
E9 211: Adaptive Signal Processing

Steepest Gradient Descent
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Linear least-mean-squares estimator

I Suppose we would like to estimate a scalar sk : p× 1 based on
vector valued observations xk :M × 1

xk = ask + nk, k = 1, 2, . . .

with a :M × 1 and nk :M × 1 is the noise vector.

I The linear estimator (equalizer or beamformer) is given by ŝk = wHx
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Linear least-mean-squares estimator

I Assume source has unit power, i.e., E(|sk|2) = 1. Also, Let
Rx = E(xkx

H

k) and rxs = E(xs∗k).

I To find the beamformer w :M × 1 by minimizing the output error
using the cost function

J(w) = E(|wH
x− sk|2) = w

H
Rxw −w

H
rxs − r

H

xsw + 1

I The gradient vector will be

∇J(w) = Rxw − rxs
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Linear least-mean-squares estimator

I Let the optimum that minimizes J(w) be w0. At the optimum,
J(w0) = 0:

Rxw0 − rxs = 0⇒ w0 = R−1
x rxs

I Also, J(w) = 0 implies

E(xkx
H

kw − xks
∗
k) = 0⇒ E(xke

∗
k) = 0

where the error signal ek = wHx− sk

I The cost at the optimum is

J(w0) = J0 = 1− r
H

xsR
−1
x rxs

I The optimum estimator involved R−1
x . To avoid this inversion, we

compute the optimum iteratively.
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Linear least-mean-squares objective function

I The cost function is quadratic in w and can be expressed as

J(w) = J0 + (w −w0)
H
Rx(w −w0)

with w0 being the minimizer.
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Steepest gradient descent method

To minimize f(x)

I Take initial point x(1) with gradient ∇f (1)

I For a point x(2) close to x(1), we can write the slope of the tangent

∇f (1) ≈ f(x(2))− f(x(1))
x(2) − x(1)

⇒ f(x(2)) ≈ f(x(1))+(x(2)−x(1))∇f (1)

I Suppose we choose

x(2) = x(1) − µ∇f (1)

with a small number µ, referred to as the step size.

I Then, f(x(2)) ≈ f(x(1))− µ(∇f (1))2 < f(x(1)).

I At the minimum, ∇f (1) = 0 and x(2) = x(1)

I Taking small steps in the direction of the negative gradient, the
value of the function becomes smaller.
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Steepest gradient descent method

I Let us focus on our objective function J(w) and use the update
direction p to get the update equation

w(k+1) = w(k) + µp

I Then, we have

J(w(k+1)) = (w(k) + µp)
H
Rx(w

(k) + µp)− r
H

xs(w
(k) + µp)

− (w(k) + µp)
H
rxs + 1

= J(w(k)) + 2µRe[∇J(w(k))
H
p] + µ2p

H
Rxp

From the above equation, the necessary condition for
J(w(k+1)) < J(w(k)) is

Re[∇J(w(k))
H
p] < 0

I This can be obtained by choosing

p = −B∇J(w(k)) for any B > 0

I For steepest gradient descent method, we simply choose B = I
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Steepest gradient descent method

I Since we have ∇J(w) = Rxw − rxs, the steepest gradient descent
iterations are

w(k+1) = w(k) + µ[Rxw
(k) − rxs].

The iteration is initialized (usually) with w0 = 0.

I The choice of µ is important for stability and convergence of this
technique
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Steepest gradient descent method - stability

I Let us define the weight error e(k) = w(k) −w0. Then,

w(k+1) = w(k) − µ(Rxw
(k) − rxs)

w0 = w0 − µ(Rxw0 − rxs)

e(k+1) = e(k) − µRxe
(k)

I We obtain the first-order matrix difference equation

e(k+1) = (I− µRx)e
(k) = · · · = (I− µRx)

(k+1)e(0)

which is stable if (I− µRx)
(k) → 0.

I Let the eigenvalue decomposition Rx =: UΛUH and

I−µRx =: UΛµU
H ⇒ (I−µRx)

k = UΛk
µU

H
= U[I−Λ]kU

H
.

Also, let v(k) = UHe(k), so that v(k) = [I−Λ]kv(0).
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Steepest gradient descent method - stability

I Then the condition for stability of the recursion is

‖e(k)‖ = ‖v(k)‖ → 0 ⇔ |1− µλi| < 1 i = 1, 2, . . . ,M

I Since λmin = λ1 ≤ λ2 · · · ≤ λM = λmax, the steepest gradient
descent is stable if

0 ≤ µλmax ≤ 2 ⇔ 0 ≤ µ ≤ 2

λmax
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Steepest gradient descent method - convergence rate

Transient behaviour:

I Since v
(k)
i = (1− µλi)kv(0)i , different entries of v(k) converge at

different rates.

I Modes with 0 < 1− µλi < 1 monotonically decay to 0

I Modes with −1 < 1− µλi < 0 oscillate

I Mode with the largest magnitude (close to 1) decays at the slowest
rate. Suppose 1− µλmax > 0, the slowest mode is determined by
λmin.
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Steepest gradient descent method - convergence rate

Convergence rate:
I Mode with the largest magnitude (close to 1) decays at the slowest

rate. Suppose 1− µλmax > 0, the slowest mode is determined by
λmin.

I For a function f(t) = e−t/τ , τ is the time constant, which is the
time required for the value of the function to decay by a factor e as
f(t+ τ) = f(t)/e.

I For f(τ) = ‖v(τ)‖ = ‖v(0)‖/e, the time constant is

τ =
−1

ln(1− µλmin)

For small µ, τ ≈ 1
µλmin

I If µ = 1/λmax, then

τ ≈ λmax

λmin
=: cond(Rx)

If Rx is ill-conditioned, then the convergence will be slow. 13


