for Distributed Optimization 1

- Motivation and general concept

- Applications and clarifying examples

Delft University of Technology
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Tutorial break down

VIDEO 1:
@ Part | Graph Signal Processing and Graph Filters

- Introduction to GSP

- Graph filters, applications, design and implementation aspects
® Part || Graph Filters for Distributed Optimization 1

- Motivation and general concept

- Applications and clariftying examples

VIDEO 2:
@®@Part lll Graph Filters for Distributed Optimization 2
- Asynchronous implementation
- Cascaded implementation
@®Part IV Graph Filters for Neural Networks
- Motivation and general concept
- Applications and clarifying examples

Delft University of Technology
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part 1
graph signal processing

and graph filters
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part 1 :: overview

@ Introduction to graph signal processing
- Motivation
- Mathematical formulation
- Graph Fourier transform
- Time-domain as a graph

Delft University of Technology
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part 1 :: overview

@ Introduction to graph signal processing
- Motivation
- Mathematical formulation
- Graph Fourier transform
- Time-domain as a graph
® Graph filters
- Definition and motivating applications
- Design and implementation
- FIR graph filters
- ARMA graph filters
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part 1 :: overview

@ Introduction to graph signal processing
- Motivation
- Mathematical formulation
- Graph Fourier transform
- Time-domain as a graph
® Graph filters
- Definition and motivating applications
- Design and implementation
- FIR graph filters
- ARMA graph filters

@ Advanced graph filters (focus on FIR filters)
- Node-varying graph filters
- Edge-varying graph filters

Delft University of Technology
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Signals on graphs?

Delft University of Technology
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Motivation

Brain networks
(fMRI time series)

N S Social networks
*g;;;_g.g_\; N (opinion profile)

AR S = 11q
Sensor networks o E T gt
(temperatures) gy, [
P 5 ST B e S
i ?j‘ }‘“f%,;:g I s {’; .

Transport Networks
(# vehicles crossing the junction)

Delft University of Technology
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Signal processing on graphs

Datasets with irregular support can be represented using a graph

®Graph € = (7, &) Az 70
®7 issetofnodes |7 | =N
@& isthesetofedges |&| =M

V2
®A € RZXXN IS the adjacency matrix

AZ,N — AN,z # 0

Delft University of Technology
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Signal processing on graphs

Datasets with irregular support can be represented using a graph

®Graph @ = (7, &)

®7 issetofnodes |7'| =N
@& isthesetofedges |&| =M
®A € RZXXN IS the adjacency matrix

)
1

@x= | | € RVis the graph signal

Delft University of Technology
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Signal processing on graphs

® Local structure of the graph is captured by the graph-shift operator S &

RN XN

[S]j,i is nonzero only if (i,7) € &and/or 1 =.

S could be the adjacency matrix, graph Laplacian, or modifications, ...

Delft University of Technology
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Signal processing on graphs

® Local structure of the graph is captured by the graph-shift operator § &

RN XN

[S]j,i is nonzero only if (i,7) € &and/or 1 =.

S could be the adjacency matrix, graph Laplacian, or modifications, ...
® Adjacency matrix: S = A

Delft University of Technology
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Signal processing on graphs

® Local structure of the graph is captured by the graph-shift operator § &

RN XN

[S]j,i is nonzero only if (i,7) € &and/or 1 =.
S could be the adjacency matrix, graph Laplacian, or modifications, ...

® Adjacency matrix: S = A

® Graph Laplacian:S =L. ,  =D.  —A

N N
Dy l= Y (Al Doulii= D (Al
j=1 J=1

Delft University of Technology
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Signal processing on graphs

® Local structure of the graph is captured by the graph-shift operator § &

RN XN

[S]j,i is nonzero only if (i,7) € &and/or 1 =.

S could be the adjacency matrix, graph Laplacian, or modifications, ...
® Adjacency matrix: S = A

® Graph Laplacian: S = Lm/out D. — A
D], = Z Al D= Z[

® Symmetric graph Laplacian: S L=D-A, D=D_ =D

infout

out

Delft University of Technology



1,';U Delft
Signal processing on graphs

® Local structure of the graph is captured by the graph-shift operator § &

RN XN

[S]j,i is nonzero only if (i,7) € &and/or 1 =.

S could be the adjacency matrix, graph Laplacian, or modifications, ...
® Adjacency matrix: S = A

® Graph Laplacian: S = Lm/out D. — A
[Dinli; = 2 [A;/] [Doulii = Z A

® Symmetric graph Laplacian S L=D-A, D=D_ =D

infout

out

® Smoothness: XTLX — Z [A]i,j(xi — xj)z
1,j=1

Delft University of Technology
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Spectral analysis of graph signals

Delft University of Technology
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Graph Fourier basis

Eigenvectors of graph shift represent frequency modes (S assumed to be normal)

S = UAU"

Delft University of Technology
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Graph Fourier basis

Eigenvectors of graph shift represent frequency modes (S assumed to be normal)
S = UAU"

Example: Laplacian of undirected graph

V, @ o 'l 20000 01 01 0|W
02000 1 01 0 0"
S=D-A=|00200[-]0101 0f

/4 *, 0 0030 1 01 0 1|V
Ve 00001 0001 0]

diagonal degree matrix adjacency matrix

Delft University of Technology
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Graph Fourier basis

Individual eigenvectors of Laplacian of undirected graph

u U Us
2% oVl
S 4 3 coe
@
I 1 ? [
DC (no zero crossings) two zero crossings flve zero crossings
uSu, =4,=0 u,Su, =4 =0.8299 u,Su; = A5 = 4.4812

Delft University of Technology
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Time-domain as a graph

The DFT matrix and the traditional frequency grid is obtained by the adjacency
matrix of the cycle graph

S=F'QF : [Q];,, = 7™~V

s

N A

7
|

—_— O O O O O O O
SO OO O OO =
OO OO OO = O
OO O OO = O O
OO OO = OO O
S OO = O O O O
SO = OO O O O
o= OO O O O O

Delft University of Technology
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Time-domain as a graph

Any circulant graph (directed or not) in principle leads to the DFT as the matrix
that diagonalises the shift operator

0110001 1
{ 10110001

1 1011000

} c_ |01 101100
00110110

( 0001101 1

‘ 10001101

1 1000110

Delft University of Technology
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How do we “spectrally” shape signals?

Delft University of Technology
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Graph Fourier transform and graph filters

The graph Fourier transform is defined as

x=Ulx &= x=Ux

Delft University of Technology
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Graph Fourier transform and graph filters

The graph Fourier transform is defined as
X =U% < x=0Ug
Graph filters can be used to modify the frequency content of graph signals
Pu = h(4,)3, 1 b it

-9 = h(AR

I L h(A) = diag{h(4,)}
== y=UhrA)U"x = Hx
==  Shift invariance: HS = SH

Value in the frequency domain

®
®
l Uﬂm}_.-__‘._\. | /1
5 10 15 20 25 30

Delft University of Technology
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Interpolation (e.g., semi-supervised learning)

Delft University of Technology
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Signal denoised

. . WP A
- ~-‘ - - >y '-"-
e NN '
S
‘a
)

. | | | Denoising signals (e.g., Tikhonov)
Interpolation (e.g., semi-supervised learning)

Delft University of Technology
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Signal denoised

. P A
- - o o ’ ) A —
o S
— - b r J
T - v
“d
4

. | | | Denoising signals (e.g., Tikhonov)
Interpolation (e.g., semi-supervised learning)

f1(x)
f2(x)

N
min fx) = ifi(x)
' 4 X i=1

N
]
X

B

[~

Distributed optimization

Delft University of Technology
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Applications of graph filters

Signal with noise Signal denoised

———— /

/A!;;W/ Y
Pl
y

Denoising signals (e.g., Tikhonov)

o ) g
o
° RelU RelU .
® o ° o o
o © o | . | e —' <
o o o ¢}
® o
y .

Distributed optimization Graph convolutional neural networks

Delft University of Technology
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Graph filter design and implementation

y = Uh(A)U"x = Hx < HS = SH

Delft University of Technology



Graph filter design and implementation

y = Uh(A)U"x = Hx < HS = SH

Graph-dependent vs graph-independent (universal) filter design

h(An)Th(N)

— graph dependent
— graph independent

A1 A2

>

Aa Aads g A

Delft University of Technology

[Shuman’11, DCOSS]
[Sandryhaila’13, TSP]
Shuman’13, SPM]
[Segarra’18, TSP]
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Graph filter design and implementation

y = Uh(A)U"x = Hx < HS = SH

Frequency-domain vs vertex-domain implementation

® No fast GFT implementations

® Need for parametrized filters in the vertex domain

Delft University of Technology
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FIR graph filters

Finite Impulse response graph filters are expressible as matrix polynomials of the
shift operator

K
Y =Hprx for Hgg = Z HS"
k=0

with frequency response given by

K
her(4,) = Z ¢k/1;{f
k=0

Delft University of Technology
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FIR graph filters

Finite Impulse response graph filters are expressible as matrix polynomials of the
shift operator

K
Y =Hprx for Hgg = 2 HS"

with frequency response given by

— e = — @ @ —— P ———

o r
/

~ number of parameters: @(K) 4‘
j

K
her(4,) = Z ¢k/1;{f
k=0

' computatlonal CompIeX|ty @(MK)

Delft University of Technology
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FIR graph filters

x®) = Skx

shifted graph signal

x(t—17) =727 "x(2)
time-delayed signal

Delft University of Technology
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FIR graph filters

FIR graph filter

K
xh) = Qkx y = Z $,x®
shifted graph signal k=0

FIR time-domain filter

L
x(t — 7) = 27x(f) (1) = ) h(Dx(t — 1)
7=0

time-delayed signal

Delft University of Technology
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FIR graph filters

FIR graph filter

K
x©) = Skx y = Z Prx
k=0

shifted graph signal carries the notion of

FIR time-domain filter convolution

!

= (shift-and-sum)
X(t — T) — Z_T)C(t) y(t) — Z h(T)X(t — T) [graph convolution neural networks]
7=0

time-delayed signal

Delft University of Technology
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FIR graph filters

K K
y=Hgpx= ) 4S8 =) ¢x®
k=0 k=0

Delft University of Technology
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FIR graph filters
y = Hpppx = kz‘a hS'x = kZ‘a e

sum of shifted versions of
graph signal

Delft University of Technology
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FIR graph filters
y = Hpppx = ,Za hS'x = kZ‘a e

sum of shifted versions of

Example: y = ¢oX + ¢;SX + ¢,S°x graph signal
xgl) — Z S| ﬂ{gO)
JEN;
2) _ (1)
bo i = Z Sli,j;
JEN;

yi = bzt + 1t + poz?

Delft University of Technology
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FIR graph filters

K
Hig 2 ) 48t
k=0

@ Efficient and distributed implementation
(k) _ (k— 1) _
L; = Zjej\/i [S]iajx] k=1,2,...,K

@ Computational and communication cost of O(MK)

® Good approximation requires high filter orders

Delft University of Technology
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FIR design

Minimization of error frequency-domain

K / design

7 k

en T hn o Z ¢k/1n
k=0

Delft University of Technology
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FIR design

Minimization of error frequency-domain

/ design

Delft University of Technology
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FIR design

Minimization of error frequency-domain

/ design

alternative data-driven
design

Delft University of Technology
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FIR design

® Chebyshev [shuman'11, Dcoss)

o0 K
h) = ) L)~ Y, ¢T(A)
k=0 k=0

4 T,(4) : modified Chebyshev polynomials; orthogonal over desired range

4 Closed form expression for {¢; };,_

Delft University of Technology
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ARMA graph filters

Autoregresive moving average graph filters implement a fractional matrix
polynomial of the shift operator

P -1 , Q
Y = Hy\gvaX for Hrma = (I — Z Wpsp> ( Z C”qsq)

with frequency response given by

Isufi, Loukas, Simonetto, Leus, Autoregressive Moving Average Graph Filtering, IEEE Transactions on Signal Processing, 2017

Delft University of Technology
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ARMA graph filters

Autoregresive moving average graph filters implement a fractional matrix
polynomial of the shift operator

P -1, 0
Y = HygmaX for Hrma = (I — Z Wpsp> ( Z Cﬂqsq)

with frequency response given by

|

|

~ 1

harma(4,) = ”‘
computational complexity: O(M) per it.

