El 244: Detection and Estimation

Preliminaries
Linear Algebra, Random Processes, and Optimization Theory




» A N-dimensional vector is assumed to be a column vector:
x
T2
TN

» Complex conjugate (Hermitian) transpose

X" = (x")* = [zt 2k, ... 2]



» An N x M matrix has N rows and M columns:

a1 a2 - Q1M

a1 Qg - as M
A= [aw} =

aNi aN2 -+ OGNM

» Complex conjugate (Hermitian) transpose
A= (A = (A"

» Hermitian matrix
A=A"
Eg.

_ 1 1+ H 1 1+
A_{l—j 1 ], then A—{l_j 1 }

I
>



N 1/17
Vector norms: ||x]|, = (2_1 |a¢i|p) forp=1,2,....

1=

Examples:
N 1/2
Euclidean (2-norm): ||x[|2 = (Zi:l xjrl) = (x"x)!/2

l-norm: ||x||; = Zf\il |24

oo-norm: ||X||eo = max; |z;|

Inner product:

N
(x,y) =x"y =Y ajy,
i=1

» Two vectors are orthogonal if (x,y) = 0; if the vectors have unit
norm, then they are orthonormal



For A € CM*N

» 2-norm (spectral norm, operator norm):

[ Ax]|

"ATA
|A||* := max * o A%

Al =
A= P

Largest magnification that can be obtained by applying A to any
vector

» Forbenius norm

1/2

|A|| ZZ |ai;|? = /trace(A™A)

=1 j=1

Represents energies in its entries



Rank of a matrix

Rank

» The rank of A is the number of independent columns or rows of A
Prototype rank-1 matrix: A = ab"
» The ranks of A, AA", and A" A are the same

» If A is square and full rank, there is a unique inverse A~! such that

10 --- 0
01 --- 0
AA T =ATA=1I=
00 -~ 1

» An N x N matrix A has rank N, then A is invertible < det(A) # 0



Linear independence, vector spaces, and basis vectors

Linear independence

» A collection of N vectors x1,Xs,...,Xy is called linearly
independent if

a1X1+axXeo+--+anxy=0 & ag=ay=---=any=0



Subspaces

» The space H spanned by a collection of vectors x1,Xo,...,Xy
H:={a1x1 + asxa + -+ anyxy|a; € C, Vi}

is called a linear subspace

» If the vectors are linearly independent they are called a basis for the
subspace

» The number of basis vectors is called the dimension of the subspace
» |If the vectors are orthogonal, then we have an orthogonal basis

» If the vectors are orthonormal, then we have an orthonormal basis



Fundamental subspaces of A

» Range (column span) of A € CM*V

ran(A) = {Ax:x eV} c M
The dimension of ran(A) is rank of A, denoted by p(A)
» Kernel (row null space) of A € C**¥
ker(A) = {xeC" : Ax =0} cCV
The dimension of ker(A) is N — p(A)
» Four fundamental subspaces
ran(A) @ ker(A") =M

ran(A") @ ker(A) = CV
direct sum: Hy @ Ho = {x1 + x2|x1 € H1,%x2 € Ha}



Unitary and Isom

» A square matrix U is called unitary if U"U =1 and UU" =1

» Examples are rotation or reflection matrices
» ||U|| = 1; its rows and columns are orthonormal

» A tall rectangular matrix U is called an isometry if U'u =1

» Its columns are orthonormal basis of a subspace (not the complete
space)

> |0 =1,
» There is an orthogonal complement U~ of U such that [U U] is

unitary
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» A square matrix P is a projection if PP =P

» It is an orthogonal projection if P = P
» The norm of an orthogonal projection is |P|| =1

» For an isometry U, the matrix P = UU" is an orthogonal projection
onto the space spanned by the columns of U.

~—

» Suppose U = | U ( L1 is unitary. Then, from UU" = I:
d N-d

U+ OOy =1y, 00" =P, UHUOYH" =PL=1y-P
» Any vector x € C" can be decomposed as x = X + %+ with & L &*:

% =Pxeran(U) %+ =P'xeran(Uh)
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Singular value decomposition

» For any matrix X, there is a decomposition

X =UzV"

Here, U and V are unitary, and X is diagonal with positive real
entries.

» Properties:
» The columns u; of U are called the left singular vectors

» The columns v; of V are called the right singular vectors
» The diagonal entries o; of X are called the singular values

» They are positive, real, and sorted

o1 >022>:-0
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Singular value decomposition

» For an M x N tall matrix X, there is a decomposition

01
od
PN 0 \Y%
X =UxV" = [0 U4 0 [(AL)H}
0 o] 0
0 R 0

U:MxM, ¥:MxN,V:NxN

012092 04> 0441 ="0nN0

» Economy size SVD: X = USV" where $ : d x d is a diagonal
matrix containing o1, --- , 04 along the diagonals.
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Singular value decomposition

The rank of X is d, the number of nonzero singular values

v

» X =UZV" & X"=VIU" & XV=UX & X'U=VY

» The columns of U (U%) are the orthonormal basis for ran(X)
(ker(X"))

» The columns of V (V1) are the orthonormal basis for ran(X")
(ker(X))

v

d : . :
X =3, 0i(uv)); wyv; is a rank-1 isometry matrix.

