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Least mean squares algorithm

» Consider the problem of finding the optimal beamformer for linear
least mean square estimation.

» We have seen that the optimal beamformer can be obtained using
steepest gradient descent (SGD) iterations of the form

wkt) — (k) _ N[Rajw(k) —rasl,
where the step size u is appropriately selected to ensure convergence.

» However, true value of R, and ry, are not available in practice and
needs to be estimated from available data.



Least mean squares algorithm

» The vector valued observations corresponding to different time
instants are given by

Xp=asp+ng, k=12 ...,
where x, € CM, ac CM n, € CM, and s, € C.

» In practice, we compute estimates of R, and r, as

N N
N 1 H . 1 "
R, = N E XpXy, Tzs= N E Xk Sp-
k=1 k=1

» In the SGD update equation, we replace true gradient (computed
using R, and r,,) with a noisy version (computed using R, and
I.s) to get

wF+HD — k) _ /J[sz(k) -

» This is known as the stochastic gradient descent algorithm.



Least mean squares algorithm

» Consider a special case of the stochastic gradient descent algorithm
with N = 1.

» We replace R, and r.s using the instantaneous estimates
R, = kal]:,a Tys = st;:-
» The gradient at the k" iteration is approximated as

VJ(W(k)) =R, w) —r, ., ~ Vj(w(k)) = xkfxzw(k) — X}, S

» This leads to the so-called least mean squares (LMS) algorithm.
[Widrow, 1975]*

IB. Widrow, J. McCool and M. Ball, " The complex LMS algorithm,” in
Proceedings of the IEEE, vol. 63, no. 4, pp. 719-720, April 1975, doi:
10.1109/PROC.1975.9807.



Least mean squares algorithm

» The LMS update equations are given by

(O

H
ez :Xk‘W( Sk-

» Time index and iteration index are same for the LMS algorithm.
» The update directions are subject to random fluctuations (or

gradient noise). The LMS will never converge exactly, i.e., LMS will
respond to a new sample.



Computational complexity

» Each complex addition (C'+) involves 2 real additions (R+).
(a+jb) + (c+jd) = (a+c)+ j(c+d)

» Each complex multiplication (C'x) involves 4 real multiplications
(Rx) and 2 real additions (R+).

(a+jb) x (c+jd) = ((a x ¢) = (bx d)) +j((a x d) + (b xc))



Computational complexity

» Each iteration of the LMS algorithm involves 5 steps.

> Step - 1 [x, w(¥)]
» Inner product between two M dimensional complex vectors.
» Involves M Cx and (M — 1) C+.
» Which involves 4M Rx and 2M + 2(M — 1) = (4M — 2) R+.

> Step - 2 [e} = x;w) — s7]
» Complex addition.
» Involves 2 R+.



Computational complexity

» Step - 3 [ue;]
» Multiplication of a real number with a complex number.
» Involves 2 RXx

> Step - 4 [xppef]
» Multiplication of a complex scalar with a M dimensional complex

vector.
» Involves M Cx — 4M Rx and 2M R+.

> Step - 5 [wi — Xpper]
» Addition of two M dimensional complex vectors.
» Involves M C+ — 2M R+.



Operation Real multiplications | Real additions
x,wk) 4M 4M-2
ef =xpwh) — st - 2
pey 2 -
X e, 4M 2M
Wi, — Xppler, - 2M
Total 8M + 2 8M

Computational complexity

» One iteration of LMS involves (8M + 2) real multiplications and
8M real additions.

» Similarly, it can be seen that for real data (i.e., x;,a,n; € R and
sk € R ), each update of LMS involves 2M real additions and
(2M+1) real multiplications.

» Complexity of LMS is linear in M.
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Convergence

> Step size 41 needs to be selected to ensure convergence (we will soon

derive the conditions).
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» Solid lines correspond to LMS and dashed line corresponds to SGD.

