E9 211: Adaptive Signal Processing

Lecture 8: Linear models

Outline

1. Linear models (Ch. 5)
2. Constrained estimation (Ch. 6)

Linear model

- Suppose $\mathbf{x}: p \times 1$ and $\mathbf{y}: q \times 1$ are vector valued and we \mathbf{x} and \mathbf{y} are linearly related as

$$
\mathbf{y}=\mathbf{H x}+\mathbf{v}
$$

with $\mathbf{H}: q \times p$ and $\mathbf{v}: q \times 1$ is the noise vector.

- Let $\mathbf{R}_{x}=E\left(\mathbf{x x}^{\mathrm{H}}\right)$ and $\mathbf{R}_{v}=E\left(\mathbf{v v}^{\mathrm{H}}\right)$. Assume $E\left(\mathbf{x v}^{\mathrm{H}}\right)=\mathbf{0}$.
- We have

$$
\mathbf{R}_{y}=\mathbf{H R}_{x} \mathbf{H}^{\mathrm{H}}+\mathbf{R}_{v} \quad \text { and } \quad \mathbf{R}_{x y}=\mathbf{R}_{x} \mathbf{H}^{\mathrm{H}}
$$

- Then, the linear least-mean-squares error estimator (or simply, linear minimum-mean-squared error estimator)

$$
\text { Immse: } \quad \hat{\mathbf{x}}=\mathbf{R}_{x y} \mathbf{R}_{y}^{-1} \mathbf{y}=\mathbf{R}_{x} \mathbf{H}^{\mathrm{H}}\left[\mathbf{H} \mathbf{R}_{x} \mathbf{H}^{\mathrm{H}}+\mathbf{R}_{v}\right]^{-1} \mathbf{y}
$$

LMMSE - matrix inversion lemma

- Using the matrix inversion lemma

$$
(\mathbf{A}+\mathbf{B C D})^{-1}=\mathbf{A}^{-1}-\mathbf{A}^{-1} \mathbf{B}\left(\mathbf{C}^{-1}+\mathbf{D A}^{-1} \mathbf{B}\right)^{-1} \mathbf{D A}^{-1}
$$

- The linear least-mean-squares error estimator can be simplified to

$$
\text { Immse: } \quad \hat{\mathbf{x}}=\left[\mathbf{R}_{x}^{-1}+\mathbf{H}^{\mathrm{H}} \mathbf{R}_{v}^{-1} \mathbf{H}\right]^{-1} \mathbf{R}_{v}^{-1} \mathbf{H y}
$$

For $p=1,\left[\mathbf{R}_{x}^{-1}+\mathbf{H}^{\mathrm{H}} \mathbf{R}_{v}^{-1} \mathbf{H}\right]^{-1}$ will be a scalar, whereas $\mathbf{R}_{x} \mathbf{H}^{\mathrm{H}}\left[\mathbf{H R}_{x} \mathbf{H}^{\mathrm{H}}+\mathbf{R}_{v}\right]^{-1}$ will be a matrix.

- The minimum error is given by $\left[\mathbf{R}_{x}^{-1}+\mathbf{H}^{\mathrm{H}} \mathbf{R}_{v}^{-1} \mathbf{H}\right]^{-1}$

Constrained estimation

- Suppose \mathbf{x} is deterministic/constant, and let us consider $P=1$, i.e., x is a scalar. Then the linear model will simply to

$$
\mathbf{y}=\mathbf{h} x+\mathbf{v}
$$

- Assume that $E(\mathbf{v})=\mathbf{0}$ and $E\left(\mathbf{v v}^{\mathrm{H}}\right)=\mathbf{R}_{v}$.
- In this case, we constrain the estimator to have the form $\hat{x}=\mathbf{w}^{H} \mathbf{y}$ and find \mathbf{w} such that the estimator is unbiased and has least-mean-squares error.
- This estimator is referred to as the Best Linear Unbiased Estimator (BLUE).
- For the estimator to beunbiased, we require

$$
E(\hat{x})=x \Leftrightarrow E\left(\mathbf{w}^{H} \mathbf{y}\right)=\mathbf{w}^{\mathrm{H}} \mathbf{h} E(x) \Rightarrow \mathbf{w}^{\mathrm{H}} \mathbf{h}=1 .
$$

BLUE

- The least-mean-squares error is

$$
E\left(\tilde{x}^{2}\right)=E(x-\hat{x})^{2}=E\left(x-\mathbf{w}^{\mathrm{H}} \mathbf{y}\right)^{2}=\mathbf{w}^{\mathrm{H}} \mathbf{R}_{v} \mathbf{w}=E\left(\hat{x}^{2}\right)
$$

where the last equality is obtained by using $\mathbf{w}^{\mathrm{H}} \mathbf{h}=1$.

- To find \mathbf{w}, we solve the constrained optimization problem

$$
\underset{\mathbf{w}}{\operatorname{minimize}} \quad \mathbf{w}^{\mathrm{H}} \mathbf{R}_{v} \mathbf{w} \quad \text { subject to } \quad \mathbf{w}^{\mathrm{H}} \mathbf{h}=1
$$

whose solution is

$$
\mathbf{w}_{\mathrm{opt}}=\mathbf{R}_{v}^{-1} \mathbf{h}\left(\mathbf{h}^{T} \mathbf{R}_{v}^{-1} \mathbf{h}\right)^{-1} \quad \Rightarrow \hat{x}=\left(\mathbf{h}^{T} \mathbf{R}_{v}^{-1} \mathbf{h}\right)^{-1} \mathbf{h}^{\mathrm{H}} \mathbf{R}_{v}^{-1} \mathbf{y}
$$

BLUE

- Using the method of the Lagrange multipliers, we should optimize the function

$$
J(\mathbf{w}, \lambda)=\mathbf{w}^{\mathrm{H}} \mathbf{R}_{v} \mathbf{w}+\lambda\left(\mathbf{w}^{\mathrm{H}} \mathbf{h}-1\right)
$$

- Setting the gradient with respect to w to zero we get

$$
\frac{\partial J}{\partial \mathbf{w}}=2 \mathbf{R}_{v} \mathbf{w}+\lambda \mathbf{h}=\mathbf{0} \quad \Rightarrow \quad \mathbf{w}=-\frac{1}{2} \mathbf{R}_{v}^{-1} \mathbf{h} \lambda
$$

- The Lagrange multiplier λ is obtained by the constraint

$$
\mathbf{w}^{T} \mathbf{h}=-\frac{1}{2} \mathbf{h}^{T} R_{v}^{-1} \mathbf{h} \lambda=1 \quad \Rightarrow \quad \lambda=-2\left(\mathbf{h}^{T} \mathbf{R}_{v}^{-1} \mathbf{h}\right)^{-1}
$$

- Substituting $\lambda=-2\left(\mathbf{h}^{T} \mathbf{R}_{v}^{-1} \mathbf{h}\right)^{-1}$ in $\mathbf{w}=-\frac{1}{2} \mathbf{R}_{v}^{-1} \mathbf{h} \lambda$ we get

$$
\mathbf{w}_{\mathrm{opt}}=\mathbf{R}_{v}^{-1} \mathbf{h}\left(\mathbf{h}^{T} \mathbf{R}_{v}^{-1} \mathbf{h}\right)^{-1} \quad \Rightarrow \hat{x}=\left(\mathbf{h}^{T} \mathbf{R}_{v}^{-1} \mathbf{h}\right)^{-1} \mathbf{h}^{\mathrm{H}} \mathbf{R}_{v}^{-1} \mathbf{y}
$$

