E1 244: Detection and Estimation

Preliminaries
Linear Algebra, Random Processes, and Optimization Theory

Vectors

- A N-dimensional vector is assumed to be a column vector:

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{N}
\end{array}\right]
$$

- Complex conjugate (Hermitian) transpose

$$
\mathbf{x}^{\mathrm{H}}=\left(\mathbf{x}^{\mathrm{T}}\right)^{*}=\left[x_{1}^{*}, x_{2}^{*}, \ldots, x_{N}^{*}\right]
$$

Matrices

- An $N \times M$ matrix has N rows and M columns:

$$
\mathbf{A}=\left[a_{i j}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 M} \\
a_{21} & a_{22} & \cdots & a_{2 M} \\
\vdots & \vdots & & \vdots \\
a_{N 1} & a_{N 2} & \cdots & a_{N M}
\end{array}\right]
$$

- Complex conjugate (Hermitian) transpose

$$
\mathbf{A}^{\mathrm{H}}=\left(\mathbf{A}^{\mathrm{T}}\right)^{*}=\left(\mathbf{A}^{*}\right)^{\mathrm{T}}
$$

- Hermitian matrix

$$
\mathbf{A}=\mathbf{A}^{\mathrm{H}}
$$

E.g.,

$$
\mathbf{A}=\left[\begin{array}{cc}
1 & 1+j \\
1-j & 1
\end{array}\right], \quad \text { then } \quad \mathbf{A}^{\mathrm{H}}=\left[\begin{array}{cc}
1 & 1+j \\
1-j & 1
\end{array}\right]=\mathbf{A}
$$

Vectors

Vector norms: $\|\mathrm{x}\|_{p}=\left(\sum_{i=1}^{N}\left|x_{i}\right|^{p}\right)^{1 / p}$, for $p=1,2, \ldots$.

Examples:

Euclidean (2-norm): $\quad\|\mathbf{x}\|_{2}=\left(\sum_{i=1}^{N} x_{i}^{*} x_{i}\right)^{1 / 2}=\left(\mathbf{x}^{\mathrm{H}} \mathbf{x}\right)^{1 / 2}$
1-norm: $\|\mathbf{x}\|_{1}=\sum_{i=1}^{N}\left|x_{i}\right|$
∞-norm: $\|\mathbf{x}\|_{\infty}=\max _{i}\left|x_{i}\right|$

Inner product:

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{H} \mathbf{y}=\sum_{i=1}^{N} x_{i}^{*} y_{i}
$$

- Two vectors are orthogonal if $\langle\mathbf{x}, \mathbf{y}\rangle=0$; if the vectors have unit norm, then they are orthonormal

Matrices

For $\mathbf{A} \in \mathbb{C}^{M \times N}$

- 2-norm (spectral norm, operator norm):

$$
\|\mathbf{A}\|:=\max _{\mathbf{x}} \frac{\|\mathbf{A} \mathbf{x}\|}{\|\mathbf{x}\|} \quad \text { or } \quad\|\mathbf{A}\|^{2}:=\max _{\mathbf{x}} \frac{\mathbf{x}^{\mathrm{H}} \mathbf{A}^{\mathrm{H}} \mathbf{A} \mathbf{x}}{\mathbf{x}^{\mathrm{H}} \mathbf{x}}
$$

Largest magnification that can be obtained by applying \mathbf{A} to any vector

- Forbenius norm

$$
\|\mathbf{A}\|_{\mathrm{F}}:=\left(\sum_{i=1}^{M} \sum_{j=1}^{N}\left|a_{i j}\right|^{2}\right)^{1 / 2}=\sqrt{\operatorname{trace}\left(\mathbf{A}^{\mathrm{H}} \mathbf{A}\right)}
$$

Represents energies in its entries

Rank of a matrix

Rank

- The rank of \mathbf{A} is the number of independent columns or rows of \mathbf{A}

$$
\text { Prototype rank-1 matrix: } \mathbf{A}=\mathbf{a b}^{\mathrm{H}}
$$

- The ranks of $\mathbf{A}, \mathbf{A} \mathbf{A}^{\mathrm{H}}$, and $\mathbf{A}^{\mathrm{H}} \mathbf{A}$ are the same
- If \mathbf{A} is square and full rank, there is a unique inverse \mathbf{A}^{-1} such that

$$
\mathbf{A A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

- An $N \times N$ matrix \mathbf{A} has rank N, then \mathbf{A} is invertible $\Leftrightarrow \operatorname{det}(\mathbf{A}) \neq 0$