— __l]

e —— = e —

Isufi, Loukas, Simonetto, Leus, Autoregressive Moving Average Graph Filtering, IEEE Transactions on Signal Processing, 2017

Delft University of Technology
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ARMA graph filters

x®) = Skx
shifted graph signal

x(t—1) =277 "x(2)

time-delayed input signal

Delft University of Technology
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ARMA graph filters

ARMA graph filter

O P
<0 = Skx y(O = Z P XD + 2 .y P
shifted graph signal g=0 p=1 P

ARMA time-domain filter

L R
-D=2x0 YO =) h@x(t—1)+ Y gkt — K
7=0 k=1

time-delayed input signal

Delft University of Technology
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ARMA graph filters

ARMA graph filter not easy
0 P /to implement
k) _ Qk 0) _
<0 = Skx y(O = 2(ka(Q)+2vjpy(p)
shifted graph signal g=0 p=1

requires shifted
version of the output

~

L R
i-D=2x0 YO =) h@x(t—1)+ Y gry(t — K
=0 k=1

time-delayed input signal \

easy to implement

ARMA time-domain filter

Delft University of Technology
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ARMA graph filters

P -1, 0
H\rma = (I — Z Y,S" ) ( Z Cﬂqsq)
qg=0

p=1

© Stability is guaranteed by invertibility

© Good approximation for low filter orders &

© Exact solution for denoising/interpolation/diffusion
® Filter design is more involved than for FIR &)

® Does not admit trivial efficient/distributed implementation

Delft University of Technology
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ARMA implementation
H rva = (I - ZP: pr’”> B ( Zi: cﬂqu)

p=1

® Moving average part: similar to FIR
@ Autoregressive part:
4 Gradient descent [shi'15, sPL][Loukas'15, SPL]

4 Conjugate gradient [L1v'17, GlobalsiP]

4 Any other Krylov-based inversion can be used

Liu, Isufi, Leus, Filter Design for Autoregressive Moving Average Graph Filters, IEEETransactions on Signal and Information Processing over Networks, 2019

Delft University of Technology
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ARMA implementation
H rva = (I - ZP: pr1’) B ( Zi: cﬂqS‘])

p=1
® Distributed methods: (Jacobi)

@ Parallel or serial implementation of heat kernel

yt+1 — l//Syt + §0X
® Direct implementation

P Q
yt — = Z vjpspyt—l T Z goqsqx
p=1 g=0

Isufi, Loukas, Leus, Autoregressive moving average graph filters a stable distributed implementation, IEEE ICASSP, 2017

Delft University of Technology
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ARMA implementation

P -1, 0
Hrma = (I — Z Y, ) ( Z %Sq)
qg=0

p=1
® Distributed methods: (Jacobi)

i-“
|

® Parallel or serial immplementation of heat kernel  cost per iteration

(
|

Y1 = l//Syt T @X OM) *

|

® Direct implementation

Y+ Y eS| Omap 0IM) |
p=1 q=0

L R J
Isufi, Loukas, Leus, Autoregressive moving average graph filters a stable distributed implementation, IEEE ICASSP, 2017

e

e

Delft University of Technology
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ARMA design
frequency-domain

Minimization of error / design

Liu, Isufi, Leus, Filter Design for Autoregressive Moving Average Graph Filters, IEEE Transactions on Signal and Information Processing over Networks, 2019

Delft University of Technology
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ARMA design
frequency-domain

Minimization of error / design

® Prony’s method

=) ¢ =ha-f

modified error

Liu, Isufi, Leus, Filter Design for Autoregressive Moving Average Graph Filters, IEEE Transactions on Signal and Information Processing over Networks, 2019

Delft University of Technology
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ARMA design

Liu, Isufi, Leus, Autoregressive moving average graph filter design, IEEE GlobalSIP, 2017

Delft University of Technology
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ARMA design

modified error iIs linear

LRUA ) —
» e'=i1°a—ﬂ

Liu, Isufi, Leus, Autoregressive moving average graph filter design, IEEE GlobalSIP, 2017

Delft University of Technology
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ARMA design e

modified error is linear ‘ p=Ep.19

LRUA — |

wp  minllheEp ) - Ep, 0l
17y

Liu, Isufi, Leus, Autoregressive moving average graph filter design, IEEE GlobalSIP, 2017

Delft University of Technology
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ARMA design S

; ) _ p—1 |
€ = hnan o :Bn | [_P+1 np /In ,
modified error is linear |

LU —

» e = il o (X — ﬁ S

alternative data-driven
design

Liu, Isufi, Leus, Autoregressive moving average graph filter design, IEEE GlobalSIP, 2017

Delft University of Technology



]
TUDelft

ARMA design

® [terative method

€ = (ilnan o ﬁn)yn’ Yn = llan

Liu, Isufi, Leus, Filter Design for Autoregressive Moving Average Graph Filters, IEEE Transactions on Signal and Information Processing over Networks, 2019

Delft University of Technology
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ARMA design _

|

.J a — =P+1w’ WO — 1

® [terative method

. p_=
for known ¥, = (0, = b)Yy 1w = Ve, h p 0+19

error is linear in{y, @ } — ‘ [E‘Q+1]n,q — /13—1 4‘
e=(hea—p)oy e —

Liu, Isufi, Leus, Filter Design for Autoregressive Moving Average Graph Filters, IEEE Transactions on Signal and Information Processing over Networks, 2019

Delft University of Technology
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ARMA design e

® lterative method | (=

7 | _
for known }’, €n (hnan ﬁn)yrv Vn /Cln O+1

error is linear in{y, @} —— A [Epi1lng = /If{_l h
e=(hoa—p)oy -

» min ||y;_; ° [il ° (EP+1‘I/i = EQ+1€0i)] H%
Y@,

Liu, Isufi, Leus, Filter Design for Autoregressive Moving Average Graph Filters, IEEE Transactions on Signal and Information Processing over Networks, 2019

Delft University of Technology
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ARMA design results

Approximate an ideal filterwithS =L ,A. =1, P+ Q0 <K

e.g., graph spectral clustering [Tremblay’16, ICASSP]

1 02 | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
10
n b ea v sy O T
o _
S 107
7 —»—Prony's project
104 L —&—Prony's LS
—o—FIR Y
—e— [terative approach R 18]
1 0-6 | ] ] ] ] ] ] | ] ] ] | ] ] ] | ] ] ] ] ]

234567 8910011121314151617181920212223242526272829 30
K

Delft University of Technology
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Beyond classical graph filtering

Delft University of Technology
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FIR and lIR extensions

® Node-varying graph filters and edge-varying graph filters
[Segarra’17, TSP] [Coutino’17, CAMSAP]

Delft University of Technology
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FIR and lIR extensions

® Node-varying graph filters and edge-varying graph filters
[Segarra’17, TSP] [Coutino’17, CAMSAP]

® Edge-varying for both FIR and ARMA graph filters [Coutino’19, TSP

Delft University of Technology
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FIR and lIR extensions

® Node-varying graph filters and edge-varying graph filters
[Segarra’17, TSP] [Coutino’17, CAMSAP]

® Edge-varying for both FIR and ARMA graph filters [Coutino’19, TSP

® Nonlinear graph filters
4 Weighted median graph filters [Segarra’16, Globalsip]

4 Activation functions (graph CNNSs) [Bruna’13]

Delft University of Technology
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FIR graph filters

Example: y = ¢OX + ¢1SX + ¢ZSZX

Delft University of Technology



FIR graph filters

Example: y = ¢OX + ¢1SX + ¢ZSZX

2
S x $§0) —
1 0
> v =[Sl
JEN;
2 1
b 7 =D [Sliay”
JEN;

yi = bz + drat + ozl

Delft University of Technology

]
TUDelft




]
TU Delft

FIR graph filters

K
Ho 2 ) ¢St
k=0

@ Efficient and distributed implementation &

k k—1
o) =3 [Sliat Y k=12, K

(2

k
Yi = Zf:o ¢kx§ )

® Computational and communication cost of O(MK)) &

@ Linear in scalar coefficients { ¢, } &

® Good approximation requires high filter orders &

Delft University of Technology
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Node-varying graph filters

Example: y = diag(¢,)x + diag(¢h,)Sx + diag(¢h,)S*x

Delft University of Technology
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Node-varying graph filters

Example: y = diag(¢,)x + diag(¢h,)Sx + diag(¢h,)S*x

X
CL‘EO) — Xy
k k—1
5[35 ) = Z [5]235’3§ )
JEN;

Yi = [Cbo]z’xfgo) + [¢1]ix§1) T [CbQ]ixEQ)

Delft University of Technology
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Node-varying graph filters
Hyy = Z diag{¢,}S"
k=0

@ Efficient and distributed implementation

ZU(O) — Xy
k k—1
o =3 Sl Y k=12, K

K k
Yi = Zk:0[¢k]iﬂ3§ )
@® Computational and communication cost of O(MK)

@ Specializes to classical graph filter &

@ Linear in vector coefficients {¢, } &

Segarra, Marques, Ribeiro, Optimal Graph-Filter Design and Applications to Distributed Linear Network Operators, IEEE Transactions on Signal Processing, 2017

Delft University of Technology
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Edge-varying graph filters

W @, same supportas S + 1
Example: y = @ x + ®, P x + O, D, DX

Delft University of Technology
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Edge-varying graph filters

W @, same supportas S + 1
Example: y = @ x + ®, P x + O, D, Dx

(I)lX (]:)Q(I)lX (]:)3(]:)2(]:)1X

j> 1) = > By ;2

yi=a; +ay ;)

Coutino, Isufi, Leus, Advances in Distributed Graph Filtering, IEEE Transactions on Signal Processing, 2019

Delft University of Technology
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Edge-varying graph fllters
HEV — Z H(I)l

k=1 [=1

@ Efficient and distributed implementation &
(0)

_‘/L.’L

k k—1
(> Zej\/k[(I)k] ,3135 ) kzl,Z,...,K
Zk: 1$()

@ Computational and communication cost of O(MK) &

@ Specializes to classical and node-varying graph filter &

® Non-linear in matrix coefficients {®, } &

Delft University of Technology
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Constrained edge-varying graph filter

— @, same supportas S + I
Example: y — (I)IX -+ (I)ZSX —+ (I)3SZX

Delft University of Technology
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Constrained edge-varying graph filter

— @, same supportas S + I
Example: y — (I)IX -+ (I)2SX —+ (I)3SZX

X 2
x,go) — X
k k—
¢> ¢> w =Y [Sligay
JEN;

= = -~

P, x P (:[)382X\ 4
k 2 : i k—1
yf) [ k‘]’i,j:[§' )
\/ JENz

./

QSX
N\
Y
SN—
K@% =i

Coutino, Isufi, Leus, Distributed edge-variant graph filters, IEEE CAMSAP, 2017

Delft University of Technology
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Constrained edge-varying graph filter

K
A k—1
Hepy =S Z U
k=1
Efficient and distributed implementation &

Computational and Communlcatlon cost of O(MK) &

Specializes to classical and node-varying graph filter &

Linear in matrix coefficients {®, |} &

Delft University of Technology
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Node-domain graph filter design

Filter response fitting

min |H - H(0)]|°

where

@ H is he desired filter response

@ || - || appropriate norm, e.g., Frobenius norm, spectral radius, etc.,

and HC, 0 = {¢k}

Hﬁt(®) = HNV’ O = {¢k}
Hepy, O = {D}

Delft University of Technology
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Node-domain graph filter design

Filter response fitting

min ||H — Hg(©)]|?

