
E9 211: Adaptive Signal Processing

Lecture 4: Optimization theory and random
processes
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Optimization theory

I The local and global minima of an objective function f(x), with real
x, satisfy

∂f(x)

∂x
= ∇xf(x) = 0 and

∂2f(x)

∂x2
= ∇2

xf(x) > 0

If f(x) is convex, then the local minimum is the global minimum

I For f(z) with complex z, we write f(z) as f(z, z∗) and treat
z = x+ jy and z∗ = x− jy as independent variables and define the
partial derivatives w.r.t. z and z∗ as

∂f

∂z
=

1

2

[
∂f

∂x
− j ∂f

∂y

]
and

∂f

∂z∗
=

1

2

[
∂f

∂x
+ j

∂f

∂y

]
I For an objective function f(z, z∗), the stationary points of f(z, z∗)

are found by setting the derivative of f(z, z∗) w.r.t. z or z∗ to zero.
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Optimization theory

I For an objective function in two or more real variables,
f(x1, x2, . . . , xN ) = f(x), the first-order derivative (gradient) and
the second-order derivative (Hessian) are given by

[∇xf(x)]i =
∂f(x)

∂xi
and [H(x)]ij =

∂2f(x)

∂xi∂xj

I The local and global minima of an objective function f(x), with real
x, satisfy

∇xf(x) = 0 and H(x) > 0

I For an objective function f(z, z∗), the stationary points of f(z, z∗)
are found by setting the derivative of f(z, z∗) w.r.t. z or z∗ to zero,
but the direction of the maximum rate of change is given by the
gradient w.r.t. z?.
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Random variables

I A random variable x is a function that assigns a number to each
outcome of a random experiment

I Probability distribution function

Fx(α) = Pr{x ≤ α}

I Probability distribution function

fx(α) =
d

dα
Fx(α)

I Mean or expected value

mx = E{x} =
∫ ∞
−∞

αfx(α)dα

I Variance

σ2
x = var{x} = E{(x−mx)

2} =
∫ ∞
−∞

(α−mx)
2fx(α)dα
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Random variables

I Joint probability distribution function

Fx,y(α, β) = Pr{x ≤ α, y ≤ β}

I Probability distribution function

fx,y(α, β) =
d2

dαdβ
Fx,y(α, β)

I x and y are independent: fx,y(α, β) = fx(α)fx(β)

I Correlation
rxy = E{xy∗}

I x and y are uncorrelated: E{xy∗} = E{x}E{y∗} or rxy = mxm
∗
y or

cxy = 0.

I rxy = 0 means x and y are statistically orthogonal.

I Covariance

cxy = cov{x, y} = E{(x−mx)(y −my)
∗} = rxy −mxm

∗
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Random processes

I A random process x(n) is a sequence of random variables

I Probability distribution function

Fx(α) = Pr{x ≤ α}

I Mean and variance:

mx = E{x} and σ2
x(n) = E{|x(n)−mx(n)|2}

I Autocorrelation and autocovariance

rx(k, l) = E{x(k)x∗(l)}

cx(k, l) = E{[x(k)−mx(k)][x(l)−mx(l)]
∗}

7



Stationarity

I First-order stationarity if fx(n)(α) = fx(n+k)(α). This implies
mx(n) = mx(0) = mx.

I Second-order stationarity if, for any k, the process x(n) and
x(n+ k) have the same second-order density function:

fx(n1),x(n2)(α1, α2) = fx(n1+k),x(n2+k)(α1, α2).

This implies rx(k, l) = rx(k − l, 0) = rx(k − l).
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Wide-sense stationarity

I Wide-sense stationary (WSS):

mx(n) = mx; rx(k, l) = rxy(k − l); cx(0) <∞.

I Properties of WSS processes:
I Symmetry: rx(k) = r∗x(−k)

I mean-square value: rx(0) = E{|x(n)|2} ≥ 0.

I maximum value: rx(0) ≥ |rx(k)|

I mean-squared periodic: rx(k0) = rx(0)
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Autocorrelation and autocovariance matrices

I Consider a WSS process x(n) and collect p+ 1 samples in

x = [x(0), x(1), . . . , x(p)]T

I Autocorrelation matrix:

Rx = E{xxH} =


rx(0) r∗x(1) r∗x(2) · · · r∗x(p)
rx(1) rx(0) r∗x(1) · · · r∗x(p− 1)
rx(2) rx(1) rx(0) · · · r∗x(p− 2)

...
...

... · · · · · ·
rx(p) rx(p− 1) rx(p− 2) · · · rx(0)


I Rx is Toeplitz, Hermitian, and nonnegative definite.

I Autocovariance matrix: Cx = Rx −mxm
H

x ,
where mx = mx1
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