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® R17 frozen in March 2022; R18 (5G-Advanced) is now the focus.
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6G Key Capabilities
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Huawei Technologies, Co. Ltd., “6G: The Next Horizon,” White Paper, Sep. 2021.
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6G RAN KPIs

Network Capacity:

Peak Rate:  1000X w.r.t. 5G
1 Tbit/s

Air Interface Latency:

Experienced Rate: 0.1ms

10-100 Gbit/s

Sensing/Position Accuracy:

Energy Efficiency: 50 cm outdoor, 1 cm indoor

100X w.r.t. 5G, Total < 5G

Sensing/Imaging Resolution:

Sensing Battery Life: 1-3 mm

20 years

Air Interface Jitter:

Device Density: +/-0.1ps
10 millions/km?
Network Coverage: Reliability:
10 dB+ 99.99999%

Huawei Technologies, Co. Ltd., “6G: The Next Horizon,” White Paper, Sep. 2021.
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Smart Wireless Environments
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E. Calvanese Strinati, G. C. Alexandropoulos et al., “Wireless environment as a service enabled by
reconfigurable intelligent surfaces: The RISE-6G perspective,” Joint EuCNC & 6G Summit, 2021.

E. Calvanese Strinati, G. C. Alexandropoulos et al., “Reconfigurable, intelligent, and sustainable wireless
environments for 6G smart connectivity,” IEEE COMMAG, 2021.

G. C. Alexandropoulos et al., “Smart wireless environments enabled by RISs: Deployment scenarios and two
key challenges,” Joint EuCNC & 6G Summit, 2022.
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Reconfigurable Intelligent Surfaces (RISs)

® A metamaterial (or meta-atom) is usually constructed by arranging
multiple tunable elements (PIN diodes, varactor diodes, etc.) in
repeating patterns, at scales that are smaller than the wavelengths.

® |ts precise shape, geometry, size, orientation, and arrangement enable
smart properties capable of manipulating electromagnetic waves, e.g.,
blocking, absorbing, enhancing, or bending waves, to achieve benefits
that go beyond what is possible with conventional materials.

® Each meta-atom can be controlled independently to achieve desirable
characteristics of the electromagnetic waves, such as the direction of
propagation and reflection.

RISs are also know as intelligent reflective surfaces, programmable hypersurfaces, or simply as metasurfaces
in the wireless communications’ literature.
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A PIN-based Unit Cell @11.1GHz

(a) (b) ©

PIN diode Biasing circuit gN OFF

py j_
> 780 =281F
< Px S
1 A I 30pH  330pH

DC signal—~

1.0 180 240

N——“___\ S ] = x pol: ON-OFF
(] — N -
2 0.9 g0 N £ 180 y pol: ON-OFE
a o 60 b4
£ 084 s S 120
@ < 0 2
c e)| = o
07| —onoy (D] 5 oolm—onr\_ P £ (®)
3] = -6 T 60 g
g = OFF(x pol) 8 —— OFF(x pol) 2 o> =esms ON: y pol-x pol
T 0.8 ==+ ON(y pol) %-120{ ="+ ON(y pol) g T —-- OFF:y polx pol
— -+ OFF(y pol) & —-- OFF(y pol) g 0
0.5 T T -180 T T T T
10 11 12 9 10 1 12 9 10 1 12
Frequency (GHz) Frequency (GHz) Frequency (GHz)

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable
metasurface with dynamic polarization, scattering and focusing control,” Scientific Reports, 2016.
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® Each unit cell consists of a rectangular patch coupled to a parasitic

resonator, and is controlled by a PIN diode.
® The parasitic resonator reflects the impinging EM wave with 0 or 7

phase shifts; reflective beamforming.

