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Motivations

Bidding efficiently in Simultaneous Ascending Auctions is a hot topic

SAA has become the privilege mechanism used for spectrum auctions since its
introduction in 1994 by the FCC in US

SAA has recently been used in many countries for 5G licences (Germany
[Bundesnetzagentur, 2022], Italy [European 5G Observatory, 2018], etc)

Paul Milgrom and Robert Wilson received the Nobel Prize in Economy in 2020
mainly for their contribution to SAA (mechanism design) [Milgrom, 2000]

Gap in literature regarding how to bid efficiently in SAA

Auction theory or exact game resolution methods are unable to compute the
optimal bidding strategies due to the high complexity of the game.

Strategical issues have always been studied separately generally in specific contexts
and simplified versions of SAA
[Goeree and Lien, 2014, Zheng, 2012, Brusco and Lopomo, 2002]

⇒ We propose a tree-search approach to the bidder strategy problem tackling
simultaneously two strategical issues : exposure and own price effect
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Simultaneous Ascending Auctions (SAA)

Simultaneous Ascending Auctions (SAA)

Brief Presentation of SAA [Milgrom, 2000, Cramton et al., 2006]

It is an auction mechanism where m indivisible goods are sold via separate and
concurrent English auctions between n bidders

Bidding occurs in multiple rounds

At each round :
Bidders submit their bids simultaneously, activity rules may constrain bidders
to play (avoid wait-and-see strategy)
For every item j : The bidder having placed the highest bid becomes its
temporary winner (ties randomly broken) and its bid price Pj is set to the
highest bid
The temporary winner and bid price of each item is revealed, the minimal
admissible bid for the next round is Pj + ε (ε bid increment)

Until : no new bids are submitted during a round on any object (closing rule)

After closing : the objects are sold at the bid prices to the corresponding winners
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Simultaneous Ascending Auctions (SAA)

Deterministic SAA with complete information

Brief Presentation of d-SAA with complete information

Bidders take turns bidding (no more simultaneity and stochasticity)

Temporary winner and bid price Pj are announced after each turn

New bids are constrained to be Pj + ε (discrete action
space)[Goeree and Lien, 2014, Wellman et al., 2008]

The value function of the bidders are common knowledge
[Szentes and Rosenthal, 2003a, Szentes and Rosenthal, 2003b]

⇒ d-SAA is a sequential deterministic game with perfect and complete information

Game complexities [Van Den Herik et al., 2002]

Ex : 5G auction in Italy in 2018, m = 12 items, n = 5 bidders, R = 171 rounds

State space complexity :
∑n−1

i′=0(1 +
∑n−1

i=0 (R − i − i ′)+)m1{R≥i′} (ex : 1035)

Game tree complexity : > 2m(n−1)b R
n
c (ex : 10491)
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Simultaneous Ascending Auctions (SAA)

Comparison of SAA and d-SAA extensive form
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Figure – Comparison of SAA and d-SAA extensive form

⇒ Conception of simpler tree-search algorithms in d-SAA
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Simultaneous Ascending Auctions (SAA)

Utility and value functions

Value functions

Each player i is defined by its value function vi which respects the following properties :

Normalisation : vi (∅) = 0 ; Finite : ∀X , vi (X ) < +∞
Free disposal : ∀X ,Y ,X ⊂ Y implies vi (X ) ≤ vi (Y ) [Milgrom, 2000]

Complements and substitutes

A set of goods X exhibits complementarities with a disjoint set of goods Y if
v(X + Y ) > v(X ) + v(Y )

A set of goods X exhibits substitutabilities with a disjoint set of goods Y if
v(X + Y ) < v(X ) + v(Y )

Utility function

At the end of the auction, if player i wins the set of goods X and the bid price vector is
P, then its utility is :

σi (X ,P) = vi (X )−
∑
j∈X

Pj
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Simultaneous Ascending Auctions (SAA)

Exposure problem

Definition

The exposure problem refers to the possibility that, by bidding on a set of
complementary goods, a bidder ends up paying more than its valuation for the subset it
actually wins as the goods have become too expensive

Example 1

v({1}) v({2}) v({1, 2})
Player 1 12 12 12
Player 2 0 0 20

A rational strategy for player 1 is :
To pass its turn if currently winning an item or the bid price of both items is
greater than 12− ε (e.g. ε = 1)
To bid on the cheapest item otherwise

Given the fact that player 1 plays rationally, if player 2 bids on an item, player 2 will
end up exposed as it will not be able to acquire both items for a price inferior to 22

⇒ No efficient bidding strategy is known to avoid this problem in the general case
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Simultaneous Ascending Auctions (SAA)

Own price effect

Definitions

Own price effect : Each bid on an item increases its price and decreases the utility
of bidders willing to acquire it. Each bidder has its own effect on the prices
[Weber, 1997]

Demand reduction strategy [Weber, 1997, Ausubel et al., 2014] : Reduce demand
to keep prices low and coordinate on a split of the items (this is a collusion
[Brusco and Lopomo, 2002])

Example 2 (ε = 1)

v({1}) v({2}) v({1, 2})
Player 1 10 10 20
Player 2 10 10 20

If players don’t form a collusion, the final bid price of each item will be 10. Both
players end up with a utility of 0.

