E9 211: Adaptive Signal Processing

Lecture 6: Optimal estimation
(scalar-valued data)




1. Estimation without observations
2. Estimation given dependent observations

3. Gaussian random variables (optimal estimators = affine)



» Suppose that all we know about a real-valued random variable x is
its mean and variance {7, 02}

» We wish to estimate the value of x in a given experiment. Denote
the estimate of z as Z.

» How do we come up with a value 7

» How do we decide whether this value is optimal or not? If optimal,
in what sense?



Mean squared error (lack of observations)

» We shall adopt the mean-squared-error as the design criterion with
the error signal

T:=x—2T

and mean-squared-error

» We compute & by minimizing the mean-squared-error (m.s.e.)

minimize E(#?)
x

E@)=FE@x—-z+1—-12)?=02+(2—12)?

» Only the second term (Z — )2 depends on & and is annihilated by
choosing
T=z



Mean squared error (lack of observations)

» Intuitively, the best the guess for = is what we would expect for x on
average.

» The criterion is forcing estimation error to assume values close to its
mean
E@# =FE@x-I)=2—-2=0

Therefore attempting to increase the likelihood of small errors.

» The resulting minimum mean-square error (m.m.s.e) is

~2

m.m.s.e. ;= E(#?) = o2

x

The initial uncertainty is not reduced: 02 = o2.



Given dependent observations

» Suppose we have access to observations
y=x+v

where v is the noise (or the disturbance), and y is linearly dependent
on z.

» How to compute the optimal estimator of = given y:

& = h(y)

for some function h(-) to be determined.

» Different realizations of y lead to different Z.



east-mean-squared estimator

» We find & by minimizing the mean-square-error over all possible
functions h(-):
minimize F(Z?%)
h()

» The optimal estimator, i.e., least-mean-squares estimator (I.m.s.e) is
given by:

o= Elaly) = [t (aly)do

where S, is the support of the random variable x and f,, (z[y) is
the conditional density function.
» The estimator is unbiased: F (&) = E(x)

» The resulting minimum cost is E(7?%) = 02 — 02.

» Often E(z|y) is a nonlinear function of the data or closed-form
expression does not exist.



Gaussian random variable case

» We limit to a subclass of estimators that are affine :
h(y) = Ky +b

for some constants K and b to be determined.

» Although affine estimators are not always optimal, there is an
important special case for which the optimal estimator turns out to
be affine in y.

» Suppose x and y are jointly Gaussian with the density function

T
1 1 1] z— 1 { r—T }
r,y) = — exp{ —— _ R _
foy.9) 21 \/det R p{ 2{31—11} y—y

with

Kl

2
R:[ Tz Tzy ]

Ozy O,

where {02,02, 04, } denote the variances and cross-correlation of x
and y, respectively.



Gaussian random variable case

» The l.m.s.e. is given by the affine relation

A~ — O—.’L'T —
b=E(ly) =2+ 5y -9)

Y
> m.m.s.e is given by
o
2 2 zy
O~ =0, —
T T o2

Y

» Note that the m.m.s.e is smaller than o2.