N. Kaina, M. Dupre, G. Lerosey, and M. Fink, “Shaping complex microwave fields in reverberating media

with binary tunable metasurfaces,” Scientific Reports, 2014.
Invited Talk @IEEE SPCOM 2022
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Variable Capacitance via Tunable Lumped Elements
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O. Tsilipakos, F. Liu, A. Pitilakis, A. C. Tasolamprou, D.-H. Kwon, M. S. Mirmoosa, N. V. Kantartzis, E. N.
Economou, M. Kafesaki, C. M. Soukoulis, and S. A. Tretyakov, “Tunable perfect anomalous reflection in
metasurfaces with capacitive lumped elements,” Metamaterials, 2018.
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The Cascaded Channel Model

The baseband received signal at RX can be expressed as (in the case of
the absence of a direct TX-RX link):

Yrx = ho® h;s —i—W:(hQOh]—_r)(f)S—i-W
N

A
=YRIS

® ypig € CN*1 js the baseband equivalent of the signal impinging on
the RIS unit elements, which is processed in the RF domain without
actually being received from any dedicated RF chain (this would
insert reception thermal noise).

® For example, the signal reaching the n-th (n=1,2,...,N) RIS unit
element is [h1],s, which gets reflected becoming [¢],[h1]ns.

© Prof. George C. Alexandropoulos, 2022 Invited Talk @IEEE SPCOM 2022



Physics-Based End-to-End Channel Modeling

In general, the baseband received signal at RX needs to be of the form:

Yrx = h(®)s + w

® The cascaded channel model is actually an oversimplification of the
above expression that is valid only for highly specular channels,
although widely used up to date.

® PhysFad incorporates the notions of space and causality, dispersion,
frequency selectivity, and the intertwinement of each RIS element’s
phase and amplitude response, as well as any arising mutual coupling
effects including long-range mesoscopic correlations.

R. Faqiri, C. Saigre-Tardif, G. C. Alexandropoulos, N. Shlezinger, M. F. Imani, and P. del Hougne, “PhysFad:
Physics-based end-to-end channel modeling of RIS-parametrized environments with adjustable fading,” under
revision, 2022; [Online] https://arxiv.org/abs/2202.02673.
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The PhysFad End-to-End Channel Model
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R. Faqiri, C. Saigre-Tardif, G. C. Alexandropoulos, N. Shlezinger, M. F. Imani, and P. del Hougne, “PhysFad:
Physics-based end-to-end channel modeling of RIS-parametrized environments with adjustable fading,” under
revision, 2022; [Online] https://arxiv.org/abs/2202.02673.
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Transmission Spectrum and Spatial Field Distribution
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R. Faqiri, C. Saigre-Tardif, G. C. Alexandropoulos, N. Shlezinger, M. F. Imani, and P. del Hougne, “PhysFad:
Physics-based end-to-end channel modeling of RIS-parametrized environments with adjustable fading,” under

revision, 2022; [Online] https://arxiv.org/abs/2202.02673.
Invited Talk @IEEE SPCOM 2022
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Passive RISs - Bandwidth of Influenc
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N. Kaina, M. Dupre, G. Lerosey, and M. Fink, “Shaping complex microwave fields in reverberating media
with binary tunable metasurfaces,” Scientific Reports, 2014.

G. C. Alexandropoulos, N. Shlezinger, and P. del Hougne, “Reconfigurable intelligent surfaces for rich
scattering wireless communications: Recent experiments, challenges, and opportunities,” IEEE COMMAG, 2021.

G. C. Alexandropoulos et al., “Smart wireless environments enabled by RISs: Deployment scenarios and two
key challenges,” Joint EuCNC & 6G Summit, 2022.
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Reflective-Transmissive RISs

P
=== Direct link I
| === Reflective link |
:_— ———> Transmissive link |

S. Zhang, H. Zhang, B. Di, Y. Tan, Z. Han, and L. Song, “Reflective-transmissive metasurface aided
communications for full-dimensional coverage extension,” IEEE TVT, 2020.
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Simultaneously Transmitting and Reflecting RISs
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J. Xu, Y. Liu, X. Mu, O. A. Dobre, “STAR-RISs: Simultaneous transmitting and reflecting reconfigurable
intelligent surfaces,” IEEE COML, 2021.