» Xv; = o

v

|X]| = ||X®|| = o1, the largest singular value.
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Eigenvalue decomposition

» The eigenvalue problem is (A — A\I)x =0

» Any X that makes A — Al singular is called an eigenvalue and the
corresponding invariant vector is called the eigenvector

» Stacking

At

A[X1X2---]:[X1X2...] Ao

AT=TA & A =TAT!

(might exist when T is invertible and when eigenvalues are distinct)
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Eigenvalue decomposition and SVD

» Suppose the SVD of X = UXV". Therefore

XX" = UTViIVIZU" = UX?U" = UAU"

» The eigenvalues of XX are singular values of X squared.
» Eigenvectors of XX" are the left singular vectors of X

» Eigenvalue decomposition of XX™ always exits and SVD always
exists.
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Pseudo inverse

» For a tall full-column rank matrix X : M x N

Pseudo-inverse of X is X' = (X"X)~1X".

» X X = Iy:inverse on the short space
» XX = P,.: Projector onto ran(X)

» For a tall rank matrix X : M x N with rank d, X"X is not

invertible.
Moore-Penrose Pseudo inverse of X = USV" is XT = VE-10"
1. XXX =X

2. XXX = XT
3. XX’ = UU" = P...Projector onto ran(X)
4. XTX = VV" = P,:Projector onto ran(X")
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Optimization theory

» The local and global minima of an objective function f(z), with real
x, satisfy

0f (z)

1) G pw=0 and D _ w2y >0

82

If f(z) is convex, then the local minimum is the global minimum

» For f(z) with complex z, we write f(2) as f(z,z*) and treat
z=ux+ jy and z* = x — jy as independent variables and define the
partial derivatives w.r.t. z and z* as

of _ [5f 3f} g { i f}

0z dr 87y dzx ox + 83/

» For an objective function f(z, z*), the stationary points of f(z,z*)
are found by setting the derivative of f(z,2*) w.r.t. z or z* to zero.
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Optimization theory

» For an objective function in two or more real variables,
f(z1,22,...,2n5) = f(x), the first-order derivative (gradient) and
the second-order derivative (Hessian) are given by

_0fx)
N 6331

_ 9%f(x)
N 651328337

(Vo f(x)]i and  [H(x)};;

» The local and global minima of an objective function f(x), with real
x, satisfy
V.f(x)=0 and H(x)>0

» For an objective function f(z,z*), the stationary points of f(z,z*)
are found by setting the derivative of f(z,z*) w.r.t. z or z* to zero.
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Random variables

» A random variable x is a function that assigns a number to each
outcome of a random experiment

» Probability distribution function
F.(a) =Pr{z < a}

» Probability density function

» Mean or expected value
m, = E{x} = / af(a)da

» Variance

oo

02 =var{z} = E{(x —m,)*} = / (@ —mg)? fu(a)da

— 00
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Random variables

» Joint probability distribution function
Foylo, f) =Pr{z < a,y < B}
» Joint density function
82

fw,y(aa 6) = me,y

(a, B)

» z and y are independent: [y (o, 8) = fo(@)fz(B)

» Correlation
» Covariance
Coy = cov{z,y} = E{(x —my)(y —my)"} = rpy — mymy
» z and y are uncorrelated: ¢,y = 0 or E{zy*} = E{x}E{y*} or
Toy = mzmz‘/.
» Independent random variables are always uncorrelated. Converse, is
not always true. 21



Random processes

» A random process z(n) is a sequence of random variables
» Mean and variance:
me = B{r} and 02(n) = B{|z(n) — m,(n)[%}
» Autocorrelation and autocovariance
rz(k, 1) = E{z(k)x" (1)}

ca(k, 1) = E{[z(k) — me(R)][z(1) — ma()]"}
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Stationarity

» First-order stationarity if f,(n) () = fz(ntr)(a). This implies
me(n) = mg(0) = my.

» Second-order stationarity if, for any k, the process x(n) and
z(n + k) have the same second-order density function:

.fx(nl),m(ng)(ala QZ) = fT(’ﬂl +k),x(n2+k) (Oél’ O‘Q)'

This implies r,(k,1) = r:(k —1,0) = ry(k = 1).
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Wide-sense stationarity

» Wide-sense stationary (WSS):
my(n) =my; (k1) =ryy(k—1); ¢x(0) < 0.

» Properties of WSS processes:
> Symmetry: 75 (k) = r3(—k)

» mean-square value: r,(0) = E{|z(n)|?} > 0.
» maximum value: 75(0) > |rz (k)]
» mean-squared periodic: (ko) = 74(0)

» Power spectrum: discrete Fourier transform of the deterministic

sequence 7 (k)
oo

P, (e?¥) = Z o (k)e 7%

k=—oc
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Autocorrelation and autocovariance matrices

» Consider a WSS process z:(n) and collect p + 1 samples in
x = [2(0),z(1),...,z(p)]*

» Autocorrelation matrix:

P(0) () i) v (p)
(1) m(0)  ri(1) re(p—1)
R, - B} = | 7@ () ra(0) re(p—2)
re(p) Ta(p—1) ralp—2) - 7(0)

» R, is Toeplitz, Hermitian, and nonnegative definite.

» Autocovariance matrix: C, = R, — mmm;',
where m, = m;1
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Gaussian Processes

T .
» Suppose X = [x1,Z2,...,&,] s a vector of n real-valued random
variables.

» Then x is said to be a Gaussian random vector and the random
variables z; are said to be jointly Gaussian if the joint probability
density function is

1 1
1) = Gy P {2<x —m,) "R (x - m,,;)}
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