E9 211: Adaptive Signal Processing

Lecture 7: Linear estimation

Outline

1. Optimal estimator in the vector case (Ch. 2.1)
2. Normal equations (Ch. 3.1 and 3.2)

Vector-valued data

- Suppose $\mathbf{x}: p \times 1$ and $\mathbf{y}: q \times 1$ are vector valued. Then, we denote the estimator for \mathbf{x} as $\hat{\mathbf{x}}=\mathbf{h}(\mathbf{y})$. Explicitly,

$$
\hat{\mathbf{x}}=\left[\begin{array}{c}
\hat{x}_{0} \\
\hat{x}_{1} \\
\vdots \\
\hat{x}_{p-1}
\end{array}\right]=\left[\begin{array}{c}
h_{0}(\mathbf{y}) \\
h_{1}(\mathbf{y}) \\
\vdots \\
h_{p-1}(\mathbf{y})
\end{array}\right]
$$

- We can then seek optimal functions $\left\{h_{k}(\cdot)\right\}$ that minimizes the error in each component of \mathbf{x} :

$$
\underset{h_{k}(\cdot)}{\operatorname{minimize}} E\left(\left|\tilde{x}_{k}\right|^{2}\right)=E\left(\left|x_{k}-h_{k}(\mathbf{y})\right|^{2}\right)
$$

- Therefore, the optimal estimator for x_{k} given \mathbf{y} in the least-mean-square error sense is $\hat{x}_{k}=E\left(x_{k} \mid \mathbf{y}\right)$

Vector-valued data

- Suppose $\tilde{\mathbf{x}}=\left[x_{0}-\hat{x}_{0}, x_{1}-\hat{x}_{1}, \ldots, x_{p-1}-\hat{x}_{p-1}\right]^{\mathrm{T}}$. Then,

$$
E\left(\tilde{\mathbf{x}}^{\mathrm{H}} \tilde{\mathbf{x}}\right)=E\left(\left|\tilde{x}_{0}\right|^{2}\right)+E\left(\left|\tilde{x}_{1}\right|^{2}\right)+\cdots+E\left(\left|\tilde{x}_{p-1}\right|^{2}\right)=\operatorname{Tr}\left(\mathbf{R}_{\tilde{\mathbf{x}}}\right)
$$

- Since each term depends only on the corresponding function $h_{k}(\cdot)$, minimizing the sum over each $h_{k}(\cdot)$ is equivalent to minimizing the sum over all $\left\{h_{k}(\cdot)\right\}$, i.e.,

$$
\underset{h_{k}(\cdot)}{\operatorname{minimize}} \quad E\left(\left|\tilde{x}_{k}\right|^{2}\right)=E\left(\left|x_{k}-h_{k}(\mathbf{y})\right|^{2}\right)
$$

is equivalent to minimizing the trace of the error covariance matrix

$$
\underset{\left\{h_{k}(\cdot)\right\}}{\operatorname{minimize}} \operatorname{Tr}\left(\mathbf{R}_{\tilde{\mathbf{x}}}\right)
$$

Linear estimator

- Suppose

$$
\overline{\mathbf{x}}=E(\mathbf{x})=\mathbf{0} ; \overline{\mathbf{y}}=E(\mathbf{y})=\mathbf{0} ;
$$

and

$$
\mathbf{R}_{x}=E\left(\mathbf{x x}^{\mathrm{H}}\right) ; \mathbf{R}_{y}=E\left(\mathbf{y} \mathbf{y}^{\mathrm{H}}\right) ; \mathbf{R}_{x y}=E\left(\mathbf{x y}^{\mathrm{H}}\right)
$$

- We restrict to a subclass of estimators of the form

$$
\mathbf{h}(\mathbf{y})=\mathbf{K y}+\mathbf{b}
$$

$\mathbf{K}: p \times q$ and vector $\mathbf{b}: p \times 1$

- Such linear estimators will depend on the first- and second-order moments of \mathbf{x} and \mathbf{y} and the full knowledge of the conditional pdf is not required.

