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Power networks, grid analytics Biological networks

Oil and gas field exploration Internet, social media

Massive data, but limited computational capacity
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Sketching or Censoring

Sketching or Censoring — tool for data reduction.

Why sketching?
- Reduce (inferential) processing overhead

- Quick rough answer

How is sketching done?
- Random sampling
[Drineas-Mahoney-Muthukrishnan-2006], [Strohmer-Vershynin-2009]

- Design of experiments (censoring—distributed setup)
[Rago-Willett-Bar-Shalom-1996], [Msechu-Giannakis-2012],

[Berberidis-Kekatos-Giannakis-2015]
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Sparse sampling for sketching

y ∈ R
d

=

Φ(w) =

{0,1}
︷ ︸︸ ︷

diagr(w)
x ∈ R

D

What is sparse sampling?

Design w ∈ {0, 1}D to select the most “informative” d (≪ D)
samples

diagr(·) - diagonal matrix with the argument on its diagonal but with the zero

rows removed.
4/13



Linear regression — model mismatch

Observations follow

xm = āTmθ + nm, m = 1, 2, . . . ,D

- θ ∈ R
p Unknown parameter

- nm i.i.d. zero-mean unit-variance Gaussian noise

Regressors are known up to a bounded uncertainty

ām = am
︸︷︷︸

known

+ pm
︸︷︷︸

unknown,‖pm‖2≤η

Problem statement

Given {xm}, {am}, and η,
(a) design w to censor less-informative samples
(b) estimate θ that performs well for any allowed {pm}
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Optimization problem

Censored robust least squares (min. the worst-case residual)

min
w∈W ,θ

max
‖pm‖2≤η,m=1,2,...,D

D∑

m=1

wm

(

xm − (am + pm)
T
θ

)2

W = {w ∈ {0, 1}D | ‖w‖0 = d}.

Min-max problem is equivalent to the min. problem

min
w∈W ,θ

worst-case residual
︷ ︸︸ ︷

D∑

m=1

wm

(

|xm − aTmθ|+ η‖θ‖2

)2

Problem simplifies to censored least-squares for η = 0
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Proposed solver

Optimization problem

min
w∈W ,θ

D∑

m=1

wm

r2m(θ)
︷ ︸︸ ︷
(

|xm − aTmθ|+ η‖θ‖2

)2

For fixed {wm}, it is robust least squares
[Ghaoui-Lebret-1997], [Chandrashekaran-Golub-Gu-Sayed-1998]

For large values of η, θ⋆ = 0

{wm} are Boolean
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Proposed solver

Nonconvex Boolean optimization problem

min
w∈W ,θ

D∑

m=1

wm

r2m(θ)
︷ ︸︸ ︷
(

|xm − aTmθ|+ η‖θ‖2

)2
⇔ min

θ

d∑

m=1

r2[m](θ)

r2[m](θ) are squared regularized residuals in ascending order

simplifies to simple low-complexity problems:

Alternatively update w and θ

For a given θ, the optimal w is obtained by ordering the
regularized residuals.

For a given w, θ is obtained by solving the reduced-order
(d ≪ D) regularized least-squares

- convex/SOCP; or even, first-order methods
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Small-scale datasets—synthetic

Random (Gaussian) regression matrix

D = 10, p = 2
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η = 0.5
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D = 5000—synthetic

Random (Gaussian) regression matrix

D = 5000, p = 10
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η = 0.01
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Real dataset — protein (tertiary) structure modeling

Entries of the regression matrix contain structure revealing
parameters obtained via experiments (hence are
perturbed/noisy)

Observations are distance to native proteins.

D = 45730, p = 9
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η = 0.01
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Conclusions and future directions

Design censoring scheme for linear regression
- In presence of bounded uncertainties
- Data dependent by nature

Streaming data (not batch)
- online algorithms (e.g., recursive
least squares-like) need to be devised

Sketching with model mismatch
- Correlated observations, clustering, and
classification

Thank You!!
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