E9 211: Adaptive Signal Processing

Lecture 4: Optimization theory and random processes

Outline

1. Complex gradients
2. Optimization theory
3. Random variables and random processes

Optimization theory

- The local and global minima of an objective function $f(x)$, with real x, satisfy

$$
\frac{\partial f(x)}{\partial x}=\nabla_{x} f(x)=0 \quad \text { and } \quad \frac{\partial^{2} f(x)}{\partial x^{2}}=\nabla_{x}^{2} f(x)>0
$$

If $f(x)$ is convex, then the local minimum is the global minimum

- For $f(z)$ with complex z, we write $f(z)$ as $f\left(z, z^{*}\right)$ and treat $z=x+j y$ and $z^{*}=x-j y$ as independent variables and define the partial derivatives w.r.t. z and z^{*} as

$$
\frac{\partial f}{\partial z}=\frac{1}{2}\left[\frac{\partial f}{\partial x}-j \frac{\partial f}{\partial y}\right] \quad \text { and } \quad \frac{\partial f}{\partial z^{*}}=\frac{1}{2}\left[\frac{\partial f}{\partial x}+j \frac{\partial f}{\partial y}\right]
$$

- For an objective function $f\left(z, z^{*}\right)$, the stationary points of $f\left(z, z^{*}\right)$ are found by setting the derivative of $f\left(z, z^{*}\right)$ w.r.t. z or z^{*} to zero.

Optimization theory

- For an objective function in two or more real variables, $f\left(x_{1}, x_{2}, \ldots, x_{N}\right)=f(\mathbf{x})$, the first-order derivative (gradient) and the second-order derivative (Hessian) are given by

$$
\left[\nabla_{x} f(\mathbf{x})\right]_{i}=\frac{\partial f(\mathbf{x})}{\partial x_{i}} \quad \text { and } \quad[\mathbf{H}(\mathbf{x})]_{i j}=\frac{\partial^{2} f(\mathbf{x})}{\partial x_{i} \partial x_{j}}
$$

- The local and global minima of an objective function $f(\mathbf{x})$, with real x, satisfy

$$
\nabla_{x} f(\mathbf{x})=\mathbf{0} \quad \text { and } \quad \mathbf{H}(\mathbf{x})>0
$$

- For an objective function $f\left(\mathbf{z}, \mathbf{z}^{*}\right)$, the stationary points of $f\left(\mathbf{z}, \mathbf{z}^{*}\right)$ are found by setting the derivative of $f\left(\mathbf{z}, \mathbf{z}^{*}\right)$ w.r.t. \mathbf{z} or \mathbf{z}^{*} to zero, but the direction of the maximum rate of change is given by the gradient w.r.t. \mathbf{z}^{\star}.

Random variables

- A random variable x is a function that assigns a number to each outcome of a random experiment
- Probability distribution function

$$
F_{x}(\alpha)=\operatorname{Pr}\{x \leq \alpha\}
$$

- Probability distribution function

$$
f_{x}(\alpha)=\frac{d}{d \alpha} F_{x}(\alpha)
$$

- Mean or expected value

$$
m_{x}=E\{x\}=\int_{-\infty}^{\infty} \alpha f_{x}(\alpha) d \alpha
$$

- Variance

$$
\sigma_{x}^{2}=\operatorname{var}\{x\}=E\left\{\left(x-m_{x}\right)^{2}\right\}=\int_{-\infty}^{\infty}\left(\alpha-m_{x}\right)^{2} f_{x}(\alpha) d \alpha
$$

Random variables

- Joint probability distribution function

$$
F_{x, y}(\alpha, \beta)=\operatorname{Pr}\{x \leq \alpha, y \leq \beta\}
$$

- Probability distribution function

$$
f_{x, y}(\alpha, \beta)=\frac{d^{2}}{d \alpha d \beta} F_{x, y}(\alpha, \beta)
$$

