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Question 1 (10 points)

Suppose we receive signals from two interfering sources s1 and s2 in noise as

x = a1s1 + a2s2 + n,

where the column vector x collects observations from an array of length M . The array steering
(column) vectors a1 and a2 are assumed to be known. The receiver noise n is assumed to be
zero mean with covariance matrix σ2I. Here, I is the identity matrix of size M . We assume
that s1, s2, and noise are mutually uncorrelated. The sources have unit power.

We are interested in recovering the source symbols s1 using a linear receiver as

ŝ1 = wHx

using the following constrained beamformers.

(4pts) (a) Find a receiver w that has a unity gain (distortionless response) towards the direction
of source s1 and minimizes the mean squared error. Show that this receiver minimizes
the interference plus noise power at the output of the beamformer, where we treat s2
as interference.

(4pts) (b) Find a unit norm beamformer, i.e., ‖w‖2 = 1, that maximizes the signal to interference
plus noise ratio, where the signal and interference plus noise components in wHx are
wHa1a

H
1 w and wH [a2a

H
2 + σ2I]w, respectively.

(2pts) (c) Compare the beamformers computed in part (a) and (b) of this question in terms of
the signal to interference plus noise ratio.



Solutions

1. The desired receiver is expected to have a distortionless response towards source s1. In
other words, we have wHa1 = 1. The desired beamformer can be obtained by solving
the following optimization problem:

minimize
w

E[|wH
x− s1|2] such that w

H
a1 = 1 (1)

We note that

E[|wH
x− s1|2] = E[(w

H
x− s1)(wH

x− s1)H]

= w
H
Rxw −w

H
rxs − r

H

xsw + E[|s1|2]
= w

H
Rxw − 1− 1 + 1,

where Rx = E[xxH], rxs = E[xs∗1] = E[(a1s1 + a2s2 + n)s∗1] = a1, and E[|s1|2] = 1.
Using the method of Lagrange multiplier, we can transform the constrained optimization
problem in (1) to the following form

minimize
w,λ

J(w, λ) = w
H
Rxw − 1− 1 + 1 + λ(1−w

H
a1)

Computing the gradient of J(w, λ) w.r.t wH and setting to zero yields

wopt = (λ)R−1x a1

Using the constraint aH

1wopt = 1, we note that

λ =
1

aH

1R
−1
x a1

.

Thus, the desired beamformer is given by

wopt =
R−1x a1

aH

1R
−1
x a1

(2)

We now show that this receiver minimizes the interference plus noise power at the output
of the beamformer. To begin with, let us write the received signal as

x = d + z,

where d = a1s1 is the desired signal and z is the sum of interference and noise. Then
we have Rx = Rd + Rz where Rd = E[ddH] = a1a

H

1 and Rz = E[zzH]. We note that

w
H
Rxw = w

H
Rdw + w

H
Rzw = 1 + w

H
Rzw.

when the constraint aH

1w = 1 is satisfied. The term wHRzw corresponds to the in-
terference plus noise power at the output of the beamformer. Hence we can conclude
that the receiver given in (2) minimizes the sum of interference and noise power at the
output of the beamformer.
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2. The problem of obtaining the beamformer to maximize the SINR may be written as

maximize
wHRdw

wHRzw
. (3)

We can observe that the solution to the above optimization problem is independent of
scale (i.e., if wopt is a solution, βwopt is a solution as well for any β ∈ C.) So instead of
explicitly solving for a constrained optimization problem with ‖w‖ = 1, we can instead
solve for the above un-constrained problem and then normalize the solution to make it
unit norm.

There are multiple ways to solve the above optimization problem.

Method 1

Let the projection of wopt onto a1 be α (i.e., wH

opta1 = α) where wopt is the solution and
α ∈ R, α > 0. Then the numerator of (3) will be α2 at the solution point (i.e., when
w = wopt). In that case, we can modify the optimization problem in (3) as follows

minimize w
H
Rzw subject to w

H
a1 = α (4)

Using the method of Lagrange multiplier, we can obtain the solution to (4) as

wopt = α
R−1z a1

aH

1R
−1
z a1

(5)

We note that
‖wopt‖ = ‖R−1z a1‖

α

|aH

1R
−1
z a1|

.