S. Zhang, H. Zhang, B. Di, Y. Tan, M. Di Renzo, Z. Han, H. V. Poor, L. Song, “Intelligent omni-surfaces:
Ubiquitous wireless transmission by reflective-refractive metasurfaces,” IEEE TWC, 2021.
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RISs with Reflection Amplification

dy

()
Y

Tx d Rx

R. Akif Tasci, F. Kilinc, E. Basar, and G. C. Alexandropoulos, “A new RIS architecture with a single power
amplifier: Energy efficiency and error performance analysis,” IEEE Access, 2022.
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RISs with RX RF Chains

Random spatial |
sampling from |

the M available Online.
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controller

Baseband
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G. C. Alexandropoulos and E. Vlachos, “A hardware architecture for reconfigurable intelligent surfaces with
minimal active elements for explicit channel estimation,” IEEE ICASSP, 2020.
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RISs for Simultaneous Tunable Reflections and Sensing

Hybrid metasurface Hybrid meta-atom
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G. C. Alexandropoulos, N. Shlezinger, |. Alamzadeh, M. F. Imani, H. Zhang, and Y. C. Eldar, “Hybrid
reconfigurable intelligent metasurfaces: Enabling simultaneous tunable reflections and sensing for 6G wireless
communications,” under revision, 2022; [Online] https://arxiv.org/pdf/2104.04690.

|. Alamzadeh, G. C. Alexandropoulos, N. Shlezinger, and M. F. Imani, “A reconfigurable intelligent surface
with integrated sensing capability,” Scientific Reports, 2021.
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Simulated Reflection and Coupling Coefficients
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|. Alamzadeh, G. C. Alexandropoulos, N. Shlezinger, and M. F. Imani, “A reconfigurable intelligent surface
with integrated sensing capability,” Scientific Reports, 2021.
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Metasurface-Based Holographic MIMO
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N. Shlezinger, G. C. Alexandropoulos, M. F. Imani, Y. C. Eldar, and D. R. Smith, “Dynamic metasurface
antennas for 6G extreme massive MIMO communications,” IEEE WCOM, 2021.
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Channel Estimation with HRISs
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G. C. Alexandropoulos, N. Shlezinger, |. Alamzadeh, M. F. Imani, H. Zhang, and Y. C. Eldar, “Hybrid
reconfigurable intelligent metasurfaces: Enabling simultaneous tunable reflections and sensing for 6G wireless
communications,” under revision, 2021; [Online] https://arxiv.org/abs/2104.04690.

H. Zhang, N. Shlezinger, I. Alamzadeh, G. C. Alexandropoulos, M. F. Imani, and Y. C. Eldar, “Channel
estimation with simultaneous reflecting and sensing reconfigurable intelligent metasurfaces,” IEEE SPAWC, 2021.

H. Zhang, N. Shlezinger, G. C. Alexandropoulos, A. Shultzman, I. Alamzadeh, M. F. Imani, and Y. C. Eldar,
“Channel estimation with hybrid reconfigurable intelligent metasurfaces,” under review, 2022; [Online]
https://arxiv.org/abs/2206.03913.
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Individual Channels’ Estimation Formulation

e oy S (P(0).4 (D). ¢ (D)) + &6 ({p(b). #(b)))

st [p(B)]p € 10,11, [$(b)], € [0,27], [$(b)]q € [0, 2],
b=1,2,....B, p=1,2,....N, g=1,2,....,N x N,

® The UTs-HRIS channel is estimated at the HRIS side G and then
shared via the HRIS controller to the BS.

® The HRIS-BS channel is then estimated at the BS using the latter
shared estimation for G.

H. Zhang, N. Shlezinger, G. C. Alexandropoulos, A. Shultzman, I. Alamzadeh, M. F. Imani, and Y. C. Eldar,
“Channel estimation with hybrid reconfigurable intelligent metasurfaces,” under review, 2022; [Online]
https://arxiv.org/abs/2206.03913.
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The Role of the Power Splitting Factor
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® 16-Antenna BS, 8 UTs, 64-element HRIS with 8 RF chains.

G. C. Alexandropoulos, N. Shlezinger, |. Alamzadeh, M. F. Imani, H. Zhang, and Y. C. Eldar, “Hybrid
reconfigurable intelligent metasurfaces: Enabling simultaneous tunable reflections and sensing for 6G wireless
communications,” under revision, 2021; [Online] https://arxiv.org/abs/2104.04690.

