E9 211: Adaptive Signal Processing

Lecture 4: Optimization theory and random
processes




1. Complex gradients
2. Optimization theory

3. Random variables and random processes



Optimization theory

» The local and global minima of an objective function f(z), with real
x, satisfy
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If f(z) is convex, then the local minimum is the global minimum

» For f(z) with complex z, we write f(2) as f(z,z*) and treat
z=ux+ jy and z* = x — jy as independent variables and define the
partial derivatives w.r.t. z and z* as
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» For an objective function f(z, z*), the stationary points of f(z,z*)
are found by setting the derivative of f(z,2*) w.r.t. z or z* to zero.



Optimization theory

» For an objective function in two or more real variables,
f(z1,29,...,2n5) = f(x), the first-order derivative (gradient) and
the second-order derivative (Hessian) are given by
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» The local and global minima of an objective function f(x), with real
x, satisfy
V.f(x)=0 and H(x)>0

» For an objective function f(z,z*), the stationary points of f(z,z*)
are found by setting the derivative of f(z,z*) w.r.t. z or z* to zero,
but the direction of the maximum rate of change is given by the
gradient w.r.t. z*.



Random variables

» A random variable x is a function that assigns a number to each
outcome of a random experiment
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Probability distribution function
F.(a) =Pr{z < a}
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Probability distribution function
T - Fz
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» Mean or expected value
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Variance
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Random variables

» Joint probability distribution function
Fpyla,B) =Pr{z <a,y <p}
» Probability distribution function

d2

foy(a, B) = dadB dﬂ
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» z and y are independent: f; y(a, 8) = fz(a) f2(5)

» Correlation
rey = E{xy*}

» z and y are uncorrelated: E{zy*} = E{z}E{y"} or rzy = mamy or
Cay = 0.

» 75y = 0 means z and y are statistically orthogonal.

» Covariance

oy = coviz,y} = E{(z — mg)(y — my)"} = ray — mam,, 6



Random processes

A random process z(n) is a sequence of random variables
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v

Probability distribution function

F.(a) =Pr{z < a}

v

Mean and variance:

m, = E{z} and JQ(TL) = E{|z(n) — mz(n)P}
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Autocorrelation and autocovariance
ro(k, 1) = E{z(k)z"(1)}

ca(k, 1) = E{[z(k) = me (R)][z(1) — ma ()]}



Stationarity

» First-order stationarity if f,(n) () = fz(ntr)(a). This implies
me(n) = mg(0) = my.

» Second-order stationarity if, for any k, the process x(n) and
z(n + k) have the same second-order density function:

.fx(nl),m(ng)(ala QZ) = fT(’ﬂl +k),x(n2+k) (Oél’ O‘Q)'

This implies r,(k,1) = r:(k —1,0) = ry(k = 1).



Wide-sense stationarity

» Wide-sense stationary (WSS):
my(n) =my; (k1) =ryy(k—1); ¢x(0) < 0.

» Properties of WSS processes:
> Symmetry: 7, (k) = r3(—k)

» mean-square value: 7,(0) = E{|z(n)|*} > 0.
» maximum value: 75(0) > |r (k)|

» mean-squared periodic: (ko) = r4(0)



Autocorrelation and autocovariance matrices

» Consider a WSS process z:(n) and collect p + 1 samples in
x = [2(0),z(1),...,z(p)]*

» Autocorrelation matrix:

P(0) () i) v (p)
(1) m(0)  ri(1) re(p—1)
R, - B} = | 7@ () ra(0) re(p—2)
re(p) Ta(p—1) ralp—2) - 7(0)

» R, is Toeplitz, Hermitian, and nonnegative definite.

» Autocovariance matrix: C, = R, — mmm;',
where m, = m;1
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