Since we are interested in a unit norm solution, we can normalize the above solution
(i.e., wopt ← wopt/‖wopt‖ ) to obtain

wopt =
R−1z a1

‖R−1z a1‖
(6)

Method 2

The optimization problem in (3) is the well known generalized Rayleigh quotient. The
solution is given by the generalized eigen vector corresponding to the largest eigen value
of the eigen system {Rd,Rz}. Since Rz is invertible, this means that the solution wopt

will be the eigen vector of R−1z Rd corresponding to the largest eigen value. We note
that R−1z Rd = R−1z a1a

H

1 is a rank-one matrix. Since the eigen vectors of a matrix lies
in the column span of that matrix, it is straightforward to observe that the required
eigen vector is given by

wopt =
R−1z a1

‖R−1z a1‖
(7)
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3. SINR of the receiver in part a (2) may be computed as follows.

SINR1 =
wH

optRdwopt

wH

optRzwopt
.

Due to the unity gain constraint, we have wH

optRdwopt = 1. Denominator of SINR1 can
be computed as

w
H

optRzwopt =
aH

1R
−1
x RzR

−1
x a1

|a1R−1x a1|2
.

Hence, we get

SINR1 =
|aH

1R
−1
x a1|2

aH

1R
−1
x RzR

−1
x a1

(8)

Similarly, we can compute the SINR2 as

SINR2 =
aH

1R
−1
z RdR

−1
z a1

aH

1R
−1
z RzR

−1
z a1

= a
H

1R
−1
z a1 (9)

It is possible to show that SINR1 = SINR2. To begin with, we can make use of the
matrix inversion lemma to express R−1x in terms of R−1z . We have

R−1x = (Rz + a1a
H

1 )−1

= R−1z −
R−1z a1a

H

1R
−1
z

1 + aH

1R
−1
z a1

=
R−1z + R−1z aH

1R
−1
z a1 −R−1z a1a

H

1R
−1
z

1 + aH

1R
−1
z a1

(10)

We can now write

a
H

1R
−1
x a1 =

aH

1R
−1
z a1 + aH

1R
−1
z aH

1R
−1
z a1a1 − aH

1R
−1
z a1a

H

1R
−1
z a1

1 + aH

1R
−1
z a1

We note that aH

1R
−1
z a1 is a scalar. Hence with a simple rearrangement and cancellation,

we obtain

a
H

1R
−1
x a =

aH

1R
−1
z a1

1 + aH

1R
−1
z a1

(11)

We also have

a
H

1R
−1
x RzR

−1
x a1 = a

H

1 (
R−1

z + R−1
z aH

1R
−1
z a1 −R−1

z a1a
H

1R
−1
z

1 + aH

1R
−1
z a1

)Rz(
R−1

z + R−1
z aH

1R
−1
z a1 −R−1

z a1a
H

1R
−1
z

1 + aH

1R
−1
z a1

)a1

= a
H

1 (
I + R−1

z aH

1R
−1
z a1Rz −R−1

z a1a
H

1

1 + aH

1R
−1
z a1

)(
R−1

z + R−1
z aH

1R
−1
z a1 −R−1

z a1a
H

1R
−1
z

1 + aH

1R
−1
z a1

)a1

= (
aH

1 + aH

1R
−1
z aH

1R
−1
z a1Rz − aH

1R
−1
z a1a

H

1

1 + aH

1R
−1
z a1

)(
R−1

z a1 + R−1
z aH

1R
−1
z a1a1 −R−1

z a1a
H

1R
−1
z a1

1 + aH

1R
−1
z a1

)

=
aH

1R
−1
z a1

(1 + aH

1R
−1
z a1)2

(12)
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Substituting (11) and (12) in (8) yields

SINR1 =
(aH

1R
−1
z a1)

2

(1 + aH

1R
−1
z a1)2

(1 + aH

1R
−1
z a1)

2

aH

1R
−1
z a1

= a
H

1R
−1
z a1 = SINR2

Hence we conclude that the SINR of both beamformers that we have computed in this
question are the same.

Alternative method

In question 1, we have also mentioned that the receiver that minimize the MSE with
the distortion less constraint will also minimize the interference plus noise power at the
output of the beamformer. We have also mentioned that the optimal beamformer can
be obtained by solving an equivalent optimization problem

minimize w
H
Rzw + λ̃(1−w

H
a1).

Solution to the above optimization problem is

wopt =
R−1z a1

aH

1R
−1
z a1

.

Thus the resulting SINR may be computed as

SINR1 =
wH

optRdwopt

wH

optRzwopt

=
1

(aH
1 R−1

z a1)2

aH
1 R−1

z RzR
−1
z a1

= a
H

1R
−1
z a1 = SINR2

Question 2 (10 points)

Consider a first-order autoregressive, i.e., AR(1), process x(n) that has an autocorrelation
sequence

rx(k) = α|k|.

