E9 211: Adaptive Signal Processing

Lecture 2: Linear Algebra

- 1. Definitions
- 2. Subspaces
- 3. Projection

Vectors

► A *N*-dimensional vector is assumed to be a column vector:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{bmatrix}$$

Complex conjugate (Hermitian) transpose

$$\mathbf{x}^{H} = (\mathbf{x}^{T})^{*} = [x_{1}^{*}, x_{2}^{*}, \dots, x_{N}^{*}]$$

• For a discrete-time signal x(n), we will use the following vectors

$$\mathbf{x} = \begin{bmatrix} x(0) \\ x(1) \\ \vdots \\ x(N-1) \end{bmatrix} \qquad \mathbf{x}_n = \begin{bmatrix} x(n) \\ x(n-1) \\ \vdots \\ x(n-N+1) \end{bmatrix}$$

Matrices

• An $N \times M$ matrix has N rows and M columns:

$$\mathbf{A} = [a_{ij}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1M} \\ a_{21} & a_{22} & \cdots & a_{2M} \\ \vdots & \vdots & & \vdots \\ a_{N1} & a_{N2} & \cdots & a_{NM} \end{bmatrix}$$

► Complex conjugate (Hermitian) transpose

$$\mathbf{A}^{\scriptscriptstyle \mathrm{H}} = (\mathbf{A}^{\scriptscriptstyle \mathrm{T}})^* = (\mathbf{A}^*)^{\scriptscriptstyle \mathrm{T}}$$

Hermitian matrix

$$\mathbf{A}=\mathbf{A}^{^{\mathrm{H}}}$$

E.g.,

$$\mathbf{A} = \left[\begin{array}{cc} 1 & 1+j \\ 1-j & 1 \end{array} \right], \quad \text{then} \quad \mathbf{A}^{\scriptscriptstyle \mathrm{H}} = \left[\begin{array}{cc} 1 & 1+j \\ 1-j & 1 \end{array} \right] = \mathbf{A}$$

Vectors

Vector norms:
$$\|\mathbf{x}\|_p = \left(\sum_{i=1}^N |x_i|^p\right)^{1/p}$$
, for $p = 1, 2, \dots$

$$\blacktriangleright \ \|\mathbf{x}\|_p \geq 0 \text{ when } \mathbf{x} \neq \mathbf{0} \text{ and } \|\mathbf{x}\|_p = \mathbf{0} \text{ iff } \mathbf{x} = \mathbf{0}$$

•
$$\|\alpha \mathbf{x}\|_p = \alpha \|\mathbf{x}\|_p$$
 for any scalar α

$$\blacktriangleright \|\mathbf{x} + \mathbf{y}\|_p \le \|\mathbf{x}\|_p + \|\mathbf{y}\|_p$$

Examples:

Euclidean (2-norm):
$$\|\mathbf{x}\|_2 = \left(\sum_{i=1}^N |x_i^* x_i\right)^{1/2} = (\mathbf{x}^{\scriptscriptstyle\mathrm{H}} \mathbf{x})^{1/2}$$

1-norm:
$$\|\mathbf{x}\|_1 = \sum_{i=1}^N |x_i|$$

 ∞ -norm: $\|\mathbf{x}\|_{\infty} = \max_i |x_i|$

Vectors

Inner product:

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^H \mathbf{y} = \sum_{i=1}^N x_i^* y_i$$

- ► Two vectors are orthogonal if (x, y) = 0; if the vectors have unit norm, then they are orthonormal
- Cauchy-Schwarz: $|\langle \mathbf{x}, \mathbf{y} \rangle| \le ||\mathbf{x}|| ||\mathbf{y}||$

$$\langle \mathbf{x}, \mathbf{y} \rangle = \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta$$

 θ is the angle between the two vectors. Since $|\cos \theta| \leq 1$, the above inequality follows.