If players form a collusion, then they both acquire an item for a price of ε = 1 and
end up with a utility of 9.
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Bidding strategies

Point price prediction bidding

Point-price prediction bidding (PP) [Wellman et al., 2008]

A point-price prediction bidder (PP) computes the subset of goods

X ∗ = argmax
X

σ(X , ρ(B))

breaking ties in favour of smaller subsets and lower-numbered goods.

The bidder bids Pj + ε on all items j that it is not currently winning in X ∗.

The function ρ : B → R+
m maps the bidder’s information state B to an estimation

of the final price vector ρ(B).

ρ may use only the initial estimation of the final price vector ρ(B0) :

ρj(B) =

{
max(ρj(B0),Pj) if winning good j
max(ρj(B0),Pj + ε) otherwise

Straightforward Bidding (SB) [Milgrom, 2000]

The Straightforward Bidding strategy (SB) corresponds to a PP with null initial
estimation of the final price vector (ρ(B0) = 0)

M. Coupechoux (Telecom Paris) SPCOM 2022 13 juillet 2022 11 / 35



Bidding strategies

Predicting the final price vector

Walrasian equilibrium

Di (p) = argmaxX σ(X , p) is the demand set of bidder i at price p

A Walrasian equilibrium is a price vector p and an allocation (X1, ...,Xn) such that
Xi ∈ Di (p) for every bidder i and all items are allocated (market clearance)

Walrasian equilibrium doesn’t always exist (ex : Example 1)

Expected Price equilibrium (EPE) [Wellman et al., 2008]

EPE : Tâtonnement process used to find a Walrasian equilibrium if it exists.

p(t + 1) = p(t) + α(t)(x(p(t))− 1) (x the demand function)

Problem : Does not take in account the auction’s mechanism

Self-Confirming Point Price Prediction [Wellman et al., 2008]

A Self-Confirming Point Price Prediction is a price vector p such that, if all bidders play
PP with initial estimation ρ(B0) = p, the final price vector is equal to p. It does not
always exist (ex : Example 1).
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Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS)

Search Tree

As it is impossible to explore the whole game tree, only a small portion of it is explored.
In MCTS, it is constructed iteratively.

Selection Expansion Rollout Backpropagation

Search iteration

A selection strategy is
used to select a path
from the root to a leaf
node of the search tree

A new node is
added to the
search tree

A rollout strategy is
used to simulate a
game play

The obtained results
are backpropagated
from the newly added
node to the root
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Monte Carlo Tree Search

MCTS

Success and theoretical guarantees in two-player zero-sum deterministic games

Theoretical guarantees : It has been shown that the probability of playing a
suboptimal action with the MCTS variant Upper Confidence bounds applied to
Trees (UCT) converges to zero at polynomial rate as the number of search
iterations grows to infinity [Kocsis and Szepesvári, 2006].

Great success in various games such as Go [Coulom, 2006, Lee et al., 2009] or
Othello [Robles et al., 2011].

In March 2016, the algorithm AlphaGo beats the world champion of Go 4-1
[Silver et al., 2016]

⇒ d-SAA is a n-player non-zero sum game. No theoretical guarantees regarding MCTS
exist for such games. We use the MCTS-maxn which is the most popular variant for
such games [Nijssen, 2013].
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Monte Carlo Tree Search

Selection phase

Selection index

We use a penalised variant of UCT. At parent node y , our selection strategy chooses the
child x with the highest score qx :

qx =
rx
nx

+ max(bx − ax , ε)

√
2 log(ny )

nx
− no_object(x)− risky_move(x) (1)

where

rx is the sum of rewards found in the subtree with root x

nx is the number of visits of child node x

ny is the number of visits of parent node y

ε is the bid increment

ax is the estimated lower bound of the reward support found in the subtree with
root x

bx is the estimated higher bound of the reward support found in the subtree with
root x
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Monte Carlo Tree Search

Selection : First penalty term

Penalty term no_object

Objective : Discourage bidders to pass their turn if they have got nothing to lose
by bidding on an additional item.

