\# lecture 2
OPt ML
Mathematical background I:
Roodmap:
(1) Sets: open, closed, Compact
(2) functions: Extend real value, closedness, Continuity, Semi continuity, Lipsclitz continuous
(3) Optimization problem:

- Solution (minimum; local, global)
- Existence of optimal solutions (Weir strass' theorem)

Reference:

- Bertixkas, Non-linear programming (Appendix A)
- Beck, First -order optimization (ch.2)

Open and closed sets:
Closed set: A set $A \subset \mathbb{R}^{n}$ that contains all of its limit points
Examples: $\quad[0,1], B[c, \epsilon]=\left\{x \in \mathbb{R}^{n}:\|\underline{x}-\leq\| \leqslant \epsilon\right\}$
Open set : Complement of closed set.
Example. $(0,1)$

$$
0<x_{i}<1
$$

$$
\begin{aligned}
& x \in X \subseteq \mathbb{R}^{n} \\
& \epsilon>0 \\
& N_{\epsilon}(x)=\{\underline{y} \in X: \| \underline{x}-\underline{y} \mid<\epsilon\} \\
& N_{\epsilon}(x) \subseteq X
\end{aligned}
$$

"All elements as e interior points"

$$
\frac{\downarrow}{} \quad(x-\epsilon, x+\epsilon) \subset x
$$

Cannot take den end point
Closed set: $\mathbb{N}_{\epsilon}(x) \subseteq X$ does not hold

Compact set :

- Bounded ret : $\exists c \in \mathbb{R}$ such that the magnitude of any coordinate of any element of A is lent than C

$$
\begin{array}{ll}
\text { Example: } & \begin{array}{c}
{[2, \infty)} \\
\text { not bounded }
\end{array} \\
{[2,5]} \\
\text { bounded }
\end{array}
$$

A subset of \mathbb{R}^{n} is compact if it is closed and bounded

Example:
Any closed interval $[a, b]$ in \mathbb{R}

Continuity: Let $A \subset \mathbb{R}^{n}$ and $f: H \rightarrow \mathbb{R}^{n}$
(a) f is continuous at a point $\underline{x} \in A$ if

$$
\operatorname{lt}_{y \rightarrow x} f(y)=f(x)
$$

continuous over A if it is continous at every point $x \in A$
upper semi continuity:

$$
f(x) \geqslant u \sup _{k \rightarrow \infty} f\left(\underline{x}_{k}\right)
$$

(b) $\begin{aligned} f: A & \rightarrow \mathbb{R} \text { is cower semicontinuous at } \\ x & \in \mathbb{A} \text { if } f(x) \leqslant\left(t i f f\left(x_{k}\right)\right.\end{aligned}$

$$
f(\underline{x}) \leqslant \operatorname{linf}_{k \rightarrow \infty} f\left(x_{k}\right)
$$

infimum:
for any revenge $\left\{\underline{x}_{k}\right\}$ of elements in A convergeming to \underline{x}

(c) Coercive:

$$
\begin{aligned}
& f: A \rightarrow \mathbb{R} \\
& \operatorname{lt}_{k \rightarrow \infty} f\left(x_{R}\right)=\infty
\end{aligned}
$$

for every sequence $\left\{x_{k}\right\}$ of elements of A
such that $\left\|x_{k}\right\| \rightarrow \infty$

Extended real -valued ternctions:
defined over the entire underlying space \mathbb{R} as well as $-\infty$ and ∞
$[-\infty, \infty]$
domain
\therefore Set $f \cdot \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\begin{aligned}
& 0 \cdot \infty=\infty \cdot 0=0 \\
& \alpha+\infty=\infty
\end{aligned}
$$

$$
\alpha \cdot \infty=\infty \cdot \alpha=\infty
$$

$$
\operatorname{\partial am}(f)=\left\{\underline{x} \in \mathbb{R}^{n}: \mathcal{f}(x)<\infty\right\}
$$

Exampl: Indicator junction of $C \subseteq \mathbb{R}^{n}$ $\begin{array}{ll}f(x)=\log (a x+b) & B_{c}(\underline{x})=\left\{\begin{array}{ll}0 & \underline{x} \in c \\ \operatorname{aom}(f) ? & x \notin c\end{array} \text { with } \operatorname{dom}\left(b_{c}\right)=c\right.\end{array}$

Epigraph: $\quad f: \mathbb{R}^{n} \rightarrow[-\infty, \infty]$

$$
\operatorname{epi}(f)=\left\{(\underline{x}, y): f(\underline{x}) \leqslant y, \underline{x} \in \mathbb{R}^{n}, y \in R\right\}
$$

$$
\subseteq \mathbb{R}^{n} \times \mathbb{R}
$$

closed functions: $\quad f: \mathbb{R}^{n} \rightarrow[-\infty, \infty]$ is closed if its epigraph is closed

$$
\tilde{q}_{p}\left(z_{c}\right)=\left\{(\underline{x}, y) \in \mathbb{R}^{n} \times \mathbb{R}: b_{c}(x) \leqslant y\right\}=c \times \mathbb{R}_{+}
$$ \Rightarrow epi $\left(b_{c}\right)$ is closed when C is closed

