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What is this work about (and not about)?

A stylized mathematical model for obtaining structural
insights

- impact of lockdown and precautionary measures
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Study of epidemics has a long history: contagious disease, computer virus, opinion, . . .

G = (V,E)and A € {0,1}IVIV SIS: susceptible-infected-susceptible

Susceptible becomes infected at a rate

Infected becomes susceptible at a rate

Ganesh, Massoulie and Towsley

2005

(exp) B #(infected neighbors)

(exp) 4]

The quantity of interest B x {spectral radius(4)} < & : E[T®] = O(log |V])

- extinction time: time to hit 0 B x {expansion const(G)} > 4 :

Suitable for computer networks or online social networks
- however, person-level contact graphs are rarely known

E[TO)] = Q(exp(|V["),0 <y <1

Study epidemic on a
coarser graph capturing
interactions between
population centers
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Related work

Structural similarity with metapopulation models

- mean field dynamics (ODE involving E[ X, (t)]) of different metapopulation models
studied by Colizza et al. 2007, 2008
- assume a sharp phase transition threshold and finds that

- naturally emerges from our stochastic analysis
- stochastic analysis is more general than mean field
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Structural similarity with metapopulation models
- mean field dynamics (ODE involving E[ X, (t)]) of different metapopulation models
studied by Colizza et al. 2007, 2008
- assume a sharp phase transition threshold and finds that

- naturally emerges from our stochastic analysis
- stochastic analysis is more general than mean field

State-dependent infectiousness

- studied by Fagnani and Zino 2017 for person-level graph (gossip)

Sharp threshold from stochastic analysis of epidemics and . . . .
- population-center based model with state-dependent infectiousness
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Phase transition
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Non-asymptotic behavior of gtx! gINT

d-regular graph and equal weights, BEXT = gINT — B and Bs =0

Consider X(t) = Zu X (t) since t—t+dt: Xu(t) — Xu(t) + 1atrate
X(t) — X(t)+1:(2d+1) B(X(t) X(2) g0 <2v)jur<t>>zm W X.(1)
X(t) — X(t) —1: X(t) (ford=1) AT (S, X, (1) DX (1)

t—t+dt: X, () = X, (t) — latrate § x X, (t)

35



Non-asymptotic behavior of gtxt ANt
d-regular graph and equal weights, 85T = BINT = B and B =0

Consider X (t) := >, X, (?) since
X(t)— X(t)+1:(2d+1) B(X(t)) X(¢t)
X(t) — X(t)—1:X(t) (foréd=1)

For E[T,,] := E[T"|X(0) = n],
E[T,]

Inn

=1

lim,, ;o0

t—t+dt: X, (t) > X, (t) + Latrate

BT (X, Xo(£) X W Xo (1)
+
AN (X, X (8) DuXou(t)

t—t+dt: X, () = X, (t) — latrate § x X, (t)

36



Non-asymptotic behavior of gtx! gINT

d-regular graph and equal weights, BEXT = gINT — B and Bs =0

Consider X(t) = Zu X, (t) since t—t+dt: Xu(t) — Xu(t) + 1atrate
X(t) — X(t)+1:(2d+1) B(X(t) X(2) g0 <2ui<t>>zm W X.(1)
X(t) — X(t) —1: X(t) (ford=1) AT (S, X, (1) DX (1)

t—t+dt: X, () = X, (t) — latrate § x X, (t)

irregular graphs and unequal weights
For E[T,,] := E[T"|X(0) = n],

E[T.]
Inn 1

- Tim,, o0

37



Non-asymptotic behavior of gtx! gINT

d-regular graph and equal weights, BEXT = gINT — B and Bs =0

Consider X(t) = Zu X, (t) since t—t+dt: Xu(t) — Xu(t) + 1atrate
X(t) — X(t)+1:(2d+1) B(X(t) X(2) g0 <2vi<t>>zm W X.(1)
X(t) — X(t) —1: X(t) (ford=1) AT (S, X, (1) DX (1)

t—t+dt: X, () = X, (t) — latrate § x X, (t)

irregular graphs and unequal weights
For E[T,,] := E[T"|X(0) = n],

- Tim,, o0 kil =1

Inn

lim, 0o P (T, > r E[T}]) < =

38



Non-asymptotic behavior of gtxt ANt
d-regular graph and equal weights, 85T = BINT = B and B =0