We make noisy measurements of x(n) as

y(n) = x(n) + v(n)

where v(n) is zero mean white noise with a variance of σ2 and v(n) is uncorrelated with x(n).
We find the optimum first-order linear predictor of the form

x̂(n+ 1) = w(0)y(n) + w(1)y(n− 1) = wHy

where w = [w(0) w(1)]T and y = [y(n) y(n− 1)]T .
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(3pts) (a) Derive the optimum w by minimizing the mean-squared error

J = E{|x̂(n+ 1)− x(n+ 1)|2}.

What happens to w in the noise-free case σ2 → 0. Why?

(3pts) (b) Develop a steepest gradient descent algorithm that determines w iteratively. Provide a
condition on the step-size µ in terms of α in order to guarantee convergence. Provide
the value of the step-size that yields fastest convergence, and also the resulting time-
constant.

(4pts) (c) Consider a modified cost function

J = E{|x̂(n+ 1)− x(n+ 1)|2}+ β‖w‖2.

Design a steepest gradient descent algorithm that determines w iteratively. Find the
value of the step-size that yields fastest convergence and compare with the optimum µ
from the previous question. Comment on the convergence rate (i.e., the time constant)
for β > 0 and argue when is the modified cost function useful.

Solutions

(a) Let us define s = x(n+ 1). Then the cost function can be written as

J(w) = E[|wH
y − s|2]

Solution to the above optimization problem, wopt, is given by

w
H

opt = rsyR
−1
y ,

where Ry = E[yyH] and rsy = E[syH]. Let us define the autocorrelation of the
process y(n) as ry(k) = E[y(n)y∗(n − k)]. Then it is straightforward to observe
that

Ry =

[
ry(0) ry(1)
r∗y(1) ry(0)

]
and rsy =

[
ry(1) ry(2)

]
Since the process v(n) is white and uncorrelated with x(n), we can compute

ry(0) = E[(x(n) + v(n))(x(n) + v(n))∗] = rx(0) + σ2 = 1 + σ2

ry(1) = E[(x(n) + v(n))(x(n− 1) + v(n− 1))∗] = rx(1) = α

ry(2) = E[(x(n) + v(n))(x(n− 2) + v(n− 2))∗] = rx(2) = α2

Optimal weights are computed as

w
H

opt =
[
α α2

] [1 + σ2 α
α 1 + σ2

]−1
=

1

(1 + σ2)2 − α2

[
α(1 + σ2)− α3 α2σ2

]
When σ2 → 0, we have wH

opt →
[
α 0

]
. This is happening because x(n) is an

AR(1) process. For an AR(1) process, the current sample depends only on the
previous sample. Hence one filter tap is sufficient.
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(b) Update equations of the steepest descent algorithm is given by

w(k+1) = w(k) − µ(Ryw
(k) − rys)

The eigenvalues of Ry are λmin = 1 + σ2− |α| and λmax = 1 + σ2 + |α|. Hence the
iterations will converge if

0 < µ <
2

1 + σ2 + |α|
.

For the fastest convergence, we need to select the step size as

µopt =
2

λmin + λmax

=
1

1 + σ2
,

and the corresponding time constant (say τ1) is

τ1 =
−1

ln(|1− µoptλmin|)
=

−1

ln(|(1− µoptλmax|)
=

−1

ln(||α|/(1 + σ2)|)

(c) We can re-write the modified cost function (mentioned in the question) as

J(w) = w
H
Ryw −w

H
rys − r

H

ysw + rx(0) + βw
H
w

Computing the gradient of J(w) w.r.t. wH yields

∇J(w) = Ryw − rys + βw

The update equations of the steepest descent algorithm to iteratively determine w
is then given by

w(k+1) = w(k) − µ((βI + Ry)w
(k) − rys)

The eigenvalues of (βI+Ry) are λmin = 1+σ2−|α|+β and λmax = 1+σ2+|α|+β.
For the fastest convergence, we choose the step size as

µopt =
1

1 + σ2 + β
.

Since β > 0, this step size is smaller that the one we used in the previous question.
Time constant (say τ2) for this iteration can be found out as

τ2 =
−1

ln(|1− µoptλmin|)
=

−1

ln(||α|/(1 + σ2 + β)|)

Since β > 0, we can observe that τ1 > τ2. In other words, the steepest descent
method for the modified cost function converges faster. This is also expected since
the eigen spread of Ry+βI is less than that of Ry. Modified cost function is useful
in scenarios where the matrix Ry is ill conditioned. We can improve the condition
number (and thus the convergence speed) by diagonally loading Ry with β > 0.
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