E1 244: Detection and Estimation

Cramer-Rao Lower Bound

Likelihood function

DC level in white Gaussian noise (WGN)

$$
x[n]=A+w[n], \quad n=0,1, \ldots, N-1 . \quad w[n] \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

$$
\sigma^{2}=\frac{1}{3}
$$

$$
\sigma^{2}=\frac{1}{3}
$$

For a fixed $x[0]=x_{0}$, the PDF $p\left(x[0]=x_{0} ; A\right)$ is a function of the unknown. It is termed as the likelihood function.

For $x[0]=3$, the values of $A>4$ are highly unlikely.
The viable values of A are in a much wider interval for large values of σ^{2}.

Score function

Score function

$$
s(\mathbf{x} ; \theta)=\frac{\partial}{\partial \theta} \ln p(\mathbf{x} ; \theta)
$$

measures the sensitivity of $p(\mathbf{x} ; \theta)$ to changes in θ.
Curvature

$$
-\frac{\partial^{2} \ln p(x[0] ; A)}{\partial A^{2}}=\frac{1}{\sigma^{2}} .
$$

measures the sharpness of the log-likelihood function.
Example: $x[0] \sim \mathcal{N}\left(A, \sigma^{2}\right)$

$$
\begin{aligned}
& s(\mathbf{x} ; \theta)=\frac{\partial \ln p(x[0] ; A)}{\partial A}=\frac{1}{\sigma^{2}}(x[0]-A) \quad \text { and } \quad \mathrm{E}[s(\mathbf{x} ; \theta)]=0 \\
& \text { curvature: } \quad-\frac{\partial^{2} \ln p(x[0] ; A)}{\partial A^{2}}=\frac{1}{\sigma^{2}}
\end{aligned}
$$

Estimator accuracy and curvature increases as σ^{2} decreases.

Theorem: Cramer Rao Lower Bound

Assume that the regularity condition holds:

$$
\mathrm{E}\left[\frac{\partial}{\partial \theta} \ln p(\mathbf{x} ; \theta)\right]=0, \forall \theta
$$

The variance of any unbiased estimator $\hat{\theta}$ satisfies

$$
\operatorname{var}(\hat{\theta}) \geq \frac{1}{-\mathrm{E}\left[\frac{\partial^{2}}{\partial \theta^{2}} \ln p(\mathbf{x} ; \theta)\right]}
$$

An unbiased estimator that attains the bound, i.e., an efficient estimator may be found iff

$$
\frac{\partial}{\partial \theta} \ln p(\mathbf{x} ; \theta)=I(\theta)(g(\mathbf{x})-\theta)
$$

Then the MVU estimator is $\hat{\theta}=g(\mathrm{x})$ has a variance $I^{-1}(\theta)$.
Fisher information has an alternative expression:

$$
I(\theta)=-\mathrm{E}\left[\frac{\partial^{2}}{\partial \theta^{2}} \ln p(\mathbf{x} ; \theta)\right]=\mathrm{E}\left[\left(\frac{\partial}{\partial \theta} \ln p(\mathbf{x} ; \theta)\right)^{2}\right]
$$

Regularity condition

$$
\begin{aligned}
\mathrm{E}\left[\frac{\partial}{\partial \theta} \ln p(\mathbf{x} ; \theta)\right] & =\int \frac{\partial}{\partial \theta}(\ln p(\mathbf{x} ; \theta)) p(\mathbf{x} ; \theta) d \mathbf{x} \\
& =\int \frac{1}{p(\mathbf{x} ; \theta)} \frac{\partial}{\partial \theta} p(\mathbf{x} ; \theta) p(\mathbf{x} ; \theta) d \mathbf{x}=\int \frac{\partial}{\partial \theta} p(\mathbf{x} ; \theta) d \mathbf{x}
\end{aligned}
$$

If we are allowed to interchange the \int and $\frac{\partial}{\partial \theta}$

$$
\mathrm{E}\left[\frac{\partial}{\partial \theta} \ln p(\mathbf{x} ; \theta)\right]=\frac{\partial}{\partial \theta} \int p(\mathbf{x} ; \theta) d \mathbf{x}=\frac{\partial 1}{\partial \theta}=0
$$