A player i ′ will no longer bid on an item j if ∀X ∈ S−j ,Pj ≥ vi′(X + {j})− vi′(X )

Πi
j = maxi′∈{1,...,n}\{i}maxX∈S−j vi′(X + {j})− vi′(X ) is the minimal price from

which item j is considered as undesired by all opponents of i .

Let Px be the price vector at child node x , i the player bidding at parent node y
and X i

x the set of goods temporarily won by player i at x

no_object(x) =


maxj∈{1,...,m}\X i

x
(vi (X

i
x + {j})− vi (X

i
x)− Pj − ε)+

if {j ′ ∈ X i
x ,P

j′
x < Πi

j′} = ∅
0 otherwise

(2)
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Monte Carlo Tree Search

Selection : Second penalty term

Penalty term risky_move

Objective : Deter players from bidding on sets of goods which might lead to
exposure.

A set of goods X is said to lead to exposure at price vector p if
∃Y ⊆ X , σi (Y , p) < 0

Let Px be the price vector at child node x , r the root player, i the player bidding
at parent node y and X i

x the set of goods temporarily won by player i at node x

risky_move(x) =


λrvi ({1, ...,m}) if X i

x can lead to exposure for i = r at price Px

λovi ({1, ...,m}) if X i
x can lead to exposure for i 6= r at price Px

0 otherwise

λr and λo have opposite effects on the algorithm’s risk aversion

λr controls the risk aversion of the root player
λo controls the risk aversion of the root player’s opponents
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Monte Carlo Tree Search

Rollout phase

The default rollout strategy is to play randomly. However, in d-SAA, it leads to
absurd outcomes with potentially very high prices.

Our rollout strategy is PP with a new method to estimate the final price vector
ρ(B0)

p(t + 1) =
1

t + 1
f (p(t)) + (1− 1

t + 1
)p(t)

where f (p) is the final price vector obtained when all players play PP with initial
prediction p

p(t) always converges when m = n = 2 and items exhibit complementarities
We conjecture the convergence in the general case

Rollout algorithm :
Compute the limit P∗ of p(t).
Set ρ(B0) = P∗ + η where η is a random variable which follows a bounded
uniform distribution (introduce diversity and improve sampling)
Simulate PP with this estimation.
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Numerical Results

Simulation settings

MCTS settings : λr = λo = 0.07 (grid-search)

We compare to SB [Milgrom, 2000], EPE [Wellman et al., 2008], SCPD
[Wellman et al., 2008], UCB (with no selection penalties) and MCTSnp with no
selection penalties

Each algorithm is given a maximum of 30 seconds CPU thinking time.

M. Coupechoux (Telecom Paris) SPCOM 2022 13 juillet 2022 21 / 35



Numerical Results

Test experiment : Exposure

v({1}) v({2}) v({1, 2})
Player 1 12 12 12
Player 2 0 0 20

Table – Example 1

MCTS, MCTSnp, UCB and EPE suggest player 2 not to bid and, hence, avoids
exposure.

SB and SCPD expose player 2 by inciting player 2 to bid on both items

MCTS is able to avoid obvious exposure.
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Numerical Results

Test experiment : Own price effect

v({1}) v({2}) v({1, 2})
Player 1 h h 2h
Player 2 ` ` 2`

0 ≤ ` ≤ h and ε infinitesimal
If h ≤ 2(h − `), Player 1 should bid on both items until Player 2 drops out
If h ≥ 2(h− `), Player 1 should form a collusion with Player 2 by conceding an item
Player 2 optimal strategy is to bid on the cheapest item if its bid price is lower
than `− ε and is currently winning no items and pass otherwise
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Numerical Results

Extensive Experiments : Utility (n = 2,m = 7,ε = 1)
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⇒ (MCTS,MCTS) is the only pure Nash equilibrium of the Normal form game in
expected payoff with six strategies
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Numerical Results

Extensive Experiments : Own Price Effect
(n = 2,m = 7,ε = 1)
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MCTS obtains the lowest average price per item won against every strategy

MCTS is fairly competitive in terms of number of acquired items
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Numerical Results

Extensive Experiments : Exposure
(n = 2,m = 7,ε = 1)
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(MCTS,MCTS) never suffers from exposure

MCTS has very low exposure frequency against every strategy, except SB

MCTS is less exposed and has lower losses than MCTSnp against other strategies
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Conclusion

Conclusion and future works

Conclusion

First algorithm to tackle simultaneously the exposure problem and own price effect
in a simplified version of SAA

MCTS : a promising approach to derive auction strategies in SAA

Complementary works

Our algorithm is easily extended to budget constraints

Algorithm remains efficient and robust to significant errors in the valuation
estimates

Future work

Increase in the number of players

Adding simultaneity and incomplete information to our SAA model
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Conclusion

Thank you for your attention !
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