E9 211: Adaptive Signal Processing

Lecture 2: Linear Algebra -II

Outline

1. $Q R$ factorization
2. Singular value decomposition
3. Connection between eigenvalue decomposition, QR, and SVD
4. Pseudo-inverse

QR factorization

- Let A be an $N \times N$ square full rank matrix. Then there is a decomposition

$$
\mathbf{A}=\left[\begin{array}{lll}
\mathbf{a}_{1} & \mathbf{a}_{2} \cdots \mathbf{a}_{N}
\end{array}\right]=\left[\begin{array}{llll}
\mathbf{q}_{1} & \mathbf{q}_{2} \cdots \mathbf{q}_{N}
\end{array}\right]\left[\begin{array}{cccc}
r_{11} & r_{12} & \cdots & r_{1 N} \\
0 & r_{22} & \cdots & r_{2 N} \\
0 & 0 & \ddots & \vdots \\
0 & 0 & 0 & r_{N N}
\end{array}\right]
$$

Here, \mathbf{Q} is a unitary matrix, \mathbf{R} is upper triangular and square.

- Interpretation:
- \mathbf{q}_{1} is a normalized vector with the same direction as \mathbf{a}_{1}.
- $\left[\mathbf{q}_{1} \mathbf{q}_{2}\right]$ is an isometry spanning the same space as $\left[\mathbf{a}_{1} \mathbf{a}_{2}\right]$.
- So on.

QR decomposition

- Let \mathbf{A} be an $M \times N$ tall $(M \geq N)$ matrix.

Then there is a decomposition

$$
\mathbf{A}=\mathbf{Q} \mathbf{R}=\left[\begin{array}{ll}
\hat{\mathbf{Q}} & \hat{\mathbf{Q}}^{\perp}
\end{array}\right]\left[\begin{array}{c}
\hat{\mathbf{R}} \\
\mathbf{0}
\end{array}\right]=\hat{\mathbf{Q}} \hat{\mathbf{R}}
$$

Here, \mathbf{Q} is a unitary matrix, $\hat{\mathbf{R}}$ is upper triangular and square.

- Properties:
- \mathbf{R} is upper triangular with $M-N$ zeros added.
- $\mathbf{A}=\hat{\mathbf{Q}} \hat{\mathbf{R}}$ is a "reduced" or an "economy-sized" QR decomposition
- If $\hat{\mathbf{R}}$ is full rank, the columns of $\hat{\mathbf{Q}}$ span the range of \mathbf{A}.

Singular value decomposition

- For any matrix \mathbf{X}, there is a decomposition

$$
\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{H}}
$$

Here, \mathbf{U} and \mathbf{V} are unitary, and $\boldsymbol{\Sigma}$ is diagonal with positive real entries.

- Properties:
- The columns \mathbf{u}_{i} of \mathbf{U} are called the left singular vectors
- The columns \mathbf{v}_{i} of \mathbf{V} are called the right singular vectors
- The diagonal entries σ_{i} of $\boldsymbol{\Sigma}$ are called the singular values
- They are positive, real, and sorted

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots 0
$$

Singular value decomposition

- For an $M \times N$ tall matrix \mathbf{X}, there is a decomposition

$$
\begin{gathered}
\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{H}}=\left[\hat{\mathbf{U}} \hat{\mathbf{U}}^{\perp}\right]\left[\begin{array}{cc|c}
\sigma_{1} & & \\
& \sigma_{d} & \\
\hline & & 0 \\
\hline 0 & \cdots & \cdots \\
0 & \cdots & \cdots \\
\hline
\end{array}\right]\left[\begin{array}{c}
\hat{\mathbf{V}} \\
\left(\hat{\mathbf{V}}^{\perp}\right)^{\mathrm{H}}
\end{array}\right] \\
\mathbf{U}: M \times M, \quad \boldsymbol{\Sigma}: M \times N, \mathbf{V}: N \times N \\
\sigma_{1} \geq \sigma_{2} \geq \cdots \sigma_{d}>\sigma_{d+1}=\cdots \sigma_{N}=0
\end{gathered}
$$

- Economy size SVD: $\mathbf{X}=\hat{\mathbf{U}} \hat{\boldsymbol{\Sigma}} \hat{\mathbf{V}}^{\mathrm{H}}$, where $\hat{\boldsymbol{\Sigma}}: d \times d$ is a diagonal matrix containing $\sigma_{1}, \cdots, \sigma_{d}$ along the diagonals.

