
E9 211: Adaptive Signal Processing

Lecture 7: Linear estimation



Outline

1. Optimal estimator in the vector case (Ch. 2.1)

2. Normal equations (Ch. 3.1 and 3.2)

2



Vector-valued data

I Suppose x : p× 1 and y : q × 1 are vector valued. Then, we denote
the estimator for x as x̂ = h(y). Explicitly,

x̂ =


x̂0
x̂1
...

x̂p−1

 =


h0(y)
h1(y)

...
hp−1(y)


I We can then seek optimal functions {hk(·)} that minimizes the error

in each component of x:

minimize
hk(·)

E(|x̃k|2) = E(|xk − hk(y)|2)

I Therefore, the optimal estimator for xk given y in the
least-mean-square error sense is x̂k = E(xk|y)
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Vector-valued data

I Suppose x̃ = [x0 − x̂0, x1 − x̂1, . . . , xp−1 − x̂p−1]T. Then,

E(x̃
H
x̃) = E(|x̃0|2) + E(|x̃1|2) + · · ·+ E(|x̃p−1|2) = Tr(Rx̃)

I Since each term depends only on the corresponding function hk(·),
minimizing the sum over each hk(·) is equivalent to minimizing the
sum over all {hk(·)}, i.e.,

minimize
hk(·)

E(|x̃k|2) = E(|xk − hk(y)|2)

is equivalent to minimizing the trace of the error covariance matrix

minimize
{hk(·)}

Tr(Rx̃)
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Linear estimator

I Suppose
x̄ = E(x) = 0; ȳ = E(y) = 0;

and
Rx = E(xx

H
); Ry = E(yy

H
); Rxy = E(xy

H
)

I We restrict to a subclass of estimators of the form

h(y) = Ky + b

K : p× q and vector b : p× 1

I Such linear estimators will depend on the first- and second-order
moments of x and y and the full knowledge of the conditional pdf is
not required.
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Linear estimator

We find K and b such that the

I estimator is unbiased

I the trace of the error covariance matrix is minimized

I For unbiasedness, the following equation must be satisfied

E(x̂) = E(Ky + b) = KE(y) + b = b

This means, we must have b = 0.

I Explicitly,

x̂ = Ky =


x̂0
x̂1
...

x̂p−1

 =


kH
0 y

kH
1 y
...

kH
p−1y
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Linear estimator

To find K we solve
minimize

K
Tr(Rx̃)

or equivalently

minimize
ki

E(|x̃i|2) = E(|xi − kH
i y|2)

I We denote the cost function

J(ki) = E(|xi|2)− E(xiy
H)ki − kH

i E(yxHi ) + kH
i E(yy

H
)ki

= σ2
x,i −Rxy,iki − kH

i Ryx,i + kH
i Ryki

I Setting the gradient vector J(ki) with respect to ki to zero, we get

kH
i Ry = Rxy,i, i = 0, 1, . . . , p− 1.

or the solution matrix should satisfy

KRy = Rxy
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Normal equations

KRy = Rxy

I For a unique solution, Ry > 0, so that

K = RxyR
−1
y

I Satisfies orthogonality criterion

kH
i Ry = Rxy,i ⇒ kH

i E(yyH) = E(xiy
H)⇒ E[(xi−kH

i y)yH ] = 0

I For the non-zero mean case, the solution is obtained by replacing x
and y with centered variables x− x̄ and y − ȳ

x̂ = x̄ + K(y − ȳ)
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