•
$$2|\langle \mathbf{x}, \mathbf{y} \rangle| \le \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$$
 as

$$\|\mathbf{x} \pm \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 \pm 2\langle \mathbf{x}, \mathbf{y} \rangle \ge 0$$

Matrices

For $\mathbf{A} \in \mathbb{C}^{M \times N}$

▶ 2-norm (spectral norm, operator norm):

$$\|\mathbf{A}\| := \max_{\mathbf{x}} \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|} \quad \text{or} \quad \|\mathbf{A}\|^2 := \max_{\mathbf{x}} \ \frac{\mathbf{x}^{\scriptscriptstyle \mathrm{H}} \mathbf{A}^{\scriptscriptstyle \mathrm{H}} \mathbf{A}\mathbf{x}}{\mathbf{x}^{\scriptscriptstyle \mathrm{H}} \mathbf{x}}$$

Largest magnification that can be obtained by applying ${\bf A}$ to any vector

► Forbenius norm

$$\|\mathbf{A}\|_{\mathrm{F}} := \left(\sum_{i=1}^{M} \sum_{j=1}^{N} |a_{ij}|^2\right)^{1/2}$$

Represents energies in its entries

Linear independence, vector spaces, and basis vectors

Linear independence

► A collection of N vectors x₁, x₂,..., x_N is called *linearly independent* if

 $\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \dots + \alpha_N \mathbf{x}_N = 0 \quad \Leftrightarrow \quad \alpha_1 = \alpha_2 = \dots = \alpha_N = 0$

Rank

 \blacktriangleright The rank of ${\bf A}$ is the number of independent columns or rows of ${\bf A}$

 $\begin{array}{ll} \mbox{Prototype rank-1 matrix: } \mathbf{A} = \mathbf{a} \mathbf{b}^{^{_\mathrm{H}}} \\ \mbox{Prototype rank-2 matrix: } \mathbf{A} = \mathbf{a} \mathbf{b}^{^{_\mathrm{H}}} + \mathbf{c} \mathbf{d}^{^{_\mathrm{H}}} \end{array}$

- \blacktriangleright The ranks of ${\bf A}, {\bf A}{\bf A}^{\rm \scriptscriptstyle H},$ and ${\bf A}^{\rm \scriptscriptstyle H}{\bf A}$ are the same
- \blacktriangleright If ${\bf A}$ is square and full rank, there is a unique inverse ${\bf A}^{-1}$ such that

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

▶ An $N \times N$ matrix **A** has rank N, then **A** is invertible $\Leftrightarrow \det(\mathbf{A}) \neq 0$ 8

Subspaces

Subspaces

• The space \mathcal{H} spanned by a collection of vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$

$$\mathcal{H} := \{ \alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \dots + \alpha_N \mathbf{x}_N | \alpha_i \in \mathbb{C}, \forall i \}$$

is called a *linear subspace*

- If the vectors are linearly independent they are called a *basis* for the subspace
- ► The number of basis vectors is called the *dimension* of the subspace
- ► If the vectors are orthogonal, then we have an *orthogonal basis*
- ► If the vectors are orthonormal, then we have an orthonormal basis

Fundamental subspaces of \mathbf{A}

• Range (column span) of $\mathbf{A} \in \mathbb{C}^{M \times N}$

$$\operatorname{ran}(\mathbf{A}) = \{\mathbf{A}\mathbf{x} : \mathbf{x} \in \mathbb{C}^N\} \subset \mathbb{C}^M$$

The dimension of $\mathrm{ran}(\mathbf{A})$ is rank of $\mathbf{A},$ denoted by $\rho(\mathbf{A})$

• Kernel (row null space) of $\mathbf{A} \in \mathbb{C}^{M \times N}$

$$\ker(\mathbf{A}) = \{\mathbf{x} \in \mathbb{C}^N : \mathbf{A}\mathbf{x} = \mathbf{0}\} \subset \mathbb{C}^N$$

The dimension of $\ker(\mathbf{A})$ is $N-\rho(\mathbf{A})$

► Four fundamental subspaces

 $\begin{aligned} \operatorname{ran}(\mathbf{A}) \oplus \ker(\mathbf{A}^{\scriptscriptstyle \mathrm{H}}) &= \mathbb{C}^{M} \\ \operatorname{ran}(\mathbf{A}^{\scriptscriptstyle \mathrm{H}}) \oplus \ker(\mathbf{A}) &= \mathbb{C}^{N} \end{aligned}$ direct sum: $\mathcal{H}_1 \oplus \mathcal{H}_2 = \{\mathbf{x}_1 + \mathbf{x}_2 | \mathbf{x}_1 \in \mathcal{H}_1, \mathbf{x}_2 \in \mathcal{H}_2\}$

Unitary and Isometry

- A square matrix U is called *unitary* if $U^{H}U = I$ and $UU^{H} = I$
 - Examples are rotation or reflection matrices
 - $\|\mathbf{U}\| = 1$; its rows and columns are orthonormal
- \blacktriangleright A tall rectangular matrix $\mathbf{\hat{U}}$ is called an isometry if $\mathbf{\hat{U}}^{\scriptscriptstyle\mathrm{H}}\mathbf{U}=\mathbf{I}$
 - Its columns are orthonormal basis of a subspace (not the complete space)
 - $\|\mathbf{\hat{U}}\| = 1;$
 - ▶ There is an orthogonal complement \hat{U}^{\perp} of \hat{U} such that $[\hat{U} \quad \hat{U}^{\perp}]$ is unitary