Consider X (t) := >, X, (?) since
X(t)— X(t)+1:(2d+1) B(X(t)) X(¢t)
X(t) — X(t)—1:X(t) (foréd=1)

For E[T},] := E[T©|X(0) = n],
E[T,

Inn

limy, 00

For 6 = 1, E[T, lnn—i—.

t—t+dt: X, (t) > X, (t) + Latrate

BT (X, Xo(£) X W Xo (1)
+
BT (X, Xo(t)) DuXu(t)
t—t+dt: X, () = X, (t) — latrate § x X, (t)

39



Non-asymptotic behavior of gtx! gINT

d-regular graph and equal weights, BEXT = gINT — B and Bs =0

Consider X (t) := >, X, (t V(X(t)) since bt db: X, (8) - Xu(8) + Latrate
BT (X, Xo(£) X W Xo (1)
X() — X(t)+1:( X (t) i

X(t) — X(t) —1: BT (55, Xo(8)) Du X (8

t—t+dt: X, () = X, (t) — latrate § x X, (t)

: E[T,]
limy, o nn 1
B y(n— 1-|-1 1
E[Tn] = ]E[Tln—l] y(n—1 E[T”_ ] (n 1)y(n—1)

For § = 1, E[T, 1nn+.

40



Non-asymptotic behavior of gtx! gINT

d-regular graph and equal weights, BEXT = gINT — B and Bs =0

Consider X (t) := >, X, (t V(X(t)) since bt db: X, (8) - Xu(8) + Latrate
BT (X, Xo(£) X W Xo (1)
X() — X(t)+1:( X (t) i

X(t) — X(t) —1: BT (55, Xo(8)) Du X (8

t—t+dt: X, () = X, (t) — latrate § x X, (t)

y(n) = f x 2.0e70937 and § = 1.0

For E[T,,] := E[T"|X(0) = n], ol
/ ——- =095
. E[Tn] 2000 — f=1.00
].lmn_>oo W — 1 VS g”’”‘)'i’ ----- f=1.05
n-1)+1
BIT.] = BT T ~ Bl — 1>1< N

For 5 — ]- ]E ]-Il n _|_ . i' 5 10 1'5 20 2‘5 Z{ll) Ii’S 40
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107!
f-1

—~~

T
jav)
R
=
—
—
)
=
©
o
@
by SRS

d __ exp d d (after changing .
df]E[Tl] o f and df E[T2] = de[Tl]’ T the scal (n) = f x 2.0e~003 and § = 1.0
E Tn 102 3000
however, for large n : di ELINPS 0 E [Cr?
f ]Il n I,l —— =095 \
= lower order term sensitive to f 10 ot f — f=1w
l(I)O = o .': ----- f=1.05 108
Lower order terms .
- significant for low/moderate initial infection

- sensitive to non-asymptotic values of y(X(t))
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Some takeaways

Epidemic with “precautions” and “lockdowns” using “coarse location” graph: stochastic
analysis

- structural insights can help in first order planning
- oracle optimization problems need investigation
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Some takeaways

Epidemic with “precautions” and “lockdowns” using “coarse location” graph: stochastic
analysis

- structural insights can help in first order planning
- oracle optimization problems need investigation

Expected extinction time bounds (asymptotic) and confidence bounds

Non-asymptotic behaviors are interesting

- general case requires investigations

50



Some takeaways

Epidemic with “precautions” and “lockdowns” using “coarse location” graph: stochastic
analysis

- structural insights can help in first order planning
- oracle optimization problems need investigation

Expected extinction time bounds (asymptotic) and confidence bounds

Non-asymptotic behaviors are interesting

- general case requires investigations

... quickly through teenage-midlife problem
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Teenage-midlife problem

Teenage years: 13, 14, 15, . ..

Midlife years: 37, 38, 39, ...
(global life expectancy ~ 73)
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Teenage-midlife problem

Teenage years:(13, 14, 15,\. ..
rime, prime multiple of 2,

prime multiple of 3)

Midlife years: \37, 38, 39,. ..
(global life expectancy ~ 73)
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Teenage-midlife problem

Teenage years:(13, 14, 15,\. ..
rime, prime multiple of 2,

prime multiple of 3)

Midlife years: \37, 38, 39,. ..
(global life expectancy ~ 73)

These two are the only such 3-tuples within 100!
(reason behind the name)
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Teenage-midlife problem

Teenage years:(13, 14, 15,\. .. Questions
rime, prime multiple of 2,

prime multiple of 3) - are there infinitely many such
Midlife years: \37, 38, 39,. .. 3-tuples?