» SGD converge monotonically. LMS fluctuates.
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» Let us define the weight error vector ¢(¥) = w(¥) — wq. Then we
have

wk D) = w®) _y(xxw — xpst)

wo = wo — u(E[xpx;wo — E[xps7])
cFHD = ¢F) _ plxixpwi, — E[xpxp wo — (xp55 — E[xg51])]

» Since the LMS update equation is stochastic in nature, we describe
the convergence of the LMS algorithm in the mean.

» To do that, we will consider the mean of the weight error vector
(E[c®)]) for analysing the convergence.

12



» Let us assume that x; is independent of w(¥). Then we have
E[kazw(k)] = E[xkxg]E[w(k)]
» Mean of the error vector can be computed as
E[c(k'H)] = ]E[C(k) — plxpxpwi, — E[xpxpwo — (xi5t — E[xist))]]
E[c™] - uE[x; ] (B[w™ — wo)) — (Elxisi] — E[E[xxsi]])]
= ]E[c(k)] — uR,E[c®] -0
I— uR,)E[c™)]
I—uR,)*HIE[C™)

» This expression is similar to the one we obtained for SGD.
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» Using the same derivation that we have performed for the stability
analysis of SGD, we can conclude that the LMS algorithm will
converge in mean if |1 — pX;| <1, i =1,2,..., M, where \; denotes
the eigen values of R,.

» Hence the LMS algorithm will converge in mean if

O<pu<

>\max

where A\ax is the largest eigen value of R,;.
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» Due to the stochastic nature of the update equation, the LMS
algorithm suffers from an excess error. Cost function at the k"
iteration is given by

J(c®) = Jo + E[(c™)"xpx)c®)]

Excess Error,Jeq (k)

» Excess error at the k'" iteration, J..(k) can be written as

Jeo (k) = E[(c™)x;x;¢¥)]
E[Tr((c®) " x,x)ic)]

= E[Tr(xzx; ¢ (c®)™)]
Tr(Elxpx ] E[c® (™))

(RzRe)

» Excess error is the trace of the product of data covariance matrix

R, and the weight error covariance matrix R, = E[c(®)(c(®))"].
15



» Under certain conditions, approximate expression for the asymptotic
excess error, J.,(0c0) can be computed.

» It can be shown that [Haykin, 2002]2
~
)

Jealo0) = ol

if v <1 where

7M LA
7_;2—[1/\1‘

> If uh << Landy << 1,
L .
Jex(00) = yJo ~ Jog Z;)\i = J()§T1"(Rz)

» The ratio of J.,(00) to Jy is defined as the misadjustment, M,
which indicates the asymptotic convergence of the LMS algorithm.

2Adaptivr:: Filter Theory, Simon Haykin, fourth edition, Pearson India, 2002. 16



» We note that
Tr(R,) = Tr(E[xpx;]) = E[Tr(xpx;)] = E[Tr(xpxx)] = E[[|x|?].

» Then the total cost at k = 0o can be written as
J(00) = Jo + Jea(00) = Jo(1 + M) = Jo(1 + gE[kaHQ]).,
where M = Jy/Jezt(00) is the misadjustment.

» The step size is assumed to satisfy

O<pu<

2
[l %]
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Normalized LMS

» Update direction in the LMS algorithm is a scaled version of the
regressor Xj. Thus the change from w(¥) to w(**1) is sensitive to
the changes in signal scale.

» To avoid this issue, a normalized version of the LMS algorithm is
considered where the update equation is given by

(k1) _ k) H
w =W XK€
[l |2 ’

» To avoid the scale dependency, NLMS use a varying step size
(=) at each iteration.
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Normalized LMS

» Consider a scenario where we select varying step size in each
iteration.

» For the k" iteration, we choose the step size ji; so that the
quadratic cost function is minimized.