Linear independence, vector spaces, and basis vectors

Linear independence

- A collection of N vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}$ is called linearly independent if

$$
\alpha_{1} \mathbf{x}_{1}+\alpha_{2} \mathbf{x}_{2}+\cdots+\alpha_{N} \mathbf{x}_{N}=0 \quad \Leftrightarrow \quad \alpha_{1}=\alpha_{2}=\cdots=\alpha_{N}=0
$$

Subspaces

Subspaces

- The space \mathcal{H} spanned by a collection of vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}$

$$
\mathcal{H}:=\left\{\alpha_{1} \mathbf{x}_{1}+\alpha_{2} \mathbf{x}_{2}+\cdots+\alpha_{N} \mathbf{x}_{N} \mid \alpha_{i} \in \mathbb{C}, \forall i\right\}
$$

is called a linear subspace

- If the vectors are linearly independent they are called a basis for the subspace
- The number of basis vectors is called the dimension of the subspace
- If the vectors are orthogonal, then we have an orthogonal basis
- If the vectors are orthonormal, then we have an orthonormal basis

Fundamental subspaces of A

- Range (column span) of $\mathbf{A} \in \mathbb{C}^{M \times N}$

$$
\operatorname{ran}(\mathbf{A})=\left\{\mathbf{A} \mathbf{x}: \mathbf{x} \in \mathbb{C}^{N}\right\} \subset \mathbb{C}^{M}
$$

The dimension of $\operatorname{ran}(\mathbf{A})$ is rank of \mathbf{A}, denoted by $\rho(\mathbf{A})$

- Kernel (row null space) of $\mathbf{A} \in \mathbb{C}^{M \times N}$

$$
\operatorname{ker}(\mathbf{A})=\left\{\mathbf{x} \in \mathbb{C}^{N}: \mathbf{A x}=\mathbf{0}\right\} \subset \mathbb{C}^{N}
$$

The dimension of $\operatorname{ker}(\mathbf{A})$ is $N-\rho(\mathbf{A})$

- Four fundamental subspaces

$$
\begin{aligned}
& \operatorname{ran}(\mathbf{A}) \oplus \operatorname{ker}\left(\mathbf{A}^{\mathrm{H}}\right)=\mathbb{C}^{M} \\
& \operatorname{ran}\left(\mathbf{A}^{\mathrm{H}}\right) \oplus \operatorname{ker}(\mathbf{A})=\mathbb{C}^{N}
\end{aligned}
$$

direct sum: $\mathcal{H}_{1} \oplus \mathcal{H}_{2}=\left\{\mathbf{x}_{1}+\mathbf{x}_{2} \mid \mathbf{x}_{1} \in \mathcal{H}_{1}, \mathbf{x}_{2} \in \mathcal{H}_{2}\right\}$

Unitary and Isometry

- A square matrix \mathbf{U} is called unitary if $\mathbf{U}^{\mathrm{H}} \mathbf{U}=\mathbf{I}$ and $\mathbf{U U}^{\mathrm{H}}=\mathbf{I}$
- Examples are rotation or reflection matrices
- $\|\mathbf{U}\|=1$; its rows and columns are orthonormal
- A tall rectangular matrix $\hat{\mathbf{U}}$ is called an isometry if $\hat{\mathbf{U}}^{\mathrm{H}} \mathbf{U}=\mathbf{I}$
- Its columns are orthonormal basis of a subspace (not the complete space)
- $\|\hat{\mathbf{U}}\|=1$;
- There is an orthogonal complement $\hat{\mathbf{U}}^{\perp}$ of $\hat{\mathbf{U}}$ such that $\left[\hat{\mathbf{U}} \quad \hat{\mathbf{U}}^{\perp}\right]$ is unitary

