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Least mean squares algorithm

I Consider the problem of finding the optimal beamformer for linear
least mean square estimation.

I We have seen that the optimal beamformer can be obtained using
steepest gradient descent (SGD) iterations of the form

w(k+1) = w(k) − µ[Rxw
(k) − rxs],

where the step size µ is appropriately selected to ensure convergence.

I However, true value of Rx and rxy are not available in practice and
needs to be estimated from available data.
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Least mean squares algorithm

I The vector valued observations corresponding to different time
instants are given by

xk = ask + nk, k = 1, 2, . . . ,

where xk ∈ CM , a ∈ CM , nk ∈ CM , and sk ∈ C.

I In practice, we compute estimates of Rx and rxs as

R̂x =
1

N

N∑
k=1

xkx
H

k , r̂xs =
1

N

N∑
k=1

xks
∗
k.

I In the SGD update equation, we replace true gradient (computed
using Rx and rxs) with a noisy version (computed using R̂x and
r̂xs) to get

w(k+1) = w(k) − µ[R̂xw
(k) − r̂xs],

I This is known as the stochastic gradient descent algorithm.
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Least mean squares algorithm

I Consider a special case of the stochastic gradient descent algorithm
with N = 1.

I We replace Rx and rxs using the instantaneous estimates

R̂x = xkx
H

k , r̂xs = xks
∗
k.

I The gradient at the kth iteration is approximated as

∇J(w(k)) = Rxw
(k) − rxs ≈ ∇Ĵ(w(k)) = xkx

H

kw
(k) − xks

∗
k.

I This leads to the so-called least mean squares (LMS) algorithm.
[Widrow, 1975]1

1B. Widrow, J. McCool and M. Ball, ”The complex LMS algorithm,” in
Proceedings of the IEEE, vol. 63, no. 4, pp. 719-720, April 1975, doi:
10.1109/PROC.1975.9807.
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Least mean squares algorithm

I The LMS update equations are given by

w(k+1) = w(k) − µxke∗k
e∗k = x

H

kw
(k) − s∗k.

I Time index and iteration index are same for the LMS algorithm.

I The update directions are subject to random fluctuations (or
gradient noise). The LMS will never converge exactly, i.e., LMS will
respond to a new sample.
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Computational complexity

I Each complex addition (C+) involves 2 real additions (R+).

(a+ jb) + (c+ jd) = (a+ c) + j(c+ d)

I Each complex multiplication (C×) involves 4 real multiplications
(R×) and 2 real additions (R+).

(a+ jb)× (c+ jd) = ((a× c)− (b× d)) + j((a× d) + (b× c))
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Computational complexity

I Each iteration of the LMS algorithm involves 5 steps.

I Step - 1 [xH

kw
(k)]

I Inner product between two M dimensional complex vectors.
I Involves M C× and (M − 1) C+.
I Which involves 4M R× and 2M + 2(M − 1) = (4M − 2) R+.

I Step - 2 [e∗k = xH

kw
(k) − s∗k]

I Complex addition.
I Involves 2 R+.
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Computational complexity

I Step - 3 [µe∗k]
I Multiplication of a real number with a complex number.
I Involves 2 R×

I Step - 4 [xkµe
∗
k]

I Multiplication of a complex scalar with a M dimensional complex
vector.

I Involves M C× =⇒ 4M R× and 2M R+.

I Step - 5 [wk − xkµe
∗
k]

I Addition of two M dimensional complex vectors.
I Involves M C+ =⇒ 2M R+.
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Computational complexity

Operation Real multiplications Real additions

xH

kw
(k) 4M 4M-2

e∗k = xH

kw
(k) − s∗k - 2

µe∗k 2 -
xkµe

∗
k 4M 2M

wk − xkµe
∗
k - 2M

Total 8M + 2 8M

I One iteration of LMS involves (8M + 2) real multiplications and
8M real additions.

I Similarly, it can be seen that for real data (i.e., xk,a,nk ∈ RM and
sk ∈ R ), each update of LMS involves 2M real additions and
(2M+1) real multiplications.

I Complexity of LMS is linear in M .
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Convergence

I Step size µ needs to be selected to ensure convergence (we will soon
derive the conditions).
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I Solid lines correspond to LMS and dashed line corresponds to SGD.

