E9 211: Adaptive Signal Processing

Steepest Gradient Descent

- 1. Steepest gradient descent
- 2. Stability condition
- 3. Convergence rate

Linear least-mean-squares estimator

► Suppose we would like to estimate a scalar s_k : p × 1 based on vector valued observations x_k : M × 1

$$\mathbf{x}_k = \mathbf{a}s_k + \mathbf{n}_k, \quad k = 1, 2, \dots$$

with $\mathbf{a}: M \times 1$ and $\mathbf{n}_k: M \times 1$ is the noise vector.

• The linear estimator (equalizer or beamformer) is given by $\hat{s}_k = \mathbf{w}^{\mathrm{H}} \mathbf{x}$

Linear least-mean-squares estimator

- ► Assume source has unit power, i.e., $E(|s_k|^2) = 1$. Also, Let $\mathbf{R}_x = E(\mathbf{x}_k \mathbf{x}_k^{\mathrm{H}})$ and $\mathbf{r}_{xs} = E(\mathbf{x} s_k^*)$.
- \blacktriangleright To find the beamformer $\mathbf{w}: M \times 1$ by minimizing the output error using the cost function

$$J(\mathbf{w}) = E(|\mathbf{w}^{\mathsf{H}}\mathbf{x} - s_k|^2) = \mathbf{w}^{\mathsf{H}}\mathbf{R}_x\mathbf{w} - \mathbf{w}^{\mathsf{H}}\mathbf{r}_{xs} - \mathbf{r}_{xs}^{\mathsf{H}}\mathbf{w} + 1$$

► The gradient vector will be

$$\nabla J(\mathbf{w}) = \mathbf{R}_x \mathbf{w} - \mathbf{r}_{xs}$$

Linear least-mean-squares estimator

• Let the optimum that minimizes $J(\mathbf{w})$ be \mathbf{w}_0 . At the optimum, $J(\mathbf{w}_0) = 0$:

$$\mathbf{R}_x \mathbf{w}_0 - \mathbf{r}_{xs} = \mathbf{0} \Rightarrow \mathbf{w}_0 = \mathbf{R}_x^{-1} \mathbf{r}_{xs}$$

• Also,
$$J(\mathbf{w}) = 0$$
 implies

$$E(\mathbf{x}_k \mathbf{x}_k^{\mathsf{H}} \mathbf{w} - \mathbf{x}_k s_k^*) = 0 \Rightarrow E(\mathbf{x}_k e_k^*) = 0$$

where the error signal $e_k = \mathbf{w}^{\mathsf{H}} \mathbf{x} - s_k$

The cost at the optimum is

$$J(\mathbf{w}_0) = J_0 = 1 - \mathbf{r}_{xs}^{\mathrm{H}} \mathbf{R}_x^{-1} \mathbf{r}_{xs}$$

The optimum estimator involved R⁻¹_x. To avoid this inversion, we compute the optimum *iteratively*.

Linear least-mean-squares objective function

 \blacktriangleright The cost function is quadratic in ${\bf w}$ and can be expressed as

$$J(\mathbf{w}) = J_0 + (\mathbf{w} - \mathbf{w}_0)^{\mathrm{H}} \mathbf{R}_x(\mathbf{w} - \mathbf{w}_0)$$

with \mathbf{w}_0 being the minimizer.

Steepest gradient descent method

To minimize f(x)

 \blacktriangleright Take initial point $x^{(1)}$ with gradient $\nabla f^{(1)}$

 \blacktriangleright For a point $x^{(2)}$ close to $x^{(1)},$ we can write the slope of the tangent

$$\nabla f^{(1)} \approx \frac{f(x^{(2)}) - f(x^{(1)})}{x^{(2)} - x^{(1)}} \quad \Rightarrow \quad f(x^{(2)}) \approx f(x^{(1)}) + (x^{(2)} - x^{(1)}) \nabla f^{(1)}$$

Suppose we choose

$$x^{(2)} = x^{(1)} - \mu \nabla f^{(1)}$$

with a small number μ , referred to as the *step size*.

► Then,
$$f(x^{(2)}) \approx f(x^{(1)}) - \mu(\nabla f^{(1)})^2 < f(x^{(1)}).$$

- At the minimum, $\nabla f^{(1)} = 0$ and $x^{(2)} = x^{(1)}$
- Taking small steps in the direction of the negative gradient, the value of the function becomes smaller.

Steepest gradient descent method

 \blacktriangleright Let us focus on our objective function $J(\mathbf{w})$ and use the update direction \mathbf{p} to get the update equation

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \mu \mathbf{p}$$

► Then, we have

$$J(\mathbf{w}^{(k+1)}) = (\mathbf{w}^{(k)} + \mu \mathbf{p})^{\mathsf{H}} \mathbf{R}_{x} (\mathbf{w}^{(k)} + \mu \mathbf{p}) - \mathbf{r}_{xs}^{\mathsf{H}} (\mathbf{w}^{(k)} + \mu \mathbf{p})$$
$$- (\mathbf{w}^{(k)} + \mu \mathbf{p})^{\mathsf{H}} \mathbf{r}_{xs} + 1$$
$$= J(\mathbf{w}^{(k)}) + 2\mu \operatorname{Re}[\nabla J(\mathbf{w}^{(k)})^{\mathsf{H}} \mathbf{p}] + \mu^{2} \mathbf{p}^{\mathsf{H}} \mathbf{R}_{x} \mathbf{p}$$

