Deptartment of Electrical Communication Engineering Indian Institute of Science

E9 211 Adaptive Signal Processing

1 Oct 2019, 13:30-15:00, Mid-term exam solutions

This exam has two questions (20 points). Question 2 is on the back side of this page.
A4 cheat sheet is allowed. No other materials will be allowed.

Question 1 (10 points): Temperature estimation

Let T_{0} denote the initial temperature of a metal rod and assume that it is decreasing exponentially. We make two noisy measurements of the temperature of the rod at time instants t_{1} and t_{2} as

$$
x_{i}=T_{0} e^{-t_{i}}+v_{i}, \quad i=1,2,
$$

where v_{1} and v_{2} are uncorrelated zero-mean random variables with variances $\sigma_{1}^{2}=\sigma_{2}^{2}=1$, respectively.
(3pts) (a) Assume that T_{0} is a constant (i.e., deterministic). Given x_{1} and x_{2}, compute the Best Linear Unbiased Estimator (BLUE) \hat{T}_{0}.
(2pts) (b) Show that the estimator \hat{T}_{0} is unbiased and give the resulting minimum mean-square error.
(3pts) (c) Now, suppose T_{0} is a zero-mean random variable with variance $\sigma_{T}^{2}>0$. Assuming that T_{0} and v_{i} are uncorrelated, compute the linear-least-mean squares estimator $\hat{T}_{0, \text { lmmse }}$.
(2pts) (d) Give the resulting minimum mean-square error for the estimator $\hat{T}_{0, \text { lmmse }}$ and compare it with the one obtained in Part (b) of this question with $\sigma_{1}^{2}=\sigma_{2}^{2}=1$. Is $\hat{T}_{0, \text { Immse }}$ unbiased?

Solutions

(a) The estimator $\hat{T}_{0}=\mathbf{w}^{H} \mathbf{x}$ is computed by solving the constrained optimization problem

$$
\underset{\mathbf{w}}{\operatorname{minimize}} \quad \mathbf{w}^{\mathrm{H}} \mathbf{R}_{v} \mathbf{w} \quad \text { subject to } \quad \mathbf{w}^{\mathrm{H}} \mathbf{h}=1
$$

whose solution is

$$
\mathbf{w}_{\mathrm{opt}}=\mathbf{R}_{v}^{-1} \mathbf{h}\left(\mathbf{h}^{\mathrm{T}} \mathbf{R}_{v}^{-1} \mathbf{h}\right)^{-1} \quad \Rightarrow \hat{T}_{0}=\left(\mathbf{h}^{\mathrm{T}} \mathbf{R}_{v}^{-1} \mathbf{h}\right)^{-1} \mathbf{h}^{\mathrm{T}} \mathbf{R}_{v}^{-1} \mathbf{x}
$$

For this problem, since

$$
\mathbf{R}_{v}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \text { and } \quad \mathbf{h}=\left[\begin{array}{l}
e^{-t_{1}} \\
e^{-t_{2}}
\end{array}\right]
$$

we have

$$
\hat{T}_{0}=\left(e^{-2 t_{1}}+e^{-2 t_{2}}\right)^{-1}\left(e^{-t_{1}} x_{1}+e^{-t_{2}} x_{2}\right) .
$$

(b) Since $E\left\{\hat{T}_{0}\right\}=\left(e^{-2 t_{1}}+e^{-2 t_{2}}\right)^{-1} E\left\{\left(e^{-t_{1}} x_{1}+e^{-t_{2}} x_{2}\right)\right\}=T_{0}$, the estimator is unbiased. Furthermore, the minimum mean-squared error is $\mathbf{w}_{\mathrm{opt}}^{\mathrm{H}} \mathbf{R}_{v} \mathbf{w}_{\mathrm{opt}}=\left(e^{-2 t_{1}}+e^{-2 t_{2}}\right)^{-1}$.
(c) The LMMSE estimator is given by

$$
\hat{T}_{0, \text { lmmse }}=\left[\sigma_{T}^{-2}+\mathbf{h}^{\mathrm{T}} \mathbf{h}\right]^{-1} \mathbf{h}^{\mathrm{T}} \mathbf{x}=\left(\sigma_{T}^{-2}+e^{-2 t_{1}}+e^{-2 t_{2}}\right)^{-1}\left(e^{-t_{1}} x_{1}+e^{-t_{2}} x_{2}\right)
$$