Lebnitz's integration rule: When the limits of the integral is not function of θ, we may swap \int and $\frac{\partial}{\partial \theta}$.
Example:
Suppose $p(\mathbf{x} ; \theta)=\mathcal{U}(0, \theta)$

$$
\int_{0}^{\theta} \frac{\partial}{\partial \theta}\left(\frac{1}{\theta}\right) d \mathbf{x} \neq \frac{\partial}{\partial \theta} \int_{0}^{\theta} \frac{1}{\theta} d \mathbf{x}
$$

Derivation of CRLB

For an unbiased estimator $\hat{\theta}$

$$
\begin{aligned}
& \int(\hat{\theta}-\theta) p(\mathbf{x} ; \theta) d \mathbf{x}=0 \Rightarrow \frac{\partial}{\partial \theta} \int(\hat{\theta}-\theta) p(\mathbf{x} ; \theta) d \mathbf{x}=0 \\
& \int(\hat{\theta}-\theta) \frac{\partial}{\partial \theta} p(\mathbf{x} ; \theta) d \mathbf{x}=\int p(\mathbf{x} ; \theta) d \mathbf{x}=1
\end{aligned}
$$

Substituting

$$
\frac{\partial}{\partial \theta} p(\mathbf{x} ; \theta) d \mathbf{x}=\frac{\partial}{\partial \theta} \ln p(\mathbf{x} ; \theta) p(\mathbf{x} ; \theta)
$$

we get

$$
\begin{aligned}
& \int(\hat{\theta}-\theta) \frac{\partial}{\partial \theta} \ln p(\mathbf{x} ; \theta) p(\mathbf{x} ; \theta) d \mathbf{x}=1 \\
& \int(\hat{\theta}-\theta) \sqrt{p(\mathbf{x} ; \theta)} \frac{\partial}{\partial \theta} \ln p(\mathbf{x} ; \theta) \sqrt{p(\mathbf{x} ; \theta)} d \mathbf{x}=1
\end{aligned}
$$

Derivation of CRLB

From the Cauchy-Schwartz inequality:

$$
\int f^{2}(x) d x \int g^{2}(x) d x \geq\left(\int f(x) g(x) d x\right)^{2}
$$

we have

$$
\int(\hat{\theta}-\theta)^{2} p(\mathbf{x} ; \theta) d \mathbf{x} \int\left(\frac{\partial}{\partial \theta} \ln p(\mathbf{x} ; \theta)\right)^{2} p(\mathbf{x} ; \theta) d \mathbf{x} \geq 1
$$

Since $\int(\hat{\theta}-\theta)^{2} p(\mathbf{x} ; \theta) d \mathbf{x}=\operatorname{var}(\hat{\theta})$

$$
\operatorname{var}(\hat{\theta}) \geq \frac{1}{\mathrm{E}\left[\left(\frac{\partial}{\partial \theta} \ln p(\mathrm{x} ; \theta)\right)^{2}\right]}
$$

Fisher Information

To show that the Fisher Information

$$
I(\theta)=-\mathrm{E}\left[\frac{\partial^{2}}{\partial \theta^{2}} \ln p(\mathbf{x} ; \theta)\right]=\mathrm{E}\left[\left(\frac{\partial}{\partial \theta} \ln p(\mathbf{x} ; \theta)\right)^{2}\right]
$$

Let us use the regularity condition

$$
\begin{aligned}
& \mathrm{E}\left[\frac{\partial}{\partial \theta} \ln p(\mathbf{x} ; \theta)\right]=0 \Rightarrow \frac{\partial}{\partial \theta} \int\left(\frac{\partial}{\partial \theta} \ln p(\mathbf{x} ; \theta)\right) p(\mathbf{x} ; \theta) d \mathbf{x}=0 \\
& \int\left[\frac{\partial^{2}}{\partial \theta^{2}} \ln p(\mathbf{x} ; \theta) p(\mathbf{x} ; \theta)+\frac{\partial}{\partial \theta} \ln p(\mathbf{x} ; \theta) \frac{1}{p(\mathbf{x} ; \theta)} \frac{\partial}{\partial \theta} p(\mathbf{x} ; \theta) p(\mathbf{x} ; \theta)\right] d \mathbf{x}=0 \\
\Rightarrow & -\mathrm{E}\left[\frac{\partial^{2}}{\partial \theta^{2}} \ln p(\mathbf{x} ; \theta)\right]=\mathrm{E}\left[\left(\frac{\partial}{\partial \theta} \ln p(\mathbf{x} ; \theta)\right)^{2}\right]
\end{aligned}
$$

