E9 211: Adaptive Signal Processing

Lecture 2: Linear Algebra

Outline

1. Definitions
2. Subspaces
3. Projection

Vectors

- A N-dimensional vector is assumed to be a column vector:

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{N}
\end{array}\right]
$$

- Complex conjugate (Hermitian) transpose

$$
\mathbf{x}^{\mathrm{H}}=\left(\mathbf{x}^{\mathrm{T}}\right)^{*}=\left[x_{1}^{*}, x_{2}^{*}, \ldots, x_{N}^{*}\right]
$$

- For a discrete-time signal $\times(\mathrm{n})$, we will use the following vectors

$$
\mathbf{x}=\left[\begin{array}{c}
x(0) \\
x(1) \\
\vdots \\
x(N-1)
\end{array}\right] \quad \mathbf{x}_{n}=\left[\begin{array}{c}
x(n) \\
x(n-1) \\
\vdots \\
x(n-N+1)
\end{array}\right]
$$

Matrices

- An $N \times M$ matrix has N rows and M columns:

$$
\mathbf{A}=\left[a_{i j}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 M} \\
a_{21} & a_{22} & \cdots & a_{2 M} \\
\vdots & \vdots & & \vdots \\
a_{N 1} & a_{N 2} & \cdots & a_{N M}
\end{array}\right]
$$

- Complex conjugate (Hermitian) transpose

$$
\mathbf{A}^{\mathrm{H}}=\left(\mathbf{A}^{\mathrm{T}}\right)^{*}=\left(\mathbf{A}^{*}\right)^{\mathrm{T}}
$$

- Hermitian matrix

$$
\mathbf{A}=\mathbf{A}^{\mathrm{H}}
$$

E.g.,

$$
\mathbf{A}=\left[\begin{array}{cc}
1 & 1+j \\
1-j & 1
\end{array}\right], \quad \text { then } \quad \mathbf{A}^{\mathrm{H}}=\left[\begin{array}{cc}
1 & 1+j \\
1-j & 1
\end{array}\right]=\mathbf{A}
$$

Vectors

Vector norms: $\|\mathbf{x}\|_{p}=\left(\sum_{i=1}^{N}\left|x_{i}\right|^{p}\right)^{1 / p}$, for $p=1,2, \ldots$.

- $\|\mathbf{x}\|_{p} \geq 0$ when $\mathbf{x} \neq \mathbf{0}$ and $\|\mathbf{x}\|_{p}=\mathbf{0}$ iff $\mathbf{x}=\mathbf{0}$
- $\|\alpha \mathbf{x}\|_{p}=\alpha\|\mathbf{x}\|_{p}$ for any scalar α
- $\|\mathbf{x}+\mathbf{y}\|_{p} \leq\|\mathbf{x}\|_{p}+\|\mathbf{y}\|_{p}$

Examples:
Euclidean (2-norm): $\|\mathbf{x}\|_{2}=\left(\sum_{i=1}^{N} \mid x_{i}^{*} x_{i}\right)^{1 / 2}=\left(\mathbf{x}^{\mathrm{H}} \mathbf{x}\right)^{1 / 2}$
1-norm: $\|\mathbf{x}\|_{1}=\sum_{i=1}^{N}\left|x_{i}\right|$
∞-norm: $\|\mathbf{x}\|_{\infty}=\max _{i}\left|x_{i}\right|$

Vectors

Inner product:

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{H} \mathbf{y}=\sum_{i=1}^{N} x_{i}^{*} y_{i}
$$

- Two vectors are orthogonal if $\langle\mathbf{x}, \mathbf{y}\rangle=0$; if the vectors have unit norm, then they are orthonormal
- Cauchy-Schwarz: $|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|\|\mathbf{y}\|$

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta
$$

θ is the angle between the two vectors. Since $|\cos \theta| \leq 1$, the above inequality follows.

- $2|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}$ as

$$
\|\mathbf{x} \pm \mathbf{y}\|^{2}=\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2} \pm 2\langle\mathbf{x}, \mathbf{y}\rangle \geq 0
$$

Matrices

For $\mathbf{A} \in \mathbb{C}^{M \times N}$

- 2-norm (spectral norm, operator norm):

$$
\|\mathbf{A}\|:=\max _{\mathbf{x}} \frac{\|\mathbf{A} \mathbf{x}\|}{\|\mathbf{x}\|} \quad \text { or } \quad\|\mathbf{A}\|^{2}:=\max _{\mathbf{x}} \frac{\mathbf{x}^{\mathrm{H}} \mathbf{A}^{\mathrm{H}} \mathbf{A} \mathbf{x}}{\mathbf{x}^{\mathrm{H}} \mathbf{x}}
$$