From the above equation, the necessary condition for $J(\mathbf{w}^{(k+1)}) < J(\mathbf{w}^{(k)})$ is

$$\operatorname{Re}[\nabla J(\mathbf{w}^{(k)})^{\mathrm{H}}\mathbf{p}] < 0$$

This can be obtained by choosing

$$\mathbf{p} = -\mathbf{B}
abla J(\mathbf{w}^{(k)})$$
 for any $\mathbf{B} > \mathbf{0}$

 \blacktriangleright For steepest gradient descent method, we simply choose $\mathbf{B} = \mathbf{I}$

▶ Since we have $\nabla J(\mathbf{w}) = \mathbf{R}_x \mathbf{w} - \mathbf{r}_{xs}$, the steepest gradient descent iterations are

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \mu [\mathbf{R}_x \mathbf{w}^{(k)} - \mathbf{r}_{xs}].$$

The iteration is initialized (usually) with $\mathbf{w}^0 = \mathbf{0}$.

 \blacktriangleright The choice of μ is important for stability and convergence of this technique

Steepest gradient descent method - stability

• Let us define the weight error $e^{(k)} = w^{(k)} - w_0$. Then,

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \mu(\mathbf{R}_x \mathbf{w}^{(k)} - \mathbf{r}_{xs})$$

$$\mathbf{w}_0 = \mathbf{w}_0 - \mu(\mathbf{R}_x \mathbf{w}_0 - \mathbf{r}_{xs})$$

$$\mathbf{e}^{(k+1)} = \mathbf{e}^{(k)} - \mu \mathbf{R}_x \mathbf{e}^{(k)}$$

We obtain the first-order matrix difference equation

$$\mathbf{e}^{(k+1)} = (\mathbf{I} - \mu \mathbf{R}_x)\mathbf{e}^{(k)} = \dots = (\mathbf{I} - \mu \mathbf{R}_x)^{(k+1)}\mathbf{e}^{(0)}$$

which is stable if $(\mathbf{I} - \mu \mathbf{R}_x)^{(k)} \to 0$.

► Let the eigenvalue decomposition $\mathbf{R}_x =: \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathrm{H}}$ and $\mathbf{I} - \mu \mathbf{R}_x =: \mathbf{U} \mathbf{\Lambda}_{\mu} \mathbf{U}^{\mathrm{H}} \implies (\mathbf{I} - \mu \mathbf{R}_x)^k = \mathbf{U} \mathbf{\Lambda}_{\mu}^k \mathbf{U}^{\mathrm{H}} = \mathbf{U} [\mathbf{I} - \mathbf{\Lambda}]^k \mathbf{U}^{\mathrm{H}}.$ Also, let $\mathbf{v}^{(k)} = \mathbf{U}^{\mathrm{H}} \mathbf{e}^{(k)}$, so that $\mathbf{v}^{(k)} = [\mathbf{I} - \mathbf{\Lambda}]^k \mathbf{v}^{(0)}.$

Steepest gradient descent method - stability

- ► Then the condition for stability of the recursion is $\|\mathbf{e}^{(k)}\| = \|\mathbf{v}^{(k)}\| \to 0 \quad \Leftrightarrow \quad |1 - \mu\lambda_i| < 1 \quad i = 1, 2, \dots, M$
- ► Since λ_{min} = λ₁ ≤ λ₂ · · · ≤ λ_M = λ_{max}, the steepest gradient descent is stable if

Transient behaviour:

- Since $v_i^{(k)} = (1 \mu \lambda_i)^k v_i^{(0)}$, different entries of $\mathbf{v}^{(k)}$ converge at different rates.
- ▶ Modes with $0 < 1 \mu \lambda_i < 1$ monotonically decay to 0
- Modes with $-1 < 1 \mu \lambda_i < 0$ oscillate
- Mode with the largest magnitude (close to 1) decays at the slowest rate. Suppose $1 \mu \lambda_{max} > 0$, the slowest mode is determined by λ_{min} .

Steepest gradient descent method - convergence rate

Convergence rate:

- Mode with the largest magnitude (close to 1) decays at the slowest rate. Suppose $1 \mu \lambda_{max} > 0$, the slowest mode is determined by λ_{min} .
- ► For a function $f(t) = e^{-t/\tau}$, τ is the *time constant*, which is the time required for the value of the function to decay by a factor e as $f(t + \tau) = f(t)/e$.

► For
$$f(\tau) = \|\mathbf{v}^{(\tau)}\| = \|\mathbf{v}^{(0)}\|/e$$
, the time constant is

$$\tau = \frac{-1}{\ln(1 - \mu\lambda_{\min})}$$

For small $\mu\text{, }\tau\approx\frac{1}{\mu\lambda_{\min}}$

▶ If $\mu = 1/\lambda_{\max}$, then

$$\tau \approx \frac{\lambda_{\max}}{\lambda_{\min}} =: \operatorname{cond}(\mathbf{R}_x)$$

If \mathbf{R}_x is ill-conditioned, then the convergence will be slow.