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Learning with Trials and Feedback

Approximating Large Cooperative Multi-Agent Reinforcement Learning (MARL) Problems via Mean-Field Control (MFC)



Multi-Agent Learning

Figure: Multi-player games, traffic signal control, autonomous driving.
Images are taken from the internet.

m Connected local environments.
m Individual rewards.

m Action of one agent can impact

m all local states.
m the rewards of all agents.
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Mathematical Formulation

N agents.

Individual state space S = {1,2,---,S}.

Individual action space A= {1,2,---,A}.

State and action of ith agent at time t: si, and al.

Joint state and action at time t: s = {s{}/e(1,.. v}, and a.

Reward of ith agent at time t: ri(s¢, at).

State transition of ith agent: 51{+1 ~ Pj(s¢,at).
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Mathematical Formulation

Policy of ith agent: a ~ 7i(s;)

Joint policy-sequence: 7 = {77'{;},'6{1,...,N},tg{o’l,...}
In cooperative setup, the following is maximized:

N 00

vn(so, 7 Z ZV ri(st, at) (1)

over all policy-sequence 7.

Expectation is over all trajectory generated by 7t from sg.

Joint state-space: SN. The goal is difficult in general.
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Existing Approaches

Localisation of Policy:

m Each policy is dependent on local states i.e., 7i(s;) = 7i(s!)
Training:

m Independent Q-Learning (IQL).

m Centralised training with decentralised execution (CTDE)
= VDN [7], QMIX [5], WQMIX [4], QTRAN [6] etc.

Merit and Demerit:
m Works well empirically for moderately high number of agents.

m No optimality guarantee.
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Mean-Field Control (MFC)

Basic Premise:
m One can accurately infer group behaviour by studying only a
representative agent if the agents are

m (A1) identical and exchangeable, and
m (A2) infinite in number

m Consequence of (Al) in an N-agent system:
w ri(se,ac) = r(sf, ap, py, vY)
u Pl_'(stvat) = R(Sévagv“?’vyiv)
m 7i(s;) = m(si, uV) where
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Behaviour of an Infinite Agent System

State and action of representative at time t: s;, and as.
Policy-sequence of representative: m = {¢}cf01,...}-
State and action distributions at time t: pg°, vg°.

Action Distribution Evolution:

v ST ) = ) ml(s uPu(s) ()
seS

m State Distribution Evolution:

u/?j—l é PMF(H’?OvTrt)
=38 P(s,a, u v )me(s, w)(@)ui(s) ()
seS ac A

Approximating Large Cooperative Multi-Agent Reinforcement Learning (MARL) Problems via Mean-Field Control (MFC)



Goal in MFC

m Expected reward of the representative at time t:

M (e, ) ZZ r(s, a, pe” v me(s, we”)(a)pe (s)

seS acA
(5)

m Maximize over all 7 the following for initial distribution, .

Vootho, @) = >t rMF (ug®, ) (6)
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Research Gap

m It is known [1] that for |arge N, and for all T,
4 , T VeolMo, T)| =
N\S0 0 N
m How the error Changes when

m agents are heterogeneous? (JMLR 2022 [2])
m non-exchangeable? (UAI 2022 [3])
m additional constraints are present? (Submitted to NeurlPS)

How to solve MFC sample-efficiently?
Construction of local policy? (Submitted to TMLR)
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Approximating Heterogeneous MARL

m K classes of agents {N7, -+, Nk}
m Populations Ny, - -+, Nk.
m N4+ Ng=Nand N= {Ng, -, Nx}.

m Agents within each class are identical and exchangeable.

Reward and state-transition depend on:
m Case 1: Joint state and action distributions over all classes.
m Case 2: State and action distributions of individual classes.

m Case 3: Marginalized state and action distributions.
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Approximating Heterogeneous MARL: Case 1

For an agent i belonging to k-th class,
u ri(st,at) = I’k(Sé, a;:u p/lt\la Vlt\l)

| P,'(St,at) = Pk(sgvaiaﬂltyaylt\l)

KN, KN,
where pp = {1 Yeqr, ks VY = V¢ Yieqr, ky and

pie(s) = 25 (8)

IENk

@)= 5 3 (s (9)

IGNk

Example: Ride sharing market where classes may be vehicle type,
driver type etc.
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Approximating Heterogeneous MARL: Results

The error between MARL and MFC is O(e) where
me=[1 >, VN [VS+VA] (Case 1)

me= [zk ﬁ] [V/S + VA] (Case 2)

me— [% Yo VNK+D>, \/LN*J [\@—i— \//Z] for some constants
A, B (Case 3)

We also develop an algorithm that approximately solves MFC and
therefore also solves MARL with O(e) error and O(e~3) sample
complexity.
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Crux of the Proof for Case 1

m|r(x,u,pq,v1)| <M

m r(x, u, py,v1) = r(x, u, o, v2)| < LR[[1g — pol1 + (V1 —v2li]
m |P(x, u, py,v1) = P(x, u, po, v2)|1 < Lp[lpg—pol1+v1—va2li]
m m(x, py) = 7(x, )| < Lolpg — pol

® [, [y, V1, V2 are arbitrary joint distributions

Bounded reward

Lipschitz reward, transition, policy
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Crux of the Proof for Case 1

Consequence of Assumption

m Lipschitz continuity extends to mean field system

m [ME (g, ) — MF(py, )| < (14 L) py — pol1 (Lemma 1)
m | PME(py, ) — PMY (g, )|y < Splpy — pol1 (Lemma 2)

m M (g, ) — M (o, 7)1 < Sklpg — poli (Lemma 3)
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Crux of the Proof for Case 1

Where does v/N factor come from?