Projection

- A square matrix \mathbf{P} is a projection if $\mathbf{P P}=\mathbf{P}$
- It is an orthogonal projection if $\mathbf{P}^{\mathrm{H}}=\mathbf{P}$
- The norm of an orthogonal projection is $\|\mathbf{P}\|=1$
- For an isometry $\hat{\mathbf{U}}$, the matrix $\mathbf{P}=\hat{\mathbf{U}} \hat{\mathbf{U}}^{\mathrm{H}}$ is an orthogonal projection onto the space spanned by the columns of $\hat{\mathbf{U}}$.
- Suppose $\mathbf{U}=[\underbrace{\hat{\mathbf{U}}}_{d} \underbrace{\hat{\mathbf{U}}^{\perp}}_{N-d}]$ is unitary. Then, from $\mathbf{U U}^{\mathrm{H}}=\mathbf{I}_{N}$:

$$
\hat{\mathbf{U}} \hat{\mathbf{U}}^{\mathrm{H}}+\hat{\mathbf{U}}^{\perp}\left(\hat{\mathbf{U}}^{\perp}\right)^{\mathrm{H}}=\mathbf{I}_{N}, \quad \hat{\mathbf{U}} \hat{\mathbf{U}}^{\mathrm{H}}=\mathbf{P}, \quad \hat{\mathbf{U}}^{\perp}\left(\hat{\mathbf{U}}^{\perp}\right)^{\mathrm{H}}=\mathbf{P}^{\perp}=\mathbf{I}_{N}-\mathbf{P}
$$

- Any vector $\mathbf{x} \in \mathbb{C}^{N}$ can be decomposed as $\mathbf{x}=\hat{\mathbf{x}}+\hat{\mathbf{x}}^{\perp}$ with $\hat{\mathbf{x}} \perp \hat{\mathbf{x}}^{\perp}$:

$$
\hat{\mathbf{x}}=\mathbf{P} \mathbf{x} \in \operatorname{ran}(\hat{\mathbf{U}}) \quad \hat{\mathbf{x}}^{\perp}=\mathbf{P}^{\perp} \mathbf{x} \in \operatorname{ran}\left(\hat{\mathbf{U}}^{\perp}\right)
$$

Singular value decomposition

- For any matrix \mathbf{X}, there is a decomposition

$$
\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{H}}
$$

Here, \mathbf{U} and \mathbf{V} are unitary, and $\boldsymbol{\Sigma}$ is diagonal with positive real entries.

- Properties:
- The columns \mathbf{u}_{i} of \mathbf{U} are called the left singular vectors
- The columns \mathbf{v}_{i} of \mathbf{V} are called the right singular vectors
- The diagonal entries σ_{i} of $\boldsymbol{\Sigma}$ are called the singular values
- They are positive, real, and sorted

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots 0
$$

Singular value decomposition

- For an $M \times N$ tall matrix \mathbf{X}, there is a decomposition

$$
\mathbf{X}=\mathbf{U} \Sigma \mathbf{V}^{\mathrm{H}}=\left[\hat{\mathbf{U}} \hat{\mathbf{U}}^{\perp}\right]\left[\begin{array}{cc|cc}
\sigma_{1} & & & \\
& \sigma_{d} & & \\
\hline & & 0 & 0 \\
\hline 0 & \cdots & \cdots & 0 \\
0 & \cdots & \cdots & 0
\end{array}\right]\left[\begin{array}{c}
\hat{\mathbf{V}} \\
\left(\hat{\mathbf{V}}^{\perp}\right)^{\mathrm{H}}
\end{array}\right]
$$

$$
\mathbf{U}: M \times M, \quad \boldsymbol{\Sigma}: M \times N, \mathbf{V}: N \times N
$$

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \sigma_{d}>\sigma_{d+1}=\cdots \sigma_{N} 0
$$

- Economy size SVD: $\mathbf{X}=\hat{\mathbf{U}} \hat{\boldsymbol{\Sigma}} \hat{\mathbf{V}}^{\mathrm{H}}$, where $\hat{\boldsymbol{\Sigma}}: d \times d$ is a diagonal matrix containing $\sigma_{1}, \cdots, \sigma_{d}$ along the diagonals.

Singular value decomposition

- The rank of \mathbf{X} is d, the number of nonzero singular values
- $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{H}} \Leftrightarrow \mathbf{X}^{\mathrm{H}}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\mathrm{H}} \Leftrightarrow \mathbf{X V}=\mathbf{U} \boldsymbol{\Sigma} \Leftrightarrow \mathbf{X}^{\mathrm{H}} \mathbf{U}=\mathbf{V} \boldsymbol{\Sigma}$
- The columns of $\hat{\mathbf{U}}\left(\hat{\mathbf{U}}^{\perp}\right)$ are the orthonormal basis for $\operatorname{ran}(\mathbf{X})$ $\left(\operatorname{ker}\left(\mathbf{X}^{\mathrm{H}}\right)\right)$
- The columns of $\hat{\mathbf{V}}\left(\hat{\mathbf{V}}^{\perp}\right)$ are the orthonormal basis for $\operatorname{ran}\left(\mathbf{X}^{\mathrm{H}}\right)$ $(\operatorname{ker}(\mathbf{X}))$
- $\mathbf{X}=\sum_{i=1}^{d} \sigma_{i}\left(\mathbf{u}_{i} \mathbf{v}_{i}^{\mathrm{H}}\right) ; \mathbf{u}_{i} \mathbf{v}_{i}^{\mathrm{H}}$ is a rank- 1 isometry matrix.
- $\mathbf{X v}_{i}=\sigma_{i} \mathbf{u}_{i}$
- $\|\mathbf{X}\|=\left\|\mathbf{X}^{\mathrm{H}}\right\|=\sigma_{1}$, the largest singular value.

