Deptartment of Electrical Communication Engineering Indian Institute of Science

E9 211 Adaptive Signal Processing 1 Oct 2019, 13:30–15:00, Mid-term exam solutions

This exam has two questions (20 points). Question 2 is on the back side of this page.

A4 cheat sheet is allowed. No other materials will be allowed.

Question 1 (10 points): Temperature estimation

Let T_0 denote the initial temperature of a metal rod and assume that it is decreasing exponentially. We make two noisy measurements of the temperature of the rod at time instants t_1 and t_2 as

$$x_i = T_0 e^{-t_i} + v_i, \quad i = 1, 2,$$

where v_1 and v_2 are uncorrelated zero-mean random variables with variances $\sigma_1^2 = \sigma_2^2 = 1$, respectively.

- (3pts) (a) Assume that T_0 is a constant (i.e., deterministic). Given x_1 and x_2 , compute the Best Linear Unbiased Estimator (BLUE) \hat{T}_0 .
- (2pts) (b) Show that the estimator \hat{T}_0 is unbiased and give the resulting minimum mean-square error.
- (3pts) (c) Now, suppose T_0 is a zero-mean random variable with variance $\sigma_T^2 > 0$. Assuming that T_0 and v_i are uncorrelated, compute the linear-least-mean squares estimator $\hat{T}_{0,\text{lmmse}}$.
- (2pts) (d) Give the resulting minimum mean-square error for the estimator $\hat{T}_{0,\text{lmmse}}$ and compare it with the one obtained in Part (b) of this question with $\sigma_1^2 = \sigma_2^2 = 1$. Is $\hat{T}_{0,\text{lmmse}}$ unbiased?

Solutions

(a) The estimator $\hat{T}_0 = \mathbf{w}^H \mathbf{x}$ is computed by solving the constrained optimization problem

 $\underset{\mathbf{w}}{\text{minimize}} \quad \mathbf{w}^{\mathsf{H}} \mathbf{R}_{v} \mathbf{w} \quad \text{subject to} \quad \mathbf{w}^{\mathsf{H}} \mathbf{h} = 1$

whose solution is

$$\mathbf{w}_{\text{opt}} = \mathbf{R}_v^{-1} \mathbf{h} (\mathbf{h}^{\mathrm{T}} \mathbf{R}_v^{-1} \mathbf{h})^{-1} \quad \Rightarrow \quad \hat{T}_0 = (\mathbf{h}^{\mathrm{T}} \mathbf{R}_v^{-1} \mathbf{h})^{-1} \mathbf{h}^{\mathrm{T}} \mathbf{R}_v^{-1} \mathbf{x}.$$

For this problem, since

$$\mathbf{R}_{v} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad \mathbf{h} = \begin{bmatrix} e^{-t_{1}} \\ e^{-t_{2}} \end{bmatrix}$$

we have

$$\hat{T}_0 = \left(e^{-2t_1} + e^{-2t_2}\right)^{-1} \left(e^{-t_1}x_1 + e^{-t_2}x_2\right).$$

- (b) Since $E\{\hat{T}_0\} = (e^{-2t_1} + e^{-2t_2})^{-1} E\{(e^{-t_1}x_1 + e^{-t_2}x_2)\} = T_0$, the estimator is unbiased. Furthermore, the minimum mean-squared error is $\mathbf{w}_{opt}^{\mathsf{H}} \mathbf{R}_v \mathbf{w}_{opt} = (e^{-2t_1} + e^{-2t_2})^{-1}$.
- (c) The LMMSE estimator is given by

$$\hat{T}_{0,\text{lmmse}} = [\sigma_T^{-2} + \mathbf{h}^{\mathrm{T}}\mathbf{h}]^{-1}\mathbf{h}^{\mathrm{T}}\mathbf{x} = (\sigma_T^{-2} + e^{-2t_1} + e^{-2t_2})^{-1} (e^{-t_1}x_1 + e^{-t_2}x_2)$$