®
where min Z ly; — Hg(®@)x,]|°
~ O
® H is he desired filter response i
@ || - || appropriate norm, e.g., Frobenius norm, spectral radius, etc.,
and H., ©O=/{¢)

Hﬁt(®) — HNVa 0= {¢k}
HCEV9 0= {(I)k}

Delft University of Technology



Fitting graph frequency response

100 -_ I I I _
—O— (lassical FIR [K], Exponential Kernel -
-4 L ~O—aQ — =" NV FIR [K], Exponential Kernel _' :
10 ) O—Q [ C-EV FIR [K], gxponential Kernel ) EXpOnentlaI kernel
5 109} o T —3(1-0.75)°
of ® o h(/l) — ¢ 3(4—0.75)
Tk
10°1° | R | R
S 10 15 20
Filter Order [K]
100 : ' T T I :
oS S o —O—(lassical FIR [K], Low Pass I d | | f-I
K@.* Ri ©~o—0_g o — =" NV FIR [K], Low Pass ‘ ed OW'paSS | ter
R~ © S © 6 {—%— CEV FIR [K], Low Pass | |
107k T £
5 ! ~ 1 044
' h(A) =
: 0 otw
10"
0 0 Q) 10 15 20 25
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Filter Order [K]

= |[H — H ||/ H]|g
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unstructured data
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part 1 :: conclusions

® Graph signal processing is an exciting new tool set for processing
unstructured data

@ Graph filtering
- Applications: denoising, interpolation, distributed optimization, neural networks
- FIR and ARMA versions: simple (iterative) least squares design, efficient and/or
distributed implementations
® Advanced graph filters (discussed for FIR)
- Node-varying, edge-varying, constrained edge-varying
@ Edge-varying graph filters
- Most general form
- Reduction in communication and computational cost
- Constrained form allows for easy least squares design

Delft University of Technology



]
TU Delft

part 2

graph filters for distributed
optimization [1]
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part 2 :: overview

@ Introduction

- Distributed optimization

- Connection to graph filtering
@ Applications

- Average consensus

- Distributed imaging

- Distributed beamforming
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Distributed optimization
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Distributed optimization

N
min f(x) = ) ()
=1
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N
min f(x) = ) ()
=1

requires data exchanges within the network
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Distributed optimization

N
min f(x) = ) ()
=1

requires data exchanges within the network

T~

diffusions over the graph
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Distributed optimization

We focus on problems input data

/

N
x* £ arg minz 1Ay; X)
X =1
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Distributed optimization

We focus on problems input data

/

N
x* £ arg minz 1Ay; X)
X =l
where

x* = Hy

solution iIs a linear transformation
of the input data

Delft University of Technology
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Distributed optimization

Average consensus
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Distributed optimization

Average consensus Distributed imaging

min ) (¥, — &%)’
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Distributed optimization

Average consensus Distributed imaging Distributed Beamforming

min ), (v, — &%)’
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How to leverage graph filters for
distributed optimization?
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Goal: Implement known operation
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1,';UDeIft
Connection with graph filters

Goal: Implement known operation

INn a distributed manner. distributable

/ by nature

Approach: Approximate H by means of graph filters

Delft University of Technology
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Global operator fitting

min |H - H(0)]|°

where H is the solution of a centralized optimization problem
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Global operator fitting

min |H - H(0)]|°

where H is the solution of a centralized optimization problem

® Only works if global solution is linear (quadratic problems)

® Two possible design approaches

4 A fusion centre designs the filter and distributes the coefficients

4 The nodes themselves carry out the filter design which requires
knowledge of the global operator and the total graph

Coutino, Isufi, Leus, Advances in Distributed Graph Filtering, IEEE Transactions on Signal Processing, 2019
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Some applications
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Average consensus

100 .o I l T T
: s .
\k\\g\ —O— C(lassical FIR [K], Consensus
* — 4 NV FIR [K], Consensus
N
LY —¥— C-EV FIR [K], Consensus
\® ‘ :
N Consensus matrix
QA= gk S -
— \ ) ~
6 R \°~e—e-e-e-e-e-e—o—0—-o—-0~a-§> H = llT/N
mq: e
LR T
Be ane SoC R S SRR S R SRR |
| N = 256
S 107 -
Community graph
10—3 1 | | I
0 5 10 15 20 25

Filter Order [K]
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Distributed imaging

: 2
min ||y — Gx|[5
X
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Distributed imaging

min ||y — GXH% Distributed optimization approach
X

T min Y Iyl - gxP

G — [gla gza LI gN]

Delft University of Technology



Distributed imaging

]
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min ||y — GXH% Distributed optimization approach
X . T 2
min ) |[y];— &/x
G — [gla gza ¢ ooy gN]

Delft University of Technology

Graph filtering approach

min
0,

11g — H/(O)||:

(G")

_ — [gla g29 c ooy gd]
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Distributed imaging

min ||y — GXH% Distributed optimization approach
X . T 2
min ) |[y];— &/x
G — [gla gza ¢ ooy gN]

Objective Error Versus lterations

10’

Dist. CVX Opt.
— CEV-GF
— NV-GF

Graph filtering approach

Objective Error Gap

o min [[1&] — H(®)|1%

___________ | 0
e | (GT) — [gla g29 IO gd]

10 20 30 40 50

0 100 200 300 400 500 600 700 800 900 1000
Number of lterations
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Distributed beamforming

Applying beaforming matrix

sensor array
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Distributed beamforming

Applying beaforming matrix Distributed optimization approach

y . min ||y — (WH)TXH%

X

sensor array

Delft University of Technology
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Distributed beamforming

Applying beaforming matrix Distributed optimization approach

min |ly — (W")"x]|3

X

Graph filtering approach

min [|W" — H(®)|s
©

sensor array

Delft University of Technology
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Distributed beamforming

100 : | | | |
f
N If\
-1 ||
107 F (N :
= |
=,
Pt
O
=
@
Q.
1072 | -
— — Desired Beampattern | -
— Beampattern Hev
— Beampattern Hnv
1 0-3 | | | | | | |
-200 -150 -100 -50 0 50 100 150 200

DoA [“]
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part 3

graph filters for distributed
optimization[2]
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® Asynchronous implementation
- Classical results
- Results for classical graph filters
- Extension to more advanced graph filters
- Results
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part 3 :: overview

® Asynchronous implementation
- Classical results
- Results for classical graph filters
- Extension to more advanced graph filters
- Results
® Cascaded implementation
- Motivation
- Cascaded problem formulation
- Right-left iterative fitting (RELIEF)
- Results for average consensus

Delft University of Technology
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What about unsynchronized
networks?
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Asynchronous graph filtering

® Many applications require to compute, e.g., the beamforming

target

'
y = Wix ~ H(O)x )i\ B
distributively over an unsynchronised network. response

------

distributed g
asynchronous

Sensor array

Delft University of Technology
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Asynchronous graph filtering

® Many applications require to compute, e.g., the beamforming

target

YA
y = W'x ~ H(O)x T a
distributively over an unsynchronised network. response

------

® Suppose we want to use general graph filter operations

E : — A Z _ oy
HB é I— (:D]{,bsk L HA — (I — (I)]@ask 1> distributed g
k=1

asynchronous
k=1 sensor array
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Asynchronous graph filtering

® Many applications require to compute, e.g., the beamforming

YA
y = Wix ~ H(O)x )i\

target

desired

distributively over an unsynchronised network. response

------

® Suppose we want to use general graph filter operations

§ — A 2 : _ R
HB é I— (Pk,bsk L HA — (I — (I)k,ask 1) distributed g

asynchronous
k=1 k=1 sensor array

Under which conditions is possible to implement the operator in the network?

Delft University of Technology
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Asynchronous graph filtering

@ Classical results. Asynchronous implementation of the recurrence
Y1 =Y, + (X — CYt) (splitting method)

convergence under mild conditions on C.
[D. Chazan,’69][D. Bertsekas,’83][Y.Saad,’ 03]

Delft University of Technology
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Asynchronous graph filtering

@ Classical results. Asynchronous implementation of the recurrence

yt_|_1 — yt + (X — CYt) (splitting method)

convergence under mild conditions on C.

@ Recent results for classical GF. Asynchronous implementation of a GF

y = p(78)(¢(vS)) " x ) = 3

convergence under mild conditions on matrices involved. g(z) =14 ) gz’

Delft University of Technology
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Asynchronous graph filtering

® From the model
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Asynchronous graph filtering

® From the model

consider the partial output of the graph filter operation

ya = HpX
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Asynchronous graph filtering

® From the model

consider the partial output of the graph filter operation

ya = HpX

which can be written as the solution to the linear system

K
(I - Z (I)kSk_l)yA = X
k=1

Delft University of Technology
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Asynchronous graph filtering

This system can be solved with the recursion

Y41 = X + By,
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Asynchronous graph filtering

This system can be solved with the recursion

Y41 = X + By,

which converges to Yo, = HAX if

»(B) < 1
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Asynchronous graph filtering

This system can be solved with the recursion

Y41 = X + By,

which converges to Yo, = HAX if

% (B) <1 Requires several

exchanges before update!
K /

However, B = Z (I)kSk IS not suitable for asynchronous operation.
k=0

Delft University of Technology
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Asynchronous graph filtering

Instead, consider the kth shift of the recurrence vector

y® = Sylk=D
[

Delft University of Technology
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Asynchronous graph filtering

Instead, consider the kth shift of the recurrence vector
(k) — Sy(k 1)

stacking the vectors {y () K- k_O in ¥, we obtain the extended recurrence equation

_ Analogous to

X b, P, .- P [/ companion matrix for
linear recursive
0 S 0 sequences

Delft University of Technology
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Asynchronous graph filtering

Instead, consider the kth shift of the recurrence vector
(k) — Sy(k 1)

stacking the vectors {ygk)} o N ¥, we obtain the extended recurrence equation

X (I)l (I)Q s (I)K
0 S 0
Y1 — T Yi+1
0 S 0
=X+ Bytﬂ

the recurrence asymptotically converges if p(B) < 1.

Delft University of Technology



1("U Delft
Asynchronous graph filtering

® For the inexact synchronous recurrence

yi;;l =X+ By, +vV,
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Asynchronous graph filtering
bounded

® For the inexact synchronous recurrence perturbations, e.g.,
fixed-precision

yi;;l =X+ By, +vV,

HVZH Sﬁav e N

Delft University of Technology
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Asynchronous graph filtering
bounded

® For the inexact synchronous recurrence perturbations, e.g.,
fixed-precision

HVZH S ﬁ?v l E N
under conditions

Delft University of Technology



Asynchronous graph filtering

® For the inexact synchronous recurrence

]
TU Delft

bounded
perturbations, e.g.,
fixed-precision

HVZH Sﬁav e N

under conditions

e g
 Iim [ = yall < ‘*
[— 00 ]I — 4

—l

—_— —_— == —_— = = e = = = = == == e

recurrence asymptotically converges within a norm ball

Delft University of Technology
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Asynchronous graph filtering
bounded

® For the inexact synchronous recurrence perturbations, e.g.,
fixed-precision

HVZH S ﬁ?v l E N
under conditions

<1 e 1 . — (I)
C psl ymegrsl e o 19

N I R — exact convergence
| ﬂ in noise-free case
| , B |

O 1im [ = yall < |
[— 00 ] — 4 }

e ———— — — —— ——

recurrence asymptotically converges within a norm ball

Delft University of Technology
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Asynchronous graph filtering

@® For the asynchronous recurrence

y:., =[ZX+ZBy] + [ - Z)y’]

(updated entries) (unchanged entries)
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Asynchronous graph filtering

@® For the asynchronous recurrence

5’?“ — [Zti 1 ZtBy?] T [(I — Zt)y?

(updated entries) (unchanged entries)

Z. = diag(w,) € {0,1 }KN<EN

(update-selection matrix)

Delft University of Technology
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Asynchronous graph filtering

@® For the asynchronous recurrence

y:., =[ZX+ZBy] + [ - Z)y’]

(updated entries) (unchanged entries)
: 0 K-1
7, = diag(w,) € {0,1}KNXKN w,=[(w)T, .., (w=D)T]T
(update-selection mattrix) (kth shift update selection)

Delft University of Technology
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Asynchronous graph filtering

@® For the asynchronous recurrence

Sa = D Ga Sa
yt+1 — [ZtX + ZtByt] + [(I — Zt)Yt not all memory
entries are
(updated entries) (unchanged entriej)/ updated
7, = diag(w)) € {0,1 }ANXKN w,=[(W)T, . (wED)TT
(update-selection mattrix) (kth shift update selection)

Delft University of Technology



1,';U Delft
Asynchronous graph filtering

@® For the asynchronous recurrence

y?_|_1 — [Zti 1 Ztﬁy?] + [(I T Zt)y?] not all memory

entries are
(updated entries) (unchanged entriej)/ updated
Z. 2 diag(w) € {0,1 }KN¥KN w, = [(W)T, . (wE=IHT]T
(update-selection matrix) (kth shift update selection)

with

D [2),>0 & C

=0
(sufficiently exciting condition)
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Asynchronous graph filtering

@® For the asynchronous recurrence

y?_|_1 — [Zti 1 Ztﬁy?] + [(I T Zt)y?] not all memory

entries are
(updated entries) (unchanged entriej)/ updated
Z. 2 diag(w,) € {0,1 }KN<KN w, = [(Ww)T, ., wE=IHT]T
(update-selection matrix) (kth shift update selection)
with
recurrence

o0
Z [Z,];, >0 & C
=0
(sufficiently exciting condition)
Coutino, Leus, Asynchronous Distributed Edge-Variant Graph Filters, IEEE DSW, 2019

asymptotically converges

Delft University of Technology
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Asynchronous graph filtering

® Let a network perform the filtering operation
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Asynchronous graph filtering

® Let a network perform the filtering operation

If conditions

D I(2],>0 & C
=0

are met for the matrices involved in H ,
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Asynchronous graph filtering

® Let a network perform the filtering operation

If conditions

D I(2],>0 & C
t=0

are met for the matrices involved in H ,

then the asynchronous implementation of H(®) converges to ysp.