Eigenvalue decomposition

- The eigenvalue problem is $(\mathbf{A}-\lambda \mathbf{I}) \mathbf{x}=\mathbf{0}$
- Any λ that makes $\mathbf{A}-\lambda \mathbf{I}$ singular is called an eigenvalue and the corresponding invariant vector is called the eigenvector
- Stacking

$$
\begin{aligned}
& \mathbf{A}\left[\mathbf{x}_{1} \mathbf{x}_{2} \cdots\right]=\left[\mathbf{x}_{1} \mathbf{x}_{2} \cdots\right]\left[\begin{array}{lll}
\lambda_{1} & & \\
& \lambda_{2} & \\
& & \ddots
\end{array}\right] \\
& \mathbf{A T}=\mathbf{T} \boldsymbol{\Lambda} \Leftrightarrow \mathbf{A}=\mathbf{T} \boldsymbol{\Lambda} \mathbf{T}^{-1}
\end{aligned}
$$

(might exist when \mathbf{T} is invertible and when eigenvalues are distinct)

Eigenvalue decomposition and SVD

- Suppose the SVD of $\mathbf{X}=\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathrm{H}}$. Therefore

$$
\mathbf{X X} \mathbf{X}^{\mathrm{H}}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{H}} \mathbf{V}^{\mathrm{H}} \boldsymbol{\Sigma} \mathbf{U}^{\mathrm{H}}=\mathbf{U} \boldsymbol{\Sigma}^{2} \mathbf{U}^{\mathrm{H}}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\mathrm{H}}
$$

- The eigenvalues of $\mathbf{X X}^{\mathrm{H}}$ are singular values of \mathbf{X} squared.
- Eigenvectors of $\mathbf{X X}{ }^{\mathrm{H}}$ are the left singular vectors of \mathbf{X}
- Eigenvalue decomposition of $\mathbf{X X}{ }^{\mathrm{H}}$ always exits and SVD always exists.

Pseudo inverse

- For a tall full-column rank matrix $\mathbf{X}: M \times N$

Pseudo-inverse of \mathbf{X} is $\mathbf{X}^{\dagger}=\left(\mathbf{X}^{\mathrm{H}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{H}}$.

- $\mathbf{X}^{\dagger} \mathbf{X}=\mathbf{I}_{N}$: inverse on the short space
- $\mathbf{X X}^{\dagger}=\mathbf{P}_{c}$: Projector onto $\operatorname{ran}(\mathbf{X})$
- For a tall rank matrix $\mathbf{X}: M \times N$ with rank $d, \mathbf{X}^{\mathrm{H}} \mathbf{X}$ is not invertible.
Moore-Penrose Pseudo inverse of $\mathbf{X}=\hat{\mathbf{U}} \hat{\boldsymbol{\Sigma}} \hat{\mathbf{V}}^{\mathrm{H}}$ is $\mathbf{X}^{\dagger}=\hat{\mathbf{V}} \hat{\boldsymbol{\Sigma}}^{-1} \hat{\mathbf{U}}^{\mathrm{H}}$

1. $\mathbf{X} \mathbf{X}^{\dagger} \mathbf{X}=\mathbf{X}$
2. $\mathbf{X}^{\dagger} \mathbf{X} \mathbf{X}^{\dagger}=\mathbf{X}^{\dagger}$
3. $\mathbf{X} \mathbf{X}^{\dagger}=\hat{\mathbf{U}} \hat{\mathbf{U}}^{\mathrm{H}}=\mathbf{P}_{c}:$ Projector onto $\operatorname{ran}(\mathbf{X})$
4. $\mathbf{X}^{\dagger} \mathbf{X}=\hat{\mathbf{V}} \hat{\mathbf{V}}^{\mathrm{H}}=\mathbf{P}_{r}:$ Projector onto $\operatorname{ran}\left(\mathbf{X}^{\mathrm{H}}\right)$