Projection

- A square matrix \mathbf{P} is a *projection* if $\mathbf{PP} = \mathbf{P}$
- \blacktriangleright It is an orthogonal projection if $\mathbf{P}^{\scriptscriptstyle\mathrm{H}}=\mathbf{P}$
 - ▶ The norm of an orthogonal projection is $\|\mathbf{P}\| = 1$
 - For an isometry Û, the matrix P = ÛÛ^H is an orthogonal projection onto the space spanned by the columns of Û.

► Suppose
$$\mathbf{U} = [\underbrace{\hat{\mathbf{U}}}_{d} \quad \underbrace{\hat{\mathbf{U}}^{\perp}}_{N-d}]$$
 is unitary. Then, from $\mathbf{U}\mathbf{U}^{\mathrm{H}} = \mathbf{I}_{N}$:

 $\mathbf{\hat{U}}\mathbf{\hat{U}}^{\scriptscriptstyle \mathrm{H}} + \mathbf{\hat{U}}^{\perp}(\mathbf{\hat{U}}^{\perp})^{\scriptscriptstyle \mathrm{H}} = \mathbf{I}_{N}, \quad \mathbf{\hat{U}}\mathbf{\hat{U}}^{\scriptscriptstyle \mathrm{H}} = \mathbf{P}, \quad \mathbf{\hat{U}}^{\perp}(\mathbf{\hat{U}}^{\perp})^{\scriptscriptstyle \mathrm{H}} = \mathbf{P}^{\perp} = \mathbf{I}_{N} - \mathbf{P}$

• Any vector $\mathbf{x} \in \mathbb{C}^N$ can be decomposed as $\mathbf{x} = \hat{\mathbf{x}} + \hat{\mathbf{x}}^{\perp}$ with $\hat{\mathbf{x}} \perp \hat{\mathbf{x}}^{\perp}$:

$$\hat{\mathbf{x}} = \mathbf{P}\mathbf{x} \in \operatorname{ran}(\hat{\mathbf{U}}) \quad \hat{\mathbf{x}}^{\perp} = \mathbf{P}^{\perp}\mathbf{x} \in \operatorname{ran}(\hat{\mathbf{U}}^{\perp})$$

Projection

Projection onto the column span of a tall matrix A

• Suppose A has full column rank (i.e., $A^{H}A$ is invertible). Then,

$$\mathbf{P}_{\mathbf{A}} := \mathbf{A}(\mathbf{A}^{^{\mathrm{H}}}\mathbf{A})^{-1}\mathbf{A}^{^{\mathrm{H}}}, \quad \mathbf{P}_{\mathbf{A}}^{^{\perp}} := \mathbf{I} - \mathbf{A}(\mathbf{A}^{^{\mathrm{H}}}\mathbf{A})^{-1}\mathbf{A}^{^{\mathrm{H}}}$$

are orthogonal projections onto $\mathrm{ran}(\mathbf{A})$ and $\mathrm{ker}(\mathbf{A}^{\scriptscriptstyle\mathrm{H}}),$ respectively.

- ► To prove, verify that P² = P and P^H = P, hence P is an orthogonal projection.
- If $\mathbf{b} \in \operatorname{ran}(\mathbf{A})$, then $\mathbf{b} = \mathbf{A}\mathbf{x}$ for some \mathbf{x} :

$$\mathbf{P}_{\mathbf{A}}\mathbf{b} = \mathbf{A}(\mathbf{A}^{\mathrm{H}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{H}}\mathbf{A}\mathbf{x} = \mathbf{b}$$

so that ${\bf b}$ is invariant under ${\bf P}_{{\bf A}}.$

• If $\mathbf{b} \perp \operatorname{ran}(\mathbf{A})$, then $\mathbf{b} \in \ker(\mathbf{A}^{H}) \Leftrightarrow \mathbf{A}^{H}\mathbf{b} = \mathbf{0}$:

$$\mathbf{P}_{\mathbf{A}}\mathbf{b} = \mathbf{A}(\mathbf{A}^{\mathrm{H}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{H}}\mathbf{b} = \mathbf{0}.$$