
E9 211: Adaptive Signal Processing

Lecture 2: Linear Algebra -II



Outline

1. QR factorization

2. Singular value decomposition

3. Connection between eigenvalue decomposition, QR, and SVD

4. Pseudo-inverse
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QR factorization

I Let A be an N ×N square full rank matrix.
Then there is a decomposition

A = [a1 a2 · · ·aN ] = [q1 q2 · · ·qN ]


r11 r12 · · · r1N
0 r22 · · · r2N

0 0
. . .

...
0 0 0 rNN


Here, Q is a unitary matrix, R is upper triangular and square.

I Interpretation:
I q1 is a normalized vector with the same direction as a1.

I [q1 q2] is an isometry spanning the same space as [a1 a2].

I So on.

3



QR decomposition

I Let A be an M ×N tall (M ≥ N) matrix.
Then there is a decomposition

A = QR = [Q̂ Q̂⊥]

[
R̂
0

]
= Q̂R̂

Here, Q is a unitary matrix, R̂ is upper triangular and square.

I Properties:
I R is upper triangular with M −N zeros added.

I A = Q̂R̂ is a “reduced” or an “economy-sized” QR decomposition

I If R̂ is full rank, the columns of Q̂ span the range of A.
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Singular value decomposition

I For any matrix X, there is a decomposition

X = UΣV
H

Here, U and V are unitary, and Σ is diagonal with positive real
entries.

I Properties:
I The columns ui of U are called the left singular vectors

I The columns vi of V are called the right singular vectors

I The diagonal entries σi of Σ are called the singular values

I They are positive, real, and sorted

σ1 ≥ σ2 ≥ · · · 0
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Singular value decomposition

I For an M ×N tall matrix X, there is a decomposition

X = UΣV
H
= [Û Û⊥]


σ1

σd
0

0
0 · · · · · · 0
0 · · · · · · 0


[

V̂

(V̂⊥)H

]

U :M ×M, Σ :M ×N,V : N ×N

σ1 ≥ σ2 ≥ · · ·σd > σd+1 = · · ·σN = 0

I Economy size SVD: X = ÛΣ̂V̂H, where Σ̂ : d× d is a diagonal
matrix containing σ1, · · · , σd along the diagonals.
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Singular value decomposition

I The rank of X is d, the number of nonzero singular values

I X = UΣVH ⇔ XH = VΣUH ⇔ XV = UΣ ⇔ XHU = VΣ

I The columns of Û (Û⊥) are the orthonormal basis for ran(X)
(ker(X

H
))

I The columns of V̂ (V̂⊥) are the orthonormal basis for ran(X
H
)

(ker(X))

I X =
∑d

i=1 σi(uiv
H

i ); uiv
H

i is a rank-1 isometry matrix.

I Xvi = σiui

I ‖X‖ = ‖XH‖ = σ1, the largest singular value.
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QR and SVD

I The QR factorization of a tall (M ≥ N) matrix X is

X = QR = [Q̂ Q̂⊥]

[
R̂
0

]
= Q̂R̂

I Compute SVD of R̂ :M ×M

R̂ = ÛRΣ̂RV̂
H

R

I The SVD of X is
X = (Q̂ÛR)Σ̂RV̂

H

R

Obviously, X and R have the same left singular vectors and singular

values.
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Eigenvalue decomposition

I The eigenvalue problem is (A− λI)x = 0

I Any λ that makes A− λI singular is called an eigenvalue and the
corresponding invariant vector is called the eigenvector

I Stacking

A[x1 x2 · · · ] = [x1 x2 · · · ]

 λ1
λ2

. . .


AT = TΛ⇔ A = TΛT−1

(might exist when T is invertible and when eigenvalues are distinct)
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Eigenvalue decomposition and QR

I Suppose T has QR factorization T = QRT or T−1 = R−1T QH .
Therefore

A = TΛT−1 = QRTΛR
−1
T QH = QRQ

H
: Schur decomposition

Q is unitary and R is upper triangular.

I R has eigenvalues of A along the diagonal

I Schur decomposition always exists.

I Q does not contain the eigenvectors, but has information about the
eigen-subspaces.
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Eigenvalue decomposition and SVD

I Suppose the SVD of X = UΣVH. Therefore

XX
H
= UΣV

H
V

H
ΣU

H
= UΣ2U

H
= UΛU

H

I The eigenvalues of XX
H
are singular values of X squared.

I Eigenvectors of XX
H
are the left singular vectors of X

I Eigenvalue decomposition of XX
H
always exits and SVD always

exists.
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Pseudo inverse

I For a tall full-column rank matrix X :M ×N
Pseudo-inverse of X is X† = (XHX)−1XH.

I X†X = IN :inverse on the short space)

I XX† = Pc: Projector onto ran(X)

I For a tall rank matrix X :M ×N with rank d, XXH is not
invertible.

Moore-Penrose Pseudo inverse of X = ÛΣ̂V̂ is X† = V̂Σ̂−1ÛH

1. XX†X = X

2. X†XX† = X†

3. XX† = ÛÛ
H
= Pc:Projector onto ran(X)

4. X†X† = V̂V̂
H
= Pr:Projector onto ran(X

H
)
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