Singular value decomposition

- The rank of \mathbf{X} is d, the number of nonzero singular values
- $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{H}} \Leftrightarrow \mathbf{X}^{\mathrm{H}}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\mathrm{H}} \Leftrightarrow \mathbf{X V}=\mathbf{U} \boldsymbol{\Sigma} \Leftrightarrow \mathbf{X}^{\mathrm{H}} \mathbf{U}=\mathbf{V} \boldsymbol{\Sigma}$
- The columns of $\hat{\mathbf{U}}\left(\hat{\mathbf{U}}^{\perp}\right)$ are the orthonormal basis for $\operatorname{ran}(\mathbf{X})$ $\left(\operatorname{ker}\left(\mathbf{X}^{\mathrm{H}}\right)\right)$
- The columns of $\hat{\mathbf{V}}\left(\hat{\mathbf{V}}^{\perp}\right)$ are the orthonormal basis for $\operatorname{ran}\left(\mathbf{X}^{\mathrm{H}}\right)$ ($\operatorname{ker}(\mathbf{X})$)
- $\mathbf{X}=\sum_{i=1}^{d} \sigma_{i}\left(\mathbf{u}_{i} \mathbf{v}_{i}^{\mathrm{H}}\right) ; \mathbf{u}_{i} \mathbf{v}_{i}^{\mathrm{H}}$ is a rank- 1 isometry matrix.
- $\mathbf{X v}_{i}=\sigma_{i} \mathbf{u}_{i}$
- $\|\mathbf{X}\|=\left\|\mathbf{X}^{\mathrm{H}}\right\|=\sigma_{1}$, the largest singular value.

QR and SVD

- The QR factorization of a tall $(M \geq N)$ matrix \mathbf{X} is

$$
\mathbf{X}=\mathbf{Q R}=\left[\begin{array}{ll}
\hat{\mathbf{Q}} & \hat{\mathbf{Q}}^{\perp}
\end{array}\right]\left[\begin{array}{c}
\hat{\mathbf{R}} \\
\mathbf{0}
\end{array}\right]=\hat{\mathbf{Q}} \hat{\mathbf{R}}
$$

- Compute SVD of $\hat{\mathbf{R}}: M \times M$

$$
\hat{\mathbf{R}}=\hat{\mathbf{U}}_{R} \hat{\boldsymbol{\Sigma}}_{R} \hat{\mathbf{V}}_{R}^{\mathrm{H}}
$$

- The SVD of \mathbf{X} is

$$
\mathbf{X}=\left(\hat{\mathbf{Q}} \hat{\mathbf{U}}_{R}\right) \hat{\boldsymbol{\Sigma}}_{R} \hat{\mathbf{V}}_{R}^{\mathrm{H}}
$$

Obviously, \mathbf{X} and \mathbf{R} have the same left singular vectors and singular values.

Eigenvalue decomposition

- The eigenvalue problem is $(\mathbf{A}-\lambda \mathbf{I}) \mathbf{x}=\mathbf{0}$
- Any λ that makes $\mathbf{A}-\lambda \mathbf{I}$ singular is called an eigenvalue and the corresponding invariant vector is called the eigenvector
- Stacking

$$
\begin{aligned}
\mathbf{A}\left[\begin{array}{lll}
\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots
\end{array}\right] & =\left[\begin{array}{lll}
\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots
\end{array}\right]\left[\begin{array}{lll}
\lambda_{1} & & \\
& \lambda_{2} & \\
& & \ddots
\end{array}\right] \\
& \mathbf{A T}
\end{aligned}=\mathbf{T} \boldsymbol{\Lambda} \Leftrightarrow \mathbf{A}=\mathbf{T} \boldsymbol{\Lambda} \mathbf{T}^{-1}, ~ l
$$

