
E9 211: Adaptive Signal Processing

Lecture 6: Optimal estimation
(scalar-valued data)



Outline

1. Estimation without observations

2. Estimation given dependent observations

3. Gaussian random variables (optimal estimators = affine)
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Estimation

I Suppose that all we know about a real-valued random variable x is
its mean and variance {x̄, σ2

x}

I We wish to estimate the value of x in a given experiment. Denote
the estimate of x as x̂.

I How do we come up with a value x̂?

I How do we decide whether this value is optimal or not? If optimal,
in what sense?
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Mean squared error (lack of observations)

I We shall adopt the mean-squared-error as the design criterion with
the error signal

x̃ := x− x̂

and mean-squared-error

E(x̃2) := E(x− x̂)2.

I We compute x̂ by minimizing the mean-squared-error (m.s.e.)

minimize
x̂

E(x̃2)

E(x̃2) = E(x− x̄+ x̄− x̂)2 = σ2
x + (x̄− x̂)2

I Only the second term (x̄− x̂)2 depends on x̂ and is annihilated by
choosing

x̂ = x̄
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Mean squared error (lack of observations)

I Intuitively, the best the guess for x is what we would expect for x on
average.

I The criterion is forcing estimation error to assume values close to its
mean

E(x̃) = E(x− x̃) = x̄− x̄ = 0

Therefore attempting to increase the likelihood of small errors.

I The resulting minimum mean-square error (m.m.s.e) is

m.m.s.e. := E(x̃2) = σ2
x

The initial uncertainty is not reduced: σ2
x̃ = σ2

x.
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Given dependent observations

I Suppose we have access to observations

y = x+ v

where v is the noise (or the disturbance), and y is linearly dependent
on x.

I How to compute the optimal estimator of x given y:

x̂ = h(y)

for some function h(·) to be determined.

I Different realizations of y lead to different x̂.
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Least-mean-squared estimator

I We find x̂ by minimizing the mean-square-error over all possible
functions h(·):

minimize
h(·)

E(x̃2)

I The optimal estimator, i.e., least-mean-squares estimator (l.m.s.e) is
given by:

x̂ = E(x|y) =

∫
Sx

xfx|y(x|y)dx

where Sx is the support of the random variable x and fx|y(x|y) is
the conditional density function.

I The estimator is unbiased: E(x̂) = E(x)

I The resulting minimum cost is E(x̃2) = σ2
x − σ2

x̂.

I Often E(x|y) is a nonlinear function of the data or closed-form
expression does not exist.
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Gaussian random variable case

I We limit to a subclass of estimators that are affine :

h(y) = Ky + b

for some constants K and b to be determined.

I Although affine estimators are not always optimal, there is an
important special case for which the optimal estimator turns out to
be affine in y.

I Suppose x and y are jointly Gaussian with the density function

fx,y(x, y) =
1

2π

1√
detR

exp

{
−1

2

[
x− x̄
y − ȳ

]T
R−1

[
x− x̄
y − ȳ

]}
with

R =

[
σ2
x σxy

σxy σ2
y

]
where {σ2

x, σ
2
y, σxy} denote the variances and cross-correlation of x

and y, respectively.
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Gaussian random variable case

I The l.m.s.e. is given by the affine relation

x̂ = E(x|y) = x̄+
σxy
σ2
y

(y − ȳ)

I m.m.s.e is given by

σ2
x̃ = σ2

x −
σxy
σ2
y

I Note that the m.m.s.e is smaller than σ2
x.
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