## E9 211: Adaptive Signal Processing

Newton's Method


## Outline

1. Newton's Method
2. Stability condition
3. Convergence rate

## Newton's method

- Let us consider the quadratic cost function

$$
J(\mathbf{w})=J_{0}+\left(\mathbf{w}-\mathbf{w}_{0}\right)^{\mathrm{H}} \mathbf{R}_{x}\left(\mathbf{w}-\mathbf{w}_{0}\right)
$$

and an iterative algorithm where the update equation is given by

$$
\mathbf{w}^{(k+1)}=\mathbf{w}^{(k)}+\mu \mathbf{p}
$$

- Let us recall that a necessary condition for $J\left(\mathbf{w}^{(k+1)}\right)<J\left(\mathbf{w}^{(k)}\right)$ is to choose the descent direction $\mathbf{p}$ such that

$$
\operatorname{Re}\left[\nabla J\left(\mathbf{w}^{(k)}\right)^{\mathrm{H}} \mathbf{p}\right]<0
$$

- This can be obtained by choosing

$$
\mathbf{p}=-\mathbf{B} \nabla J\left(\mathbf{w}^{(k)}\right) \quad \text { for any } \mathbf{B}>\mathbf{0}
$$

## Newton's method

- For the steepest descent, we simply chose $\mathbf{B}=\mathbf{I}$.
- Instead, we can choose $\mathbf{B}=\left[\nabla^{2} J\left(\mathbf{w}^{(k)}\right)\right]^{-1}$ where $\nabla^{2} J\left(\mathbf{w}^{(k)}\right)$ is the Hessian matrix of the cost function $J(\mathbf{w})$ evaluated at $\mathbf{w}=\mathbf{w}(k)$.
- This leads to the Newton's method.
- Update equation for the Newton's method is given by

$$
\mathbf{w}^{(k+1)}=\mathbf{w}^{(k)}-\mu\left[\nabla^{2} J\left(\mathbf{w}^{(k)}\right)\right]^{-1} \nabla J\left(\mathbf{w}^{(k)}\right)
$$

## Newton's method

- For the quadratic cost function

$$
J(\mathbf{w})=J_{0}+\left(\mathbf{w}-\mathbf{w}_{0}\right)^{\mathrm{H}} \mathbf{R}_{x}\left(\mathbf{w}-\mathbf{w}_{0}\right),
$$

we have

$$
\nabla J\left(\mathbf{w}^{(k)}\right)=\mathbf{R}_{x} \mathbf{w}^{(k)}-\mathbf{r}_{x y} \quad \text { and } \quad \nabla^{2} J\left(\mathbf{w}^{(k)}\right)=\mathbf{R}_{x}
$$

- Newton's method update equation is given by

$$
\begin{aligned}
\mathbf{w}^{(k+1)} & =\mathbf{w}^{(k)}-\mu \mathbf{R}_{x}^{-1}\left(\mathbf{R}_{x} \mathbf{w}^{(k)}-\mathbf{r}_{x y}\right) \\
& =\mathbf{w}^{(k)}-\mu \mathbf{R}_{x}^{-1} \mathbf{R}_{x} \mathbf{w}^{(k)}+\mu \mathbf{R}_{x}^{-1} \mathbf{r}_{x y} \\
& =\mathbf{w}^{(k)}-\mu \mathbf{w}^{(k)}+\mu \mathbf{w}_{0}
\end{aligned}
$$

## Newton's method - stability

- Let us define the weight error $\mathbf{e}^{(k)}=\mathbf{w}^{(k)}-\mathbf{w}_{0}$. Then,

$$
\begin{aligned}
\mathbf{w}^{(k+1)} & =\mathbf{w}^{(k)}-\mu\left(\mathbf{w}^{(k)}-\mu \mathbf{w}_{0}\right) \\
\mathbf{w}_{0} & =\mathbf{w}_{0} \\
\mathbf{e}^{(k+1)} & =\mathbf{e}^{(k)}-\mu \mathbf{e}^{(k)}
\end{aligned}
$$

- We obtain the first-order matrix difference equation as

$$
\begin{aligned}
\mathbf{e}^{(k+1)} & =(\mathbf{I}-\mu \mathbf{I}) \mathbf{e}^{(k)} \\
& =(\mathbf{I}-\mu \mathbf{I})^{(k+1)} \mathbf{e}^{(0)} \\
& =(1-\mu)^{(k+1)} \mathbf{e}^{(0)}
\end{aligned}
$$

which is stable if $(1-\mu)^{(k)} \rightarrow 0$.

## Newton's method - stability

- The iterations will converge to optimum (i.e., $\mathbf{w}^{(k)} \rightarrow \mathbf{w}_{0}$ ) if

$$
\left\|\mathbf{e}^{(k)}\right\| \rightarrow 0 \Longrightarrow|1-\mu|<1
$$

- This means that the Newton's method will converge if

$$
-1<1-\mu<1 \Longrightarrow 0<\mu<2
$$

- Unlike the SGD, the choice of step size $\mu$ for the convergence of Newton's method is not depending on the eigen values of $\mathbf{R}_{x}$.
- In other words, the choice of step size $\mu$ to ensure convergence, does not depend on data.
- Special case: Newton's method converges in 1 iteration for quadratic cost functions if we choose $\mu=1$.


## Newton's method - convergence rate

- All entries of $\mathbf{e}^{(k)}$ converge at the same rate.
- The time constant can be computed as

$$
|1-\mu|^{\tau}=\frac{1}{e} \Longrightarrow \tau=\frac{-1}{\ln |1-\mu|} \approx \frac{1}{\mu} \quad(\text { For small } \mu)
$$

- Time constant is indepnedent of data.