Linear estimator

We find \mathbf{K} and \mathbf{b} such that the

- estimator is unbiased
- the trace of the error covariance matrix is minimized
- For unbiasedness, the following equation must be satisfied

$$
E(\hat{\mathbf{x}})=E(\mathbf{K y}+\mathbf{b})=\mathbf{K} E(\mathbf{y})+\mathbf{b}=\mathbf{b}
$$

This means, we must have $\mathbf{b}=\mathbf{0}$.

- Explicitly,

$$
\hat{\mathbf{x}}=\mathbf{K} \mathbf{y}=\left[\begin{array}{c}
\hat{x}_{0} \\
\hat{x}_{1} \\
\vdots \\
\hat{x}_{p-1}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{k}_{0}^{H} \mathbf{y} \\
\mathbf{k}_{1}^{H} \mathbf{y} \\
\vdots \\
\mathbf{k}_{p-1}^{H} \mathbf{y}
\end{array}\right]
$$

Linear estimator

To find \mathbf{K} we solve

$$
\underset{\mathbf{K}}{\operatorname{minimize}} \operatorname{Tr}\left(\mathbf{R}_{\tilde{\mathbf{x}}}\right)
$$

or equivalently

$$
\underset{\mathbf{k}_{i}}{\operatorname{minimize}} \quad E\left(\left|\tilde{x}_{i}\right|^{2}\right)=E\left(\left|x_{i}-\mathbf{k}_{i}^{H} \mathbf{y}\right|^{2}\right)
$$

- We denote the cost function

$$
\begin{aligned}
J\left(\mathbf{k}_{i}\right) & =E\left(\left|x_{i}\right|^{2}\right)-E\left(x_{i} \mathbf{y}^{H}\right) \mathbf{k}_{i}-\mathbf{k}_{i}^{H} E\left(\mathbf{y} x_{i}^{H}\right)+\mathbf{k}_{i}^{H} E\left(\mathbf{y} \mathbf{y}^{\mathrm{H}}\right) \mathbf{k}_{i} \\
& =\sigma_{x, i}^{2}-\mathbf{R}_{x y, i} \mathbf{k}_{i}-\mathbf{k}_{i}^{H} \mathbf{R}_{y x, i}+\mathbf{k}_{i}^{H} \mathbf{R}_{y} \mathbf{k}_{i}
\end{aligned}
$$

- Setting the gradient vector $J\left(\mathbf{k}_{i}\right)$ with respect to \mathbf{k}_{i} to zero, we get

$$
\mathbf{k}_{i}^{H} \mathbf{R}_{y}=\mathbf{R}_{x y, i}, \quad i=0,1, \ldots, p-1
$$

or the solution matrix should satisfy

$$
\mathbf{K} \mathbf{R}_{y}=\mathbf{R}_{x y}
$$

Normal equations

$$
\mathbf{K} \mathbf{R}_{y}=\mathbf{R}_{x y}
$$

- For a unique solution, $\mathbf{R}_{y}>\mathbf{0}$, so that

$$
\mathbf{K}=\mathbf{R}_{x y} \mathbf{R}_{y}^{-1}
$$

- Satisfies orthogonality criterion

$$
\mathbf{k}_{i}^{H} \mathbf{R}_{y}=\mathbf{R}_{x y, i} \Rightarrow \mathbf{k}_{i}^{H} E\left(\mathbf{y} \mathbf{y}^{H}\right)=E\left(x_{i} \mathbf{y}^{H}\right) \Rightarrow E\left[\left(x_{i}-\mathbf{k}_{i}^{H} \mathbf{y}\right) \mathbf{y}^{H}\right]=0
$$

- For the non-zero mean case, the solution is obtained by replacing \mathbf{x} and \mathbf{y} with centered variables $\mathbf{x}-\overline{\mathbf{x}}$ and $\mathbf{y}-\overline{\mathbf{y}}$

$$
\hat{\mathbf{x}}=\overline{\mathbf{x}}+\mathbf{K}(\mathbf{y}-\overline{\mathbf{y}})
$$