\Longrightarrow if f is closed, $\operatorname{\partial om}(f)$ is not necessarily closed

$$
f(x)= \begin{cases}\frac{1}{x}, & x>0, \\ \infty, & \text { else. }\end{cases}
$$

$$
\begin{aligned}
& \operatorname{aom}(f)=(0, \infty) \quad \begin{array}{l}
\text { open interval } \\
\text { (not closed) }
\end{array} \\
& \operatorname{epi}(f)=\{(x, y): \text { ray } \geqslant 1 ; x>0\}
\end{aligned}
$$

$$
\text { o, } \quad f(2)
$$

closed set

So $f(x)$ is closed

$$
\begin{aligned}
& \frac{1}{x} \leq y \\
& 1 \leq x y
\end{aligned}
$$

For $f: \mathbb{R}^{n} \rightarrow[-\infty, \infty]$, itu following are equivalent :
(1) If is lower semicontinuous
(2) f is closed
(3) α-sublevel set: For any $\alpha \in \mathbb{R}$

$$
C_{\alpha}(f)=\left\{\underline{x} \in \mathbb{R}^{n}: f(\underline{x}) \leqslant \alpha\right\}
$$

is closed

lower S.C clone

- (1) \Rightarrow (2): Let $\left\{\left(x_{k}, y_{k}\right)\right\} \subseteq$ ep (f) such that $\left(\underline{x}_{k}, y_{k}\right) \rightarrow\left(x^{*}, y^{*}\right)$ as $k \rightarrow \infty$. Then

$$
f\left(\underline{x}_{k}\right) \leq y_{k} \text { defoe epigraph }
$$

By lower semi continuity,

$$
\begin{aligned}
f\left(\underline{x}^{*}\right) & u_{k \rightarrow \infty} \inf _{k \rightarrow \infty} f\left(\underline{x}_{k}\right)
\end{aligned}
$$

So $\left(\underline{x}^{*}, y^{*}\right) \in \operatorname{epi}(f)$. Hence f is closed f closed C_{α} closed

- (2) \Rightarrow (3) Leet $\left\{x_{k}\right\} \subset c_{\alpha}(f)$ and $x_{k} \rightarrow x^{*}$ f is closed it epi(f) is closed $\left(\underline{x}_{k}, \alpha\right) \in \operatorname{epi}(f)$ and $\left(x_{k}, \alpha\right) \rightarrow\left(\underline{x}^{k}, \alpha\right)$ So $\left(x^{x}, \alpha\right) \in \operatorname{epx}^{-}(f)$ and $\underline{x}^{*} \in C_{\alpha}$

Lipschitg - conkouous fanctions:
$f: x \rightarrow \mathbb{R}^{n}$ is called Lipschitz continuous if ther existis $B \geqslant 0$

$$
\begin{aligned}
\|f(x)-f(\underline{y})\| & \leqslant\|\underline{x}-\underline{y}\| \\
& \text { f } \underline{x}, \underline{y} \in X
\end{aligned}
$$

- B is the Lipschitz constant of f over X

Optimization problem:

$$
\begin{aligned}
& \operatorname{minimize} \\
& x \in X
\end{aligned} \quad f(\underline{x})
$$

$f: \operatorname{\partial om}(f) \rightarrow \mathbb{R}$ objective or cost function
$f(x)$: value of the objective function
$x \subset \operatorname{dom}(\pm)$ is itu feasible set
\underline{x} is th variable
minimize $f\left(x_{1}, x_{2}\right)$
$s \cdot t$.

$$
x_{1} \geqslant 0, x_{2} \geqslant 0
$$

$x_{1}+x_{2} \leqslant 1$

Minima :
 minima minimum

- $x^{*} \in X$ is a local minimum if $\exists \in>0$

Such that $f(x) \geqslant f\left(x^{*}\right) \not \& x \in X$ with

$$
\left\|x-\underline{x}^{\star}\right\|<\epsilon
$$

- $x^{*} \in x$ is a strict local minimum if $\exists \in>0$ Such that $f(x)>f\left(x^{*}\right) \& x \in X$ with $\left\|x-\underline{x}^{*}\right\|<\epsilon$
- $x^{*} \in X$ is a local minimum if $\exists \in>0$ such that $f(x) \geqslant f\left(x^{*}\right)$ \& $x \in x$ Strict if $>$
Set of all: $\arg \min f(x)$ global minima

$$
\underline{x} \in x
$$

$$
\underline{x} \neq \underline{x}^{*}
$$

