\#tecture 3
El 260
$24 / 0812021$

- 'Neicr \&frass' the orem
- Convex sets: Defn., half space \& hyper planes, Cones \& dual cones, operations preserving converity.
- Convex functions:
- definition, linear lower bound
- why important

References:

- Convex sets \& functions: Boyd, Convex optinization, chapter 2 and 3

Existence of optimal solutions:
Weierstrass' tho orem:
Let x be a non empty subset of \mathbb{R}^{n} and $f: x \rightarrow \mathbb{R}$ be lower semi continuous (oar cloned) at all points of x. Assume the one of the following three conditions holds:
(1) x is compact (i.e., closed and bounded)
(2) x is closed and f is coercive

Then, $\exists \underline{x} \in X$ such that $f(x)=\inf f(\underline{z})$.

$$
\begin{aligned}
& \underline{z} \in x \\
= & f_{\text {opt }}
\end{aligned}
$$

Proof:
(1) Compactness of x :

- Sequence has at least one Lt. point
- that $l t$. point is in X
- $f(x)$ is bounded from below

Let $\left\{z_{k}\right\} \subset x$ be a sequence such that

$$
\operatorname{lt}_{k \rightarrow \infty} f\left(\underline{z}_{k}\right)=\inf _{\underline{z} \in x} f(z)
$$

\rightarrow Since x is bounded, $\left\{z_{k}\right\}$ has at lest one limit point \underline{x}^{*}.
$\rightarrow x$ is closed, \underline{x}^{*} belong to x.
\rightarrow lower Atmi-continuity:

$$
\begin{aligned}
& f(\underline{x}) \leqslant u_{k \rightarrow \infty} f\left(\underline{z}_{k}\right)=\inf _{\underline{z} \in x} f(\underline{z}) \\
\therefore & \quad f(\underline{x})=\inf ^{f} \quad f(z)
\end{aligned}
$$

\underline{x}^{*} is the minimizer of f over $x \quad \underline{z} \in x$
(2) Closedners of x and f is coercive: $\left.\begin{array}{l}\text { non-empty } \\ \text { close } Q \text { sect }\end{array}\right\} \operatorname{Dom}(f) \cap x \neq \phi$

$$
f(\underline{x}) \rightarrow \infty \quad \cos \quad\|\underline{x}\|) \rightarrow \infty
$$

- Let \underline{x}_{0} be an arbitrary point in x
- Coerciveness : $\exists \quad M>0$
$f(\underline{x})>f\left(x_{0}\right)$ for any \underline{x} satinteying $\|\underline{x}\|>M$
- Any minimizer \underline{x}^{2} of f over $x: f\left(\underline{x}^{*}\right) \leqslant f\left(x_{0}\right)$
- From coerciuenes: The set of minimizer of f over x in the same as lbw set of minimizes of f over the set $X \cap B[0, M]$

$$
\begin{aligned}
& f\left(x_{0}\right) \geqslant f\left(x^{*}\right) ; \forall\|\underline{x}\| \leq M \\
& f(x)>f\left(x_{0}\right) \geqslant f\left(x^{*}\right) ; \forall\|x\|>M
\end{aligned}
$$

\therefore from part A, \exists a minimizer of of f over $S \cap B[0, M]$ \& over S.

Convex Sets:

A subbet C of \mathbb{R}^{n} is Conuex if

$$
\begin{array}{r}
\theta \underline{x}_{1}+(1-\theta) \underline{x}_{2} \in C, \quad \forall \underline{x}_{1}, \underline{x}_{2} \in C \\
\\
\forall \theta \in[0,1]
\end{array}
$$

Examples of Convex set 1:
(1) Euclidean ball

$$
\begin{aligned}
B\left(\underline{x}_{c}, r\right) & =\left\{\underline{x}:\left\|\underline{x}-\underline{x}_{c}\right\| \leqslant r\right) \\
& =\left\{\underline{x}:\left(\underline{x}-\underline{x}_{c}\right)^{\top}\left(\underline{x}-\underline{x}_{c}\right) \leqslant r^{2}\right\}
\end{aligned}
$$

$\rightarrow\left\|\underline{x}_{1}-\underline{x}_{c}\right\| \leqslant \gamma$ and $\left\|\underline{x}_{2}-\underline{x}_{c}\right\| \leqslant \gamma$

$$
\rightarrow \quad \theta \in[0,1]
$$

(a) \mathbb{R}_{f}^{n} is convex set?