I SGD converge monotonically. LMS fluctuates.
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Stability

I Let us define the weight error vector c(k) = w(k) −w0. Then we
have

w(k+1) = w(k) − µ(xkxH

kwk − xks
∗
k)

w0 = w0 − µ(E[xkxH

k ]w0 − E[xks∗k])
c(k+1) = c(k) − µ[xkxH

kwk − E[xkxH

k ]w0 − (xks
∗
k − E[xks∗k])]

I Since the LMS update equation is stochastic in nature, we describe
the convergence of the LMS algorithm in the mean.

I To do that, we will consider the mean of the weight error vector
(E[c(k)]) for analysing the convergence.
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Stability

I Let us assume that xk is independent of w(k). Then we have

E[xkxH

kw
(k)] = E[xkxH

k ]E[w(k)]

I Mean of the error vector can be computed as

E[c(k+1)] = E[c(k) − µ[xkxH

kwk − E[xkxH

k ]w0 − (xks
∗
k − E[xks∗k])]]

= E[c(k)]− µ[E[xkxH

k ](E[w(k) −w0])− (E[xks∗k]− E[E[xks∗k]])]

= E[c(k)]− µRxE[c(k)]− 0

= (I− µRx)E[c(k)]

= (I− µRx)
(k+1)E[c(0)]

I This expression is similar to the one we obtained for SGD.
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Stability

I Using the same derivation that we have performed for the stability
analysis of SGD, we can conclude that the LMS algorithm will
converge in mean if |1− µλi| < 1, i = 1, 2, ...,M, where λi denotes
the eigen values of Rx.

I Hence the LMS algorithm will converge in mean if

0 < µ <
2

λmax

where λmax is the largest eigen value of Rx.
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Stability

I Due to the stochastic nature of the update equation, the LMS
algorithm suffers from an excess error. Cost function at the kth

iteration is given by

J(c(k)) = J0 + E[(c(k))HxkxH

kc
(k)]︸ ︷︷ ︸

Excess Error,Jex(k)

I Excess error at the kth iteration, Jex(k) can be written as

Jex(k) = E[(c(k))HxkxH

kc
(k)]

= E[Tr((c(k))HxkxH

kc
(k))]

= E[Tr(xkxH

kc
(k)(c(k))

H
)]

= Tr(E[xkxH

k ]E[c(k)(c(k))
H
])

= Tr(RxRe)

I Excess error is the trace of the product of data covariance matrix
Rx, and the weight error covariance matrix Re = E[c(k)(c(k))H].
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Stability

I Under certain conditions, approximate expression for the asymptotic
excess error, Jex(∞) can be computed.

I It can be shown that [Haykin, 2002]2

Jex(∞) = J0(
γ

1− γ
)

if γ < 1 where

γ =

M∑
i=1

µλi
2− µλi

I If µλi << 1 and γ << 1,

Jex(∞) ≈ γJ0 ≈ J0
µ

2

M∑
i=1

λi = J0
µ

2
Tr(Rx)

I The ratio of Jex(∞) to J0 is defined as the misadjustment, M,
which indicates the asymptotic convergence of the LMS algorithm.

2Adaptive Filter Theory, Simon Haykin, fourth edition, Pearson India, 2002.
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Stability

I We note that
Tr(Rx) = Tr(E[xkxH

k ]) = E[Tr(xkxH

k)] = E[Tr(xH

kxk)] = E[‖xk‖2].

I Then the total cost at k =∞ can be written as

J(∞) = J0 + Jex(∞) = J0(1 +M) ≈ J0(1 +
µ

2
E[‖xk‖2]),

where M = J0/Jext(∞) is the misadjustment.

I The step size is assumed to satisfy

0 < µ <
2

E[‖xk‖2]
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Normalized LMS

I Update direction in the LMS algorithm is a scaled version of the
regressor xk. Thus the change from w(k) to w(k+1) is sensitive to
the changes in signal scale.

I To avoid this issue, a normalized version of the LMS algorithm is
considered where the update equation is given by

w(k+1) = w(k) − µ

‖xk‖2
xke
∗
k,

I To avoid the scale dependency, NLMS use a varying step size
( µ
‖xk‖2 ) at each iteration.
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Normalized LMS

I Consider a scenario where we select varying step size in each
iteration.

I For the kth iteration, we choose the step size µk so that the
quadratic cost function is minimized.