Properties of Fisher information

- Non-negativity

$$
I(\theta)=\mathrm{E}\left[\left(\frac{\partial}{\partial \theta} \ln p(\mathbf{x} ; \theta)\right)^{2}\right] \geq 0
$$

- Additivity for independent observations

$$
\begin{aligned}
& \ln p(\mathbf{x} ; \theta)=\ln \left(\prod_{n=0}^{N-1} p(x[n] ; \theta)\right)=\sum_{n=0}^{N-1} \ln p(x[n] ; \theta) \\
& \Rightarrow-\mathrm{E}\left[\frac{\partial^{2}}{\partial \theta^{2}} \ln p(\mathbf{x} ; \theta)\right]=\sum_{n=0}^{N-1}-\mathrm{E}\left[\frac{\partial^{2}}{\partial \theta^{2}} p(x[n] ; \theta)\right]
\end{aligned}
$$

Efficiency

Suppose the score function admits the factorization

$$
\frac{\partial}{\partial \theta} \ln p(\mathbf{x} ; \theta)=I(\theta)(\hat{\theta}-\theta)
$$

we want to show that $\mathrm{E}[\hat{\theta}]=\theta$ and $\operatorname{var}(\hat{\theta})=\frac{1}{I(\theta)}$.
Unbiasedness:

$$
\mathrm{E}\left[\frac{\partial}{\partial \theta} \ln p(\mathbf{x} ; \theta)\right]=\mathrm{E}[I(\theta)(\hat{\theta}-\theta)]=I(\theta)(\mathrm{E}[\hat{\theta}]-\theta)=0
$$

Efficiency:

$$
\frac{\partial}{\partial \theta}\left[\frac{\partial}{\partial \theta} \ln p(\mathbf{x} ; \theta)\right]=\frac{\partial}{\partial \theta} I(\theta)(\hat{\theta}-\theta)-I(\theta)
$$

Taking the negative expected value, $-\mathrm{E}\left[\frac{\partial^{2}}{\partial \theta^{2}} \ln p(\mathbf{x} ; \theta)\right]=I(\theta)$.
Since

$$
\mathrm{E}\left[\left(\frac{\partial}{\partial \theta} \ln p(\mathbf{x} ; \theta)\right)^{2}\right]=I(\theta)^{2} \mathrm{E}\left[(\hat{\theta}-\theta)^{2}\right] \Rightarrow \quad \operatorname{var}(\hat{\theta})=\frac{1}{I(\theta)}
$$

Example: nonlinear model in additive Gaussian noise

Suppose we are given

$$
\mathbf{x}=\mathbf{h}(\theta)+\mathbf{w}, \quad \mathbf{x} \in \mathbb{R}^{M}, \mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{C}), \mathbf{C}: M \times M
$$

The log likelihood function

$$
\begin{aligned}
& \ln p(\mathbf{x} ; \theta)=\text { const. }-\frac{1}{2}(\mathbf{x}-\mathbf{h}(\theta))^{\mathrm{T}} \mathbf{C}^{-1}(\mathbf{x}-\mathbf{h}(\theta)) \\
& \\
& \frac{\partial}{\partial \theta} \ln p(\mathbf{x} ; \theta)=\frac{\partial}{\partial \theta} \mathbf{h}(\theta)^{\mathrm{T}} \mathbf{C}^{-1}[\mathbf{x}-\mathbf{h}(\theta)] \\
& \\
& \frac{\partial^{2}}{\partial \theta^{2}} \ln p(\mathbf{x} ; \theta)=\frac{\partial^{2}}{\partial \theta^{2}} \mathbf{h}(\theta)^{\mathrm{T}} \mathbf{C}^{-1}[\mathbf{x}-\mathbf{h}(\theta)]-\frac{\partial}{\partial \theta} \mathbf{h}(\theta)^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{h}(\theta) \\
& \Rightarrow \mathrm{E}\left[\frac{\partial^{2}}{\partial \theta^{2}} \ln p(\mathbf{x} ; \theta)\right]=-\frac{\partial}{\partial \theta} \mathbf{h}(\theta)^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{h}(\theta)
\end{aligned}
$$

CRLB depends on θ for a non-linear model. The more $\mathbf{h}(\theta)$ depends on θ, smaller will be the CRLB.