(might exist when \mathbf{T} is invertible and when eigenvalues are distinct)

Eigenvalue decomposition and QR

- Suppose \mathbf{T} has QR factorization $\mathbf{T}=\mathbf{Q} \mathbf{R}_{T}$ or $\mathbf{T}^{-1}=\mathbf{R}_{T}^{-1} \mathbf{Q}^{H}$. Therefore
$\mathbf{A}=\mathbf{T} \boldsymbol{\Lambda} \mathbf{T}^{-1}=\mathbf{Q} \mathbf{R}_{T} \mathbf{\Lambda} \mathbf{R}_{T}^{-1} \mathbf{Q}^{H}=\mathbf{Q R Q}^{\mathrm{H}}:$ Schur decomposition
\mathbf{Q} is unitary and \mathbf{R} is upper triangular.
- \mathbf{R} has eigenvalues of \mathbf{A} along the diagonal
- Schur decomposition always exists.
- \mathbf{Q} does not contain the eigenvectors, but has information about the eigen-subspaces.

Eigenvalue decomposition and SVD

- Suppose the SVD of $\mathbf{X}=\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathrm{H}}$. Therefore

$$
\mathbf{X X}^{\mathrm{H}}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{H}} \mathbf{V}^{\mathrm{H}} \boldsymbol{\Sigma} \mathbf{U}^{\mathrm{H}}=\mathbf{U} \boldsymbol{\Sigma}^{2} \mathbf{U}^{\mathrm{H}}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\mathrm{H}}
$$

- The eigenvalues of $\mathbf{X X}^{\mathrm{H}}$ are singular values of \mathbf{X} squared.
- Eigenvectors of $\mathbf{X X}{ }^{\mathrm{H}}$ are the left singular vectors of \mathbf{X}
- Eigenvalue decomposition of $\mathbf{X X}{ }^{\mathrm{H}}$ always exits and SVD always exists.

Pseudo inverse

- For a tall full-column rank matrix $\mathbf{X}: M \times N$

Pseudo-inverse of \mathbf{X} is $\mathbf{X}^{\dagger}=\left(\mathbf{X}^{\mathrm{H}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{H}}$.

- $\mathbf{X}^{\dagger} \mathbf{X}=\mathbf{I}_{N}$:inverse on the short space)
- $\mathbf{X X}^{\dagger}=\mathbf{P}_{c}$: Projector onto $\operatorname{ran}(\mathbf{X})$
- For a tall rank matrix $\mathbf{X}: M \times N$ with rank $d, \mathbf{X X}^{\mathrm{H}}$ is not invertible.
Moore-Penrose Pseudo inverse of $\mathbf{X}=\hat{\mathbf{U}} \hat{\boldsymbol{\Sigma}} \hat{\mathbf{V}}$ is $\mathbf{X}^{\dagger}=\hat{\mathbf{V}} \hat{\boldsymbol{\Sigma}}^{-1} \hat{\mathbf{U}}^{\mathrm{H}}$

1. $\mathbf{X} \mathbf{X}^{\dagger} \mathbf{X}=\mathbf{X}$
2. $\mathbf{X}^{\dagger} \mathbf{X} \mathbf{X}^{\dagger}=\mathbf{X}^{\dagger}$
3. $\mathbf{X} \mathbf{X}^{\dagger}=\hat{\mathbf{U}} \hat{\mathbf{U}}^{\mathrm{H}}=\mathbf{P}_{c}:$ Projector onto $\operatorname{ran}(\mathbf{X})$
4. $\mathbf{X}^{\dagger} \mathbf{X}^{\dagger}=\hat{\mathbf{V}} \hat{\mathbf{V}}^{\mathrm{H}}=\mathbf{P}_{r}$:Projector onto $\operatorname{ran}\left(\mathbf{X}^{\mathrm{H}}\right)$