If {Xm,n}me[m),ne[n) are random variables and {Cin i} me[m),neln]
are constants such that

m If Vm € [M], {Xim,n}ne[n) are independent
B 0< X,n<1 Vmn

] ZmG[M] ]E[Xm7n] = 1, Vn e [N]

B [Chnnl < C,Vme [M],Vn e [N], then

N

> Coun(Xmn = EXmal)| < CVMN (10)
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Consequence of Lemma 4

Lemma 5:
1
Elvd — oM (ul, w1 < N Z VNe | VU
ke[K]

Lemma 6:

E [y — P (b )|

<G [ViFT+ VIl 5 | 2 vk

ke[K]

Approximating Large Cooperative Multi-Agent Reinforcement Learning (MARL) Problems via Mean-Field Control (MFC)



Consequence of Lemma 4

Lemma 7:
1 N
E erk( t’[i\l, Jk7“t7ut)_z (lJ’taﬂ.t)
PPy c[K] j=1 ke[K]
1
< Crv |U|N Z v Nic

ke[K]

What do these differences (Lemma 5, 6, 7) mean?
m Characterizing a one-step difference between MARL and MFC
m puY — pl (MARL update)
mu) — PMF(uN 7)) (MFC update)
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Multi-Step Difference

Via Recursion, E ‘:“lr\l+1 - Nt+1‘1 can be bounded.
m Our goal: the difference between MARL and MFC rewards

m It translates to y-discounted sum of E |N't\|+1 — “t+1‘1
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Approximating MARL with Non-Uniform Interaction

Motivational Example: Traffic Signal Control.

m Nearby intersections interact stronger than far-away ones.

Model of Non-Uniform Interaction:
m N agents with identical reward and state transition functions.
m Interaction between agent 7, j: W(i,).
m State and action distribution as seen by ith agent:

i (s) = ZW'J =), (11)
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Approximating MARL with Non-Uniform Interaction

m Reward of ith agent: (s, al, ui™, v}

m State transition of jth agent: s/, ; ~ P(sl, al, uy", vi™)

Main Result:
m MFC can still approximate MARL if
m W is doubly-stochastic matrix (DSM)
m reward functions are affine

m The approximation error is O(e) where e = ﬁ [\FS—# \/Z]

m Developed algorithm to obtain optimal policy with
m O(max{e,e}) error, and
m O(e~3) sample complexity for any € > 0.
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Numerical Results

Consider a network of N firms operated by a single operator. All of
the firms produce the same product but with varying quality (with
Q levels).

At each time, each firm decides whether to invest to improve the
quality of its product. The quality improves as

_iN
,. xi+|x(1-B ) (@—xi)| ifui =1,
Xpp1 = Q

X{ otherwise

where  is a uniform random variable between [0, 1], and ﬁf_ﬂN is
average product quality of its K < N neighbouring firms. The
total reward can be expressed as follows.

i iN _i,N i —i,N i
r(X{»,U{»,[J,;’ 7’/’1‘7 ):athl“_/BR(u;’ )U_)\F\"uiL
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Numerical Results

Percentage Error
Percentage Error

(a) Affine Reward (b) Nonlinear Reward

Figure: Percentage error between MARL and MFC as a function of N.
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Approximating Constrained MARL

Premise:

= In addition to reward, each agent incurs cost c(si, ai, uN,vN)

m Consider the reward and cost values:

N oo

. 1

VN(5077T) = N E E [§ Y r(5t7at7u’{“v7y{”v)] ) (13)
i=1 t=0

o0

’Y C(Staataﬂ’{yaytlfv)] (14)
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Approximating Constrained MARL

max Vy(so, )
T (15)
subject to: Vg (sg, ) <0

Main Result:
m MFC approximation error O(e) where e = ﬁ[\fs—k VA

m Zero constraint violation for large N.
m Devised Primal-Dual algorithm that computes the optimal
policy with
m O(e) error,
m Zero constraint violation for large N
m O(e~®) sample complexity.
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Numerical Result
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Figure: Percentage error in approximating the optimal objective value and
constraint violation respectively as functions of N.
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Constructing Near-Optimal Local Policy

Idea:
N

m Collecting network-wide information to compute u, vV is
costly or impossible at each instant.

m u3°, v3° can be obtained deterministically via mean-field
updates if g is known.

m Can we use u$°, v%° as proxy for uN, vN?

m It eliminates the cost of communication except at t = 0.
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Constructing Near-Optimal Local Policy

Let, 7}, be the optimal N-agent policy sequence.

5 = {7i o) be optimal infinite agent policy-sequence.

Define 75, = {7} o} such that,

ﬁ-;.*k,oo(sa H) = ﬂ-;oo(sv “(1.?0)’ Vs,V (16)

m We show that,

(50, 7y) — viv(ig, 720) = O (e), e = \%[fs VA

We develop an algorithm that computes 7} with
O(max{e, €}) error and O(e~3) sample complexity.
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Numerical Result

Percentage Error

20 40 60 80 100
N

Figure: Percentage error of approximating the optimal policy via a local
policy as a function of N.
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