Example: linear model in Gaussian noise

For the observations model $\mathbf{x}=\mathbf{h} \theta+\mathbf{w}$, we have $\operatorname{var}(\hat{\theta}) \geq \frac{1}{\mathbf{h}^{T} \mathbf{C}^{-1} \mathbf{h}}$ and

$$
\begin{aligned}
\frac{\partial}{\partial \theta} p(\mathbf{x} ; \theta) & =\mathbf{h}^{\mathrm{T}} \mathbf{C}^{-1}[\mathbf{x}-\mathbf{h} \theta]=\mathbf{h}^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{x}-\mathbf{h}^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{h} \theta \\
& =\underbrace{\left(\mathbf{h}^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{h}\right)}_{I(\theta)} \underbrace{\left(\mathbf{h}^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{h}\right)^{-1} \mathbf{h}^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{x}}_{\hat{\theta}}-\theta]
\end{aligned}
$$

For the IID Case of $\mathbf{x}=A \mathbf{1}+\mathbf{w}$ with $\mathbf{h}=\mathbf{1}$

$$
\mathbf{C}=\sigma^{2} \mathbf{I}, \text { where } \mathbf{I}: M \times M \quad \text { identity matrix }
$$

$$
\operatorname{var}(\hat{\theta}) \geq \frac{1}{\mathbf{1}^{\mathrm{T}}\left(\sigma^{2} \mathbf{I}\right)^{-1} \mathbf{1}}=\frac{\sigma^{2}}{N}
$$

and

$$
\hat{\theta}=\left(\mathbf{h}^{\mathrm{T}} C^{-1} \mathbf{h}\right)^{-1} \mathbf{h}^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{x}=\frac{1}{N} \mathbf{1}^{\mathrm{T}} \mathbf{x}=\frac{1}{N} \sum_{n=1}^{N-1} x[n]
$$

Example: Poisson distribution

Suppose $\mathbf{x}=\left[x_{0}, x_{1}, \ldots, x_{N-1}\right]^{\mathrm{T}}$ denote observations of size N from a Poisson distribution i.e., $x_{0}, x_{1}, \ldots, x_{N-1}$ are IID observations from a Poisson (θ) distribution with marginal pdf

$$
p\left(x_{i} ; \theta\right)=\frac{\theta^{x_{i}}}{x_{i}!} e^{-\theta}
$$

and $\mathrm{E}\left[x_{i}\right]=\theta$. Then,

1. Calculate CRLB for the parameter θ,
2. Find the MVU estimator for θ.

Since the observations are i.i.d., we have

$$
p(\mathbf{x} ; \theta)=\frac{\theta^{K}}{\prod_{i=0}^{N-1} x_{i}!} e^{-N \theta}, \text { where } K=\sum_{i=0}^{N-1} x_{i}
$$

and hence we have the score function $\frac{\partial}{\partial \theta} \ln p(\mathbf{x} ; \theta)=-N+\frac{1}{\theta} \sum_{i=0}^{N-1} x_{i}$.

Example: Poisson distribution

Further, $\frac{\partial^{2}}{\partial \theta^{2}} \ln p(\mathbf{x} ; \theta)=\frac{1}{\theta^{2}} \sum_{i=0}^{N-1} x_{i}$ and since $\mathrm{E}\left[x_{i}\right]=\theta$, we have

$$
I(\theta)=-\mathrm{E}\left[\frac{\partial^{2}}{\partial \theta^{2}} \ln p(\mathbf{x} ; \theta)\right]=\frac{N}{\theta}
$$

Hence, from the CRLB $\operatorname{var}(\hat{\theta}) \geq \frac{\theta}{N}$. Further, writing the score function as $I(\theta)(g(\mathbf{x})-\theta)$:

$$
\begin{aligned}
\frac{\partial}{\partial \theta} \ln p(\mathbf{x} ; \theta) & =\frac{1}{\theta} \sum_{i=1}^{N-1} x_{i}-N \\
& =\underbrace{\frac{N}{\theta}}_{I(\theta)} \underbrace{\frac{1}{N} \sum_{i=0}^{N-1} x_{i}}_{g(\mathbf{x})}-\theta]
\end{aligned}
$$