Largest magnification that can be obtained by applying \mathbf{A} to any vector

- Forbenius norm

$$
\|\mathbf{A}\|_{\mathrm{F}}:=\left(\sum_{i=1}^{M} \sum_{j=1}^{N}\left|a_{i j}\right|^{2}\right)^{1 / 2}
$$

Represents energies in its entries

Linear independence, vector spaces, and basis vectors

Linear independence

- A collection of N vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}$ is called linearly independent if

$$
\alpha_{1} \mathbf{x}_{1}+\alpha_{2} \mathbf{x}_{2}+\cdots+\alpha_{N} \mathbf{x}_{N}=0 \quad \Leftrightarrow \quad \alpha_{1}=\alpha_{2}=\cdots=\alpha_{N}=0
$$

Rank

- The rank of \mathbf{A} is the number of independent columns or rows of \mathbf{A}

$$
\begin{aligned}
& \text { Prototype rank-1 matrix: } \mathbf{A}=\mathbf{a b}^{\mathrm{H}} \\
& \text { Prototype rank-2 matrix: } \mathbf{A}=\mathbf{a b}^{\mathrm{H}}+\mathbf{c d}^{\mathrm{H}}
\end{aligned}
$$

- The ranks of $\mathbf{A}, \mathbf{A} \mathbf{A}^{\mathrm{H}}$, and $\mathbf{A}^{\mathrm{H}} \mathbf{A}$ are the same
- If \mathbf{A} is square and full rank, there is a unique inverse \mathbf{A}^{-1} such that

$$
\mathbf{A A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

- An $N \times N$ matrix \mathbf{A} has rank N, then \mathbf{A} is invertible $\Leftrightarrow \operatorname{det}(\mathbf{A}) \neq 0 \quad \mathbf{8}$

Subspaces

Subspaces

- The space \mathcal{H} spanned by a collection of vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}$

$$
\mathcal{H}:=\left\{\alpha_{1} \mathbf{x}_{1}+\alpha_{2} \mathbf{x}_{2}+\cdots+\alpha_{N} \mathbf{x}_{N} \mid \alpha_{i} \in \mathbb{C}, \forall i\right\}
$$

is called a linear subspace

- If the vectors are linearly independent they are called a basis for the subspace
- The number of basis vectors is called the dimension of the subspace
- If the vectors are orthogonal, then we have an orthogonal basis
- If the vectors are orthonormal, then we have an orthonormal basis

Fundamental subspaces of A

- Range (column span) of $\mathbf{A} \in \mathbb{C}^{M \times N}$

$$
\operatorname{ran}(\mathbf{A})=\left\{\mathbf{A} \mathbf{x}: \mathbf{x} \in \mathbb{C}^{N}\right\} \subset \mathbb{C}^{M}
$$

The dimension of $\operatorname{ran}(\mathbf{A})$ is rank of \mathbf{A}, denoted by $\rho(\mathbf{A})$

- Kernel (row null space) of $\mathbf{A} \in \mathbb{C}^{M \times N}$

$$
\operatorname{ker}(\mathbf{A})=\left\{\mathbf{x} \in \mathbb{C}^{N}: \mathbf{A x}=\mathbf{0}\right\} \subset \mathbb{C}^{N}
$$

The dimension of $\operatorname{ker}(\mathbf{A})$ is $N-\rho(\mathbf{A})$

- Four fundamental subspaces

$$
\begin{aligned}
& \operatorname{ran}(\mathbf{A}) \oplus \operatorname{ker}\left(\mathbf{A}^{\mathrm{H}}\right)=\mathbb{C}^{M} \\
& \operatorname{ran}\left(\mathbf{A}^{\mathrm{H}}\right) \oplus \operatorname{ker}(\mathbf{A})=\mathbb{C}^{N}
\end{aligned}
$$

direct sum: $\mathcal{H}_{1} \oplus \mathcal{H}_{2}=\left\{\mathbf{x}_{1}+\mathbf{x}_{2} \mid \mathbf{x}_{1} \in \mathcal{H}_{1}, \mathbf{x}_{2} \in \mathcal{H}_{2}\right\}$

Unitary and Isometry

- A square matrix \mathbf{U} is called unitary if $\mathbf{U}^{\mathrm{H}} \mathbf{U}=\mathbf{I}$ and $\mathbf{U U}^{\mathrm{H}}=\mathbf{I}$
- Examples are rotation or reflection matrices
- $\|\mathbf{U}\|=1$; its rows and columns are orthonormal
- A tall rectangular matrix $\hat{\mathbf{U}}$ is called an isometry if $\hat{\mathbf{U}}^{\mathrm{H}} \mathbf{U}=\mathbf{I}$
- Its columns are orthonormal basis of a subspace (not the complete space)
- $\|\hat{\mathbf{U}}\|=1$;
- There is an orthogonal complement $\hat{\mathbf{U}}^{\perp}$ of $\hat{\mathbf{U}}$ such that $\left[\hat{\mathbf{U}} \quad \hat{\mathbf{U}}^{\perp}\right]$ is unitary