Optimization theory

- The local and global minima of an objective function $f(x)$, with real x, satisfy

$$
\frac{\partial f(x)}{\partial x}=\nabla_{x} f(x)=0 \quad \text { and } \quad \frac{\partial^{2} f(x)}{\partial x^{2}}=\nabla_{x}^{2} f(x)>0
$$

If $f(x)$ is convex, then the local minimum is the global minimum

- For $f(z)$ with complex z, we write $f(z)$ as $f\left(z, z^{*}\right)$ and treat $z=x+j y$ and $z^{*}=x-j y$ as independent variables and define the partial derivatives w.r.t. z and z^{*} as

$$
\frac{\partial f}{\partial z}=\frac{1}{2}\left[\frac{\partial f}{\partial x}-j \frac{\partial f}{\partial y}\right] \quad \text { and } \quad \frac{\partial f}{\partial z^{*}}=\frac{1}{2}\left[\frac{\partial f}{\partial x}+j \frac{\partial f}{\partial y}\right]
$$

- For an objective function $f\left(z, z^{*}\right)$, the stationary points of $f\left(z, z^{*}\right)$ are found by setting the derivative of $f\left(z, z^{*}\right)$ w.r.t. z or z^{*} to zero.

Optimization theory

- For an objective function in two or more real variables, $f\left(x_{1}, x_{2}, \ldots, x_{N}\right)=f(\mathbf{x})$, the first-order derivative (gradient) and the second-order derivative (Hessian) are given by

$$
\left[\nabla_{x} f(\mathbf{x})\right]_{i}=\frac{\partial f(\mathbf{x})}{\partial x_{i}} \quad \text { and } \quad[\mathbf{H}(\mathbf{x})]_{i j}=\frac{\partial^{2} f(\mathbf{x})}{\partial x_{i} \partial x_{j}}
$$

- The local and global minima of an objective function $f(\mathbf{x})$, with real x, satisfy

$$
\nabla_{x} f(\mathbf{x})=\mathbf{0} \quad \text { and } \quad \mathbf{H}(\mathbf{x})>0
$$

- For an objective function $f\left(\mathbf{z}, \mathbf{z}^{*}\right)$, the stationary points of $f\left(\mathbf{z}, \mathbf{z}^{*}\right)$ are found by setting the derivative of $f\left(\mathbf{z}, \mathbf{z}^{*}\right)$ w.r.t. \mathbf{z} or \mathbf{z}^{*} to zero.

Random variables

- A random variable x is a function that assigns a number to each outcome of a random experiment
- Probability distribution function

$$
F_{x}(\alpha)=\operatorname{Pr}\{x \leq \alpha\}
$$

- Probability density function

$$
f_{x}(\alpha)=\frac{d}{d \alpha} F_{x}(\alpha)
$$

- Mean or expected value

$$
m_{x}=E\{x\}=\int_{-\infty}^{\infty} \alpha f_{x}(\alpha) d \alpha
$$

- Variance

$$
\sigma_{x}^{2}=\operatorname{var}\{x\}=E\left\{\left(x-m_{x}\right)^{2}\right\}=\int_{-\infty}^{\infty}\left(\alpha-m_{x}\right)^{2} f_{x}(\alpha) d \alpha
$$

Random variables

- Joint probability distribution function

$$
F_{x, y}(\alpha, \beta)=\operatorname{Pr}\{x \leq \alpha, y \leq \beta\}
$$

- Joint density function

$$
f_{x, y}(\alpha, \beta)=\frac{\partial^{2}}{\partial \alpha \partial \beta} F_{x, y}(\alpha, \beta)
$$

- x and y are independent: $f_{x, y}(\alpha, \beta)=f_{x}(\alpha) f_{x}(\beta)$
- Correlation

$$
r_{x y}=E\left\{x y^{*}\right\}
$$

- Covariance

$$
c_{x y}=\operatorname{cov}\{x, y\}=E\left\{\left(x-m_{x}\right)\left(y-m_{y}\right)^{*}\right\}=r_{x y}-m_{x} m_{y}^{*}
$$

- x and y are uncorrelated: $c_{x y}=0$ or $E\left\{x y^{*}\right\}=E\{x\} E\left\{y^{*}\right\}$ or $r_{x y}=m_{x} m_{y}^{*}$.
- Independent random variables are always uncorrelated. Converse, is not always true.