Transformation of parameters

The CRLB of a transformed parameter $\alpha=g(\theta)$ is

$$
\operatorname{var}(\hat{\alpha}) \geq \frac{\left(\frac{\partial}{\partial \theta} g(\theta)\right)^{2}}{-\mathrm{E}\left[\frac{\partial^{2}}{\partial \theta^{2}} \ln p(\mathbf{x} ; \theta)\right]}
$$

Example:
For the DC in WGN model, $x[n]=A+w[n]$, the CRLB for $\alpha=g(A)=A^{2}$ (power of the signal) in terms of the CRLB for A :

$$
\operatorname{var}\left(\hat{A}^{2}\right) \geq \frac{(2 A)^{2}}{N / \sigma^{2}}=4 A^{2} \sigma^{2} / N
$$

Transformation of parameters

Given that $\hat{A}=\bar{x}=\frac{1}{N} \sum_{i=0}^{N-1}$ is an efficient estimator of A, is \bar{x}^{2} an efficient estimator of A^{2} ?

Note that $\bar{x} \sim \mathcal{N}\left(A, \sigma^{2} / N\right)$

- Biased: $\mathrm{E}\left[\bar{x}^{2}\right]=A^{2}+\sigma^{2} / N \neq A^{2}$
- Does not attain CRLB: $\operatorname{var}\left(\bar{x}^{2}\right)=\frac{4 A^{2} \sigma^{2}}{N}+\frac{2 \sigma^{4}}{N^{2}}$

Efficiency is NOT maintained under non-linear transformations However, as $N \rightarrow \infty$

- Uniased: $\mathrm{E}\left[\bar{x}^{2}\right] \xrightarrow{N \uparrow} A^{2}$
- Attains CRLB: $\operatorname{var}\left(\bar{x}^{2}\right) \xrightarrow{N \uparrow} \frac{4 A^{2} \sigma^{2}}{N}$

Thus \bar{x}^{2} is an asymptotically efficient estimator of A^{2}.

Affine transformations

Efficiency of an estimator is maintained under an affine transformation If $\hat{\theta}$ is an estimator of θ and $\alpha=a \theta+b$, the estimator

$$
\hat{\alpha}=a \hat{\theta}+b
$$

is efficient

- Unbiased: $\mathrm{E}[\hat{\alpha}]=a \theta+b=\alpha$
- CRLB: $a^{2} / I(\theta)=\operatorname{var}(\hat{\alpha})=\operatorname{var}(a \hat{\theta}+b)=a^{2} \operatorname{var}(\hat{\theta})$

Vector parameters

Assume that the pdf of the observation \mathbf{x} parametrized by $\boldsymbol{\theta}=\left[\theta_{1}, \theta_{2}, \ldots, \theta_{p-1}\right]^{\mathrm{T}}$ satisfies the following regularity constraint

$$
\mathrm{E}\left[\frac{\partial}{\partial \boldsymbol{\theta}} p(\mathbf{x} ; \boldsymbol{\theta})\right]=0, \forall \boldsymbol{\theta}
$$

Then the covariance matrix of any unbiased estimator $\hat{\boldsymbol{\theta}}$ satisfies

$$
\mathbf{C}_{\hat{\boldsymbol{\theta}}}-\mathbf{I}(\boldsymbol{\theta}) \geq \mathbf{0}, \forall \boldsymbol{\theta}
$$

where $\geq \mathbf{0}$ means that the matrix is positive semi-definite. The Fisher matrix $\mathbf{I}(\boldsymbol{\theta})$ is given by

$$
[\mathbf{I}(\boldsymbol{\theta})]_{i, j}=-\mathrm{E}\left[\frac{\partial^{2} p(\mathbf{x} ; \boldsymbol{\theta})}{\partial \theta_{i} \partial \theta_{j}}\right]
$$