(global life expectancy ~ 73)
- what about k-tuples?

These two are the only such 3-tuples within 100! - is the lim inf of the gap between
(reason behind the name) two consecutive tuples bounded?
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Teenage-midlife problem

Teenage years:(13, 14, 15,\. .. Questions
rime, prime multiple of 2,

prime multiple of 3) - are there infinitely many such
Midlife years: \37, 38, 39,. .. 3-tuples?

(global life expectancy ~ 73)
- what about k-tuples?

These two are the only such 3-tuples within 100! - is the lim inf of the gap between
(reason behind the name) two consecutive tuples bounded?

| do not have answers to any and neither did my (very
few) pure/applied number theorist friends
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Teenage-midlife problem

Today
Teenage years:(13, 14, 15,\. . . 13-7 Questions
rime, prime multiple of 2,

prime multiple of 3) - are there infinitely many such
Midlife years: \37, 38, 39,. .. 3-tuples?

(global life expectancy ~ 73)
- what about k-tuples?

These two are the only such 3-tuples within 100! - is the lim inf of the gap between
(reason behind the name) two consecutive tuples bounded?

| do not have answers to any and neither did my (very
few) pure/applied number theorist friends
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Some thoughts

Numerical experiments show that they keep showing up!

- did not try to fit curve: that may not be useful for the first/second problems
(useful for the third problem if the first problem is resolved positively)
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ZnGN: no7 n < 100 and Zp p 0, James Maynard,

however, infinitely many primes without 7 2016



Some thoughts

Numerical experiments show that they keep showing up!

- did not try to fit curve: that may not be useful for the first/second problems
(useful for the third problem if the first problem is resolved positively)

1 1 _
ZnEN: no7 n < 100 and ZP P 0, James Maynard,

however, infinitely many primes without 7 2016

(prime, prisre multiple of 2, pricre

multiple of 3)
2ps —1=p 2ny —1=p
3ps —2=p 3ng —2=pm

Primes odd: first equation follows
Second equation is satisfied i.o0. since

2P — 1 prime and 2P + 1 divisible by 3
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Some thoughts

Numerical experiments show that they keep showing up!

- did not try to fit curve: that may not be useful for the first/second problems
(useful for the third problem if the first problem is resolved positively)

1 1
ZnEN: n7n S 100 and Zp ; — 0Q,

James Maynard,

however, infinitely many primes without 7 2016
(prime, prirre multiple of 2, pricre (pricre, prime multiple of 2, prime
multiple of 3) multiple of 3) "
n
2ps —1=p 2ny —1=p; 2ps —1=n — P2
® 2
3ps —2=p; 3ng —2=p 3ps —2=n 2= = ps
Primes odd: first equation follows This seems to have a
Second equation is satisfied i.o. since connection with Corollary 1.9
9 _ 1 prime and 27 -+ 1 divisible by 3 in Green and Tao 2008.

(Can be true!)
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Ending note

Please do NOT take my simplifications and proof ideas seriously
- my knowledge in number theory is best described as NOTHING

- however, the problem seems to be a nice one
(my pure/applied number theorist friends said so!)

- shall be very eager to hear from you if you find the answer(s)
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Ending note

Please do NOT take my simplifications and proof ideas seriously
- my knowledge in number theory is best described as NOTHING

- however, the problem seems to be a nice one
(my pure/applied number theorist friends said so!)

- shall be very eager to hear from you if you find the answer(s)

ThanQ

63



Background

Study of epidemics has a long history: contagious disease, computer virus, opinion, . . .

SIS: susceptible-infected-susceptible _
infectiousness

OCa OQ Susceptible becomes infected at a rate (exp) Lﬁ X #infected

Infected becomes susceptible at a rate (exp) §

The continuous time stochastic process of interest: #infected (t)
- extinction time: time to hit 0
- maximum infection spread
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Background

Study of epidemics has a long history: contagious disease, computer virus, opinion, . . .

SIS: susceptible-infected-susceptible _
infectiousness

OCa OQ Susceptible becomes infected at a rate (exp) Lﬁ X #infected

Infected becomes susceptible at a rate (exp) §

The continuous time stochastic process of interest: #infected (t)
- extinction time: time to hit 0
- maximum infection spread

This model does not capture the effect of social/contact graph
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