
E1 244: Detection and Estimation

Preliminaries
Linear Algebra, Random Processes, and Optimization Theory



Vectors

I A N -dimensional vector is assumed to be a column vector:

x =


x1
x2
...
xN


I Complex conjugate (Hermitian) transpose

x
H
= (x

T
)∗ = [x∗1, x

∗
2, . . . , x

∗
N ]
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Matrices

I An N ×M matrix has N rows and M columns:

A = [aij ] =


a11 a12 · · · a1M
a21 a22 · · · a2M

...
...

...
aN1 aN2 · · · aNM


I Complex conjugate (Hermitian) transpose

A
H
= (A

T
)∗ = (A∗)

T

I Hermitian matrix
A = A

H

E.g.,

A =

[
1 1 + j

1− j 1

]
, then A

H
=

[
1 1 + j

1− j 1

]
= A

3



Vectors

Vector norms: ‖x‖p =
(∑N

i=1 |xi|p
)1/p

, for p = 1, 2, . . ..

Examples:

Euclidean (2-norm): ‖x‖2 =
(∑N

i=1 x
∗
i xi

)1/2
= (xHx)1/2

1-norm: ‖x‖1 =
∑N

i=1 |xi|

∞-norm: ‖x‖∞ = maxi |xi|

Inner product:

〈x,y〉 = xHy =

N∑
i=1

x∗i yi

I Two vectors are orthogonal if 〈x,y〉 = 0; if the vectors have unit
norm, then they are orthonormal
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Matrices

For A ∈ |CM×N

I 2-norm (spectral norm, operator norm):

‖A‖ := max
x

‖Ax‖
‖x‖

or ‖A‖2 := max
x

xHAHAx

xHx

Largest magnification that can be obtained by applying A to any
vector

I Forbenius norm

‖A‖
F
:=

 M∑
i=1

N∑
j=1

|aij |2
1/2

=
√
trace(AHA)

Represents energies in its entries
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Rank of a matrix

Rank

I The rank of A is the number of independent columns or rows of A

Prototype rank-1 matrix: A = abH

I The ranks of A,AAH, and AHA are the same

I If A is square and full rank, there is a unique inverse A−1 such that

AA−1 = A−1A = I =


1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1


I An N ×N matrix A has rank N , then A is invertible ⇔ det(A) 6= 0
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Linear independence, vector spaces, and basis vectors

Linear independence

I A collection of N vectors x1,x2, . . . ,xN is called linearly
independent if

α1x1 + α2x2 + · · ·+ αNxN = 0 ⇔ α1 = α2 = · · · = αN = 0
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Subspaces

Subspaces

I The space H spanned by a collection of vectors x1,x2, . . . ,xN

H := {α1x1 + α2x2 + · · ·+ αNxN |αi ∈ |C, ∀i}

is called a linear subspace

I If the vectors are linearly independent they are called a basis for the
subspace

I The number of basis vectors is called the dimension of the subspace

I If the vectors are orthogonal, then we have an orthogonal basis

I If the vectors are orthonormal, then we have an orthonormal basis
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Fundamental subspaces of A

I Range (column span) of A ∈ |CM×N

ran(A) = {Ax : x ∈ |CN} ⊂ |CM

The dimension of ran(A) is rank of A, denoted by ρ(A)

I Kernel (row null space) of A ∈ |CM×N

ker(A) = {x ∈ |CN : Ax = 0} ⊂ |CN

The dimension of ker(A) is N − ρ(A)

I Four fundamental subspaces

ran(A)⊕ ker(A
H
) = |CM

ran(A
H
)⊕ ker(A) = |CN

direct sum: H1 ⊕H2 = {x1 + x2|x1 ∈ H1,x2 ∈ H2}
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Unitary and Isometry

I A square matrix U is called unitary if UHU = I and UUH = I

I Examples are rotation or reflection matrices

I ‖U‖ = 1; its rows and columns are orthonormal

I A tall rectangular matrix Û is called an isometry if ÛHU = I

I Its columns are orthonormal basis of a subspace (not the complete
space)

I ‖Û‖ = 1;

I There is an orthogonal complement Û⊥ of Û such that [Û Û⊥] is
unitary

10



Projection

I A square matrix P is a projection if PP = P

I It is an orthogonal projection if PH = P
I The norm of an orthogonal projection is ‖P‖ = 1

I For an isometry Û, the matrix P = ÛÛ
H

is an orthogonal projection
onto the space spanned by the columns of Û.