Since the diagonal elements of a positive semi-definite matrix are non-negative $\operatorname{var}\left(\hat{\theta}_{i}\right) \geq[\mathbf{I}(\boldsymbol{\theta})]_{i, i}$.
Further, an unbiased estimator that attains the CRLB can be found if and only if

$$
\frac{\partial}{\partial \boldsymbol{\theta}} p(\mathbf{x} ; \boldsymbol{\theta})=\mathbf{I}(\boldsymbol{\theta})(\mathbf{g}(\mathbf{x})-\boldsymbol{\theta})
$$

Transformations of vector parameters

Suppose we want to estimate a function

$$
\boldsymbol{\alpha}=\mathbf{g}(\boldsymbol{\theta}), \boldsymbol{\alpha} \in \mathbb{R}^{r}
$$

The covariance matrix satisfies the following condition

$$
\underbrace{\mathbf{C}_{\hat{\alpha}}}_{r \times r}-\underbrace{\left[\frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right]}_{r \times p} \underbrace{\mathbf{I}^{-1}(\boldsymbol{\theta})}_{\mathrm{p} \times \mathrm{p}} \underbrace{\left[\frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right]^{\mathrm{T}}}_{\mathrm{p} \times \mathrm{r}} \geq \mathbf{0} .
$$

Affine transformation: Suppose $\boldsymbol{\alpha}=\mathbf{g}(\boldsymbol{\theta})=\mathbf{A} \boldsymbol{\theta}+\mathbf{b}$ and the estimator $\hat{\boldsymbol{\alpha}}=\mathbf{A} \hat{\boldsymbol{\theta}}+\mathbf{b}$, then

$$
\begin{aligned}
& \mathrm{E}[\hat{\boldsymbol{\alpha}}]=\mathbf{A} \boldsymbol{\theta}+\mathbf{b}=\boldsymbol{\alpha} \\
& \mathbf{C}_{\hat{\boldsymbol{\alpha}}}=\mathbf{A C}_{\hat{\boldsymbol{\theta}}} \mathbf{A}^{\mathrm{T}}=\mathbf{A I}^{-1}(\boldsymbol{\theta}) \mathbf{A}^{\mathrm{T}}=\frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \mathbf{I}^{-1}(\boldsymbol{\theta}) \frac{\partial \mathbf{g}^{\mathrm{T}}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}
\end{aligned}
$$

Example

Estimate parameters A, σ^{2} given observations

$$
x[n]=A+w[n], w[n] \sim \mathcal{N}\left(0, \sigma^{2}\right), n=1,2, \ldots, N-1,
$$

then $\mathbf{x} \sim \mathcal{N}\left(A \mathbf{1}, \sigma^{2} \mathbf{I}\right)$, and $\boldsymbol{\theta}=\left[A, \sigma^{2}\right]^{\mathrm{T}}, p=2$.

$$
\mathbf{I}(\boldsymbol{\theta})=\left[\begin{array}{cc}
-\mathrm{E}\left[\frac{\partial^{2}}{\partial A^{2}} \ln p(\mathbf{x} ; \boldsymbol{\theta})\right] & -\mathrm{E}\left[\frac{\partial^{2}}{\partial A \partial \sigma^{2}} \ln p(\mathbf{x} ; \boldsymbol{\theta})\right] \\
-\mathrm{E}\left[\frac{\partial^{2}}{\partial \sigma^{2} \partial A} \ln p(\mathbf{x} ; \boldsymbol{\theta})\right] & -\mathrm{E}\left[\frac{\partial^{2}}{\partial \sigma^{2}} \ln p(\mathbf{x} ; \boldsymbol{\theta})\right]
\end{array}\right]
$$

Use $\ln p(\mathbf{x} ; \boldsymbol{\theta})=-\frac{N}{2} \ln 2 \pi-\frac{N}{2} \ln \sigma^{2}-\frac{1}{2 \sigma^{2}} \sum_{n=0}^{N-1}(x[n]-A)^{2}$ to compute

$$
\mathbf{I}(\boldsymbol{\theta})=\left[\begin{array}{cc}
N / \sigma^{2} & 0 \\
0 & N /\left(2 \sigma^{4}\right)
\end{array}\right] .
$$

Hence we have that $\operatorname{var}(\hat{A}) \geq \sigma^{2} / N$ and $\operatorname{var}\left(\hat{\sigma^{2}}\right) \geq 2 \sigma^{2} / N$. Knowing A does not influence the estimator for σ^{2}

