
Deptartment of Electrical Communication Engineering
Indian Institute of Science

E9 211 Adaptive Signal Processing
1 Oct 2019, 13:30–15:00, Mid-term exam solutions

This exam has two questions (20 points). Question 2 is on the back side of this page.

A4 cheat sheet is allowed. No other materials will be allowed.

Question 1 (10 points): Temperature estimation

Let T0 denote the initial temperature of a metal rod and assume that it is decreasing expo-
nentially. We make two noisy measurements of the temperature of the rod at time instants
t1 and t2 as

xi = T0e
−ti + vi, i = 1, 2,

where v1 and v2 are uncorrelated zero-mean random variables with variances σ21 = σ22 = 1,
respectively.

(3pts) (a) Assume that T0 is a constant (i.e., deterministic). Given x1 and x2, compute the Best
Linear Unbiased Estimator (BLUE) T̂0.

(2pts) (b) Show that the estimator T̂0 is unbiased and give the resulting minimum mean-square
error.

(3pts) (c) Now, suppose T0 is a zero-mean random variable with variance σ2T > 0. Assuming that

T0 and vi are uncorrelated, compute the linear-least-mean squares estimator T̂0,lmmse.

(2pts) (d) Give the resulting minimum mean-square error for the estimator T̂0,lmmse and compare

it with the one obtained in Part (b) of this question with σ21 = σ22 = 1. Is T̂0,lmmse

unbiased?

Solutions

(a) The estimator T̂0 = wHx is computed by solving the constrained optimization problem

minimize
w

w
H
Rvw subject to w

H
h = 1

whose solution is

wopt = R−1
v h(h

T
R−1
v h)−1 ⇒ T̂0 = (h

T
R−1
v h)−1h

T
R−1
v x.

For this problem, since

Rv =

[
1 0
0 1

]
and h =

[
e−t1

e−t2

]
we have

T̂0 =
(
e−2t1 + e−2t2

)−1 (
e−t1x1 + e−t2x2

)
.



(b) Since E{T̂0} =
(
e−2t1 + e−2t2

)−1
E
{(
e−t1x1 + e−t2x2

)}
= T0, the estimator is unbi-

ased. Furthermore, the minimum mean-squared error is wH

optRvwopt =
(
e−2t1 + e−2t2

)−1
.

(c) The LMMSE estimator is given by

T̂0,lmmse = [σ−2
T + h

T
h]−1h

T
x =

(
σ−2
T + e−2t1 + e−2t2

)−1 (
e−t1x1 + e−t2x2

)
(d) The resulting minimum mean-square error for the estimator T̂0,lmmse is

(
σ−2
T + e−2t1 + e−2t2

)−1
.

Since σ−2
T > 0, the LMMSE estimator will have a lower error as compared to BLUE.

The estimator T̂0,lmmse will have a bias b = 0 as

b =

(
e−2t1 + e−2t2

σ−2
T + e−2t1 + e−2t2

− 1

)
E{T0}.

Question 2 (10 points): Linear prediction

Suppose the signal x(n) is wide-sense stationary. We develop a first-order linear predictor of
the form

x̂(n+ 1) = w(0)x(n) + w(1)x(n− 1) = wHx

where w = [w(0) w(1)]T and x = [x(n) x(n− 1)]T .

(1pts) (a) Show that the autocorrelation sequence of a wide-sense stationary random process is a
conjugate symmetric function of the lag k, i.e., rx(k) = r∗x(−k).

(4pts) (b) Derive the optimum w by minimizing the mean-squared error

J(w) = E{|wHx− x(n+ 1)|2}.

(2pts) (c) Suppose the autocorrelation of x(n) for the first three lags are rx(0) = 1, rx(1) = 0
and rx(2) = 1. To solve the normal equations obtained in Part (b) of this question,
we will use the steepest gradient descent algorithm. Will the steepest-descent algorithm
converge if we choose the step size µ = 4, and why?

(3pts) (d) To converge to wopt, how many iterations are required for the steepest-descent algorithm
with rx(0) = 1, rx(1) = 0, rx(2) = 1, µ = 1, and w(0) = 0. To answer this question,
first compute wopt.

Solutions

(a) For a wide-sense stationary random process, the auto-correlation function is defined as

rx(k) = E{x(n+ k)x∗(n)} = E{x∗(n)x(n+ k)} = r∗x(−k).

(b) The cost function for a first-order linear predictor is

J(w) = E{|wHx− x(n+ 1)|2} = w
H
Rxw −w

H
rxd − r

H

xdw + rx(0)
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where

Rx =

[
rx(0) r∗x(1)
rx(1) rx(0)

]
and rxd = E

{[
x(n)

x(n− 1)

]
x∗(n+ 1)

}
=

[
rx(1)
rx(2)

]
Then, the optimum solution is

wopt = R−1
x rxd

(c) With rx(0) = 1, rx(1) = 0 and rx(2) = 1, Rx = I with eigenvalues λmin = λmax = 1. For
convergence, since we require 0 ≤ µ ≤ 2

λmax
, with µ = 4, the steepest gradient descent

algorithm will not converge.

(d) The update equations for the steepest gradient descent algorithm is

w(k+1) = w(k) −
[
w(k) −

[
0
1

]]
.

with w(1) = 0. Therefore, w(1) = w(2) · · · = wopt = [0, 1]T .
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