I Suppose U = [ Û︸︷︷︸
d

Û⊥︸︷︷︸
N−d

] is unitary. Then, from UUH = IN :

ÛÛ
H
+Û⊥(Û⊥)

H
= IN , ÛÛ

H
= P, Û⊥(Û⊥)

H
= P⊥ = IN−P

I Any vector x ∈ |CN can be decomposed as x = x̂+ x̂⊥ with x̂ ⊥ x̂⊥:

x̂ = Px ∈ ran(Û) x̂⊥ = P⊥x ∈ ran(Û⊥)
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Singular value decomposition

I For any matrix X, there is a decomposition

X = UΣV
H

Here, U and V are unitary, and Σ is diagonal with positive real
entries.

I Properties:
I The columns ui of U are called the left singular vectors

I The columns vi of V are called the right singular vectors

I The diagonal entries σi of Σ are called the singular values

I They are positive, real, and sorted

σ1 ≥ σ2 ≥ · · · 0
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Singular value decomposition

I For an M ×N tall matrix X, there is a decomposition

X = UΣV
H
= [Û Û⊥]


σ1

σd
0

0
0 · · · · · · 0
0 · · · · · · 0


[

V̂

(V̂⊥)H

]

U :M ×M, Σ :M ×N,V : N ×N

σ1 ≥ σ2 ≥ · · ·σd > σd+1 = · · ·σN0

I Economy size SVD: X = ÛΣ̂V̂H, where Σ̂ : d× d is a diagonal
matrix containing σ1, · · · , σd along the diagonals.
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Singular value decomposition

I The rank of X is d, the number of nonzero singular values

I X = UΣVH ⇔ XH = VΣUH ⇔ XV = UΣ ⇔ XHU = VΣ

I The columns of Û (Û⊥) are the orthonormal basis for ran(X)
(ker(X

H
))

I The columns of V̂ (V̂⊥) are the orthonormal basis for ran(X
H
)

(ker(X))

I X =
∑d

i=1 σi(uiv
H

i ); uiv
H

i is a rank-1 isometry matrix.

I Xvi = σiui

I ‖X‖ = ‖XH‖ = σ1, the largest singular value.
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Eigenvalue decomposition

I The eigenvalue problem is (A− λI)x = 0

I Any λ that makes A− λI singular is called an eigenvalue and the
corresponding invariant vector is called the eigenvector

I Stacking

A[x1 x2 · · · ] = [x1 x2 · · · ]

 λ1
λ2

. . .


AT = TΛ⇔ A = TΛT−1

(might exist when T is invertible and when eigenvalues are distinct)
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Eigenvalue decomposition and SVD

I Suppose the SVD of X = UΣVH. Therefore

XX
H
= UΣV

H
V

H
ΣU

H
= UΣ2U

H
= UΛU

H

I The eigenvalues of XX
H

are singular values of X squared.

I Eigenvectors of XX
H

are the left singular vectors of X

I Eigenvalue decomposition of XX
H

always exits and SVD always
exists.
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Pseudo inverse

I For a tall full-column rank matrix X :M ×N
Pseudo-inverse of X is X† = (XHX)−1XH.

I X†X = IN :inverse on the short space

I XX† = Pc: Projector onto ran(X)

I For a tall rank matrix X :M ×N with rank d, XHX is not
invertible.

Moore-Penrose Pseudo inverse of X = ÛΣ̂V̂H is X† = V̂Σ̂−1ÛH

1. XX†X = X

2. X†XX† = X†

3. XX† = ÛÛ
H
= Pc:Projector onto ran(X)

4. X†X = V̂V̂
H
= Pr:Projector onto ran(X

H
)
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Optimization theory

I The local and global minima of an objective function f(x), with real
x, satisfy

∂f(x)

∂x
= ∇xf(x) = 0 and

∂2f(x)

∂x2
= ∇2

xf(x) > 0

If f(x) is convex, then the local minimum is the global minimum

I For f(z) with complex z, we write f(z) as f(z, z∗) and treat
z = x+ jy and z∗ = x− jy as independent variables and define the
partial derivatives w.r.t. z and z∗ as

∂f

∂z
=

1

2

[
∂f

∂x
− j ∂f

∂y

]
and

∂f

∂z∗
=

1

2

[
∂f

∂x
+ j

∂f

∂y

]
I For an objective function f(z, z∗), the stationary points of f(z, z∗)

are found by setting the derivative of f(z, z∗) w.r.t. z or z∗ to zero.
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Optimization theory