- x and y are independent: $f_{x, y}(\alpha, \beta)=f_{x}(\alpha) f_{x}(\beta)$
- Correlation

$$
r_{x y}=E\left\{x y^{*}\right\}
$$

- x and y are uncorrelated: $E\left\{x y^{*}\right\}=E\{x\} E\left\{y^{*}\right\}$ or $r_{x y}=m_{x} m_{y}^{*}$ or $c_{x y}=0$.
- $r_{x y}=0$ means x and y are statistically orthogonal.
- Covariance

$$
c_{x y}=\operatorname{cov}\{x, y\}=E\left\{\left(x-m_{x}\right)\left(y-m_{y}\right)^{*}\right\}=r_{x y}-m_{x} m_{y}^{*}
$$

Random processes

- A random process $x(n)$ is a sequence of random variables
- Probability distribution function

$$
F_{x}(\alpha)=\operatorname{Pr}\{x \leq \alpha\}
$$

- Mean and variance:

$$
m_{x}=E\{x\} \quad \text { and } \quad \sigma_{x}^{2}(n)=E\left\{\left|x(n)-m_{x}(n)\right|^{2}\right\}
$$

- Autocorrelation and autocovariance

$$
\begin{gathered}
r_{x}(k, l)=E\left\{x(k) x^{*}(l)\right\} \\
c_{x}(k, l)=E\left\{\left[x(k)-m_{x}(k)\right]\left[x(l)-m_{x}(l)\right]^{*}\right\}
\end{gathered}
$$

Stationarity

- First-order stationarity if $f_{x(n)}(\alpha)=f_{x(n+k)}(\alpha)$. This implies $m_{x}(n)=m_{x}(0)=m_{x}$.
- Second-order stationarity if, for any k, the process $x(n)$ and $x(n+k)$ have the same second-order density function:

$$
f_{x\left(n_{1}\right), x\left(n_{2}\right)}\left(\alpha_{1}, \alpha_{2}\right)=f_{x\left(n_{1}+k\right), x\left(n_{2}+k\right)}\left(\alpha_{1}, \alpha_{2}\right) .
$$

This implies $r_{x}(k, l)=r_{x}(k-l, 0)=r_{x}(k-l)$.

Wide-sense stationarity

- Wide-sense stationary (WSS):

$$
m_{x}(n)=m_{x} ; \quad r_{x}(k, l)=r_{x y}(k-l) ; \quad c_{x}(0)<\infty
$$

- Properties of WSS processes:
- Symmetry: $r_{x}(k)=r_{x}^{*}(-k)$
- mean-square value: $r_{x}(0)=E\left\{|x(n)|^{2}\right\} \geq 0$.
- maximum value: $r_{x}(0) \geq\left|r_{x}(k)\right|$
- mean-squared periodic: $r_{x}\left(k_{0}\right)=r_{x}(0)$

Autocorrelation and autocovariance matrices

- Consider a WSS process $x(n)$ and collect $p+1$ samples in

$$
\mathbf{x}=[x(0), x(1), \ldots, x(p)]^{T}
$$

- Autocorrelation matrix:

$$
\mathbf{R}_{x}=E\left\{\mathbf{x x}^{\mathrm{H}}\right\}=\left[\begin{array}{ccccc}
r_{x}(0) & r_{x}^{*}(1) & r_{x}^{*}(2) & \cdots & r_{x}^{*}(p) \\
r_{x}(1) & r_{x}(0) & r_{x}^{*}(1) & \cdots & r_{x}^{*}(p-1) \\
r_{x}(2) & r_{x}(1) & r_{x}(0) & \cdots & r_{x}^{*}(p-2) \\
\vdots & \vdots & \vdots & \cdots & \cdots \\
r_{x}(p) & r_{x}(p-1) & r_{x}(p-2) & \cdots & r_{x}(0)
\end{array}\right]
$$

- \mathbf{R}_{x} is Toeplitz, Hermitian, and nonnegative definite.
- Autocovariance matrix: $\mathbf{C}_{x}=\mathbf{R}_{x}-\mathbf{m}_{x} \mathbf{m}_{x}^{\mathrm{H}}$, where $\mathbf{m}_{x}=m_{x} \mathbf{1}$