$$
\begin{aligned}
&\left\|\theta \underline{x}_{1}+(1-\theta) \underline{x}_{2}-\underline{x}_{c}\right\|_{2} \\
&=\left\|\theta\left(\underline{x}_{1}-\underline{x}_{c}\right)+(1-\theta)\left(\underline{x}_{2}-\underline{x}_{c}\right)\right\|_{2} \\
& \leqslant \theta\left\|\underline{x}_{1}-\underline{x}_{c}\right\|_{2}+(1-\theta)\left\|\underline{x}_{2}-\underline{x}_{c}\right\|_{2} \\
& \leqslant \gamma \quad \Rightarrow \theta \underline{x}_{1}+(1-\theta 2) \underline{x}_{2} \in B\left(\underline{x}_{c}, \gamma\right)
\end{aligned}
$$

Hyperplanes and half spaces:
hyper plane:

$$
\left\{\underline{x} \in \mathbb{R}: \underline{a}^{\top} \underline{x}=b\right\} \quad ; \quad \underline{a} \neq 0
$$

Half space: $H^{+}=\left\{\underline{x} \in \mathbb{R}: \quad \underline{a}^{\top} \underline{x} \leqslant b\right\}$

half spaces are Convex.

$$
\begin{aligned}
& x_{1} \in H^{+} \quad \underline{x}_{2} \in H^{+} \\
& \rightarrow a^{\top} \underline{m}_{1} \leqslant b ; \underline{a}^{\top} x_{2} \leqslant b \\
& \theta \in[0,1] \\
& a^{\top}\left(\theta \underline{x}_{1}+(1-\theta) x_{2}\right)
\end{aligned}
$$

Separating and supporting hyperplane:

if C and D are disjoint convex sets, $\exists a \neq 0, b$
S.t. $a^{\top} x \geqslant b$ for $x \in D$ $a^{\top} x \leqslant b$ for $x \in C$

Supporting hyperplane to C at boundary point x_{0}

$$
\left\{x: \underline{a}^{\top} \underline{x}=a^{\top} x_{0}\right\}
$$

where $a \neq 0$ and

$$
\underline{a}^{\top} \underline{x} \leqslant \underline{a}^{\top} \underline{x}_{0} \text { for all } x \in C
$$

if C is convex, then \exists a supporting hyperplane at every boundary point of C

$$
\begin{aligned}
\rightarrow \quad \theta_{1} x_{1}+\theta_{2} x_{2} & \in c \\
\text { s.f. } \theta_{1}+\theta_{2} & =1 \\
\theta_{2} & =1-\theta_{1} ; \theta_{1} \in[0,1]
\end{aligned}
$$

Convex Cone:
Conic non-negative combination of x_{1} and x_{2}

$$
\begin{aligned}
x=\theta_{1} x_{1}+\theta_{2} x_{2} \text { with } \begin{aligned}
\theta_{1} & \geqslant 0 \\
\theta_{2} & \geqslant 0
\end{aligned} ~
\end{aligned}
$$

Convex Cone:
A set C il a convex cone if

Polar cone:

$$
c^{*}=\left\{y: x^{\top} y \leqslant 0, f x \in c\right\}
$$

Polyhed ra:
(Convex set)

$$
P=\left\{\underline{x}: \underline{a}_{j}^{\top} \underline{x} \leqslant b_{j}, j=1 \ldots, m \quad 1 . j=1 \ldots p\right\} .
$$

Bounded polyhedra is called as polytope

Interaction of finite number of half paces \& hyperplanes

Operations that preserve convexity:

- Intersection : $\bigcap_{i \in I} C_{i}$ of convex self C_{i} E.s. Poly tope
- Affine functions:

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \quad \text { ह.g. } \quad f(\underline{x})=A \underline{x}+\underline{b}
$$

\rightarrow Image of a convex set $C \subseteq \mathbb{R}^{n}$ under f

$$
f(c):\{f(\underline{x}): \underline{x} \in c\}
$$

\rightarrow Inverse image $f^{-1}(c):\{x: f(x) \in c\}$

$$
\begin{array}{r}
\text { 8.s. } \alpha \subset=\{\alpha \underline{x}: \underline{x} \in c\} ; \alpha+c=\{\underline{x}+\alpha: x \in c\} \\
c_{1}+c_{2}=\left\{x_{1}+x_{2}: x_{1} \in c_{1}, x_{2} \in c_{2}\right\} \\
\downarrow \\
\text { convex }
\end{array}
$$