(d) The resulting minimum mean-square error for the estimator $\hat{T}_{0,\text{lmmse}}$ is $(\sigma_T^{-2} + e^{-2t_1} + e^{-2t_2})^{-1}$. Since $\sigma_T^{-2} > 0$, the LMMSE estimator will have a lower error as compared to BLUE. The estimator $\hat{T}_{0,\text{lmmse}}$ will have a bias b = 0 as

$$b = \left(\frac{e^{-2t_1} + e^{-2t_2}}{\sigma_T^{-2} + e^{-2t_1} + e^{-2t_2}} - 1\right) E\{T_0\}.$$

Question 2 (10 points): Linear prediction

Suppose the signal x(n) is wide-sense stationary. We develop a first-order linear predictor of the form

$$\hat{x}(n+1) = w(0)x(n) + w(1)x(n-1) = \mathbf{w}^H \mathbf{x}$$

where $\mathbf{w} = [w(0) \ w(1)]^T$ and $\mathbf{x} = [x(n) \ x(n-1)]^T$.

- (1pts) (a) Show that the autocorrelation sequence of a wide-sense stationary random process is a conjugate symmetric function of the lag k, i.e., $r_x(k) = r_x^*(-k)$.
- (4pts) (b) Derive the optimum **w** by minimizing the mean-squared error

$$J(\mathbf{w}) = E\{|\mathbf{w}^H \mathbf{x} - x(n+1)|^2\}.$$

- (2pts) (c) Suppose the autocorrelation of x(n) for the first three lags are $r_x(0) = 1$, $r_x(1) = 0$ and $r_x(2) = 1$. To solve the normal equations obtained in Part (b) of this question, we will use the steepest gradient descent algorithm. Will the steepest-descent algorithm converge if we choose the step size $\mu = 4$, and why?
- (3pts) (d) To converge to \mathbf{w}_{opt} , how many iterations are required for the steepest-descent algorithm with $r_x(0) = 1$, $r_x(1) = 0$, $r_x(2) = 1$, $\mu = 1$, and $\mathbf{w}^{(0)} = \mathbf{0}$. To answer this question, first compute \mathbf{w}_{opt} .

Solutions

(a) For a wide-sense stationary random process, the auto-correlation function is defined as

$$r_x(k) = E\{x(n+k)x^*(n)\} = E\{x^*(n)x(n+k)\} = r_x^*(-k).$$

(b) The cost function for a first-order linear predictor is

$$J(\mathbf{w}) = E\{|\mathbf{w}^H\mathbf{x} - x(n+1)|^2\} = \mathbf{w}^H\mathbf{R}_x\mathbf{w} - \mathbf{w}^H\mathbf{r}_{xd} - \mathbf{r}_{xd}^H\mathbf{w} + r_x(0)$$

where

$$\mathbf{R}_{x} = \begin{bmatrix} r_{x}(0) & r_{x}^{*}(1) \\ r_{x}(1) & r_{x}(0) \end{bmatrix} \quad \text{and} \quad \mathbf{r}_{xd} = E\left\{ \begin{bmatrix} x(n) \\ x(n-1) \end{bmatrix} x^{*}(n+1) \right\} = \begin{bmatrix} r_{x}(1) \\ r_{x}(2) \end{bmatrix}$$

Then, the optimum solution is

$$\mathbf{w}_{\text{opt}} = \mathbf{R}_x^{-1} \mathbf{r}_{xd}$$

- (c) With $r_x(0) = 1$, $r_x(1) = 0$ and $r_x(2) = 1$, $\mathbf{R}_x = \mathbf{I}$ with eigenvalues $\lambda_{\min} = \lambda_{\max} = 1$. For convergence, since we require $0 \le \mu \le \frac{2}{\lambda_{\max}}$, with $\mu = 4$, the steepest gradient descent algorithm will not converge.
- (d) The update equations for the steepest gradient descent algorithm is

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \begin{bmatrix} \mathbf{w}^{(k)} - \begin{bmatrix} 0\\1 \end{bmatrix} \end{bmatrix}.$$

with $\mathbf{w}^{(1)} = \mathbf{0}$. Therefore, $\mathbf{w}^{(1)} = \mathbf{w}^{(2)} \cdots = \mathbf{w}_{opt} = [0, 1]^T$.