Coutino, Leus, Asynchronous Distributed Edge-Variant Graph Filters, IEEE DSW, 2019

Delft University of Technology
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Asynchronous graph filtering

Example: ARMA CEV-GF

1 3
H=HgH, =[) ¢S1) &S
[=0 k=1

—— Sync (Ext)

— Async : 7 =0.1 -

— Async (Ext)7=0.3 | -

— Async (Ext)7 =0.5 | - _

— Async (Ext)7=0.7 | . p(H) — 2048
Async (Ext)7=0.9 | |

= = JSync (Simple)

\ T : synchronization rate

pan
—_— —_— _— —_— _— L L L —_— —_— _— —_— _— L L L —_— —_— _— L

107 T

10-10 B

1071°

0 200 400 600 800 1000
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Asynchronous graph filtering

Example: ARMA CEV-GF

1 3
H=HgH, =[) ¢S1) &S
[=0 k=1

\ I I I— Sync (Elxt)

— Async : 7 =0.1 -

— Async (Ext)7=0.3 | -

— Async (Ext)7 =0.5 | - _

— Async (Ext)7=0.7 | . ,U(H) — 2048
Async (Ext)7=0.9 | |

= = JSync (Simple)

\ T : synchronization rate

pan
—_— —_— _— —_— _— L L L —_— —_— _— —_— _— L L L —_— —_— _— L

non monotone
convergence

10-10 B

1071°

0 200 400 600 800 1000

Delft University of Technology
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How to deal with large
graph filter orders?
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Cascaded graph filter implementation

® For large graph filter orders K

finding ® for H(®) becomes severely ill-conditioned.
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finding ® for H(®) becomes severely ill-conditioned.

Imost shift operators have poor spectral qualities]
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Cascaded graph filter implementation

® For large graph filter orders K

finding ® for H(®) becomes severely ill-conditioned.

Imost shift operators have poor spectral qualities]

Cascaded Graph filters

Limits order of GF and use it as a building block (module)

Q
7S;0) 2 | [H@®©)
=1

Coutino, Leus, On Distributed Consensus by a Cascade Of Generalized Graph Filters, Asilomar, 2019
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Cascaded graph filter implementation

® For large graph filter orders K

finding ® for H(®) becomes severely ill-conditioned.

Imost shift operators have poor spectral qualities]

Cascaded Graph filters /

Limits order of GF and use it as a building block (module)

Connections
with GNNs

Q
7S;0) 2 | [H@®©)
=1

Coutino, Leus, On Distributed Consensus by a Cascade Of Generalized Graph Filters, Asilomar, 2019
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Cascaded graph filter implementation

Q
7(S;0) 2 [ |H®©)
=1

H(O,) H(Bq)

1= == T

| | I -

I I | 1 .

[ | [ |

| | [ 1
—-,' : ® o o : :—-—>j

| ! l Y

| | [ |

| | ! |

| CEV | :CEv:

_GF _, _GE _,

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

4 This implementation aims to
* Improve conditioning of design problem

* reduced-sized optimization problems
» obtain better performance with a reduced order

Delft University of Technology
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Cascaded graph filter implementation

Q
7(S;0) 2 [ |H®©)
=1

H(O2) H(®a)
L T
| I | [
| | | | .
| | | |
— e o o | —
! | ! v Y
| I | I
| I |
| CEV | : CEV :
_GF _| 1 GE _y
4 This implementation aims to
 improve conditioning of design problem However, this leads to a
_ o non convex design problem
» reduced-sized optimization problems )

» obtain better performance with a reduced order

Delft University of Technology
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Cascaded graph filter implementation

® Cascaded graph filter parameters can be found by the nonconvex problem

(@12 = argmin |H(S,0) - H*|
{@i}iQ:1

S.1. @z EC@,ViE{17-°'7Q}

similar to the approach for learning parameters of GNNSs.

Delft University of Technology
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Cascaded graph filter implementation

® Cascaded graph filter parameters can be found by the nonconvex problem

{©;}1, = argmin |[1(S,0) - H'| constraints, 6.9,
(@12 interval

S.1. @z EC@,ViE{17-°'7Q}

similar to the approach for learning parameters of GNNSs.
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Cascaded graph filter implementation

® Cascaded graph filter parameters can be found by the nonconvex problem

{©;}1, = argmin |[1(S,0) - H'| constraints, 6.0,
(@12 interval

s.t. ©; €(C;,V1 & {1,...,@}
similar to the approach for learning parameters of GNNSs.

@ Alternatively, we can perform a sequential refitting process using a partition

H(S, @) — H]MHr

Q—1
H, = H(O,) M= [ H®,) H, = H(©))
q=2

which exploits the sparsity of the involved matrices.

Delft University of Technology
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Cascaded graph filter implementation

@ For fixed H.and M the design for H, is given by

arg minHﬂlgq — VeC(H*) ||2 [linSparseSolve]
Hq

Q2 H M )P
T2 (1D, STend, - (SHE oD :J selection matrix for

nonzero entries of @,

Delft University of Technology
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Cascaded graph filter implementation

@ For fixed H.and M the design for H, is given by

arg minHﬂlgq — VeC(H*) H2 [linSparseSolve]
Hq

Q2 H M )P
T2 (1D, STend, - (SHE oD :J selection matrix for

nonzero entries of @,

4 Q, accepts efficient memory storage

<4 preconditioner for Ql can be obtained if its constructed explicitly
4 Otherwise, !21 can be computed as an operator, I.e., matrix-vector operation

Delft University of Technology
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Cascaded graph filter implementation

@ For fixed H.and M the design for H, is given by

arg minHﬂlgq — VeC(H*) H2 [linSparseSolve]
Hq

Q2 H M )P
T2 (1D, STend, - (SHE oD :J selection matrix for

nonzero entries of @,

4 Q, accepts efficient memory storage

<4 preconditioner for Ql can be obtained if its constructed explicitly
4 Otherwise, !21 can be computed as an operator, I.e., matrix-vector operation

Linear solver exploiting such characteristics are readily available

Delft University of Technology
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Cascaded graph filter implementation

® Borrowing ideas from RELAX we fit { H , H,} until convergence.

4 as M is not included, sparsity of the system is preserved.

4 efficient sparse solvers can be used for each matrix

<4 under mild conditions, two-block coordinate descent converges.

Delft University of Technology
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Cascaded graph filter implementation

® Borrowing ideas from RELAX we fit { H , H,} until convergence.

4 as M is not included, sparsity of the system is preserved.

4 efficient sparse solvers can be used for each matrix

<4 under mild conditions, two-block coordinate descent converges.

Algorithm 2: refitPair Routine
Result: (60,.0,) : filter parameters
Input: H*, W, H,, H,, M, maxlt, ¢
initialization: numlIt = 0, h™ = vec(H");
while (¢ > €1,1) & (numlt < maxIt) do

numlt = numlt + 1:
H, «+ linSparseSolve([I ® HM|¥, h"):

H, « linSparseSolve(([H M' @ I|¥,h*);
¢ « |H\MH, — H"||%:

end

Delft University of Technology
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Cascaded graph filter implementation

® Summary of the procedure :: Right-Left lterative Fitting [RELIEF]

Algorithm 1: RELIEF Algorithm

Result: {0;}.c (¢ : filter parameters

Input: H™, ¥, (), €,

initialization: 8; = 0Vie€ [Q],¢q=0,M = H, = I,
h* = vec(H");

while (¢ > ¢101) & (¢ < Q) do

q=q-+1;

H, + linSparseSolve([H] M" @ I|¥, h*);

if ¢ > 1 then

(H,,H,) +
refitPair(H", W, H,,H,, M, ¢));

M « H,M

end
Htotal — MHI;

€ ”Htotal - H*”%‘s

end

Coutino, Leus, On Distributed Consensus by a Cascade Of Generalized Graph Filters, Asilomar, 2019
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Cascaded graph filter implementation

Example: Consensus over a network with 500 nodes

107!

Error

\\ y y y y y
N\ N\ N\ N\ N\ N\

10 20 30 40 50 60
Communications

X Cascade CEV-GF

Delft University of Technology
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part 2 & 3 :: conclusions

® Graph signal processing arises as an alternative for distributed optimization
- Significant benefits in terms of communication efficiency
- Applications: distributed consensus, distributed imaging, beamforming
- Requires knowledge of the data transformation
- Data transform must be linear and data independent

Delft University of Technology
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part 2 & 3 :: conclusions

® Graph signal processing arises as an alternative for distributed optimization
- Significant benefits in terms of communication efficiency
- Applications: distributed consensus, distributed imaging, beamforming
- Requires knowledge of the data transformation
- Data transform must be linear and data independent

® Asynchronous graph filter is possible under mild conditions
- Results hold for classical, node-varying, constrained edge-varying graph filters
- For node-varying and constrained edge-varying filter order is critical
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part 2 & 3 :: conclusions

® Graph signal processing arises as an alternative for distributed optimization
- Significant benefits in terms of communication efficiency
- Applications: distributed consensus, distributed imaging, beamforming
- Requires knowledge of the data transformation
- Data transform must be linear and data independent
® Asynchronous graph filter is possible under mild conditions
- Results hold for classical, node-varying, constrained edge-varying graph filters
- For node-varying and constrained edge-varying filter order is critical
® Cascaded graph filters alleviates ill-conditioning of large filter orders
- Allows for an efficient sparse least squares design
- Reduction in communication and computational cost
- Implements only linear data transformations

Delft University of Technology
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part 4:: overview

® Role of graph filters in graph neural networks (GNNs)

¥ GNNSs ~ nonlinear graph filters

® For simplicity will discuss supervised learning

® How to go from neural networks to GNNs?

® Types of GNNs
¥+ What are graph convolutional neural networks?
¥ How use edge varying GNNs?

® How to use GNNSs for graph signal processing applications?

® For GNN pooling, transferability, and applications in control and resource allocation

¥ T-9: Graph Neural Networks (F. Gama and A. Ribeiro)

Delft University of Technology
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Why we use filters in neural networks?

Delft University of Technology



Supervised learning

® Relies on a dataset of R training examples
‘% — {(Xla )’1), (X29 }72), JO (XRa yR)}

4 X the rth input data in space X

4 v. the rth output data in space % (labels)

@ Goal: learn a function / that maps X, to y,

® we want f parametric: f(0)) : X — Y

Delft University of Technology
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Supervised learning

® Deign parameters @ such that

¥ minimize a cost distance between f(@,x ) and y, (e.g., MSE)

1 2
minimize— E (f0.x,) —,)

¥ generalize well for test data X, & X

Delft University of Technology
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Neural networks

® Express function / as a cascade of layered functions

f0.x) = f0°,140°.1 0", x)))

'\\ layer 1: parameters 0!
" _ 2
@ No structure in the data; perceptron layer 2: parameters

layer 3: parameters 6

Y1

y = o(Wx + b)
Y2

® Parameters @ = {W, b} ReLU(x) = {x x>0
73 ® Pointwise nonlinearity o( - ) 0 otw

Delft University of Technology
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Neural networks

® No structure In the data: multi-layer perceptron

4Improves expressivity

@ Input features x" = X,

L

® QOutput features X
® Propagation rule at layer [

X X X
0 | 2 _1 .
x'~1 : input layer [ = output layer [ — 1

x! = g(Wle—l + bl) x| output layer [
0! = {W' b'}: parameters layer

Delft University of Technology
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Neural networks

® Unrolling recursion x* = o(Wixt~1 4+ bt

G(WLXL_1 + bL)
o(Who(WEIxE=2 4 b1 + bt
U(WLG(WL_ld(...G(Wlxo + bo) + bL_l) + bL)

XL

X)) X X5 . 0 N
® X"~ depends on X" through a composition of
linear functions and pointwise nonlinearities

Delft University of Technology
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Neural networks

®MLP fails in high dimensional data x' = o(W/x"~! + b)
4 if layers have dimensions dim(x’) = dim(x'~!) ~ O(N)
. dim(Wl) ~ @(NZ) parameters, e.g., N = 1000 — @(106)
* complexity O(N?)

