E9 211: Adaptive Signal Processing

Lecture 8: Linear models

- 1. Linear models (Ch. 5)
- 2. Constrained estimation (Ch. 6)

Linear model

• Suppose $x : p \times 1$ and $y : q \times 1$ are vector valued and we x and y are linearly related as

$$\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{v}$$

with $\mathbf{H}: q \times p$ and $\mathbf{v}: q \times 1$ is the noise vector.

▶ Let
$$\mathbf{R}_x = E(\mathbf{x}\mathbf{x}^{^{\mathrm{H}}})$$
 and $\mathbf{R}_v = E(\mathbf{v}\mathbf{v}^{^{\mathrm{H}}})$. Assume $E(\mathbf{x}\mathbf{v}^{^{\mathrm{H}}}) = \mathbf{0}$.

► We have

$$\mathbf{R}_y = \mathbf{H}\mathbf{R}_x\mathbf{H}^{\scriptscriptstyle\mathrm{H}} + \mathbf{R}_v$$
 and $\mathbf{R}_{xy} = \mathbf{R}_x\mathbf{H}^{\scriptscriptstyle\mathrm{H}}$

 Then, the linear least-mean-squares error estimator (or simply, linear minimum-mean-squared error estimator)

$$\mathsf{Immse:} \quad \hat{\mathbf{x}} = \mathbf{R}_{xy}\mathbf{R}_y^{-1}\mathbf{y} = \mathbf{R}_x\mathbf{H}^{\mathsf{H}}[\mathbf{H}\mathbf{R}_x\mathbf{H}^{\mathsf{H}} + \mathbf{R}_v]^{-1}\mathbf{y}$$

Using the matrix inversion lemma

$$(\mathbf{A} + \mathbf{B}\mathbf{C}\mathbf{D})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{B}(\mathbf{C}^{-1} + \mathbf{D}\mathbf{A}^{-1}\mathbf{B})^{-1}\mathbf{D}\mathbf{A}^{-1}$$

► The linear least-mean-squares error estimator can be simplified to

Immse:
$$\hat{\mathbf{x}} = [\mathbf{R}_x^{-1} + \mathbf{H}^{\mathrm{H}}\mathbf{R}_v^{-1}\mathbf{H}]^{-1}\mathbf{R}_v^{-1}\mathbf{H}\mathbf{y}$$

For p = 1, $[\mathbf{R}_x^{-1} + \mathbf{H}^{\mathrm{H}}\mathbf{R}_v^{-1}\mathbf{H}]^{-1}$ will be a scalar, whereas $\mathbf{R}_x\mathbf{H}^{\mathrm{H}}[\mathbf{H}\mathbf{R}_x\mathbf{H}^{\mathrm{H}} + \mathbf{R}_v]^{-1}$ will be a matrix.

▶ The minimum error is given by $[\mathbf{R}_x^{-1} + \mathbf{H}^{\scriptscriptstyle \mathrm{H}}\mathbf{R}_v^{-1}\mathbf{H}]^{-1}$

Constrained estimation

► Suppose x is deterministic/constant, and let us consider P = 1, i.e., x is a scalar. Then the linear model will simply to

$$\mathbf{y} = \mathbf{h}x + \mathbf{v}$$

- Assume that $E(\mathbf{v}) = \mathbf{0}$ and $E(\mathbf{v}\mathbf{v}^{H}) = \mathbf{R}_{v}$.
- ► In this case, we constrain the estimator to have the form x̂ = w^Hy and find w such that the estimator is unbiased and has least-mean-squares error.
- This estimator is referred to as the Best Linear Unbiased Estimator (BLUE).
- ► For the estimator to beunbiased, we require

$$E(\hat{x}) = x \Leftrightarrow E(\mathbf{w}^H \mathbf{y}) = \mathbf{w}^H \mathbf{h} E(x) \Rightarrow \mathbf{w}^H \mathbf{h} = 1.$$

► The least-mean-squares error is

$$E(\tilde{x}^2) = E(x - \hat{x})^2 = E(x - \mathbf{w}^{H}\mathbf{y})^2 = \mathbf{w}^{H}\mathbf{R}_v\mathbf{w} = E(\hat{x}^2)$$

where the last equality is obtained by using $\mathbf{w}^{{}^{\mathrm{H}}}\mathbf{h} = 1$.

 \blacktriangleright To find w, we solve the constrained optimization problem

$$\underset{\mathbf{w}}{\operatorname{minimize}} \quad \mathbf{w}^{\mathsf{H}} \mathbf{R}_{v} \mathbf{w} \quad \mathsf{subject to} \quad \mathbf{w}^{\mathsf{H}} \mathbf{h} = 1$$

whose solution is

$$\mathbf{w}_{\text{opt}} = \mathbf{R}_v^{-1} \mathbf{h} (\mathbf{h}^T \mathbf{R}_v^{-1} \mathbf{h})^{-1} \quad \Rightarrow \ \hat{x} = (\mathbf{h}^T \mathbf{R}_v^{-1} \mathbf{h})^{-1} \mathbf{h}^{\text{H}} \mathbf{R}_v^{-1} \mathbf{y}$$

BLUE

 Using the method of the Lagrange multipliers, we should optimize the function

$$J(\mathbf{w}, \lambda) = \mathbf{w}^{\mathrm{H}} \mathbf{R}_{v} \mathbf{w} + \lambda(\mathbf{w}^{\mathrm{H}} \mathbf{h} - 1)$$

 \blacktriangleright Setting the gradient with respect to w to zero we get

$$\frac{\partial J}{\partial \mathbf{w}} = 2\mathbf{R}_v \mathbf{w} + \lambda \mathbf{h} = \mathbf{0} \qquad \Rightarrow \qquad \mathbf{w} = -\frac{1}{2}\mathbf{R}_v^{-1}\mathbf{h}\lambda$$

 \blacktriangleright The Lagrange multiplier λ is obtained by the constraint

$$\mathbf{w}^T \mathbf{h} = -\frac{1}{2} \mathbf{h}^T R_v^{-1} \mathbf{h} \lambda = 1 \qquad \Rightarrow \qquad \lambda = -2(\mathbf{h}^T \mathbf{R}_v^{-1} \mathbf{h})^{-1}$$

▶ Substituting $\lambda = -2(\mathbf{h}^T \mathbf{R}_v^{-1} \mathbf{h})^{-1}$ in $\mathbf{w} = -\frac{1}{2} \mathbf{R}_v^{-1} \mathbf{h} \lambda$ we get

$$\mathbf{w}_{\mathrm{opt}} = \mathbf{R}_v^{-1} \mathbf{h} (\mathbf{h}^T \mathbf{R}_v^{-1} \mathbf{h})^{-1} \quad \Rightarrow \ \hat{x} = (\mathbf{h}^T \mathbf{R}_v^{-1} \mathbf{h})^{-1} \mathbf{h}^{\mathrm{H}} \mathbf{R}_v^{-1} \mathbf{y}$$