Regret-Optimal Online Caching for
Adversarial and Stochastic Arrivals

Sharayu Moharir
IIT Bombay

Joint work with Fathima Faizal, Priya Singh, and Nikhil Karamchandani

Caching

EEE -
——

Requests

Cache can store up to C(<L) files
Contents can be changed

Library of L files

* Hit: requested file present in cache

e Miss: requested file not present in cache

* Algorithmic challenge: determine which files to cache over time

e (Goal: maximize the number of hits/minimize the number of misses

2

Request Models

Request arrival, hit/miss
Caching decision

Cache update

Time

I.i.d. Stochastic Requests Adversarial Requests

* Requests are I.i.d. random variables * No assumptions on arrival sequence

 Online: Distribution unknown, caching ® Online: Caching decisions based on
decisions based on past arrivals past arrivals

Performance Metric: Regret

l.i.d. Stochastic Requests Adversarial Requests

OPT: caches the C most popular files OPT: static cache configuration which
Popularity of File i = P(Request for file i) maximizes number of hits in [1,T]
Static policy, knows popularity of files Offline: knows arrival sequence apriori

A: arrival sequence, candidate policy 2
Mz(A,T): number of misses in [1, T] for A

D: distribution of request arrivals
Candidate policy 2

Mz(T): number of misses in [1,7T] under 2 under policy 2
Regret: Rx(T) = Ep,o[Mz(T)] - Eo[Mopt(T)] Regret: Rz(T) = maxa(Ez[M=(A,T)] - Mopt(A,T))
Guarantee on expected performance e \Worst-case performance guarantee

Is there a policy with order-optimal (w.r.t. time) regret
for both stochastic & adversarial arrivals?

Policy 1: Least Frequently Used

Number of request
in [1,1]

1 2 3 4 5 6 7 8 9 10 11 12 File index
Forexample: IfC=3 X X X X X X X X X

o Keep track of cumulative number of requests for each file
e Score(t) = cumulative number of requests in [1, {]
e Cache the C files with the C highest scores

5

Policy 2: Follow the Perturbed Leader

{ Random perturbation ~ N(0, (17:)?)

!

learning rate

Number of request
in [1,1]

1 2 3 4 5 6 7 8 9 10 11 12 File index
For example: C=3 X X X X X X X X X

o Keep track of cumulative number of requests for each file
e Score(f) = cumulative number of requests in [1,] + random perturbation
e Cache the C files with the C highest scores

6

Overview of Known Results

Policies i.i.d. Stochastic Requests Adversarial Requests

LFU O(1) regret (order-optimal) Q)(T) regret, strictly sub-optimal?2

FTPL r O(/T) regret for n: a /T (order-optimal)?
A= O(/T) regret for n: a \ft (order-optimal)3

1 A. Bura et al., Learning to Cache and Caching to Learn: Regret Analysis of Caching Algorithms, IEEE/ACM ToN
2 R. Bhattacharjee et al., Fundamental Limits of Online Network-Caching, ACM SIGMETRICS 2020
3 S. Mukhopadhyay et al., Online Caching with Optimal Switching Regret, ISIT 2021

https://arxiv.org/search/cs?searchtype=author&query=Bura%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Bhattacharjee%2C+R
https://arxiv.org/search/cs?searchtype=author&query=Mukhopadhyay%2C+S

FTPL with Constant Learning Rate

Recall:
e Random perturbation in time-slot t ~ N(O, (7:)?)
e For i.i.d. stochastic arrivals, RLru(T) = O(1)

Theorem: For i.i.d. stochastic arrivals and n: o/ T:

Rereu(T) = QWT).

FTPL with n: /T is strictly sub-optimal for i.i.d. stochastic arrivals

FTPL with Time-Varying Learning Rate

Recall:

e Random perturbation in time-slot t ~ N(0, (n:)?)
e | =library size, C = cache size

Let:

e ;= P(an incoming request is for file i)

* WLOG, files indexed in decreasing order of uis
° A=Lc - Hc+1

Theorem: For i.i.d. stochastic arrivals and n: a/t:

Rrrei(T) = O(log L/A2).

FTPL with n: o/t has order-optimal regret (w.r.t. time)
for i.i.d. stochastic and adversarial arrivals

Recall: Follow the Perturbed Leader

{Random perturbation ~ N(0, n:)

Number of request
in [1,1]

1 2 3 4 5 6 7 8 9 10 11 12 File index

* Keep track of cumulative number of requests for each file
* Score(f) = cumulative number of requests in [0, t] + random perturbation
* Cache the C files with the C highest scores

10

Proof Outline (Part 1 of 2)

Let
e ;= P(an incoming request is for file j)

e WLOG, i<j=>1i> U tui = E[score of File /]

Key idea: Low regret if FTPL mimics OPT w.h.p. score of File /

* OPT caches Files1toC
e Consideri<Candj>C = pi>Lj tu; = E[score of File j]
e Event E: score of File / > score of File j
e |Lower bound P(E)

* Account for all possible pairsof i< C &j>C
and all time

Score

score of File J

11

Proof Outline (Part 2 of 2)

e Event E: score of File / > score of File j
e Account for all possible pairs of i < C andj > C and all time

upper bound stochastic regret
by adversarial regret”

e Optimize for to, improves dependence of regret bound on library size L

*J. Mourtada et al., On the optimality of the Hedge algorithm in the stochastic regime, JMLR 2019

12

Regret

50

37.5

12.5

1.1.d. stochastic arrivals
C= 4, L = 10, Hi = 2-i for i<L’ = O-L+1

Simulations

— FTPL n; o 4t
— FTPL nta T
— LFU
30 600 1170 1740 2310 2880
Time

13

round robin arrivals

C=1,L=2
500
— FTPL n; oyt
— FTPL nea T

20 260 500 740 980

Time

Summary

Policies l.i.d. Stochastic Requests Adversarial Requests

LFU O(1) regret (order-optimal) Q(T) regret, strictly sub-optimal?