® heed to exploit structure in data

Delft University of Technology
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Neural networks

@ structure in data
4spatial data: pixel neighbors
*temporal data: signal proximity
® reduce parameters by effective sharing
® reduce complexity by efficient implementation

@® use spatial and temporal filters

¥ no loose of discriminatory power

Delft University of Technology
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Filters In spatial convolutional layer
® MLP propagation rule X' = (7(Wlxl_1 + bl)

® Spatial data: spatial convolution filter bank substitutes w!

<4 filters apply the same parameters to different locations

4 bias b’ can be ignored or shared b’ = b1

filter later [ filter later [

input later [ output later / input later output later /

Delft University of Technology
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Filters In spatial convolutional layer

@ shift-and-sum convolves filter with input image

filter later [

vertical and horizontal
- / input shifts
- - [ l 1
yl] I"C [— I"] C
— = 7'—1 C—

input later output later /

@ spatial FIR convolutional filtering

Delft University of Technology
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Convolutional neural networks

® CNNs increase descriptive power with a parallel filter bank

4 input I images

4 process each with a parallel bank of filters
<4 sum filter outputs to obtain higher-level features

4 parameters are filter coefficients

4 train with back propagation
input layer [ output layer!

has 4 inputs has 2 outputs

Delft University of Technology
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CNN full stack

® Cascade of spatial filter bank and nonlinearities

]

_ convolution + pooling fully connected
Benefits

@ Parameters - independent on the image dimensions
® Complexity - spatial convolution (efficient)

Delft University of Technology
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What about data on graphs?

Delft University of Technology
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Learning from (ir)regular graph data

7>
23

N

@ Training samples X, € IR™" are graph signals

® Non-Euclidean structure

¥ conventional CNNs are inapplicable

®MLP can apply X' = o(Wx~! + b)

4 ignores the structure

4 data demanding

Delft University of Technology
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Learning from (ir)regular graph data

® Need a neural network solution to account
to account for coupling signal-topology ‘,/‘

@ Graph as prior to estimate a parametric function

HCA ) A4

4 S is the graph shift operator

4 0 trainable parameters (i.e., filter coefficients)

Gama, Isufi, Leus, Ribeiro, Graphs, Convolutions, and Neural Networks, IEEE Signal Processing Magazine, under review, arXiv: 2003.03777

Delft University of Technology
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Graph neural networks

® Graph neural networks substitute W! with graph filter bank

@® Propagation rule through graph filters
Xl — U(HZXZ_I)
o H graph filter at layer [ for any shift operator S
4 Edge-variant filter: EdgeNets

4 Node-variant filter: Node-variant GNNS (Gama'1g - Dsw

4 FIR filters: Graph convolutional neural networks|Gama'is - TSP
* Chebyshev form: ChebNets [Defferrard16 - NeurlPS]

4 ARMA filters: ARMANets
* Direct, parallel, cascade [Wijesinghe19 - NeurlPS] [Bianchi’19-arXiv]

» Cayley form: CayleyNets|lLevie'18 - TSP]

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

Delft University of Technology
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Graph convolutional neural networks

® Graph convolutional neural networks use a graph convolutional filter
(FIR - ARMA)

Example: FIR

Z lskll

@® parameters shared among all nodes and edges

® shift-and-sum convolves filter with graph signal

Gama, Marques, Leus, Ribeiro, Convolutional Neural Networks Architectures for Signals Supported on Graphs, IEEE Transactions on Signal Processing, 2018

Delft University of Technology
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Graph convolutional neural networks

® GCNN: shift-and-sum & shared parameters

= o(Pp)x' + pSx"1 + S %)

shift over the nodes

\

.=0( lll+¢1[SXl 1]+¢252ll])

Delft University of Technology
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Graph convolutional neural networks

® GCNN: shift-and-sum & shared parameters

= o(Pp)x' + pSx"1 + S %)

“ : %\:? ‘ shift over the nodes
T xl = o(Ppix™h + piISX' 1], + P ST,

Delft University of Technology
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Graph convolutional neural networks

® GCNN: shift-and-sum & shared parameters

= o(Pp)x' + pSx"1 + S %)

Xl
' % " @ " @ ' shift over the nodes
N \

7:/‘ xl.l=0(lll+¢1[lel]+¢25211])

Delft University of Technology
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Graph convolutional neural networks

® GCNNSs increase descriptive power with a parallel filter bank

S o /
/
H' S ye
/. <
. 7
Hl2 ® .o : o. ¢ ) _ _ -~
_ A _ [ 12
{x; '}o=1 U -7 Xy rfe
input layer { output layer {
has 4 inputs has 2 outputs
4 Finput graph signals {x=1}¥ -
put graph sig g Jo=1 4 sum filter outputs
4 process each signal with a graph filter 4 parameter are filter coefficients (backprop.)

Delft University of Technology
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Graph convolutional neural networks

® GCNNSs increase descriptive power with a parallel filter bank

\ ~~~~~
é S o ] . > l- T = o
K“/ \\\ ﬁ'/ &/éh/ X%ﬁ
I e RS I S | T 11
i\ A T A
w| T RS T I NS
3 L /
¥ b1y i il
H! - H! / -
[—114 ) 7}? /”’l 2 [—114 2 %/\D{ /I ,l 2
Xy tg=1 L -7 X =1 {x, " Fg=1 H, } 1Xf1=1

input feature

\ for all output features
output feature
\ F F K /
[ [ <I—1 ) __ [ Qlyl—1
X' = ( Hfgxg ) G(Zz¢kfgsxg )er{l,...,F}
=1

g=1 k=0

‘mall inputs FIR f‘hr

Delft University of Technology
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GCNN full stack

® Cascade graph filters and nonlinearities

®
®
®
®

\bb O
’

I
graph convolution fully connected

Benefits

@ Parameters O(KF’L) - independent on the graph dimensions

® Complexity O(KMF?L) - linear in number of edges

Delft University of Technology
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EdgeNet

® Substitutes FIR filters with edge-variant graph filter

® Propagation rule

xfg,‘l)‘v’fe (1,....F)

Edge-variant filter

® The most general GNN
4 Includes all GCNN, all ARMANet, GIN, GAT

Isufi, Gama, Ribeiro, Generalizing Graph Convolutional Neural Networks with Edge-Variant Recursions on Graphs, EUSIPCO, 2019.

Delft University of Technology



EdgeNet properties

@ Different parameters per edge and node
4 Order O(MKF~L)

4 More flexibility
4 Requires only the support of S

* Adapts the edge weights to the task

* Robust to uncertainties in edge weights

< Requires fewer parallel filters and shallower networks
4 Can overfit and require more data than GCNN (FIR-filters)

@ Complexity O(MKF’L) - depends on edges

]
TU Delft

(I>kx(k‘1)

/ N\

\*/

for kth iteration

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

Delft University of Technology
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How to use EdgeNets?

® The full form may sometimes overfit
4 Penalize coefficients to sparse (i.e., || ®]||)

4 Impose parameter sharing
* FIR : all nodes all edges same parameter
* Node-variant : all edges same parameter for a node
* Attention mechanism [velickovic’18 - ICLR]

* Hybrid : FIR + EV to particular nodes

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

Delft University of Technology
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How to use EdgeNets?

Example: Hybrid (FIR + EV)

[ Pr]21 °(\-/
/ 7\ (Pr]aa

[ Pr]31 b DL ]s1

\

 Nodes 2 and 7 use EV filter
* All other nodes use FIR filter

* More flexibility than GCNN
» Parameters independent on the graph dimensions

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

Delft University of Technology
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Where are GNNs useful?

Delft University of Technology
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Applications

@ Distributed finite-time consensus
@® Distributed regression
® Authorship attribution

® Recommender systems

® For control, resource allocation and other SP applications -9

® For semi-supervised learning, graph classification (wu2o -TnNLS]

Delft University of Technology
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Learning finite-time consensus

@® |Learn the consensus function for a specific graph

4 EV can do the job but all nodes need to know all graph
* Feasible only in small setups

222 -==.-!""'

lllll
=TI

Stochastic block model

N = 100 and C = 5 communities; graph signals x ~ A4(0, I)
1 Layer, FF = 32 features, shared FC (32 X 1) per node

—> MSE

( )

e S CIR
&

Graph signal: Kb

X = [Xq, oory Xy] - J L&

lancu, Isufi, Towards Finite-Time Consensus with Graph Convolutional Neural Networks, EUSIPCO 2020 (submitted)

—> (@0000)

N

Delft University of Technology
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Learning finite-time consensus

= . - —— FIR
A —— GCNN - ReLU/ /
1072 /
102 — - =
% \ % / -
— FIR : :
—— GCNN - RelLU
107 5 25 30 35 107,000 0.025 0.050 0.075 0.100 0.125 0.150
Filter Order Probability of edge removal
Consensus is strictly low pass » Train and test on different graphs
» Better performance for high orders + GCNN exploits better the connectivity
» Machine precision needs EV » GCNNs are better transferable

Levie, Isufi, Kutyniok, On the Transferability of Spectral Graph Filters, SAMPTA 2019.

Delft University of Technology
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Distributed regression

@ Retrieve signal distributively from noisy measurements

Molene weather dataset T\T
Build a graph between stations N = 32

Graph signal: 744 temperature recording
SNR = 3dB 1 layer; 4 features

2.4 — » Nonlinear architecture reduces RMSE
—— GCNN - RelLU
2.2 . . .
» 4 times more communications
2.0
215 » Regression more challenging than
1.6 classification
1.4 ! .
. il * Needs: more data/more graph prior
1 2 4 8

Filter Order
lancu, Ruiz, Ribeiro Isufi, Distributed Localized Nonlinearities For Graph Neural Networks, MLSP 2020 (submitted)

Delft University of Technology
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Authorship attribution

@ Attribute texts to an author « NN v |

Build a word adjacency network
N =190 -211

Graph signal: word frequency count

~ 1000 texts from the author of interest

~ 1000 from others

Delft University of Technology
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Authorship attribution (easier)

10 B GCNN
BN EdgeNet

8

6
4
2

U Thoreau Wharton Abbott Cooper Alcott James Jewett

» EV hyperparameters (K, F, L) taken from the FIR

Classification error %

» Parameter sharing is beneficial
| layer, K € [2,10], F € {16,32,64}

Delft University of Technology
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Authorship attribution (difficult)

Classification error

Architecture Austen Bronté Poe
GCNN 7.2(::2.0)% :_2.9(::3.5)% 14.3(::6.4)%
Edge varying 7.1(::2.2)% :_3.1(::3.9)% 10.7(::4.3)%
Node varying 7.4(::2.1)% :_4.6(::4.2)% :_1.7(::4.9)%
10% N Hybrid edge var. 6.9(£2.6)% 14.0(£3.7)% 11.7(4+4.8)%
.:)/V ARMANet 7.9(’::2.3)‘%‘ 11.6(’::5.0)“% :_0.9(::3.7)%

[@‘“]Q/’QW N |
[CI)k]?)l( w [(I’k]'TA )[@k]m 1 |ayer, F — 32, K — 4

» EdgeNet requires its own hypertunning
» Better for more difficult scenarios
» Subclasses of the EV can perform better depending on problem difficulty

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

Delft University of Technology
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Authorship attribution (explain)

@ Explain GNNs with EdgeNets

4 One layer EdgeNet with order K = 1 X% = 0((I)X(1))
4 Training the EdgeNet = learning graph weights
+ removed small weight edges = accuracy drop < 5 %

» Identifies most relevant function words per author

e © @
1 @ L.
tof@rd Y - v @ &/,
a r u CO ‘%l\ O ,@.
‘T{g‘er TO rd @
e g \\g®
Abbott James Jewett @ Melvile

- identify an author from 3 words

Delft University of Technology
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Authorship attribution

@ |ldentifying author gender from texts
4 No NLP: shallow and fast training, no pretraining/corpus

4 Graphs + signals from female and male authors in train - test

Classification error

EdgeNet GCNN EV-GCNN
Mean 8.6 % 10.1% 7.8 %
Std 6x10-3 6x10-3 5x10"-3
| layer architectures, F' = 64 \
Sparse WANs help classification Sparse EV shift operator + GCNN

Delft University of Technology



Recommender systems

@ Fill missing entries in a user-item matrix
Movielens 100K dataset U = 943; [ = 1,582

Build a similarity graph (principle of collaborative filter)

Item 1

Item 2

Item 3 | ...