I We have

J(w(k)) = (w(k) − µk∇Jk)HRx(w
(k) − µk∇Jk)

− (w(k) − µk∇Jk)Hrxs − r
H

xs(w
(k) − µk∇Jk) + 1

where ∇Jk = Rxw
(k) − rxs.
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Normalized LMS

I We choose µk so that J(w(k)) is minimized. In other words, we
select µk so that

∂J(w(k))

∂µ

∣∣∣∣
µ=µk

= 0

I We have

∂J(w(k))

∂µ
= −(∇Jk)HRx(w

(k) − µk∇Jk)− (w(k) − µk∇Jk)HRx∇Jk

+ (∇Jk)Hrxs + r
H

xs∇Jk
= 2µk(∇Jk)HRx∇Jk − 2(∇Jk)H∇Jk

I Thus

µk =
(∇Jk)H∇Jk

(∇Jk)HRx∇Jk
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Normalized LMS

I For the LMS algorithm, we now replace Rx, rxs and ∇Jk with
corresponding instantaneous approximations. We write Rx ≈ xkx

H

k

and rxs ≈ xks
∗
k to obtain

∇Jk = Rxw
(k) − rxs ≈ xkx

H

kw
(k) − xks

∗
k = xke

∗
k

I The optimal step size µk can be written as

µk =
(∇Jk)H∇Jk

(∇Jk)HRx∇Jk

≈ (xke
∗
k)

H(xke
∗
k)

(xke∗k)
Hxkx

H

k(xke
∗
k)

=
|ek|2xH

kxk
|ek|2|xH

kxk|2

=
1

‖xk‖2
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Normalized LMS

I Hence, we can write the update equations for the modified LMS
algorithm with varying step size as

w(k+1) = w(k) − µ̃

‖xk‖2
xke
∗
k,

where µ̃ is some real constant. This is the NLMS algorithm.

I If we choose 0 < µ̃ < 2, then it can be shown that Jex(∞) is
bounded with total cost at k =∞ given by

J(∞) = J0 + Jex(∞) ≈ J0(1 +
1

2
µ̃)

I In practice, a small positive number ε is added to the denominator of
step size in the NLMS algorithm to avoid divide by zero errors,
resulting in the update equation

w(k+1) = w(k) − µ̃

ε+ ‖xk‖2
xke
∗
k.
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Normalized LMS

I Let us recall the update equation of Newton’s method, which is
given by

w(k+1) = w(k) − µ(εI+Rx)
−1(Rxw

(k) − rxs),

where ε is a small positive number.

I We can arrive at the update equations of NLMS by replacing Rx

and rxs with corresponding instantaneous estimates.

I Replacing Rx and rxs with xkx
H

k and xks
∗
k respectively, yields

w(k+1) = w(k) − µ(εI+ xkx
H

k)
−1(xkx

H

kw
(k) − xks

∗
k)
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Normalized LMS

I Using matrix inversion lemma, we have

(εI+ xkx
H

k)
−1 = ε−1 − ε−2

1 + ε−1‖xk‖2
xkx

H

k

I Thus we get

w(k+1) = w(k) − µ(ε−1 − ε−2

1 + ε−1‖xk‖2
xkx

H

k)(xkx
H

kw
(k) − xks

∗
k)

= w(k) − µ(ε−1 − ε−2

1 + ε−1‖xk‖2
xkx

H

k)xke
∗
k

= w(k) − µ(ε−1xk −
ε−2

1 + ε−1‖xk‖2
xk‖xk‖2)e∗k

= w(k) − µ

ε+ ‖xk‖2
xke
∗
k
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Normalized LMS

I Just like we have derived LMS from SGD, we have now derived
NLMS from Newton’s method. Recall that the convergence of
Newton’s method is superior to that of SGD.
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I It turns out that the NLMS converges faster in comparison to the
LMS for comparable values of excess errors.
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Kaczmarz method

I Kaczmarz method is an algorithm to iteratively solve a system of
linear equations Ax = y.

I Starting from an inital guess x0, Kaczmarz method refines this
estimate by considering each row of Ax = y, one after other.

I In the ith step, given the estimate xi−1 and the equation aH

i x = yi,
Kaczmarz method obtains xi by solving the following optimization
problem

minimize‖xi − xi−1‖2 subject to a
H

i xi = yi

where aH

i denotes the ith row of A.
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Kaczmarz method

I Geometrically, in the ith iteration, the Karczmarz method computes
the point in the hyperplane aH

i x = yi which is nearest to xi−1 in the
sense of Eucledian distance, i.e., xi is the orthogonal projection of
xi−1 onto the hyperplane aH

i x = yi.

I Update equations of the Kaczmarz method is given by

xi = xi−1 +
yi − aH

i xi−1
‖ai‖2

ai

I This is exactly similar to the update equations of NLMS method
with µ = 1 and ε = 0.

I Even though NLMS and Kaczmarz method were developed using
different approaches, both methods solve the same optimization
problem.
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