I For an objective function in two or more real variables,
f(x1, x2, . . . , xN ) = f(x), the first-order derivative (gradient) and
the second-order derivative (Hessian) are given by

[∇xf(x)]i =
∂f(x)

∂xi
and [H(x)]ij =

∂2f(x)

∂xi∂xj

I The local and global minima of an objective function f(x), with real
x, satisfy

∇xf(x) = 0 and H(x) > 0

I For an objective function f(z, z∗), the stationary points of f(z, z∗)
are found by setting the derivative of f(z, z∗) w.r.t. z or z∗ to zero.
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Random variables

I A random variable x is a function that assigns a number to each
outcome of a random experiment

I Probability distribution function

Fx(α) = Pr{x ≤ α}

I Probability density function

fx(α) =
d

dα
Fx(α)

I Mean or expected value

mx = E{x} =
∫ ∞
−∞

αfx(α)dα

I Variance

σ2
x = var{x} = E{(x−mx)

2} =
∫ ∞
−∞

(α−mx)
2fx(α)dα
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Random variables

I Joint probability distribution function

Fx,y(α, β) = Pr{x ≤ α, y ≤ β}
I Joint density function

fx,y(α, β) =
∂2

∂α∂β
Fx,y(α, β)

I x and y are independent: fx,y(α, β) = fx(α)fx(β)

I Correlation
rxy = E{xy∗}

I Covariance

cxy = cov{x, y} = E{(x−mx)(y −my)
∗} = rxy −mxm

∗
y

I x and y are uncorrelated: cxy = 0 or E{xy∗} = E{x}E{y∗} or
rxy = mxm

∗
y.

I Independent random variables are always uncorrelated. Converse, is
not always true. 21



Random processes

I A random process x(n) is a sequence of random variables

I Mean and variance:

mx = E{x} and σ2
x(n) = E{|x(n)−mx(n)|2}

I Autocorrelation and autocovariance

rx(k, l) = E{x(k)x∗(l)}

cx(k, l) = E{[x(k)−mx(k)][x(l)−mx(l)]
∗}
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Stationarity

I First-order stationarity if fx(n)(α) = fx(n+k)(α). This implies
mx(n) = mx(0) = mx.

I Second-order stationarity if, for any k, the process x(n) and
x(n+ k) have the same second-order density function:

fx(n1),x(n2)(α1, α2) = fx(n1+k),x(n2+k)(α1, α2).

This implies rx(k, l) = rx(k − l, 0) = rx(k − l).
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Wide-sense stationarity

I Wide-sense stationary (WSS):

mx(n) = mx; rx(k, l) = rxy(k − l); cx(0) <∞.

I Properties of WSS processes:
I Symmetry: rx(k) = r∗x(−k)

I mean-square value: rx(0) = E{|x(n)|2} ≥ 0.

I maximum value: rx(0) ≥ |rx(k)|

I mean-squared periodic: rx(k0) = rx(0)

I Power spectrum: discrete Fourier transform of the deterministic
sequence rx(k)

Px(e
jω) =

∞∑
k=−∞

rx(k)e
−jω
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Autocorrelation and autocovariance matrices

I Consider a WSS process x(n) and collect p+ 1 samples in

x = [x(0), x(1), . . . , x(p)]T

I Autocorrelation matrix:

Rx = E{xxH} =


rx(0) r∗x(1) r∗x(2) · · · r∗x(p)
rx(1) rx(0) r∗x(1) · · · r∗x(p− 1)
rx(2) rx(1) rx(0) · · · r∗x(p− 2)

...
...

... · · · · · ·
rx(p) rx(p− 1) rx(p− 2) · · · rx(0)


I Rx is Toeplitz, Hermitian, and nonnegative definite.

I Autocovariance matrix: Cx = Rx −mxm
H

x ,
where mx = mx1
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Gaussian Processes

I Suppose x = [x1, x2, . . . , xn]
T is a vector of n real-valued random

variables.

I Then x is said to be a Gaussian random vector and the random
variables xi are said to be jointly Gaussian if the joint probability
density function is

fx(x) =
1

(2π)n/2|Rx|1/2
exp

{
−1

2
(x−mx)

T
R−1x (x−mx)

}
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