Item I

User 1

5

1

?

2

User 2

?

?

3

3

]
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User 3 4 ? 4 ?
User U ? 4 3 1

user similarity graph

item similarity graph
nodes : users nodes : items

edges : Pearson/cosine similarity edges : Pearson/cosine similarity

between pairs of users between pairs of items

Delft University of Technology
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Recommender systems

® Here item similarity graph
subset of user ratings

N = 200 most rated items to build the graph

5
Item 1 Item 2 Item 3 Item I
2 Jtem k
User 1 5 1 ? 2
o Item 2
User 2 ? ? 3 3 |te m |
User 3 4 ? 4 ? #
ltem 1
?
User U ? 4 3 1
Item |

Graph signal : rating of user i to all items ltem 200

* Interpolation problem on graphs
Goal: find rating all users give to item i (fii ith column of matrix)

Delft University of Technology
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Recommender systems

® Use locality of the filters to build a GNN specific to item /

;N 7
ﬁ,(g _) O'
Graph signal ratmg Q@
X
X = 331, . .

Frame as signal classification problem per node 1 layer, 32 features

EdgeNet suffers in general -requires parameterization
Archit./Movie-ID 50 258 100 181 294 | Average

GCNN 0.82 108 095 0.86 1.04 0.95
Edge var. 0.93 1.03 1.00 0.38 1.24 1.02
Node var. 0.78 1.04 1.00 0.87 1.00 0.94

Hybrid edge var. 0.75 1.02 0.98 0.82 1.08 0.93

Delft University of Technology
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part 4 :: conclusions

® Graph filter are the building block of graph neural network (GNN)

4 Incorporate effectively the graph signal - graph topology into learning
4 Serve as a prior to reduce parameters and complexity

4 Graph convolutions through graph filters

@ Different filter = different graph neural networks

4 FIR = GCNNs

4+ ARMA = ARMANets

4 Edge varying = EdgeNets

Delft University of Technology
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part 4 :: conclusions

® EdgeNets provide the broadest GNN family
4 Particularize to all the others including GINs and GATs

4 Help explainability
® Applications in signal classification & regression
4 Authorship attribution

4 Recommender systems

Delft University of Technology
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GNN - next challenges

® More graph prior instead of more data
@ Explainabillity

4 What topological information is more relevant?
4 What spectral information is more relevant?

4 EdgeNet can be a strong tool in this regard

® Robustness/Transferability

4 To topological perturbations
4 To input perturbations
@ Distributed learning

4 Graph filters are distributable

Delft University of Technology
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part 4
graph neural networks

Delft University of Technology
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part 4:: overview

® Role of graph filters in graph neural networks (GNNs)
¥ GNNs ~ nonlinear graph filters

® For simplicity will discuss supervised learning

Delft University of Technology
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part 4:: overview

® Role of graph filters in graph neural networks (GNNs)
¥ GNNs ~ nonlinear graph filters

® For simplicity will discuss supervised learning

® How to go from neural networks to GNNs?

® Types of GNNs
¢ What are graph convolutional neural networks?
¥ How to use edge varying GNNs?

® How to use GNNSs for graph signal processing applications?

Delft University of Technology
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part 4:: overview

® Role of graph filters in graph neural networks (GNNs)

¥ GNNSs ~ nonlinear graph filters

® For simplicity will discuss supervised learning

® How to go from neural networks to GNNs?

® Types of GNNs
¥+ What are graph convolutional neural networks?
¥ How to use edge varying GNNs?

® How to use GNNSs for graph signal processing applications?

® For GNN pooling, transferability, and applications in control and resource allocation

¥ T-9: Graph Neural Networks (F. Gama and A. Ribeiro)

Delft University of Technology
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Why we use filters in neural networks?

Delft University of Technology
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Supervised learning

® Relies on a dataset of R training examples
% — {(Xla yl)a (X29 }72), JO (XRa yR)}

4 X the rth input data in space X

4 v. the rth output data in space % (labels)

Delft University of Technology



Supervised learning

® Relies on a dataset of R training examples
‘% — {(Xla )’1), (X29 }72), JO (XRa yR)}

4 X the rth input data in space X

4 v. the rth output data in space % (labels)

@ Goal: learn a function / that maps X, to y,

® we want f parametric: f(0)) : X — Y

Delft University of Technology
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Supervised learning

® Deign parameters @ such that

¥ minimize a cost distance between f(#,Xx ) and y_ (e.g., MSE)

1 2
minimize— E (f0.x,) —,)

¥ generalize well for test data X, & X

Delft University of Technology
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Neural networks

® Express function / as a cascade of layered functions

f0.x) = f0°,140°.1 0", x)))

'\\ layer 1: parameters 0"
layer 2: parameters 6°
layer 3: parameters 6>

Delft University of Technology
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Neural networks

® Express function / as a cascade of layered functions

f0.x) = f0°,140°.1 0", x)))

'\\ layer 1: parameters 0!
" _ 2
® No structure in the data: perceptron layer 2: parameters

layer 3: parameters 6

Y1

y = o(Wx + b)
Y2

® Parameters @ = {W, b} ReLU(x) = {x x>0
73 ® Pointwise nonlinearity o( - ) 0 otw

Delft University of Technology
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Neural networks

® No structure In the data: multi-layer perceptron

4Improves expressivity

® Input features x° = X,

L

® QOutput features X

X0 X1 X x'~1. input layer [ = output layer [ — 1

l
X' :output layer [
x' = o(Wx'~! + b

0! = {W' b'}: parameters layer

Delft University of Technology
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Neural networks

® Unrolling recursion x* = o(Wixt~1 4+ bt

XL

0<WLXL_1 + bL)
o(Who(WE X2 + bi~1) + bh)

Delft University of Technology
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Neural networks

® Unrolling recursion x* = o(Wixt~1 4+ bt

G(WLXL_1 + bL)
o(Who(WEIxE=2 4 b1 + bt
U(WLG(WL_ld(...G(Wlxo + bl) + bL_l) + bL)

XL

X)) X X5 . 0 N
® X"~ depends on X" through a composition of
linear functions and pointwise nonlinearities

Delft University of Technology
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Neural networks

®MLP fails in high dimensional data x' = o(W/x"~! + b)
4 if layers have dimensions dim(x’) = dim(x'~!) ~ O(N)
. dim(WZ) ~ O(N?) parameters, e.g., N = 1000 - O(10°)
* complexity O(N?)

Delft University of Technology
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Neural networks

®MLP fails in high dimensional data x' = o(W/x"~! + b)
4 if layers have dimensions dim(x’) = dim(x'~!) ~ O(N)
. dim(Wl) ~ @(NZ) parameters, e.g., N = 1000 — @(106)
* complexity O(N?)

® heed to exploit structure in data

Delft University of Technology
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Neural networks

@ structure Iin data
*spatial data: pixel neighbors

*temporal data: signal proximity

Delft University of Technology
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Neural networks

@ structure Iin data
*spatial data: pixel neighbors
*temporal data: signal proximity

® reduce parameters by effective sharing

® reduce complexity by efficient implementation

Delft University of Technology
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Neural networks

@ structure Iin data
*spatial data: pixel neighbors
*temporal data: signal proximity
® reduce parameters by effective sharing
® reduce complexity by efficient implementation

@® use spatial and temporal filters

¥ no loose of discriminatory power

Delft University of Technology
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Filters In spatial convolutional layer
® MLP propagation rule X' = (7(Wlxl_1 + bl)

® Spatial data: spatial convolution filter bank substitutes w!

<4 filters apply the same parameters to different locations

4 bias b’ can be ignored or shared b’ = b1

filter layer [

input layer [ output layer [

Delft University of Technology
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Filters In spatial convolutional layer
® MLP propagation rule X' = (7(Wlxl_1 + bl)

® Spatial data: spatial convolution filter bank substitutes w!

<4 filters apply the same parameters to different locations

4 bias b’ can be ignored or shared b’ = b1

filter layer [ filter layer [

input layer [ output layer / input layer [ output layer /

Delft University of Technology
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Filters In spatial convolutional layer

@ shift-and-sum convolves filter with input image

filter layer [

input layer [ output layer [

Delft University of Technology
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Filters In spatial convolutional layer

@ shift-and-sum convolves filter with input image

filter layer [

vertical and horizontal
—— 4/ input shifts
b= Y Y AT

r=1 c=1

input layer [ output layer [

Delft University of Technology
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Filters In spatial convolutional layer

@ shift-and-sum convolves filter with input image

filter layer [

vertical and horizontal
—— / input shifts
b= Y Y AT

r=1 c=1

input layer [ output layer [

@ spatial FIR convolutional filtering

Delft University of Technology
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Convolutional neural networks

® CNNs increase descriptive power with a parallel filter bank

4 input F images

4 process each with a parallel bank of filters
4 sum filter outputs to obtain higher-level features

4 parameters are filter coefficients (backprop.)

input layer [ output layer!
has 4 inputs has 2 outputs

Delft University of Technology
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CNN full stack

® Cascade of spatial filter bank and nonlinearities

]

_ convolution + pooling fully connected
Benefits

@ Parameters - independent on the image dimensions
® Complexity - spatial convolution

Delft University of Technology
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What about data on graphs?
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Learning from (ir)regular graph data

U

N

@ Training samples X, € IR are graph signals

® Non-Euclidean structure

¥ conventional CNNs are inapplicable

Delft University of Technology
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Learning from (ir)regular graph data

7>
23

N

@ Training samples X, € IR™" are graph signals

® Non-Euclidean structure

¥ conventional CNNs are inapplicable

®MLP can apply X' = o(Wx~! + b)

4 ignores the structure

4 data demanding

Delft University of Technology
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Learning from (ir)regular graph data

U

® Need a neural network solution

to account for coupling signal-topology

Delft University of Technology
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Learning from (ir)regular graph data

® Need a neural network solution
to account for coupling signal-topology ‘,/‘

@ Graph as prior to estimate a parametric function

HCA ) A4

4 S is the graph shift operator

4 0 trainable parameters (i.e., filter coefficients)

Gama, Isufi, Leus, Ribeiro, Graphs, Convolutions, and Neural Networks, IEEE Signal Processing Magazine, under review, arXiv: 2003.03777

Delft University of Technology
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Graph neural networks

® Graph neural networks substitute W! with graph filter bank

Delft University of Technology
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Graph neural networks

® Graph neural networks substitute W! with graph filter bank
@® Propagation rule through graph filters

Xl — U(HZXZ_I)

@ H’ graph filter at layer [ for any shift operator S

Delft University of Technology
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Graph neural networks

® Graph neural networks substitute W! with graph filter bank
@® Propagation rule through graph filters

Xl — G(HZXI_I)
o H graph filter at layer [ for any shift operator S

4 Edge-variant filter: EdgeNets
4 Node-variant filter: Node-variant GNNs [Gama'1s - Dswi

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

Delft University of Technology
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Graph neural networks

® Graph neural networks substitute W! with graph filter bank
@® Propagation rule through graph filters

Xl — G(HZXI_I)
@ H’ graph filter at layer [ for any shift operator S

4 Edge-variant filter: EdgeNets
4 Node-variant filter: Node-variant GNNs 1Gama’1s - DSwi

4 FIR filters: Graph convolutional neural networksiGama'1s - TspP;
* Chebyshev form: ChebNets [Defferrard16 - NeurlPS]

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

Delft University of Technology
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Graph neural networks