(d) The resulting minimum mean-square error for the estimator $\hat{T}_{0,1 m m s e}$ is $\left(\sigma_{T}^{-2}+e^{-2 t_{1}}+e^{-2 t_{2}}\right)^{-1}$. Since $\sigma_{T}^{-2}>0$, the LMMSE estimator will have a lower error as compared to BLUE. The estimator $\hat{T}_{0, \mathrm{lmmse}}$ will have a bias $b=0$ as

$$
b=\left(\frac{e^{-2 t_{1}}+e^{-2 t_{2}}}{\sigma_{T}^{-2}+e^{-2 t_{1}}+e^{-2 t_{2}}}-1\right) E\left\{T_{0}\right\} .
$$

Question 2 (10 points): Linear prediction

Suppose the signal $x(n)$ is wide-sense stationary. We develop a first-order linear predictor of the form

$$
\hat{x}(n+1)=w(0) x(n)+w(1) x(n-1)=\mathbf{w}^{H} \mathbf{x}
$$

where $\mathbf{w}=[w(0) w(1)]^{T}$ and $\mathbf{x}=[x(n) x(n-1)]^{T}$.
(1pts) (a) Show that the autocorrelation sequence of a wide-sense stationary random process is a conjugate symmetric function of the lag k, i.e., $r_{x}(k)=r_{x}^{*}(-k)$.
(4pts) (b) Derive the optimum \mathbf{w} by minimizing the mean-squared error

$$
J(\mathbf{w})=E\left\{\left|\mathbf{w}^{H} \mathbf{x}-x(n+1)\right|^{2}\right\} .
$$

(2pts) (c) Suppose the autocorrelation of $x(n)$ for the first three lags are $r_{x}(0)=1, r_{x}(1)=0$ and $r_{x}(2)=1$. To solve the normal equations obtained in Part (b) of this question, we will use the steepest gradient descent algorithm. Will the steepest-descent algorithm converge if we choose the step size $\mu=4$, and why?
(3pts) (d) To converge to $\mathbf{w}_{\text {opt }}$, how many iterations are required for the steepest-descent algorithm with $r_{x}(0)=1, r_{x}(1)=0, r_{x}(2)=1, \mu=1$, and $\mathbf{w}^{(0)}=\mathbf{0}$. To answer this question, first compute $\mathbf{w}_{\mathrm{opt}}$.

Solutions

(a) For a wide-sense stationary random process, the auto-correlation function is defined as

$$
r_{x}(k)=E\left\{x(n+k) x^{*}(n)\right\}=E\left\{x^{*}(n) x(n+k)\right\}=r_{x}^{*}(-k) .
$$

(b) The cost function for a first-order linear predictor is

$$
J(\mathbf{w})=E\left\{\left|\mathbf{w}^{H} \mathbf{x}-x(n+1)\right|^{2}\right\}=\mathbf{w}^{\mathrm{H}} \mathbf{R}_{x} \mathbf{w}-\mathbf{w}^{\mathrm{H}} \mathbf{r}_{x d}-\mathbf{r}_{x d}^{\mathrm{H}} \mathbf{w}+r_{x}(0)
$$

where

$$
\mathbf{R}_{x}=\left[\begin{array}{cc}
r_{x}(0) & r_{x}^{*}(1) \\
r_{x}(1) & r_{x}(0)
\end{array}\right] \quad \text { and } \quad \mathbf{r}_{x d}=E\left\{\left[\begin{array}{c}
x(n) \\
x(n-1)
\end{array}\right] x^{*}(n+1)\right\}=\left[\begin{array}{c}
r_{x}(1) \\
r_{x}(2)
\end{array}\right]
$$

Then, the optimum solution is

$$
\mathbf{w}_{\mathrm{opt}}=\mathbf{R}_{x}^{-1} \mathbf{r}_{x d}
$$

(c) With $r_{x}(0)=1, r_{x}(1)=0$ and $r_{x}(2)=1, \mathbf{R}_{x}=\mathbf{I}$ with eigenvalues $\lambda_{\min }=\lambda_{\max }=1$. For convergence, since we require $0 \leq \mu \leq \frac{2}{\lambda_{\max }}$, with $\mu=4$, the steepest gradient descent algorithm will not converge.
(d) The update equations for the steepest gradient descent algorithm is

$$
\mathbf{w}^{(k+1)}=\mathbf{w}^{(k)}-\left[\mathbf{w}^{(k)}-\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right] .
$$

with $\mathbf{w}^{(1)}=\mathbf{0}$. Therefore, $\mathbf{w}^{(1)}=\mathbf{w}^{(2)} \cdots=\mathbf{w}_{\text {opt }}=[0,1]^{T}$.