Random processes

- A random process $x(n)$ is a sequence of random variables
- Mean and variance:

$$
m_{x}=E\{x\} \quad \text { and } \quad \sigma_{x}^{2}(n)=E\left\{\left|x(n)-m_{x}(n)\right|^{2}\right\}
$$

- Autocorrelation and autocovariance

$$
\begin{gathered}
r_{x}(k, l)=E\left\{x(k) x^{*}(l)\right\} \\
c_{x}(k, l)=E\left\{\left[x(k)-m_{x}(k)\right]\left[x(l)-m_{x}(l)\right]^{*}\right\}
\end{gathered}
$$

Stationarity

- First-order stationarity if $f_{x(n)}(\alpha)=f_{x(n+k)}(\alpha)$. This implies $m_{x}(n)=m_{x}(0)=m_{x}$.
- Second-order stationarity if, for any k, the process $x(n)$ and $x(n+k)$ have the same second-order density function:

$$
f_{x\left(n_{1}\right), x\left(n_{2}\right)}\left(\alpha_{1}, \alpha_{2}\right)=f_{x\left(n_{1}+k\right), x\left(n_{2}+k\right)}\left(\alpha_{1}, \alpha_{2}\right) .
$$

This implies $r_{x}(k, l)=r_{x}(k-l, 0)=r_{x}(k-l)$.

Wide-sense stationarity

- Wide-sense stationary (WSS):

$$
m_{x}(n)=m_{x} ; \quad r_{x}(k, l)=r_{x y}(k-l) ; \quad c_{x}(0)<\infty
$$

- Properties of WSS processes:
- Symmetry: $r_{x}(k)=r_{x}^{*}(-k)$
- mean-square value: $r_{x}(0)=E\left\{|x(n)|^{2}\right\} \geq 0$.
- maximum value: $r_{x}(0) \geq\left|r_{x}(k)\right|$
- mean-squared periodic: $r_{x}\left(k_{0}\right)=r_{x}(0)$
- Power spectrum: discrete Fourier transform of the deterministic sequence $r_{x}(k)$

$$
P_{x}\left(e^{j \omega}\right)=\sum_{k=-\infty}^{\infty} r_{x}(k) e^{-j \omega}
$$

Autocorrelation and autocovariance matrices

- Consider a WSS process $x(n)$ and collect $p+1$ samples in

$$
\mathbf{x}=[x(0), x(1), \ldots, x(p)]^{T}
$$

- Autocorrelation matrix:

$$
\mathbf{R}_{x}=E\left\{\mathbf{x x}^{\mathrm{H}}\right\}=\left[\begin{array}{ccccc}
r_{x}(0) & r_{x}^{*}(1) & r_{x}^{*}(2) & \cdots & r_{x}^{*}(p) \\
r_{x}(1) & r_{x}(0) & r_{x}^{*}(1) & \cdots & r_{x}^{*}(p-1) \\
r_{x}(2) & r_{x}(1) & r_{x}(0) & \cdots & r_{x}^{*}(p-2) \\
\vdots & \vdots & \vdots & \cdots & \cdots \\
r_{x}(p) & r_{x}(p-1) & r_{x}(p-2) & \cdots & r_{x}(0)
\end{array}\right]
$$

- \mathbf{R}_{x} is Toeplitz, Hermitian, and nonnegative definite.
- Autocovariance matrix: $\mathbf{C}_{x}=\mathbf{R}_{x}-\mathbf{m}_{x} \mathbf{m}_{x}^{\mathrm{H}}$, where $\mathbf{m}_{x}=m_{x} \mathbf{1}$

Gaussian Processes

- Suppose $\mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{\mathrm{T}}$ is a vector of n real-valued random variables.
- Then \mathbf{x} is said to be a Gaussian random vector and the random variables x_{i} are said to be jointly Gaussian if the joint probability density function is

$$
f_{x}(\mathbf{x})=\frac{1}{(2 \pi)^{n / 2}\left|\mathbf{R}_{x}\right|^{1 / 2}} \exp \left\{-\frac{1}{2}\left(\mathbf{x}-\mathbf{m}_{x}\right)^{\mathrm{T}} \mathbf{R}_{x}^{-1}\left(\mathbf{x}-\mathbf{m}_{x}\right)\right\}
$$