® Graph neural networks substitute W! with graph filter bank

@® Propagation rule through graph filters
Xl — U(HZXZ_I)
o H graph filter at layer [ for any shift operator S
4 Edge-variant filter: EdgeNets

4 Node-variant filter: Node-variant GNNS (Gama'1g - Dsw

4 FIR filters: Graph convolutional neural networks|Gama'is - TSP
* Chebyshev form: ChebNets [Defferrard16 - NeurlPS]

4 ARMA filters: ARMANets
* Direct, parallel, cascade [Wijesinghe19 - NeurlPS] [Bianchi’19-arXiv]

» Cayley form: CayleyNets|lLevie'18 - TSP]

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

Delft University of Technology
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Graph convolutional neural networks

® Graph convolutional neural networks use a graph convolutional filter
(FIR - ARMA)

Example: FIR

K
x! = 0( Z ¢,£Skxl_1)
k=0

Gama, Marques, Leus, Ribeiro, Convolutional Neural Networks Architectures for Signals Supported on Graphs, IEEE Transactions on Signal Processing, 2018

Delft University of Technology
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Graph convolutional neural networks

® Graph convolutional neural networks use a graph convolutional filter
(FIR - ARMA)

Example: FIR

Z lskll

@® parameters shared among all nodes and edges

® shift-and-sum convolves filter with graph signal

Gama, Marques, Leus, Ribeiro, Convolutional Neural Networks Architectures for Signals Supported on Graphs, IEEE Transactions on Signal Processing, 2018

Delft University of Technology
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Graph convolutional neural networks

® GCNN: shift-and-sum & shared parameters

x! = 0(¢(l)xl_1 + p;Sx'~! + gbésle_l)

Delft University of Technology
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Graph convolutional neural networks

® GCNN: shift-and-sum & shared parameters

x! = 0(¢(l)xl_1 + p;Sx'~! + gbésle_l)

Delft University of Technology
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Graph convolutional neural networks

® GCNN: shift-and-sum & shared parameters

x! = 0(¢(l)xl_1 + p;Sx'~! + qﬁéSle_l)

' % % @ % @ “ shift over the nodes
b /¢f l \
0 2

Foo el gl gty

Delft University of Technology
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Graph convolutional neural networks

® GCNNSs increase descriptive power with a parallel filter bank

Xz_l RS « @0 ===
~
[—1 ~ ~
X ~
l : N = ~ // Xll
H, X | 7~ N
-1 / ~
Hé s o . Xl ~
H, | ’,,’
[—14 L7 -7 [ 2
{x, },=1 UL -7 Xphf=
input layer { output layer {
has 4 inputs has 2 outputs
F input graph signals {x.~11F -
+ put graph sig g Jo=] 4 sum filter outputs
4 process each signal with a graph filter 4 parameter are filter coefficients (backprop.)

Delft University of Technology
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Graph convolutional neural networks

® GCNNSs increase descriptive power with a parallel filter bank

R -
o ~ o A N
X ~e
~

[
S AL e Al

Ty
H Kﬁ . A/Xll 1 b H! < éle 1 /I 4
H,, % ’/’ H, @%{X ,/ e
— Vat - [ 2 _ [
e PR | S DO £ 35 o VPN || S A ¢y o

Delft University of Technology
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Graph convolutional neural networks

® GCNNSs increase descriptive power with a parallel filter bank

[—1[~ 1] = = = -
X, ~ ] N \X4l- T = N Xl
Vém -1 s RN %Q/ - \/éh =1 /@A .
e X ~_ 4 <! XK ) w
Hil ><N o Xl—1 ~ \/ é /1 Hil - PJ No’ Xl_1 / \/‘é /
v’ 2 ~/ Lt % <D\ N 2 ¢ ~— &,DH.@\
H, | * x/=1 I % | -1 7 4 i
. - \/'A/ 1 s < é 1 /
H, % _- - H;, @%@ I/ e
_ L - [ 12 _ [ 12
{Xg : 321 H -~ ” {Xf}le {Xlg : iqlzl H, 'I {Xf}le

input feature

R
| _ | ol—1
Xf—6<ZHngg )
g=1

Delft University of Technology
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Graph convolutional neural networks

® GCNNSs increase descriptive power with a parallel filter bank

[—1[~ 1] = = = -
X, ~ ] N \X4l- T = N Xl
Vém -1 s RN %Q/ - \/éh =1 /@A .
e X ~_ 4 <! XK ) w
Hil ><N o Xl—1 ~ \/ é /1 Hil - PJ No’ Xl_1 / \/‘é /
v’ 2 ~/ Lt % <D\ N 2 ¢ ~— &,DH.@\
H, | * x/=1 I % | -1 7 4 i
. - \/'A/ 1 s < é 1 /
H, % _- - H;, @%@ I/ e
_ L - [ 12 _ [ 12
{Xg : 321 H -~ ” {Xf}le {Xlg : iqlzl H, 'I {Xf}le

input feature

—
| _ | oI—1
Xf—6<ZHngg )

g=1 \

FIR filter

Delft University of Technology
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Graph convolutional neural networks

® GCNNSs increase descriptive power with a parallel filter bank

—1]~ - X T T e — o
QXLI. \\\ -—J N\ QXLI- l- — o Xlz
' ¢ -1 ~ A N S /@N
l A _ / ; § [— / \/é
w7 AL e A
Hy | X 7 % H! >QE/ ex ) Ty N.i
- - - - - : /
H, X}I -~ H;, @4@ / e
[—14 H! W\ -~ g [ 2 I—114 l ? /I [ 12
{Xg g=1 L -~ {Xf}le {Xg g=1 H, ¥ {Xf}le
sum over inputs input feature

\F /
j=o( B
9= X ¥ )

FIR filter

Delft University of Technology
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Graph convolutional neural networks

® GCNNSs increase descriptive power with a parallel filter bank

1~ - I G il
Sl IR "= sy l- -1 - X
NS —— s T
~ /A ]
H! /NA : I—1 SN é X 1= U /\' -1 II
LT L AL S e E B e
Hl >\ Xl_l ~ 3 % Hl >Qg Xl—l / -~ L /\i
I I I
HZQ \/.j\ _- - H )@%@/ I/ 7
-
e T R ULl ¢1A Lo O S R e 15 o
sum over inputs input feature

output feature \ /
\ -
[ __ [ [—1
N "( Z Hy X, )
g=1 \

FIR filter

Delft University of Technology
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Graph convolutional neural networks

® GCNNSs increase descriptive power with a parallel filter bank

=1~ ' — -1 & T == o
B AR I 5 - A
N I—1 ~ AN T [—1 N
“N ‘ ¢ X3 S - y Xl N k/ X3 ) >\k
H; KN ¢ Xlz_l ~ /\/ ﬁ {>/1 H; \Dj . Xlz_l ,l \/Dé@/
Hl ‘ >\ Xl—l ~y </ \; \ Hl | >Qg Xl—l / ~d x’ \
3 ) \/A./ 1 : [ /
H j‘ - H,, @l@ /I e
— -~
-
CORTI E Rag CTR o T R P

sum over inputs

N\

input feature

/

for all output features

er{l,...,F}/

output feature
F

[
Xy

g

| I—1
Hfgxg )

N\

FIR filter

Delft University of Technology
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GCNN full stack

® Cascade graph filters and nonlinearities

®
®
®
®

\bb O
’

I
graph convolution fully connected

Benefits

@ Parameters O(KF’L) - independent on the graph dimensions

® Complexity O(KMF?L) - linear in number of edges (~nodes)

Delft University of Technology
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EdgeNet

® Substitutes FIR filters with edge-variant graph filter

® Propagation rule

F
K=o ¥

g=1

x, |Vfe{l,...,F)

\

Edge-variant filter

Isufi, Gama, Ribeiro, Generalizing Graph Convolutional Neural Networks with Edge-Variant Recursions on Graphs, EUSIPCO, 2019.

Delft University of Technology



]
TUDelft

EdgeNet

® Substitutes FIR filters with edge-variant graph filter

® Propagation rule

x;=a(i

g=1

x, |Vfe{l,...,F)

\

Edge-variant filter

® The most general GNN
4 Includes all GCNN, all ARMANet, GIN, GAT

Isufi, Gama, Ribeiro, Generalizing Graph Convolutional Neural Networks with Edge-Variant Recursions on Graphs, EUSIPCO, 2019.

Delft University of Technology
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EdgeNet properties

b xkD
@ Different parameters per edge and node K

for kth iteration

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

Delft University of Technology
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EdgeNet properties

@ Different parameters per edge and node
4 Order O(MKF*L)

4 More flexibility

(I)kX(k— 1)

for kth iteration

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

Delft University of Technology
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EdgeNet properties

@ Different parameters per edge and node
4 Order O(MKF*L)

4 More flexibility

(I)kX(k— 1)

<4 Requires only the support of S

* Adapts the edge weights to the task

- Robust to uncertainties in edge weights for kth iteration

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

Delft University of Technology
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EdgeNet properties

@ Different parameters per edge and node
4 Order O(MKF*L)

4 More flexibility

(I)kx(k— 1)

<4 Requires only the support of S

* Adapts the edge weights to the task

- Robust to uncertainties in edge weights for kth iteration

< Requires fewer parallel filters and shallower networks
4 Can overfit and require more data than GCNN (FIR-filters)

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

Delft University of Technology



EdgeNet properties

@ Different parameters per edge and node
4 Order O(MKF~L)

4 More flexibility
4 Requires only the support of S

* Adapts the edge weights to the task

* Robust to uncertainties in edge weights

< Requires fewer parallel filters and shallower networks
4 Can overfit and require more data than GCNN (FIR-filters)

@ Complexity O(MKF’L) - depends on edges (like GCNN)

]
TU Delft

(I>kx(k‘1)

/ N\

\*/

for kth iteration

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

Delft University of Technology
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How to use EdgeNets?

® The full form may sometimes overfit

4 Penalize coefficients to sparse (i.e., ||P]| )

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

Delft University of Technology
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How to use EdgeNets?

® The full form may sometimes overfit

4 Penalize coefficients to sparse (i.e., ||P]| )

4 Impose parameter sharing

* FIR : all nodes all edges same parameter

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

Delft University of Technology
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How to use EdgeNets?

® The full form may sometimes overfit

4 Penalize coefficients to sparse (i.e., ||P]| )

4 Impose parameter sharing
* FIR : all nodes all edges same parameter

* Node-variant : all edges same parameter for a node

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

Delft University of Technology
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How to use EdgeNets?

® The full form may sometimes overfit

4 Penalize coefficients to sparse (i.e., | ®]||)

4 Impose parameter sharing
* FIR : all nodes all edges same parameter
* Node-variant : all edges same parameter for a node

* Attention mechanism [velickovic’18 - ICLR]

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

Delft University of Technology
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How to use EdgeNets?

® The full form may sometimes overfit
4 Penalize coefficients to sparse (i.e., || ®]||)

4 Impose parameter sharing
* FIR : all nodes all edges same parameter
* Node-variant : all edges same parameter for a node
* Attention mechanism [velickovic’18 - ICLR]

* Hybrid : FIR + EV to particular nodes

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

Delft University of Technology



]
TUDelft
How to use EdgeNets?

Example: Hybrid (FIR + EV)

[ Pr]21 °f\—/
/ 7\ (Pr]aa

[ Pr]31 b DL ]s1

\

 Nodes 2 and 7 use EV filter
* All other nodes use FIR filter

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

Delft University of Technology
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How to use EdgeNets?

Example: Hybrid (FIR + EV)

[ Pr]21 °(\-/
/ 7\ (Pr]aa

[ Pr]31 b DL ]s1

\

 Nodes 2 and 7 use EV filter
* All other nodes use FIR filter

* More flexibility than GCNN
» Parameters independent on the graph dimensions

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

Delft University of Technology
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How to apply GNNs?

