E9 211: Adaptive Signal Processing

Lecture 6: Optimal estimation (scalar-valued data)

- 1. Estimation without observations
- 2. Estimation given dependent observations
- 3. Gaussian random variables (optimal estimators = affine)

- \blacktriangleright Suppose that all we know about a real-valued random variable x is its mean and variance $\{\bar{x},\sigma_x^2\}$
- We wish to estimate the value of x in a given experiment. Denote the estimate of x as \hat{x} .
- How do we come up with a value \hat{x} ?
- How do we decide whether this value is optimal or not? If optimal, in what sense?

Mean squared error (lack of observations)

 We shall adopt the mean-squared-error as the design criterion with the error signal

$$\tilde{x} := x - \hat{x}$$

and mean-squared-error

$$E(\tilde{x}^2) := E(x - \hat{x})^2.$$

• We compute \hat{x} by minimizing the mean-squared-error (m.s.e.)

$$\underset{\hat{x}}{\text{minimize }} E(\tilde{x}^2)$$

$$E(\tilde{x}^2) = E(x - \bar{x} + \bar{x} - \hat{x})^2 = \sigma_x^2 + (\bar{x} - \hat{x})^2$$

▶ Only the second term $(\bar{x} - \hat{x})^2$ depends on \hat{x} and is annihilated by choosing

$$\hat{x} = \bar{x}$$

Mean squared error (lack of observations)

- ► Intuitively, the best the guess for x is what we would expect for x on average.
- The criterion is forcing estimation error to assume values close to its mean

$$E(\tilde{x}) = E(x - \tilde{x}) = \bar{x} - \bar{x} = 0$$

Therefore attempting to increase the likelihood of small errors.

▶ The resulting minimum mean-square error (m.m.s.e) is

m.m.s.e. :=
$$E(\tilde{x}^2) = \sigma_x^2$$

The initial uncertainty is not reduced: $\sigma_{\tilde{x}}^2 = \sigma_x^2$.

► Suppose we have access to observations

$$y = x + v$$

where v is the noise (or the disturbance), and y is linearly dependent on x.

• How to compute the optimal estimator of x given y:

 $\hat{x} = h(y)$

for some function $h(\cdot)$ to be determined.

• Different realizations of y lead to different \hat{x} .

Least-mean-squared estimator

► We find x̂ by minimizing the mean-square-error over all possible functions h(·):

 $\underset{h(\cdot)}{\text{minimize}} \quad E(\tilde{x}^2)$

The optimal estimator, i.e., least-mean-squares estimator (l.m.s.e) is given by:

$$\hat{x} = E(x|y) = \int_{S_x} x f_{x|y}(x|y) dx$$

where S_x is the support of the random variable x and $f_{x\mid y}(x\mid y)$ is the conditional density function.

- The estimator is unbiased: $E(\hat{x}) = E(x)$
- ▶ The resulting minimum cost is $E(\tilde{x}^2) = \sigma_x^2 \sigma_{\hat{x}}^2$.
- ► Often E(x|y) is a nonlinear function of the data or closed-form expression does not exist.

Gaussian random variable case

▶ We limit to a subclass of estimators that are affine :

h(y) = Ky + b

for some constants K and b to be determined.

- Although affine estimators are not always optimal, there is an important special case for which the optimal estimator turns out to be affine in y.
- \blacktriangleright Suppose x and y are jointly Gaussian with the density function

$$f_{x,y}(x,y) = \frac{1}{2\pi} \frac{1}{\sqrt{\det \mathbf{R}}} \exp\left\{-\frac{1}{2} \left[\begin{array}{c} x - \bar{x} \\ y - \bar{y} \end{array}\right]^{\mathrm{T}} \mathbf{R}^{-1} \left[\begin{array}{c} x - \bar{x} \\ y - \bar{y} \end{array}\right]\right\}$$

with

$$\mathbf{R} = \left[\begin{array}{cc} \sigma_x^2 & \sigma_{xy} \\ \sigma_{xy} & \sigma_y^2 \end{array} \right]$$

where $\{\sigma_x^2,\sigma_y^2,\sigma_{xy}\}$ denote the variances and cross-correlation of x and y, respectively.

► The l.m.s.e. is given by the affine relation

$$\hat{x} = E(x|y) = \bar{x} + \frac{\sigma_{xy}}{\sigma_y^2}(y - \bar{y})$$

$$\sigma_{\tilde{x}}^2 = \sigma_x^2 - \frac{\sigma_{xy}}{\sigma_y^2}$$

• Note that the m.m.s.e is smaller than σ_x^2 .