Projection

- A square matrix \mathbf{P} is a projection if $\mathbf{P P}=\mathbf{P}$
- It is an orthogonal projection if $\mathbf{P}^{\mathrm{H}}=\mathbf{P}$
- The norm of an orthogonal projection is $\|\mathbf{P}\|=1$
- For an isometry $\hat{\mathbf{U}}$, the matrix $\mathbf{P}=\hat{\mathbf{U}} \hat{\mathbf{U}}^{\mathrm{H}}$ is an orthogonal projection onto the space spanned by the columns of $\hat{\mathbf{U}}$.
- Suppose $\mathbf{U}=[\underbrace{\hat{\mathbf{U}}}_{d} \underbrace{\hat{\mathbf{U}}^{\perp}}_{N-d}]$ is unitary. Then, from $\mathbf{U U}^{\mathrm{H}}=\mathbf{I}_{N}$:

$$
\hat{\mathbf{U}} \hat{\mathbf{U}}^{\mathrm{H}}+\hat{\mathbf{U}}^{\perp}\left(\hat{\mathbf{U}}^{\perp}\right)^{\mathrm{H}}=\mathbf{I}_{N}, \quad \hat{\mathbf{U}} \hat{\mathbf{U}}^{\mathrm{H}}=\mathbf{P}, \quad \hat{\mathbf{U}}^{\perp}\left(\hat{\mathbf{U}}^{\perp}\right)^{\mathrm{H}}=\mathbf{P}^{\perp}=\mathbf{I}_{N}-\mathbf{P}
$$

- Any vector $\mathbf{x} \in \mathbb{C}^{N}$ can be decomposed as $\mathbf{x}=\hat{\mathbf{x}}+\hat{\mathbf{x}}^{\perp}$ with $\hat{\mathbf{x}} \perp \hat{\mathbf{x}}^{\perp}$:

$$
\hat{\mathbf{x}}=\mathbf{P} \mathbf{x} \in \operatorname{ran}(\hat{\mathbf{U}}) \quad \hat{\mathbf{x}}^{\perp}=\mathbf{P}^{\perp} \mathbf{x} \in \operatorname{ran}\left(\hat{\mathbf{U}}^{\perp}\right)
$$

Projection

Projection onto the column span of a tall matrix A

- Suppose \mathbf{A} has full column rank (i.e., $\mathbf{A}^{\mathrm{H}} \mathbf{A}$ is invertible). Then,

$$
\mathbf{P}_{\mathbf{A}}:=\mathbf{A}\left(\mathbf{A}^{\mathrm{H}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathrm{H}}, \quad \mathbf{P}_{\mathbf{A}}^{\perp}:=\mathbf{I}-\mathbf{A}\left(\mathbf{A}^{\mathrm{H}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathrm{H}}
$$

are orthogonal projections onto $\operatorname{ran}(\mathbf{A})$ and $\operatorname{ker}\left(\mathbf{A}^{\mathrm{H}}\right)$, respectively.

- To prove, verify that $\mathbf{P}^{2}=\mathbf{P}$ and $\mathbf{P}^{\mathrm{H}}=\mathbf{P}$, hence \mathbf{P} is an orthogonal projection.
- If $\mathbf{b} \in \operatorname{ran}(\mathbf{A})$, then $\mathbf{b}=\mathbf{A x}$ for some \mathbf{x} :

$$
\mathbf{P}_{\mathbf{A}} \mathbf{b}=\mathbf{A}\left(\mathbf{A}^{\mathrm{H}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathrm{H}} \mathbf{A} \mathbf{x}=\mathbf{b}
$$

so that \mathbf{b} is invariant under $\mathbf{P}_{\mathbf{A}}$.

- If $\mathbf{b} \perp \operatorname{ran}(\mathbf{A})$, then $\mathbf{b} \in \operatorname{ker}\left(\mathbf{A}^{\mathrm{H}}\right) \Leftrightarrow \mathbf{A}^{\mathrm{H}} \mathbf{b}=\mathbf{0}$:

$$
\mathbf{P}_{\mathbf{A}} \mathbf{b}=\mathbf{A}\left(\mathbf{A}^{\mathrm{H}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathrm{H}} \mathbf{b}=\mathbf{0} .
$$