» We have

J(wk) = (wh — 1, V) "R (W) — 1,V i)
— (W — 1 VIe) "t — rh (W) — 1, V) 4+ 1

where V.J, = R,w®) —r ..
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Normalized LMS

» We choose yu, so that J(w()) is minimized. In other words, we
select uy so that

d.J (w(k)
5 =0
B =
» We have
AT (wk)) H (k) (k) H
“op = (VI Ra(W = V) = (W = V) RV
= 2 (VJ) "Ra Vg — 2(VJ) Vi
» Thus

(V)Y
Mk = (VT "R, V
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Normalized LMS

» For the LMS algorithm, we now replace R, r,s and VJi with
corresponding instantaneous approximations. We write R, ~ x;x);
and r;s ~ x5 to obtain

VJ, =R,wH) —r ~ xkxl;jw(k) — XSy, = Xgep,

» The optimal step size uj can be written as
 (VI)"Vi
M= (V0" R,V Iy
(xker)" (xker)
(xref) " xpx) (Xpef)

o erPxgxy,

ekl |xpxk[?
1

112
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Normalized LMS

» Hence, we can write the update equations for the modified LMS
algorithm with varying step size as

k+1) _ (k) _ M *

w w

where [i is some real constant. This is the NLMS algorithm.

» If we choose 0 < fi < 2, then it can be shown that J,;(c0) is
bounded with total cost at k = oo given by

1
J(00) = Jo + Jer(00) = Jo(1 + 5;})

» In practice, a small positive number ¢ is added to the denominator of
step size in the NLMS algorithm to avoid divide by zero errors,
resulting in the update equation

wk D) — (k) Xk €

-
€+ [k
22



Normalized LMS

» Let us recall the update equation of Newton’s method, which is
given by

wF D) = w®) _ (el + Ry) M (Row™® —ryy)

where € is a small positive number.

» We can arrive at the update equations of NLMS by replacing R,
and r,s with corresponding instantaneous estimates.

» Replacing R, and r,s with x;x; and xjs} respectively, yields

wF D = w®) (el + xpxp) T (xp w ) — x87)

23



Normalized LMS

» Using matrix inversion lemma, we have

-2
H\—1 _ -1 € H
(EI + kak) =€ - WXICX}C

» Thus we get

€2

(k+1) — Wk _ [
w =w (e
( 14+ e 1|xkl?

xpXp ) (xpxpw® — xps%)

-2
_ (k) -1 &= H *
=w" — e — XX ) XK€
M T
(k) 1 e’ 2
— v) - L *
=W /’6(6 Xk 1+€71||Xk||2Xk||XkH )ek
(k) _ ————Xper
e+ [[xi[27F
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Normalized LMS

» Just like we have derived LMS from SGD, we have now derived
NLMS from Newton's method. Recall that the convergence of

Newton's method is superior to that of SGD.
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» It turns out that the NLMS converges faster in comparison to the

LMS for comparable values of excess errors.
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Kaczmarz method

» Kaczmarz method is an algorithm to iteratively solve a system of
linear equations Ax =y.

» Starting from an inital guess xy, Kaczmarz method refines this
estimate by considering each row of Ax =y, one after other.

» In the i'" step, given the estimate x;_; and the equation a}'x = y;,
Kaczmarz method obtains x; by solving the following optimization
problem

minimize||x; — x;_1||> subject to a'x; = y;

where a!' denotes the ' row of A.
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Kaczmarz method

» Geometrically, in the ith iteration, the Karczmarz method computes

the point in the hyperplane a;'x = y; which is nearest to x;_; in the
sense of Eucledian distance, i.e., x; is the orthogonal projection of
x;_1 onto the hyperplane a;'x = y;.

» Update equations of the Kaczmarz method is given by

H
Yi —a; X1

B PV E
T

a;

» This is exactly similar to the update equations of NLMS method
with £ =1 and e = 0.

» Even though NLMS and Kaczmarz method were developed using

different approaches, both methods solve the same optimization
problem.
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