Example

Now suppose we want to estimate

$$
\alpha=\frac{A^{2}}{\sigma^{2}}
$$

from the same observations. Then we have $\boldsymbol{\theta}=\left[A, \sigma^{2}\right]^{\mathrm{T}}$ and $\alpha=g(\boldsymbol{\theta})=\frac{\theta_{1}^{2}}{\theta_{2}}$. Compute $\frac{\partial g(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$ for this model as

$$
\frac{\partial}{\partial \boldsymbol{\theta}} g(\boldsymbol{\theta})=\left[\frac{\partial g(\boldsymbol{\theta})}{\partial A}, \frac{\partial g(\boldsymbol{\theta})}{\partial \sigma^{2}}\right]^{\mathrm{T}}=\left[\frac{2 A}{\sigma^{2}}, \frac{A}{\sigma^{4}}\right]^{\mathrm{T}}
$$

Use this to get the CRLB for covariance of the estimate as

$$
\left[\frac{\partial}{\partial \boldsymbol{\theta}} g(\boldsymbol{\theta})\right] \mathbf{I}^{-1}(\boldsymbol{\theta})\left[\frac{\partial}{\partial \boldsymbol{\theta}} g^{\mathrm{T}}(\boldsymbol{\theta})\right]=\frac{4 A+2 \sigma^{2}}{N}
$$

Linear model with vector parameters

Suppose we have the observations

$$
\mathbf{x}=\mathbf{H} \boldsymbol{\theta}+\mathbf{w}, \theta: \mathrm{p} \times 1, \mathbf{H}: \mathbf{N} \times \mathrm{p} \text { and } \mathbf{w} \sim \mathcal{N}\left(0, \sigma^{2} \mathbf{I}\right)
$$

Then we have

$$
\begin{aligned}
\ln p(\mathbf{x} ; \boldsymbol{\theta}) & =\text { const. }-\frac{1}{2 \sigma^{2}}[\mathbf{x}-\mathbf{H} \boldsymbol{\theta}]^{\mathrm{T}}[\mathbf{x}-\mathbf{H} \boldsymbol{\theta}] \\
& =\text { const. }-\frac{1}{2 \sigma^{2}}\left[\mathbf{x}^{\mathrm{T}} \mathbf{x}-\boldsymbol{\theta}^{\mathrm{T}} \mathbf{H}^{\mathrm{T}} \mathbf{x}-\mathbf{x}^{\mathrm{T}} \mathbf{H} \boldsymbol{\theta}+\boldsymbol{\theta}^{\mathrm{T}} \mathbf{H}^{\mathrm{T}} \mathbf{H} \boldsymbol{\theta}\right] .
\end{aligned}
$$

Using $\frac{\partial \mathbf{b}^{\mathrm{T}} \boldsymbol{\theta}}{\partial \boldsymbol{\theta}}=\mathbf{b}$ and $\frac{\partial \boldsymbol{\theta}^{\mathrm{T}} \mathbf{A} \boldsymbol{\theta}}{\partial \boldsymbol{\theta}}=2 \mathbf{A} \boldsymbol{\theta}$, we have

$$
\frac{\partial}{\partial \boldsymbol{\theta}} \ln p(\mathbf{x} ; \boldsymbol{\theta})=\frac{1}{2 \sigma^{2}}\left[\mathbf{H}^{\mathrm{T}} \mathbf{x}-\mathbf{H}^{\mathrm{T}} \mathbf{H} \boldsymbol{\theta}\right]=\frac{\left(\mathbf{H}^{\mathrm{T}} \mathbf{H}\right)}{2 \sigma^{2}}\left[\left(\mathbf{H}^{\mathrm{T}} \mathbf{H}\right)^{-1} \mathbf{H}^{\mathrm{T}} \mathbf{x}-\boldsymbol{\theta}\right] .
$$

Further

$$
\frac{\partial^{2} \ln p(\mathbf{x} ; \boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\mathrm{T}}}=-\frac{\mathbf{H}^{\mathrm{T}} \mathbf{H}}{\sigma^{2}}
$$

so that the Fisher matrix

$$
\mathbf{I}(\boldsymbol{\theta})=\frac{\mathbf{H}^{\mathrm{T}} \mathbf{H}}{\sigma^{2}}
$$