Delft University of Technology



]
TUDelft

Applications

@ Distributed finite-time consensus
@® Distributed regression
® Authorship attribution

® Recommender systems

Delft University of Technology
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Applications

@ Distributed finite-time consensus
@® Distributed regression
® Authorship attribution

® Recommender systems

® For control, resource allocation and other SP applications (-9

® For semi-supervised learning, graph classification (wu2o -TnNLS]

Delft University of Technology
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Learning finite-time consensus

@® |Learn the consensus function for a specific graph
4 EV can do the job but all nodes need to know all graph

* Feasible only in small setups

lancu, Isufi, Towards Finite-Time Consensus with Graph Convolutional Neural Networks, EUSIPCO 2020 (submitted)

Delft University of Technology
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Learning finite-time consensus

@® |Learn the consensus function for a specific graph

4 EV can do the job but all nodes need to know all graph
* Feasible only in small setups

222 -==.-!""'

lllll
=TI

Stochastic block model

N = 100 and C = 5 communities; graph signals x ~ A4(0, I)
1 Layer, FF = 32 features, shared FC (32 X 1) per node

—> MSE

( )

e S CIR
&

Graph signal: Kb

X = [Xq, oory Xy] - J L&

lancu, Isufi, Towards Finite-Time Consensus with Graph Convolutional Neural Networks, EUSIPCO 2020 (submitted)

—> (@0000)

N

Delft University of Technology
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Learning finite-time consensus

‘_

+ f
—A

I~

— FIR
—— GCNN - RelLU

1073
20 25 30 35
Filter Order

102

RMSE

» Consensus is strictly low pass
» Better performance for high orders
* Machine precision needs EV

Delft University of Technology
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Learning finite-time consensus

= . - —— FIR
A —— GCNN - ReLU/ /
1072 /
102 — - =
% \ % / -
— FIR : :
—— GCNN - RelLU
107 5 25 30 35 107,000 0.025 0.050 0.075 0.100 0.125 0.150
Filter Order Probability of edge removal
Consensus is strictly low pass » Train and test on different graphs
» Better performance for high orders + GCNN exploits better the connectivity
» Machine precision needs EV » GCNNs are better transferable

Levie, Isufi, Kutyniok, On the Transferability of Spectral Graph Filters, SAMPTA 2019.

Delft University of Technology
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Distributed regression

@ Retrieve signal distributively from noisy measurements

Molene weather dataset T\T
Build a graph between stations N = 32

Graph signal: 744 temperature recording

SNR = 3dB 1 layer; 4 features

lancu, Ruiz, Ribeiro Isufi, Distributed Localized Nonlinearities For Graph Neural Networks, MLSP 2020 (submitted)

Delft University of Technology
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Distributed regression

@ Retrieve signal distributively from noisy measurements

Molene weather dataset T\T
Build a graph between stations N = 32

Graph signal: 744 temperature recording
SNR = 3dB 1 layer; 4 features

2.4 — » Nonlinear architecture reduces RMSE
—— GCNN - RelLU
2.2 . . .
» 4 times more communications
2.0
215 » Regression more challenging than
1.6 classification
1.4 ! .
. il * Needs: more data/more graph prior
1 2 4 8

Filter Order
lancu, Ruiz, Ribeiro Isufi, Distributed Localized Nonlinearities For Graph Neural Networks, MLSP 2020 (submitted)

Delft University of Technology
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Authorship attribution

@ Attribute texts to an author « NN v

Build a word adjacency network
N =190 -211

Delft University of Technology
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Authorship attribution

@ Attribute texts to an author « NN v |

Build a word adjacency network
N =190 -211

Graph signal: word frequency count

~ 1000 texts from the author of interest

~ 1000 from others

Delft University of Technology



1,';U Delft
Authorship attribution (easier)

10 B GCNN
BN EdgeNet

8

6
4
2

U Thoreau Wharton Abbott Cooper Alcott James Jewett

» EV hyperparameters (K, F, L) taken from the FIR

Classification error %

» Parameter sharing is beneficial
| layer, K € [2,10], F € {16,32,64}

Delft University of Technology
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Authorship attribution (difficult)

Classification error

Architecture Austen Bronté Poe
GCNN 7.2(::2.0)% :_2.9(::3.5)% 14.3(::6.4)%
Edge varying 7.1(::2.2)% :_3.1(::3.9)% 10.7(::4.3)%
Node varying 7.4(::2.1)% :_4.6(::4.2)% :_1.7(::4.9)%
10% N Hybrid edge var. 6.9(£2.6)% 14.0(£3.7)% 11.7(4+4.8)%
.:)/V ARMANet 7.9(’::2.3)‘%‘ 11.6(’::5.0)“% :_0.9(::3.7)%

[@‘“]Q/’QW N |
[CI)k]?)l( w [(I’k]'TA )[@k]m 1 |ayer, F — 32, K — 4

» EdgeNet requires its own hypertunning
» Better for more difficult scenarios
» Subclasses of the EV can perform better depending on problem difficulty

Isufi, Gama, Ribeiro, EdgeNets: Edge Varying Graph Neural Networks, arXiv: 2001.07620

Delft University of Technology
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Authorship attribution (explain)

@ Explain GNNs with EdgeNets

4 One layer EdgeNet with order K = 1 X% — g((I)X(l))
4 Training the EdgeNet = learning graph weights

Delft University of Technology
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Authorship attribution (explain)

@ Explain GNNs with EdgeNets

4 One layer EdgeNet with order K = 1 X% — 0((I)X(1))
4 Training the EdgeNet = learning graph weights
+ removed small weight edges = accuracy drop < 5 %

» Identifies most relevant function words per author

Delft University of Technology



]
TU Delft

Authorship attribution (explain)

@ Explain GNNs with EdgeNets

4 One layer EdgeNet with order K = 1 X% — 0((I)X(1))
4 Training the EdgeNet = learning graph weights
+ removed small weight edges = accuracy drop < 5 %

» Identifies most relevant function words per author

toward

ru o

Abbott James

- identify an author from 3 words

Delft University of Technology
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Authorship attribution (explain)

@ Explain GNNs with EdgeNets

4 One layer EdgeNet with order K = 1 X% — 0((I)X(1))
4 Training the EdgeNet = learning graph weights
+ removed small weight edges = accuracy drop < 5 %

» Identifies most relevant function words per author

toward

u L1 ‘ N @
K‘er tO rd
h
be en

Abbott James Jewett

- identify an author from 3 words

Delft University of Technology
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Authorship attribution (explain)

@ Explain GNNs with EdgeNets

4 One layer EdgeNet with order K = 1 X% = 0((I)X(1))
4 Training the EdgeNet = learning graph weights
+ removed small weight edges = accuracy drop < 5 %

» Identifies most relevant function words per author

e © @
1 @ L.
tof@rd Y - v @ &/,
a r u CO ‘%l\ O ,@.
‘T{g‘er TO rd @
e g \\g®
Abbott James Jewett @ Melvile

- identify an author from 3 words

Delft University of Technology
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Authorship attribution

@® |ldentifying author gender from texts
4 No NLP: shallow and fast training, no pretraining/corpus

4 Graphs + signals from female and male authors in train - test

Delft University of Technology



]
TU Delft

Authorship attribution

@ |ldentifying author gender from texts
4 No NLP: shallow and fast training, no pretraining/corpus

4 Graphs + signals from female and male authors in train - test

Classification error

EdgeNet GCNN EV-GCNN
Mean 8.6 % 10.1% 7.8 %
Std 6x10-3 6x10-3 5x10"-3
| layer architectures, F' = 64 \
Sparse WANs help classification Sparse EV shift operator + GCNN

Delft University of Technology
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Recommender systems

@ Fill missing entries in a user-item matrix

Movielens 100K dataset U = 943; [ = 1,582
Build a similarity graph (principle of collaborative filter)

Item 1

Item 2

Item 3 | ...

Item I

User 1

5

1

?

2

User 2

?

?

3

3

User 3

4

?

4

?

User U

Delft University of Technology




Recommender systems

@ Fill missing entries in a user-item matrix
Movielens 100K dataset U = 943; [ = 1,582

Build a similarity graph (principle of collaborative filter)

/

user similarity graph
nodes : users

Item 1

Item 2

Item 3 | ...

Item I

User 1

5

1

?

2

User 2

?

?

3

3

User 3

4

?

4

?

User U

edges : Pearson/cosine similarity

between pairs of users

Delft University of Technology
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Recommender systems

@ Fill missing entries in a user-item matrix
Movielens 100K dataset U = 943; [ = 1,582

Build a similarity graph (principle of collaborative filter)

Item 1

Item 2

Item 3 | ...

Item I

User 1

5

1

?

2

User 2

?

?

3

3

]
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User 3 4 ? 4 ?
User U ? 4 3 1

user similarity graph

item similarity graph
nodes : users nodes : items

edges : Pearson/cosine similarity edges : Pearson/cosine similarity

between pairs of users between pairs of items

Delft University of Technology



Recommender systems

® Here item similarity graph

N = 200 most rated items

Item 1

Item 2

Item 3

Item I

User 1

S

1

?

2

User 2

?

?

3

3

User 3

4

?

4

?

User U

?

4

3

1

Graph signal : rating of user i to all items

subset of user ratings
to build the graph

/ ltem 2

* Interpolation problem on graphs

Delft University of Technology
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Item |

Iltem 200
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Recommender systems

® Here item similarity graph
subset of user ratings

N = 200 most rated items to build the graph

5
Item 1 Item 2 Item 3 Item I
2 Jtem k
User 1 5 1 ? 2
o Item 2
User 2 ? ? 3 3 |te m |
User 3 4 ? 4 ? #
ltem 1
?
User U ? 4 3 1
Item |

Graph signal : rating of user i to all items ltem 200

* Interpolation problem on graphs
Goal: find rating all users give to item i (fii ith column of matrix)
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Recommender systems

® Use locality of the filters to build a GNN specific to item /
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Recommender systems

® Use locality of the filters to build a GNN specific to item /

;N 7
ﬁ,(g _) O'
Graph signal ratmg Q@
X
X = 331, . .

Frame as signal classification problem per node 1 layer, 32 features

EdgeNet suffers in general -requires parameterization
Archit./Movie-ID 50 258 100 181 294 | Average

GCNN 0.82 108 095 0.86 1.04 0.95
Edge var. 0.93 1.03 1.00 0.38 1.24 1.02
Node var. 0.78 1.04 1.00 0.87 1.00 0.94

Hybrid edge var. 0.75 1.02 0.98 0.82 1.08 0.93

Delft University of Technology



]
TU Delft

part 4 :: conclusions

® Graph filter are the building block of graph neural network (GNN)

4 Incorporate effectively the graph signal - graph topology into learning
4 Serve as a prior to reduce parameters and complexity

4 Graph convolutions through graph filters
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part 4 :: conclusions

® Graph filter are the building block of graph neural network (GNN)

4 Incorporate effectively the graph signal - graph topology into learning
4 Serve as a prior to reduce parameters and complexity

4 Graph convolutions through graph filters

@ Different filter = different graph neural networks

4 FIR = GCNNs

4+ ARMA = ARMANets

4 Edge varying = EdgeNets

Delft University of Technology
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part 4 :: conclusions

® EdgeNets provide the broadest GNN family
4 Particularize to all the others including GINs and GATs

4 Help explainability
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part 4 :: conclusions

® EdgeNets provide the broadest GNN family
4 Particularize to all the others including GINs and GATs

4 Help explainability
® Applications in signal classification & regression
4 Authorship attribution

4 Recommender systems
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GNN - next challenges

® More graph prior instead of more data
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GNN - next challenges

® More graph prior instead of more data
@ Explainability

4 What topological information is more relevant?
4 What spectral information is more relevant?
4 EdgeNet can be a strong tool in this regard
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GNN - next challenges

® More graph prior instead of more data
@ Explainability

4 What topological information is more relevant?
4 What spectral information is more relevant?

4 EdgeNet can be a strong tool in this regard

® Robustness/Transferability

4 To topological perturbations
4 To input perturbations
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GNN - next challenges

® More graph prior instead of more data
@ Explainabillity

4 What topological information is more relevant?
4 What spectral information is more relevant?

4 EdgeNet can be a strong tool in this regard

® Robustness/Transferability

4 To topological perturbations
4 To input perturbations
@ Distributed learning

4 Graph filters are distributable

Delft University of Technology
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Conclusions

® Graph filtering for denoising, interpolation, distributed optimization, GNNs

4 FIR graph filters
4 1IR - ARMA graph filters
@ Extensions of FIR filters (can be used for |IR as well)

@ Edge-variant graph filters generalize classical graph filters

4 reduction in communication and computation complexity
@ Easy design using least squares

® Applications

4 Design of low-order graph filters
4 Distributed optimization solutions
4 Graphical neural network implementations
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