Q(/T) regret for n: a /T (sub-optimal) O(JT) regret for n: a /T (order-optimal)2

FTPL
O(1) regret for n: a /t (order-optimal) O(/T) regret for n: « /t (order-optimal)3

FTPL with n: = |/t has order-optimal regret for
both stochastic & adversarial arrivals

1 A. Bura et al., Learning to Cache and Caching to Learn: Regret Analysis of Caching Algorithms, IEEE/ACM ToN
2 R. Bhattacharjee et al., Fundamental Limits of Online Network-Caching, ACM SIGMETRICS 2020
3 S. Mukhopadhyay et al., Online Caching with Optimal Switching Regret, ISIT 2021

14

https://arxiv.org/search/cs?searchtype=author&query=Bura%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Bhattacharjee%2C+R
https://arxiv.org/search/cs?searchtype=author&query=Mukhopadhyay%2C+S

Generalizations

|

Cache

Back-end server

* So far, no penalty for changing cache contents
* Generalizations: restricted switching and switching at a cost

Is there a policy that has order-optimal (w.r.t. time) regret
for both stochastic & adversarial arrivals?

15

Restricted Switching

Setting: cache contents can only be changed every r time-slots

l.i.d. Stochastic Requests Adversarial Requests

Q(r) QWIrT)

Lower
bound

FTPL O(r) regret for n: = /t (order-optimal) O(/T) regret for n: o +/t (order-optimal)

FTPL with n: = {Jrt has order-optimal (w.r.t. time) regret
for both stochastic & adversarial arrivals

Extension: non-uniform gaps between changes to cache contents

16

Switching at a Cost

Setting: every change to cache contents costs D units
Updated regret definition takes into account the switching cost

Recall:

 Random perturbation in time-slot t ~ N(0, (n:)?)
* [=library size
* C =cache size

Let:

e u;i = P(an incoming request is for file i)

e WLOQG, files indexed in decreasing order of uis
* A =Lc - lc+

Theorem: For i.i.d. stochastic arrivals and n: a/t:

Rrre(T) = O(D log L/A2).

17

Number of Switches

O
o))

0.45

o
w

0.15

Switches under FTPL

I.1.d. stochastic arrivals
C=2,L=5u=[05,0.25,0.125, 0.0625, 0.0625]

— FTPL Nt oyt

10 18 26 34 42 50 58
Time

18

Our Policy: Wait-then-FTPL

Wait-then-FTPL.: If t < to, do nothing, else mimic FTPL

* Number of misses increases with the duration of the wait period
* Switch cost decreases with the duration of the wait period
* To balance this trade-off: to =u(log D)1+a for u, a=0

19

Performance of Wait-then-FTPL

Setting: every change to cache contents costs D units
Updated regret definition takes into account the switch cost

Recall:
e Random perturbation in time-slot t ~ N(0, (17:)?)
e [=library size, C = cache size

Let:

e u; = P(an incoming request is for file i)

e WLOG, files indexed in decreasing order of uis
* A=Lc - Uc+

Theorem: For i.i.d. stochastic arrivals and n: a/t:
F\)Wait—then—FTPL(T) = O((/Og D)1+a log L/AQ)

Recall: Rrrei(T) = O(D log L/A2)

20

Performance of Wait-then-FTPL

Setting: every change to cache contents costs D units
Updated regret definition takes into account the switch cost

Recall:

 Random perturbation in time-slot t ~ N(0, (n:)?)
* [=library size
* C =cache size

Let:

e u;i = P(an incoming request is for file i)

e WLOQG, files indexed in decreasing order of uis
* A=pc - lc+

Theorem: For adversarial arrivals and n: o/t:

Rwait-then-FTPL(T) = O(DYJT).

21

Summary (with Switching Cost)

Recall: D units of cost incurred for each switch

l.i.d. Stochastic Requests Adversarial Requests
—— O(D) regret for n: o 4t O(D.[T) regret for nt o [t
(order-optimal w.r.t. time) (order-optimal w.r.t. time)’

Wait-
then O((log D)'+9) regret for n: o [t O(D\JT) regret for n: o 4t
ETPL (order-optimal w.r.t. time) (order-optimal w.r.t. time)

FTPL and W-FTPL with n: o |/t have order-optimal (w.r.t. time) regret
for both stochastic & adversarial arrivals

1 S. Mukhopadhyay et al., Online Caching with Optimal Switching Regret, ISIT 2021

22

https://arxiv.org/search/cs?searchtype=author&query=Mukhopadhyay%2C+S

Simulations

1.I.d. stochastic arrivals
C=2,L=5u=[05,0.25,0.125, 0.0625, 0.0625],a=0,u =5, T= 200

3000
— Wait-then-FTPL nt o |/t
— FTPL n: o |t

2250

1500

Regret

750

1 31 61 91 121 151 181
Switch Cost

23

Conclusions

EEE -
——

Requests

Cache can store up to C(<L) files
Contents can be changed

Library of L files

Studied the online caching problem, performance metric: regret
FTPL has order-optimal regret for stochastic and adversarial arrivals
FTPL can have poor performance in the presence of switching cost
Our variant Wait-then-FTPL addresses this limitation of FTPL

24