Prof. George C. Alexandropoulos, 2022 Invited Talk @IEEE SPCOM



The Role of RF Chains for Cascaded Channel Estimatio
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H. Zhang, N. Shlezinger, G. C. Alexandropoulos, A. Shultzman, I. Alamzadeh, M. F. Imani, and Y. C. Eldar,
“Channel estimation with hybrid reconfigurable intelligent metasurfaces,” under review, 2022; [Online]
https://arxiv.org/abs/2206.03913.
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Enabling 3D Localization with Passive RISs

SISO

MISO
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IRIS, ] BS,NB
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K. Keykhosravi, B. Denis, G. C. Alexandropoulos, Z. S. He, A. Albanese, V. Sciancalepore, and H.
Wymeersch, “Leveraging RIS-enabled smart signal propagation for solving infeasible localization problems,” under
review, 2022; [Online] https://arxiv.org/pdf/2204.11538.
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3D Localization with Single-RX-RF HRISs
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G. C. Alexandropoulos, I. Vinieratou, and H. Wymeersch, “Localization via multiple reconfigurable intelligent
surfaces equipped with single receive RF chains,” IEEE WCL, 2022.
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Positioning RMSE for Near- and Far-Field
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G. C. Alexandropoulos, I. Vinieratou, and H. Wymeersch, “Localization via multiple reconfigurable intelligent
surfaces equipped with single receive RF chains,” IEEE WCL, 2022.
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G. C. Alexandropoulos, I. Vinieratou, and H. Wymeersch, “Localization via multiple reconfigurable intelligent

surfaces equipped with single receive RF chains,” IEEE WCL, 2022.

-12

-19

© Prof. George C. Alexandropoulos, 2022 Invited Talk @IEEE SPCOM 2022



Environmental Al

{Controller}
RIS, RIS;
oo - O OO - O
= :
BS ; UEg :
’
) RIS, RIS,,
— oo -0 — (= oOood-.-.-Od
oog o, ) ] =l==Fg=
oo -0 oo -0
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machine learning for smart radio environments enabled by reconfigurable intelligent surfaces,” Proc. IEEE, to
appear, 2022; [Online] https://arxiv.org/pdf/2205.03793.pdf
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DRL-Based Formulation

The goal is to find a policy that maximizes the expected sum of rewards:

® State:

Environment

s: = [vec(H1), vec(Hz), ..., vec(Hum),

tet+1
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® Action:

Tt<— > Ry
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ar 2 [vec(V),9"]"

Controller (agent)
® Reward:

G. C. Alexandropoulos, K. Stylianopoulos, C. Huang, C. Yuen, M. Bennis, and M. Debbah, “Pervasive
machine learning for smart radio environments enabled by reconfigurable intelligent surfaces,” Proc. IEEE, to
appear, 2022; [Online] https://arxiv.org/pdf/2205.03793.pdf
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Conclusion and Research Directions

® HRISs can boost the performance and/or enable various wireless
applications in cost- and energy-efficient manners, similar to what
passive RISs were envisioned to do, but with an embedded
mechanism that enables its efficient reconfiguration.

® The HRIS operation supports integrated communications and sensing
in an autonomous manner, facilitating large-scale RF sensing (e.g.,
localization, direction estimation, and radio mapping) that can offer
environmental Al.

® Physics-driven characterization of HRISs is required to characterize
the coupling between its parameters (i.e., power splitting and phase
shifting coefficients) as well as between different elements.

® Proof-of-concepts realizing such metasurfaces for wireless
communications still requires a large body of experimental efforts and
hardware designs, from low up to THz frequencies.
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A. L. Moustakas, G. C. Alexandropoulos, and M. Debbah, “Capacity optimization using reconfigurable
intelligent surfaces: A large system approach,” IEEE GLOBECOM, 2021.
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Holographic MIMO with Full Duplex Radios
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M. A. Islam, G. C. Alexandropoulos, and B. Smida, “Simultaneous multi-user MIMO communications and
multi-target tracking with full duplex radios,” under review 2021; [Online] https://arxiv.org/abs/2205.08402.
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